core.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654
  1. /*
  2. * Linux Socket Filter - Kernel level socket filtering
  3. *
  4. * Based on the design of the Berkeley Packet Filter. The new
  5. * internal format has been designed by PLUMgrid:
  6. *
  7. * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
  8. *
  9. * Authors:
  10. *
  11. * Jay Schulist <jschlst@samba.org>
  12. * Alexei Starovoitov <ast@plumgrid.com>
  13. * Daniel Borkmann <dborkman@redhat.com>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * Andi Kleen - Fix a few bad bugs and races.
  21. * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22. */
  23. #include <linux/filter.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/random.h>
  27. #include <linux/moduleloader.h>
  28. #include <asm/unaligned.h>
  29. /* Registers */
  30. #define BPF_R0 regs[BPF_REG_0]
  31. #define BPF_R1 regs[BPF_REG_1]
  32. #define BPF_R2 regs[BPF_REG_2]
  33. #define BPF_R3 regs[BPF_REG_3]
  34. #define BPF_R4 regs[BPF_REG_4]
  35. #define BPF_R5 regs[BPF_REG_5]
  36. #define BPF_R6 regs[BPF_REG_6]
  37. #define BPF_R7 regs[BPF_REG_7]
  38. #define BPF_R8 regs[BPF_REG_8]
  39. #define BPF_R9 regs[BPF_REG_9]
  40. #define BPF_R10 regs[BPF_REG_10]
  41. /* Named registers */
  42. #define DST regs[insn->dst_reg]
  43. #define SRC regs[insn->src_reg]
  44. #define FP regs[BPF_REG_FP]
  45. #define ARG1 regs[BPF_REG_ARG1]
  46. #define CTX regs[BPF_REG_CTX]
  47. #define IMM insn->imm
  48. /* No hurry in this branch
  49. *
  50. * Exported for the bpf jit load helper.
  51. */
  52. void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  53. {
  54. u8 *ptr = NULL;
  55. if (k >= SKF_NET_OFF)
  56. ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  57. else if (k >= SKF_LL_OFF)
  58. ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  59. if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  60. return ptr;
  61. return NULL;
  62. }
  63. struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  64. {
  65. gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  66. gfp_extra_flags;
  67. struct bpf_work_struct *ws;
  68. struct bpf_prog *fp;
  69. size = round_up(size, PAGE_SIZE);
  70. fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  71. if (fp == NULL)
  72. return NULL;
  73. ws = kmalloc(sizeof(*ws), GFP_KERNEL | gfp_extra_flags);
  74. if (ws == NULL) {
  75. vfree(fp);
  76. return NULL;
  77. }
  78. fp->pages = size / PAGE_SIZE;
  79. fp->work = ws;
  80. return fp;
  81. }
  82. EXPORT_SYMBOL_GPL(bpf_prog_alloc);
  83. struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
  84. gfp_t gfp_extra_flags)
  85. {
  86. gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
  87. gfp_extra_flags;
  88. struct bpf_prog *fp;
  89. BUG_ON(fp_old == NULL);
  90. size = round_up(size, PAGE_SIZE);
  91. if (size <= fp_old->pages * PAGE_SIZE)
  92. return fp_old;
  93. fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  94. if (fp != NULL) {
  95. memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
  96. fp->pages = size / PAGE_SIZE;
  97. /* We keep fp->work from fp_old around in the new
  98. * reallocated structure.
  99. */
  100. fp_old->work = NULL;
  101. __bpf_prog_free(fp_old);
  102. }
  103. return fp;
  104. }
  105. EXPORT_SYMBOL_GPL(bpf_prog_realloc);
  106. void __bpf_prog_free(struct bpf_prog *fp)
  107. {
  108. kfree(fp->work);
  109. vfree(fp);
  110. }
  111. EXPORT_SYMBOL_GPL(__bpf_prog_free);
  112. struct bpf_binary_header *
  113. bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
  114. unsigned int alignment,
  115. bpf_jit_fill_hole_t bpf_fill_ill_insns)
  116. {
  117. struct bpf_binary_header *hdr;
  118. unsigned int size, hole, start;
  119. /* Most of BPF filters are really small, but if some of them
  120. * fill a page, allow at least 128 extra bytes to insert a
  121. * random section of illegal instructions.
  122. */
  123. size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
  124. hdr = module_alloc(size);
  125. if (hdr == NULL)
  126. return NULL;
  127. /* Fill space with illegal/arch-dep instructions. */
  128. bpf_fill_ill_insns(hdr, size);
  129. hdr->pages = size / PAGE_SIZE;
  130. hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
  131. PAGE_SIZE - sizeof(*hdr));
  132. start = (prandom_u32() % hole) & ~(alignment - 1);
  133. /* Leave a random number of instructions before BPF code. */
  134. *image_ptr = &hdr->image[start];
  135. return hdr;
  136. }
  137. void bpf_jit_binary_free(struct bpf_binary_header *hdr)
  138. {
  139. module_free(NULL, hdr);
  140. }
  141. /* Base function for offset calculation. Needs to go into .text section,
  142. * therefore keeping it non-static as well; will also be used by JITs
  143. * anyway later on, so do not let the compiler omit it.
  144. */
  145. noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  146. {
  147. return 0;
  148. }
  149. /**
  150. * __bpf_prog_run - run eBPF program on a given context
  151. * @ctx: is the data we are operating on
  152. * @insn: is the array of eBPF instructions
  153. *
  154. * Decode and execute eBPF instructions.
  155. */
  156. static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
  157. {
  158. u64 stack[MAX_BPF_STACK / sizeof(u64)];
  159. u64 regs[MAX_BPF_REG], tmp;
  160. static const void *jumptable[256] = {
  161. [0 ... 255] = &&default_label,
  162. /* Now overwrite non-defaults ... */
  163. /* 32 bit ALU operations */
  164. [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
  165. [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
  166. [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
  167. [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
  168. [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
  169. [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
  170. [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
  171. [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
  172. [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
  173. [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
  174. [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
  175. [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
  176. [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
  177. [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
  178. [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
  179. [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
  180. [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
  181. [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
  182. [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
  183. [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
  184. [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
  185. [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
  186. [BPF_ALU | BPF_NEG] = &&ALU_NEG,
  187. [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
  188. [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
  189. /* 64 bit ALU operations */
  190. [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
  191. [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
  192. [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
  193. [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
  194. [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
  195. [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
  196. [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
  197. [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
  198. [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
  199. [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
  200. [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
  201. [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
  202. [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
  203. [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
  204. [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
  205. [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
  206. [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
  207. [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
  208. [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
  209. [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
  210. [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
  211. [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
  212. [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
  213. [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
  214. [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
  215. /* Call instruction */
  216. [BPF_JMP | BPF_CALL] = &&JMP_CALL,
  217. /* Jumps */
  218. [BPF_JMP | BPF_JA] = &&JMP_JA,
  219. [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
  220. [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
  221. [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
  222. [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
  223. [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
  224. [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
  225. [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
  226. [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
  227. [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
  228. [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
  229. [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
  230. [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
  231. [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
  232. [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
  233. /* Program return */
  234. [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
  235. /* Store instructions */
  236. [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
  237. [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
  238. [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
  239. [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
  240. [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
  241. [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
  242. [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
  243. [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
  244. [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
  245. [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
  246. /* Load instructions */
  247. [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
  248. [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
  249. [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
  250. [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
  251. [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
  252. [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
  253. [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
  254. [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
  255. [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
  256. [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
  257. [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
  258. };
  259. void *ptr;
  260. int off;
  261. #define CONT ({ insn++; goto select_insn; })
  262. #define CONT_JMP ({ insn++; goto select_insn; })
  263. FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
  264. ARG1 = (u64) (unsigned long) ctx;
  265. /* Registers used in classic BPF programs need to be reset first. */
  266. regs[BPF_REG_A] = 0;
  267. regs[BPF_REG_X] = 0;
  268. select_insn:
  269. goto *jumptable[insn->code];
  270. /* ALU */
  271. #define ALU(OPCODE, OP) \
  272. ALU64_##OPCODE##_X: \
  273. DST = DST OP SRC; \
  274. CONT; \
  275. ALU_##OPCODE##_X: \
  276. DST = (u32) DST OP (u32) SRC; \
  277. CONT; \
  278. ALU64_##OPCODE##_K: \
  279. DST = DST OP IMM; \
  280. CONT; \
  281. ALU_##OPCODE##_K: \
  282. DST = (u32) DST OP (u32) IMM; \
  283. CONT;
  284. ALU(ADD, +)
  285. ALU(SUB, -)
  286. ALU(AND, &)
  287. ALU(OR, |)
  288. ALU(LSH, <<)
  289. ALU(RSH, >>)
  290. ALU(XOR, ^)
  291. ALU(MUL, *)
  292. #undef ALU
  293. ALU_NEG:
  294. DST = (u32) -DST;
  295. CONT;
  296. ALU64_NEG:
  297. DST = -DST;
  298. CONT;
  299. ALU_MOV_X:
  300. DST = (u32) SRC;
  301. CONT;
  302. ALU_MOV_K:
  303. DST = (u32) IMM;
  304. CONT;
  305. ALU64_MOV_X:
  306. DST = SRC;
  307. CONT;
  308. ALU64_MOV_K:
  309. DST = IMM;
  310. CONT;
  311. LD_IMM_DW:
  312. DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
  313. insn++;
  314. CONT;
  315. ALU64_ARSH_X:
  316. (*(s64 *) &DST) >>= SRC;
  317. CONT;
  318. ALU64_ARSH_K:
  319. (*(s64 *) &DST) >>= IMM;
  320. CONT;
  321. ALU64_MOD_X:
  322. if (unlikely(SRC == 0))
  323. return 0;
  324. tmp = DST;
  325. DST = do_div(tmp, SRC);
  326. CONT;
  327. ALU_MOD_X:
  328. if (unlikely(SRC == 0))
  329. return 0;
  330. tmp = (u32) DST;
  331. DST = do_div(tmp, (u32) SRC);
  332. CONT;
  333. ALU64_MOD_K:
  334. tmp = DST;
  335. DST = do_div(tmp, IMM);
  336. CONT;
  337. ALU_MOD_K:
  338. tmp = (u32) DST;
  339. DST = do_div(tmp, (u32) IMM);
  340. CONT;
  341. ALU64_DIV_X:
  342. if (unlikely(SRC == 0))
  343. return 0;
  344. do_div(DST, SRC);
  345. CONT;
  346. ALU_DIV_X:
  347. if (unlikely(SRC == 0))
  348. return 0;
  349. tmp = (u32) DST;
  350. do_div(tmp, (u32) SRC);
  351. DST = (u32) tmp;
  352. CONT;
  353. ALU64_DIV_K:
  354. do_div(DST, IMM);
  355. CONT;
  356. ALU_DIV_K:
  357. tmp = (u32) DST;
  358. do_div(tmp, (u32) IMM);
  359. DST = (u32) tmp;
  360. CONT;
  361. ALU_END_TO_BE:
  362. switch (IMM) {
  363. case 16:
  364. DST = (__force u16) cpu_to_be16(DST);
  365. break;
  366. case 32:
  367. DST = (__force u32) cpu_to_be32(DST);
  368. break;
  369. case 64:
  370. DST = (__force u64) cpu_to_be64(DST);
  371. break;
  372. }
  373. CONT;
  374. ALU_END_TO_LE:
  375. switch (IMM) {
  376. case 16:
  377. DST = (__force u16) cpu_to_le16(DST);
  378. break;
  379. case 32:
  380. DST = (__force u32) cpu_to_le32(DST);
  381. break;
  382. case 64:
  383. DST = (__force u64) cpu_to_le64(DST);
  384. break;
  385. }
  386. CONT;
  387. /* CALL */
  388. JMP_CALL:
  389. /* Function call scratches BPF_R1-BPF_R5 registers,
  390. * preserves BPF_R6-BPF_R9, and stores return value
  391. * into BPF_R0.
  392. */
  393. BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
  394. BPF_R4, BPF_R5);
  395. CONT;
  396. /* JMP */
  397. JMP_JA:
  398. insn += insn->off;
  399. CONT;
  400. JMP_JEQ_X:
  401. if (DST == SRC) {
  402. insn += insn->off;
  403. CONT_JMP;
  404. }
  405. CONT;
  406. JMP_JEQ_K:
  407. if (DST == IMM) {
  408. insn += insn->off;
  409. CONT_JMP;
  410. }
  411. CONT;
  412. JMP_JNE_X:
  413. if (DST != SRC) {
  414. insn += insn->off;
  415. CONT_JMP;
  416. }
  417. CONT;
  418. JMP_JNE_K:
  419. if (DST != IMM) {
  420. insn += insn->off;
  421. CONT_JMP;
  422. }
  423. CONT;
  424. JMP_JGT_X:
  425. if (DST > SRC) {
  426. insn += insn->off;
  427. CONT_JMP;
  428. }
  429. CONT;
  430. JMP_JGT_K:
  431. if (DST > IMM) {
  432. insn += insn->off;
  433. CONT_JMP;
  434. }
  435. CONT;
  436. JMP_JGE_X:
  437. if (DST >= SRC) {
  438. insn += insn->off;
  439. CONT_JMP;
  440. }
  441. CONT;
  442. JMP_JGE_K:
  443. if (DST >= IMM) {
  444. insn += insn->off;
  445. CONT_JMP;
  446. }
  447. CONT;
  448. JMP_JSGT_X:
  449. if (((s64) DST) > ((s64) SRC)) {
  450. insn += insn->off;
  451. CONT_JMP;
  452. }
  453. CONT;
  454. JMP_JSGT_K:
  455. if (((s64) DST) > ((s64) IMM)) {
  456. insn += insn->off;
  457. CONT_JMP;
  458. }
  459. CONT;
  460. JMP_JSGE_X:
  461. if (((s64) DST) >= ((s64) SRC)) {
  462. insn += insn->off;
  463. CONT_JMP;
  464. }
  465. CONT;
  466. JMP_JSGE_K:
  467. if (((s64) DST) >= ((s64) IMM)) {
  468. insn += insn->off;
  469. CONT_JMP;
  470. }
  471. CONT;
  472. JMP_JSET_X:
  473. if (DST & SRC) {
  474. insn += insn->off;
  475. CONT_JMP;
  476. }
  477. CONT;
  478. JMP_JSET_K:
  479. if (DST & IMM) {
  480. insn += insn->off;
  481. CONT_JMP;
  482. }
  483. CONT;
  484. JMP_EXIT:
  485. return BPF_R0;
  486. /* STX and ST and LDX*/
  487. #define LDST(SIZEOP, SIZE) \
  488. STX_MEM_##SIZEOP: \
  489. *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
  490. CONT; \
  491. ST_MEM_##SIZEOP: \
  492. *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
  493. CONT; \
  494. LDX_MEM_##SIZEOP: \
  495. DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
  496. CONT;
  497. LDST(B, u8)
  498. LDST(H, u16)
  499. LDST(W, u32)
  500. LDST(DW, u64)
  501. #undef LDST
  502. STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
  503. atomic_add((u32) SRC, (atomic_t *)(unsigned long)
  504. (DST + insn->off));
  505. CONT;
  506. STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
  507. atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
  508. (DST + insn->off));
  509. CONT;
  510. LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
  511. off = IMM;
  512. load_word:
  513. /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
  514. * only appearing in the programs where ctx ==
  515. * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
  516. * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
  517. * internal BPF verifier will check that BPF_R6 ==
  518. * ctx.
  519. *
  520. * BPF_ABS and BPF_IND are wrappers of function calls,
  521. * so they scratch BPF_R1-BPF_R5 registers, preserve
  522. * BPF_R6-BPF_R9, and store return value into BPF_R0.
  523. *
  524. * Implicit input:
  525. * ctx == skb == BPF_R6 == CTX
  526. *
  527. * Explicit input:
  528. * SRC == any register
  529. * IMM == 32-bit immediate
  530. *
  531. * Output:
  532. * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
  533. */
  534. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
  535. if (likely(ptr != NULL)) {
  536. BPF_R0 = get_unaligned_be32(ptr);
  537. CONT;
  538. }
  539. return 0;
  540. LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
  541. off = IMM;
  542. load_half:
  543. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
  544. if (likely(ptr != NULL)) {
  545. BPF_R0 = get_unaligned_be16(ptr);
  546. CONT;
  547. }
  548. return 0;
  549. LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
  550. off = IMM;
  551. load_byte:
  552. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
  553. if (likely(ptr != NULL)) {
  554. BPF_R0 = *(u8 *)ptr;
  555. CONT;
  556. }
  557. return 0;
  558. LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
  559. off = IMM + SRC;
  560. goto load_word;
  561. LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
  562. off = IMM + SRC;
  563. goto load_half;
  564. LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
  565. off = IMM + SRC;
  566. goto load_byte;
  567. default_label:
  568. /* If we ever reach this, we have a bug somewhere. */
  569. WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
  570. return 0;
  571. }
  572. void __weak bpf_int_jit_compile(struct bpf_prog *prog)
  573. {
  574. }
  575. /**
  576. * bpf_prog_select_runtime - select execution runtime for BPF program
  577. * @fp: bpf_prog populated with internal BPF program
  578. *
  579. * try to JIT internal BPF program, if JIT is not available select interpreter
  580. * BPF program will be executed via BPF_PROG_RUN() macro
  581. */
  582. void bpf_prog_select_runtime(struct bpf_prog *fp)
  583. {
  584. fp->bpf_func = (void *) __bpf_prog_run;
  585. /* Probe if internal BPF can be JITed */
  586. bpf_int_jit_compile(fp);
  587. /* Lock whole bpf_prog as read-only */
  588. bpf_prog_lock_ro(fp);
  589. }
  590. EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
  591. static void bpf_prog_free_deferred(struct work_struct *work)
  592. {
  593. struct bpf_work_struct *ws;
  594. ws = container_of(work, struct bpf_work_struct, work);
  595. bpf_jit_free(ws->prog);
  596. }
  597. /* Free internal BPF program */
  598. void bpf_prog_free(struct bpf_prog *fp)
  599. {
  600. struct bpf_work_struct *ws = fp->work;
  601. INIT_WORK(&ws->work, bpf_prog_free_deferred);
  602. ws->prog = fp;
  603. schedule_work(&ws->work);
  604. }
  605. EXPORT_SYMBOL_GPL(bpf_prog_free);