sched.c 270 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. raw_spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. raw_spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. raw_spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. raw_spin_unlock_irq(&rq->lock);
  763. #else
  764. raw_spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. raw_spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. raw_spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. raw_spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. raw_spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. raw_spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. raw_spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. raw_spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. raw_spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_raw_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. raw_spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. raw_spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. raw_spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. raw_spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. raw_spin_unlock(&this_rq->lock);
  1475. raw_spin_lock(&busiest->lock);
  1476. raw_spin_lock_nested(&this_rq->lock,
  1477. SINGLE_DEPTH_NESTING);
  1478. ret = 1;
  1479. } else
  1480. raw_spin_lock_nested(&busiest->lock,
  1481. SINGLE_DEPTH_NESTING);
  1482. }
  1483. return ret;
  1484. }
  1485. #endif /* CONFIG_PREEMPT */
  1486. /*
  1487. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1488. */
  1489. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1490. {
  1491. if (unlikely(!irqs_disabled())) {
  1492. /* printk() doesn't work good under rq->lock */
  1493. raw_spin_unlock(&this_rq->lock);
  1494. BUG_ON(1);
  1495. }
  1496. return _double_lock_balance(this_rq, busiest);
  1497. }
  1498. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1499. __releases(busiest->lock)
  1500. {
  1501. raw_spin_unlock(&busiest->lock);
  1502. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1503. }
  1504. #endif
  1505. #ifdef CONFIG_FAIR_GROUP_SCHED
  1506. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1507. {
  1508. #ifdef CONFIG_SMP
  1509. cfs_rq->shares = shares;
  1510. #endif
  1511. }
  1512. #endif
  1513. static void calc_load_account_active(struct rq *this_rq);
  1514. static void update_sysctl(void);
  1515. static int get_update_sysctl_factor(void);
  1516. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1517. {
  1518. set_task_rq(p, cpu);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1522. * successfuly executed on another CPU. We must ensure that updates of
  1523. * per-task data have been completed by this moment.
  1524. */
  1525. smp_wmb();
  1526. task_thread_info(p)->cpu = cpu;
  1527. #endif
  1528. }
  1529. #include "sched_stats.h"
  1530. #include "sched_idletask.c"
  1531. #include "sched_fair.c"
  1532. #include "sched_rt.c"
  1533. #ifdef CONFIG_SCHED_DEBUG
  1534. # include "sched_debug.c"
  1535. #endif
  1536. #define sched_class_highest (&rt_sched_class)
  1537. #define for_each_class(class) \
  1538. for (class = sched_class_highest; class; class = class->next)
  1539. static void inc_nr_running(struct rq *rq)
  1540. {
  1541. rq->nr_running++;
  1542. }
  1543. static void dec_nr_running(struct rq *rq)
  1544. {
  1545. rq->nr_running--;
  1546. }
  1547. static void set_load_weight(struct task_struct *p)
  1548. {
  1549. if (task_has_rt_policy(p)) {
  1550. p->se.load.weight = prio_to_weight[0] * 2;
  1551. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1552. return;
  1553. }
  1554. /*
  1555. * SCHED_IDLE tasks get minimal weight:
  1556. */
  1557. if (p->policy == SCHED_IDLE) {
  1558. p->se.load.weight = WEIGHT_IDLEPRIO;
  1559. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1560. return;
  1561. }
  1562. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1563. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1564. }
  1565. static void update_avg(u64 *avg, u64 sample)
  1566. {
  1567. s64 diff = sample - *avg;
  1568. *avg += diff >> 3;
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1571. {
  1572. if (wakeup)
  1573. p->se.start_runtime = p->se.sum_exec_runtime;
  1574. sched_info_queued(p);
  1575. p->sched_class->enqueue_task(rq, p, wakeup);
  1576. p->se.on_rq = 1;
  1577. }
  1578. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1579. {
  1580. if (sleep) {
  1581. if (p->se.last_wakeup) {
  1582. update_avg(&p->se.avg_overlap,
  1583. p->se.sum_exec_runtime - p->se.last_wakeup);
  1584. p->se.last_wakeup = 0;
  1585. } else {
  1586. update_avg(&p->se.avg_wakeup,
  1587. sysctl_sched_wakeup_granularity);
  1588. }
  1589. }
  1590. sched_info_dequeued(p);
  1591. p->sched_class->dequeue_task(rq, p, sleep);
  1592. p->se.on_rq = 0;
  1593. }
  1594. /*
  1595. * __normal_prio - return the priority that is based on the static prio
  1596. */
  1597. static inline int __normal_prio(struct task_struct *p)
  1598. {
  1599. return p->static_prio;
  1600. }
  1601. /*
  1602. * Calculate the expected normal priority: i.e. priority
  1603. * without taking RT-inheritance into account. Might be
  1604. * boosted by interactivity modifiers. Changes upon fork,
  1605. * setprio syscalls, and whenever the interactivity
  1606. * estimator recalculates.
  1607. */
  1608. static inline int normal_prio(struct task_struct *p)
  1609. {
  1610. int prio;
  1611. if (task_has_rt_policy(p))
  1612. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1613. else
  1614. prio = __normal_prio(p);
  1615. return prio;
  1616. }
  1617. /*
  1618. * Calculate the current priority, i.e. the priority
  1619. * taken into account by the scheduler. This value might
  1620. * be boosted by RT tasks, or might be boosted by
  1621. * interactivity modifiers. Will be RT if the task got
  1622. * RT-boosted. If not then it returns p->normal_prio.
  1623. */
  1624. static int effective_prio(struct task_struct *p)
  1625. {
  1626. p->normal_prio = normal_prio(p);
  1627. /*
  1628. * If we are RT tasks or we were boosted to RT priority,
  1629. * keep the priority unchanged. Otherwise, update priority
  1630. * to the normal priority:
  1631. */
  1632. if (!rt_prio(p->prio))
  1633. return p->normal_prio;
  1634. return p->prio;
  1635. }
  1636. /*
  1637. * activate_task - move a task to the runqueue.
  1638. */
  1639. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1640. {
  1641. if (task_contributes_to_load(p))
  1642. rq->nr_uninterruptible--;
  1643. enqueue_task(rq, p, wakeup);
  1644. inc_nr_running(rq);
  1645. }
  1646. /*
  1647. * deactivate_task - remove a task from the runqueue.
  1648. */
  1649. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1650. {
  1651. if (task_contributes_to_load(p))
  1652. rq->nr_uninterruptible++;
  1653. dequeue_task(rq, p, sleep);
  1654. dec_nr_running(rq);
  1655. }
  1656. /**
  1657. * task_curr - is this task currently executing on a CPU?
  1658. * @p: the task in question.
  1659. */
  1660. inline int task_curr(const struct task_struct *p)
  1661. {
  1662. return cpu_curr(task_cpu(p)) == p;
  1663. }
  1664. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1665. const struct sched_class *prev_class,
  1666. int oldprio, int running)
  1667. {
  1668. if (prev_class != p->sched_class) {
  1669. if (prev_class->switched_from)
  1670. prev_class->switched_from(rq, p, running);
  1671. p->sched_class->switched_to(rq, p, running);
  1672. } else
  1673. p->sched_class->prio_changed(rq, p, oldprio, running);
  1674. }
  1675. /**
  1676. * kthread_bind - bind a just-created kthread to a cpu.
  1677. * @p: thread created by kthread_create().
  1678. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1679. *
  1680. * Description: This function is equivalent to set_cpus_allowed(),
  1681. * except that @cpu doesn't need to be online, and the thread must be
  1682. * stopped (i.e., just returned from kthread_create()).
  1683. *
  1684. * Function lives here instead of kthread.c because it messes with
  1685. * scheduler internals which require locking.
  1686. */
  1687. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1688. {
  1689. /* Must have done schedule() in kthread() before we set_task_cpu */
  1690. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1691. WARN_ON(1);
  1692. return;
  1693. }
  1694. p->cpus_allowed = cpumask_of_cpu(cpu);
  1695. p->rt.nr_cpus_allowed = 1;
  1696. p->flags |= PF_THREAD_BOUND;
  1697. }
  1698. EXPORT_SYMBOL(kthread_bind);
  1699. #ifdef CONFIG_SMP
  1700. /*
  1701. * Is this task likely cache-hot:
  1702. */
  1703. static int
  1704. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1705. {
  1706. s64 delta;
  1707. if (p->sched_class != &fair_sched_class)
  1708. return 0;
  1709. /*
  1710. * Buddy candidates are cache hot:
  1711. */
  1712. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1713. (&p->se == cfs_rq_of(&p->se)->next ||
  1714. &p->se == cfs_rq_of(&p->se)->last))
  1715. return 1;
  1716. if (sysctl_sched_migration_cost == -1)
  1717. return 1;
  1718. if (sysctl_sched_migration_cost == 0)
  1719. return 0;
  1720. delta = now - p->se.exec_start;
  1721. return delta < (s64)sysctl_sched_migration_cost;
  1722. }
  1723. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1724. {
  1725. int old_cpu = task_cpu(p);
  1726. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1727. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1728. #ifdef CONFIG_SCHED_DEBUG
  1729. /*
  1730. * We should never call set_task_cpu() on a blocked task,
  1731. * ttwu() will sort out the placement.
  1732. */
  1733. WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
  1734. #endif
  1735. trace_sched_migrate_task(p, new_cpu);
  1736. if (old_cpu != new_cpu) {
  1737. p->se.nr_migrations++;
  1738. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1739. 1, 1, NULL, 0);
  1740. }
  1741. p->se.vruntime -= old_cfsrq->min_vruntime -
  1742. new_cfsrq->min_vruntime;
  1743. __set_task_cpu(p, new_cpu);
  1744. }
  1745. struct migration_req {
  1746. struct list_head list;
  1747. struct task_struct *task;
  1748. int dest_cpu;
  1749. struct completion done;
  1750. };
  1751. /*
  1752. * The task's runqueue lock must be held.
  1753. * Returns true if you have to wait for migration thread.
  1754. */
  1755. static int
  1756. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1757. {
  1758. struct rq *rq = task_rq(p);
  1759. /*
  1760. * If the task is not on a runqueue (and not running), then
  1761. * the next wake-up will properly place the task.
  1762. */
  1763. if (!p->se.on_rq && !task_running(rq, p))
  1764. return 0;
  1765. init_completion(&req->done);
  1766. req->task = p;
  1767. req->dest_cpu = dest_cpu;
  1768. list_add(&req->list, &rq->migration_queue);
  1769. return 1;
  1770. }
  1771. /*
  1772. * wait_task_context_switch - wait for a thread to complete at least one
  1773. * context switch.
  1774. *
  1775. * @p must not be current.
  1776. */
  1777. void wait_task_context_switch(struct task_struct *p)
  1778. {
  1779. unsigned long nvcsw, nivcsw, flags;
  1780. int running;
  1781. struct rq *rq;
  1782. nvcsw = p->nvcsw;
  1783. nivcsw = p->nivcsw;
  1784. for (;;) {
  1785. /*
  1786. * The runqueue is assigned before the actual context
  1787. * switch. We need to take the runqueue lock.
  1788. *
  1789. * We could check initially without the lock but it is
  1790. * very likely that we need to take the lock in every
  1791. * iteration.
  1792. */
  1793. rq = task_rq_lock(p, &flags);
  1794. running = task_running(rq, p);
  1795. task_rq_unlock(rq, &flags);
  1796. if (likely(!running))
  1797. break;
  1798. /*
  1799. * The switch count is incremented before the actual
  1800. * context switch. We thus wait for two switches to be
  1801. * sure at least one completed.
  1802. */
  1803. if ((p->nvcsw - nvcsw) > 1)
  1804. break;
  1805. if ((p->nivcsw - nivcsw) > 1)
  1806. break;
  1807. cpu_relax();
  1808. }
  1809. }
  1810. /*
  1811. * wait_task_inactive - wait for a thread to unschedule.
  1812. *
  1813. * If @match_state is nonzero, it's the @p->state value just checked and
  1814. * not expected to change. If it changes, i.e. @p might have woken up,
  1815. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1816. * we return a positive number (its total switch count). If a second call
  1817. * a short while later returns the same number, the caller can be sure that
  1818. * @p has remained unscheduled the whole time.
  1819. *
  1820. * The caller must ensure that the task *will* unschedule sometime soon,
  1821. * else this function might spin for a *long* time. This function can't
  1822. * be called with interrupts off, or it may introduce deadlock with
  1823. * smp_call_function() if an IPI is sent by the same process we are
  1824. * waiting to become inactive.
  1825. */
  1826. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1827. {
  1828. unsigned long flags;
  1829. int running, on_rq;
  1830. unsigned long ncsw;
  1831. struct rq *rq;
  1832. for (;;) {
  1833. /*
  1834. * We do the initial early heuristics without holding
  1835. * any task-queue locks at all. We'll only try to get
  1836. * the runqueue lock when things look like they will
  1837. * work out!
  1838. */
  1839. rq = task_rq(p);
  1840. /*
  1841. * If the task is actively running on another CPU
  1842. * still, just relax and busy-wait without holding
  1843. * any locks.
  1844. *
  1845. * NOTE! Since we don't hold any locks, it's not
  1846. * even sure that "rq" stays as the right runqueue!
  1847. * But we don't care, since "task_running()" will
  1848. * return false if the runqueue has changed and p
  1849. * is actually now running somewhere else!
  1850. */
  1851. while (task_running(rq, p)) {
  1852. if (match_state && unlikely(p->state != match_state))
  1853. return 0;
  1854. cpu_relax();
  1855. }
  1856. /*
  1857. * Ok, time to look more closely! We need the rq
  1858. * lock now, to be *sure*. If we're wrong, we'll
  1859. * just go back and repeat.
  1860. */
  1861. rq = task_rq_lock(p, &flags);
  1862. trace_sched_wait_task(rq, p);
  1863. running = task_running(rq, p);
  1864. on_rq = p->se.on_rq;
  1865. ncsw = 0;
  1866. if (!match_state || p->state == match_state)
  1867. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1868. task_rq_unlock(rq, &flags);
  1869. /*
  1870. * If it changed from the expected state, bail out now.
  1871. */
  1872. if (unlikely(!ncsw))
  1873. break;
  1874. /*
  1875. * Was it really running after all now that we
  1876. * checked with the proper locks actually held?
  1877. *
  1878. * Oops. Go back and try again..
  1879. */
  1880. if (unlikely(running)) {
  1881. cpu_relax();
  1882. continue;
  1883. }
  1884. /*
  1885. * It's not enough that it's not actively running,
  1886. * it must be off the runqueue _entirely_, and not
  1887. * preempted!
  1888. *
  1889. * So if it was still runnable (but just not actively
  1890. * running right now), it's preempted, and we should
  1891. * yield - it could be a while.
  1892. */
  1893. if (unlikely(on_rq)) {
  1894. schedule_timeout_uninterruptible(1);
  1895. continue;
  1896. }
  1897. /*
  1898. * Ahh, all good. It wasn't running, and it wasn't
  1899. * runnable, which means that it will never become
  1900. * running in the future either. We're all done!
  1901. */
  1902. break;
  1903. }
  1904. return ncsw;
  1905. }
  1906. /***
  1907. * kick_process - kick a running thread to enter/exit the kernel
  1908. * @p: the to-be-kicked thread
  1909. *
  1910. * Cause a process which is running on another CPU to enter
  1911. * kernel-mode, without any delay. (to get signals handled.)
  1912. *
  1913. * NOTE: this function doesnt have to take the runqueue lock,
  1914. * because all it wants to ensure is that the remote task enters
  1915. * the kernel. If the IPI races and the task has been migrated
  1916. * to another CPU then no harm is done and the purpose has been
  1917. * achieved as well.
  1918. */
  1919. void kick_process(struct task_struct *p)
  1920. {
  1921. int cpu;
  1922. preempt_disable();
  1923. cpu = task_cpu(p);
  1924. if ((cpu != smp_processor_id()) && task_curr(p))
  1925. smp_send_reschedule(cpu);
  1926. preempt_enable();
  1927. }
  1928. EXPORT_SYMBOL_GPL(kick_process);
  1929. #endif /* CONFIG_SMP */
  1930. /**
  1931. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1932. * @p: the task to evaluate
  1933. * @func: the function to be called
  1934. * @info: the function call argument
  1935. *
  1936. * Calls the function @func when the task is currently running. This might
  1937. * be on the current CPU, which just calls the function directly
  1938. */
  1939. void task_oncpu_function_call(struct task_struct *p,
  1940. void (*func) (void *info), void *info)
  1941. {
  1942. int cpu;
  1943. preempt_disable();
  1944. cpu = task_cpu(p);
  1945. if (task_curr(p))
  1946. smp_call_function_single(cpu, func, info, 1);
  1947. preempt_enable();
  1948. }
  1949. #ifdef CONFIG_SMP
  1950. static int select_fallback_rq(int cpu, struct task_struct *p)
  1951. {
  1952. int dest_cpu;
  1953. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1954. /* Look for allowed, online CPU in same node. */
  1955. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1956. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1957. return dest_cpu;
  1958. /* Any allowed, online CPU? */
  1959. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1960. if (dest_cpu < nr_cpu_ids)
  1961. return dest_cpu;
  1962. /* No more Mr. Nice Guy. */
  1963. if (dest_cpu >= nr_cpu_ids) {
  1964. rcu_read_lock();
  1965. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1966. rcu_read_unlock();
  1967. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1968. /*
  1969. * Don't tell them about moving exiting tasks or
  1970. * kernel threads (both mm NULL), since they never
  1971. * leave kernel.
  1972. */
  1973. if (p->mm && printk_ratelimit()) {
  1974. printk(KERN_INFO "process %d (%s) no "
  1975. "longer affine to cpu%d\n",
  1976. task_pid_nr(p), p->comm, cpu);
  1977. }
  1978. }
  1979. return dest_cpu;
  1980. }
  1981. /*
  1982. * Called from:
  1983. *
  1984. * - fork, @p is stable because it isn't on the tasklist yet
  1985. *
  1986. * - exec, @p is unstable, retry loop
  1987. *
  1988. * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
  1989. * we should be good.
  1990. */
  1991. static inline
  1992. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1993. {
  1994. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1995. /*
  1996. * In order not to call set_task_cpu() on a blocking task we need
  1997. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1998. * cpu.
  1999. *
  2000. * Since this is common to all placement strategies, this lives here.
  2001. *
  2002. * [ this allows ->select_task() to simply return task_cpu(p) and
  2003. * not worry about this generic constraint ]
  2004. */
  2005. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2006. !cpu_active(cpu)))
  2007. cpu = select_fallback_rq(task_cpu(p), p);
  2008. return cpu;
  2009. }
  2010. #endif
  2011. /***
  2012. * try_to_wake_up - wake up a thread
  2013. * @p: the to-be-woken-up thread
  2014. * @state: the mask of task states that can be woken
  2015. * @sync: do a synchronous wakeup?
  2016. *
  2017. * Put it on the run-queue if it's not already there. The "current"
  2018. * thread is always on the run-queue (except when the actual
  2019. * re-schedule is in progress), and as such you're allowed to do
  2020. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2021. * runnable without the overhead of this.
  2022. *
  2023. * returns failure only if the task is already active.
  2024. */
  2025. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2026. int wake_flags)
  2027. {
  2028. int cpu, orig_cpu, this_cpu, success = 0;
  2029. unsigned long flags;
  2030. struct rq *rq, *orig_rq;
  2031. if (!sched_feat(SYNC_WAKEUPS))
  2032. wake_flags &= ~WF_SYNC;
  2033. this_cpu = get_cpu();
  2034. smp_wmb();
  2035. rq = orig_rq = task_rq_lock(p, &flags);
  2036. update_rq_clock(rq);
  2037. if (!(p->state & state))
  2038. goto out;
  2039. if (p->se.on_rq)
  2040. goto out_running;
  2041. cpu = task_cpu(p);
  2042. orig_cpu = cpu;
  2043. #ifdef CONFIG_SMP
  2044. if (unlikely(task_running(rq, p)))
  2045. goto out_activate;
  2046. /*
  2047. * In order to handle concurrent wakeups and release the rq->lock
  2048. * we put the task in TASK_WAKING state.
  2049. *
  2050. * First fix up the nr_uninterruptible count:
  2051. */
  2052. if (task_contributes_to_load(p))
  2053. rq->nr_uninterruptible--;
  2054. p->state = TASK_WAKING;
  2055. __task_rq_unlock(rq);
  2056. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2057. if (cpu != orig_cpu)
  2058. set_task_cpu(p, cpu);
  2059. rq = __task_rq_lock(p);
  2060. update_rq_clock(rq);
  2061. WARN_ON(p->state != TASK_WAKING);
  2062. cpu = task_cpu(p);
  2063. #ifdef CONFIG_SCHEDSTATS
  2064. schedstat_inc(rq, ttwu_count);
  2065. if (cpu == this_cpu)
  2066. schedstat_inc(rq, ttwu_local);
  2067. else {
  2068. struct sched_domain *sd;
  2069. for_each_domain(this_cpu, sd) {
  2070. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2071. schedstat_inc(sd, ttwu_wake_remote);
  2072. break;
  2073. }
  2074. }
  2075. }
  2076. #endif /* CONFIG_SCHEDSTATS */
  2077. out_activate:
  2078. #endif /* CONFIG_SMP */
  2079. schedstat_inc(p, se.nr_wakeups);
  2080. if (wake_flags & WF_SYNC)
  2081. schedstat_inc(p, se.nr_wakeups_sync);
  2082. if (orig_cpu != cpu)
  2083. schedstat_inc(p, se.nr_wakeups_migrate);
  2084. if (cpu == this_cpu)
  2085. schedstat_inc(p, se.nr_wakeups_local);
  2086. else
  2087. schedstat_inc(p, se.nr_wakeups_remote);
  2088. activate_task(rq, p, 1);
  2089. success = 1;
  2090. /*
  2091. * Only attribute actual wakeups done by this task.
  2092. */
  2093. if (!in_interrupt()) {
  2094. struct sched_entity *se = &current->se;
  2095. u64 sample = se->sum_exec_runtime;
  2096. if (se->last_wakeup)
  2097. sample -= se->last_wakeup;
  2098. else
  2099. sample -= se->start_runtime;
  2100. update_avg(&se->avg_wakeup, sample);
  2101. se->last_wakeup = se->sum_exec_runtime;
  2102. }
  2103. out_running:
  2104. trace_sched_wakeup(rq, p, success);
  2105. check_preempt_curr(rq, p, wake_flags);
  2106. p->state = TASK_RUNNING;
  2107. #ifdef CONFIG_SMP
  2108. if (p->sched_class->task_wake_up)
  2109. p->sched_class->task_wake_up(rq, p);
  2110. if (unlikely(rq->idle_stamp)) {
  2111. u64 delta = rq->clock - rq->idle_stamp;
  2112. u64 max = 2*sysctl_sched_migration_cost;
  2113. if (delta > max)
  2114. rq->avg_idle = max;
  2115. else
  2116. update_avg(&rq->avg_idle, delta);
  2117. rq->idle_stamp = 0;
  2118. }
  2119. #endif
  2120. out:
  2121. task_rq_unlock(rq, &flags);
  2122. put_cpu();
  2123. return success;
  2124. }
  2125. /**
  2126. * wake_up_process - Wake up a specific process
  2127. * @p: The process to be woken up.
  2128. *
  2129. * Attempt to wake up the nominated process and move it to the set of runnable
  2130. * processes. Returns 1 if the process was woken up, 0 if it was already
  2131. * running.
  2132. *
  2133. * It may be assumed that this function implies a write memory barrier before
  2134. * changing the task state if and only if any tasks are woken up.
  2135. */
  2136. int wake_up_process(struct task_struct *p)
  2137. {
  2138. return try_to_wake_up(p, TASK_ALL, 0);
  2139. }
  2140. EXPORT_SYMBOL(wake_up_process);
  2141. int wake_up_state(struct task_struct *p, unsigned int state)
  2142. {
  2143. return try_to_wake_up(p, state, 0);
  2144. }
  2145. /*
  2146. * Perform scheduler related setup for a newly forked process p.
  2147. * p is forked by current.
  2148. *
  2149. * __sched_fork() is basic setup used by init_idle() too:
  2150. */
  2151. static void __sched_fork(struct task_struct *p)
  2152. {
  2153. p->se.exec_start = 0;
  2154. p->se.sum_exec_runtime = 0;
  2155. p->se.prev_sum_exec_runtime = 0;
  2156. p->se.nr_migrations = 0;
  2157. p->se.last_wakeup = 0;
  2158. p->se.avg_overlap = 0;
  2159. p->se.start_runtime = 0;
  2160. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2161. #ifdef CONFIG_SCHEDSTATS
  2162. p->se.wait_start = 0;
  2163. p->se.wait_max = 0;
  2164. p->se.wait_count = 0;
  2165. p->se.wait_sum = 0;
  2166. p->se.sleep_start = 0;
  2167. p->se.sleep_max = 0;
  2168. p->se.sum_sleep_runtime = 0;
  2169. p->se.block_start = 0;
  2170. p->se.block_max = 0;
  2171. p->se.exec_max = 0;
  2172. p->se.slice_max = 0;
  2173. p->se.nr_migrations_cold = 0;
  2174. p->se.nr_failed_migrations_affine = 0;
  2175. p->se.nr_failed_migrations_running = 0;
  2176. p->se.nr_failed_migrations_hot = 0;
  2177. p->se.nr_forced_migrations = 0;
  2178. p->se.nr_wakeups = 0;
  2179. p->se.nr_wakeups_sync = 0;
  2180. p->se.nr_wakeups_migrate = 0;
  2181. p->se.nr_wakeups_local = 0;
  2182. p->se.nr_wakeups_remote = 0;
  2183. p->se.nr_wakeups_affine = 0;
  2184. p->se.nr_wakeups_affine_attempts = 0;
  2185. p->se.nr_wakeups_passive = 0;
  2186. p->se.nr_wakeups_idle = 0;
  2187. #endif
  2188. INIT_LIST_HEAD(&p->rt.run_list);
  2189. p->se.on_rq = 0;
  2190. INIT_LIST_HEAD(&p->se.group_node);
  2191. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2192. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2193. #endif
  2194. }
  2195. /*
  2196. * fork()/clone()-time setup:
  2197. */
  2198. void sched_fork(struct task_struct *p, int clone_flags)
  2199. {
  2200. int cpu = get_cpu();
  2201. __sched_fork(p);
  2202. /*
  2203. * We mark the process as waking here. This guarantees that
  2204. * nobody will actually run it, and a signal or other external
  2205. * event cannot wake it up and insert it on the runqueue either.
  2206. */
  2207. p->state = TASK_WAKING;
  2208. /*
  2209. * Revert to default priority/policy on fork if requested.
  2210. */
  2211. if (unlikely(p->sched_reset_on_fork)) {
  2212. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2213. p->policy = SCHED_NORMAL;
  2214. p->normal_prio = p->static_prio;
  2215. }
  2216. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2217. p->static_prio = NICE_TO_PRIO(0);
  2218. p->normal_prio = p->static_prio;
  2219. set_load_weight(p);
  2220. }
  2221. /*
  2222. * We don't need the reset flag anymore after the fork. It has
  2223. * fulfilled its duty:
  2224. */
  2225. p->sched_reset_on_fork = 0;
  2226. }
  2227. /*
  2228. * Make sure we do not leak PI boosting priority to the child.
  2229. */
  2230. p->prio = current->normal_prio;
  2231. if (!rt_prio(p->prio))
  2232. p->sched_class = &fair_sched_class;
  2233. if (p->sched_class->task_fork)
  2234. p->sched_class->task_fork(p);
  2235. #ifdef CONFIG_SMP
  2236. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2237. #endif
  2238. set_task_cpu(p, cpu);
  2239. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2240. if (likely(sched_info_on()))
  2241. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2242. #endif
  2243. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2244. p->oncpu = 0;
  2245. #endif
  2246. #ifdef CONFIG_PREEMPT
  2247. /* Want to start with kernel preemption disabled. */
  2248. task_thread_info(p)->preempt_count = 1;
  2249. #endif
  2250. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2251. put_cpu();
  2252. }
  2253. /*
  2254. * wake_up_new_task - wake up a newly created task for the first time.
  2255. *
  2256. * This function will do some initial scheduler statistics housekeeping
  2257. * that must be done for every newly created context, then puts the task
  2258. * on the runqueue and wakes it.
  2259. */
  2260. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2261. {
  2262. unsigned long flags;
  2263. struct rq *rq;
  2264. rq = task_rq_lock(p, &flags);
  2265. BUG_ON(p->state != TASK_WAKING);
  2266. p->state = TASK_RUNNING;
  2267. update_rq_clock(rq);
  2268. activate_task(rq, p, 0);
  2269. trace_sched_wakeup_new(rq, p, 1);
  2270. check_preempt_curr(rq, p, WF_FORK);
  2271. #ifdef CONFIG_SMP
  2272. if (p->sched_class->task_wake_up)
  2273. p->sched_class->task_wake_up(rq, p);
  2274. #endif
  2275. task_rq_unlock(rq, &flags);
  2276. }
  2277. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2278. /**
  2279. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2280. * @notifier: notifier struct to register
  2281. */
  2282. void preempt_notifier_register(struct preempt_notifier *notifier)
  2283. {
  2284. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2285. }
  2286. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2287. /**
  2288. * preempt_notifier_unregister - no longer interested in preemption notifications
  2289. * @notifier: notifier struct to unregister
  2290. *
  2291. * This is safe to call from within a preemption notifier.
  2292. */
  2293. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2294. {
  2295. hlist_del(&notifier->link);
  2296. }
  2297. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2298. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2299. {
  2300. struct preempt_notifier *notifier;
  2301. struct hlist_node *node;
  2302. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2303. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2304. }
  2305. static void
  2306. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2307. struct task_struct *next)
  2308. {
  2309. struct preempt_notifier *notifier;
  2310. struct hlist_node *node;
  2311. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2312. notifier->ops->sched_out(notifier, next);
  2313. }
  2314. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2315. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2316. {
  2317. }
  2318. static void
  2319. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2320. struct task_struct *next)
  2321. {
  2322. }
  2323. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2324. /**
  2325. * prepare_task_switch - prepare to switch tasks
  2326. * @rq: the runqueue preparing to switch
  2327. * @prev: the current task that is being switched out
  2328. * @next: the task we are going to switch to.
  2329. *
  2330. * This is called with the rq lock held and interrupts off. It must
  2331. * be paired with a subsequent finish_task_switch after the context
  2332. * switch.
  2333. *
  2334. * prepare_task_switch sets up locking and calls architecture specific
  2335. * hooks.
  2336. */
  2337. static inline void
  2338. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2339. struct task_struct *next)
  2340. {
  2341. fire_sched_out_preempt_notifiers(prev, next);
  2342. prepare_lock_switch(rq, next);
  2343. prepare_arch_switch(next);
  2344. }
  2345. /**
  2346. * finish_task_switch - clean up after a task-switch
  2347. * @rq: runqueue associated with task-switch
  2348. * @prev: the thread we just switched away from.
  2349. *
  2350. * finish_task_switch must be called after the context switch, paired
  2351. * with a prepare_task_switch call before the context switch.
  2352. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2353. * and do any other architecture-specific cleanup actions.
  2354. *
  2355. * Note that we may have delayed dropping an mm in context_switch(). If
  2356. * so, we finish that here outside of the runqueue lock. (Doing it
  2357. * with the lock held can cause deadlocks; see schedule() for
  2358. * details.)
  2359. */
  2360. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2361. __releases(rq->lock)
  2362. {
  2363. struct mm_struct *mm = rq->prev_mm;
  2364. long prev_state;
  2365. rq->prev_mm = NULL;
  2366. /*
  2367. * A task struct has one reference for the use as "current".
  2368. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2369. * schedule one last time. The schedule call will never return, and
  2370. * the scheduled task must drop that reference.
  2371. * The test for TASK_DEAD must occur while the runqueue locks are
  2372. * still held, otherwise prev could be scheduled on another cpu, die
  2373. * there before we look at prev->state, and then the reference would
  2374. * be dropped twice.
  2375. * Manfred Spraul <manfred@colorfullife.com>
  2376. */
  2377. prev_state = prev->state;
  2378. finish_arch_switch(prev);
  2379. perf_event_task_sched_in(current, cpu_of(rq));
  2380. finish_lock_switch(rq, prev);
  2381. fire_sched_in_preempt_notifiers(current);
  2382. if (mm)
  2383. mmdrop(mm);
  2384. if (unlikely(prev_state == TASK_DEAD)) {
  2385. /*
  2386. * Remove function-return probe instances associated with this
  2387. * task and put them back on the free list.
  2388. */
  2389. kprobe_flush_task(prev);
  2390. put_task_struct(prev);
  2391. }
  2392. }
  2393. #ifdef CONFIG_SMP
  2394. /* assumes rq->lock is held */
  2395. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2396. {
  2397. if (prev->sched_class->pre_schedule)
  2398. prev->sched_class->pre_schedule(rq, prev);
  2399. }
  2400. /* rq->lock is NOT held, but preemption is disabled */
  2401. static inline void post_schedule(struct rq *rq)
  2402. {
  2403. if (rq->post_schedule) {
  2404. unsigned long flags;
  2405. raw_spin_lock_irqsave(&rq->lock, flags);
  2406. if (rq->curr->sched_class->post_schedule)
  2407. rq->curr->sched_class->post_schedule(rq);
  2408. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2409. rq->post_schedule = 0;
  2410. }
  2411. }
  2412. #else
  2413. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2414. {
  2415. }
  2416. static inline void post_schedule(struct rq *rq)
  2417. {
  2418. }
  2419. #endif
  2420. /**
  2421. * schedule_tail - first thing a freshly forked thread must call.
  2422. * @prev: the thread we just switched away from.
  2423. */
  2424. asmlinkage void schedule_tail(struct task_struct *prev)
  2425. __releases(rq->lock)
  2426. {
  2427. struct rq *rq = this_rq();
  2428. finish_task_switch(rq, prev);
  2429. /*
  2430. * FIXME: do we need to worry about rq being invalidated by the
  2431. * task_switch?
  2432. */
  2433. post_schedule(rq);
  2434. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2435. /* In this case, finish_task_switch does not reenable preemption */
  2436. preempt_enable();
  2437. #endif
  2438. if (current->set_child_tid)
  2439. put_user(task_pid_vnr(current), current->set_child_tid);
  2440. }
  2441. /*
  2442. * context_switch - switch to the new MM and the new
  2443. * thread's register state.
  2444. */
  2445. static inline void
  2446. context_switch(struct rq *rq, struct task_struct *prev,
  2447. struct task_struct *next)
  2448. {
  2449. struct mm_struct *mm, *oldmm;
  2450. prepare_task_switch(rq, prev, next);
  2451. trace_sched_switch(rq, prev, next);
  2452. mm = next->mm;
  2453. oldmm = prev->active_mm;
  2454. /*
  2455. * For paravirt, this is coupled with an exit in switch_to to
  2456. * combine the page table reload and the switch backend into
  2457. * one hypercall.
  2458. */
  2459. arch_start_context_switch(prev);
  2460. if (likely(!mm)) {
  2461. next->active_mm = oldmm;
  2462. atomic_inc(&oldmm->mm_count);
  2463. enter_lazy_tlb(oldmm, next);
  2464. } else
  2465. switch_mm(oldmm, mm, next);
  2466. if (likely(!prev->mm)) {
  2467. prev->active_mm = NULL;
  2468. rq->prev_mm = oldmm;
  2469. }
  2470. /*
  2471. * Since the runqueue lock will be released by the next
  2472. * task (which is an invalid locking op but in the case
  2473. * of the scheduler it's an obvious special-case), so we
  2474. * do an early lockdep release here:
  2475. */
  2476. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2477. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2478. #endif
  2479. /* Here we just switch the register state and the stack. */
  2480. switch_to(prev, next, prev);
  2481. barrier();
  2482. /*
  2483. * this_rq must be evaluated again because prev may have moved
  2484. * CPUs since it called schedule(), thus the 'rq' on its stack
  2485. * frame will be invalid.
  2486. */
  2487. finish_task_switch(this_rq(), prev);
  2488. }
  2489. /*
  2490. * nr_running, nr_uninterruptible and nr_context_switches:
  2491. *
  2492. * externally visible scheduler statistics: current number of runnable
  2493. * threads, current number of uninterruptible-sleeping threads, total
  2494. * number of context switches performed since bootup.
  2495. */
  2496. unsigned long nr_running(void)
  2497. {
  2498. unsigned long i, sum = 0;
  2499. for_each_online_cpu(i)
  2500. sum += cpu_rq(i)->nr_running;
  2501. return sum;
  2502. }
  2503. unsigned long nr_uninterruptible(void)
  2504. {
  2505. unsigned long i, sum = 0;
  2506. for_each_possible_cpu(i)
  2507. sum += cpu_rq(i)->nr_uninterruptible;
  2508. /*
  2509. * Since we read the counters lockless, it might be slightly
  2510. * inaccurate. Do not allow it to go below zero though:
  2511. */
  2512. if (unlikely((long)sum < 0))
  2513. sum = 0;
  2514. return sum;
  2515. }
  2516. unsigned long long nr_context_switches(void)
  2517. {
  2518. int i;
  2519. unsigned long long sum = 0;
  2520. for_each_possible_cpu(i)
  2521. sum += cpu_rq(i)->nr_switches;
  2522. return sum;
  2523. }
  2524. unsigned long nr_iowait(void)
  2525. {
  2526. unsigned long i, sum = 0;
  2527. for_each_possible_cpu(i)
  2528. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2529. return sum;
  2530. }
  2531. unsigned long nr_iowait_cpu(void)
  2532. {
  2533. struct rq *this = this_rq();
  2534. return atomic_read(&this->nr_iowait);
  2535. }
  2536. unsigned long this_cpu_load(void)
  2537. {
  2538. struct rq *this = this_rq();
  2539. return this->cpu_load[0];
  2540. }
  2541. /* Variables and functions for calc_load */
  2542. static atomic_long_t calc_load_tasks;
  2543. static unsigned long calc_load_update;
  2544. unsigned long avenrun[3];
  2545. EXPORT_SYMBOL(avenrun);
  2546. /**
  2547. * get_avenrun - get the load average array
  2548. * @loads: pointer to dest load array
  2549. * @offset: offset to add
  2550. * @shift: shift count to shift the result left
  2551. *
  2552. * These values are estimates at best, so no need for locking.
  2553. */
  2554. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2555. {
  2556. loads[0] = (avenrun[0] + offset) << shift;
  2557. loads[1] = (avenrun[1] + offset) << shift;
  2558. loads[2] = (avenrun[2] + offset) << shift;
  2559. }
  2560. static unsigned long
  2561. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2562. {
  2563. load *= exp;
  2564. load += active * (FIXED_1 - exp);
  2565. return load >> FSHIFT;
  2566. }
  2567. /*
  2568. * calc_load - update the avenrun load estimates 10 ticks after the
  2569. * CPUs have updated calc_load_tasks.
  2570. */
  2571. void calc_global_load(void)
  2572. {
  2573. unsigned long upd = calc_load_update + 10;
  2574. long active;
  2575. if (time_before(jiffies, upd))
  2576. return;
  2577. active = atomic_long_read(&calc_load_tasks);
  2578. active = active > 0 ? active * FIXED_1 : 0;
  2579. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2580. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2581. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2582. calc_load_update += LOAD_FREQ;
  2583. }
  2584. /*
  2585. * Either called from update_cpu_load() or from a cpu going idle
  2586. */
  2587. static void calc_load_account_active(struct rq *this_rq)
  2588. {
  2589. long nr_active, delta;
  2590. nr_active = this_rq->nr_running;
  2591. nr_active += (long) this_rq->nr_uninterruptible;
  2592. if (nr_active != this_rq->calc_load_active) {
  2593. delta = nr_active - this_rq->calc_load_active;
  2594. this_rq->calc_load_active = nr_active;
  2595. atomic_long_add(delta, &calc_load_tasks);
  2596. }
  2597. }
  2598. /*
  2599. * Update rq->cpu_load[] statistics. This function is usually called every
  2600. * scheduler tick (TICK_NSEC).
  2601. */
  2602. static void update_cpu_load(struct rq *this_rq)
  2603. {
  2604. unsigned long this_load = this_rq->load.weight;
  2605. int i, scale;
  2606. this_rq->nr_load_updates++;
  2607. /* Update our load: */
  2608. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2609. unsigned long old_load, new_load;
  2610. /* scale is effectively 1 << i now, and >> i divides by scale */
  2611. old_load = this_rq->cpu_load[i];
  2612. new_load = this_load;
  2613. /*
  2614. * Round up the averaging division if load is increasing. This
  2615. * prevents us from getting stuck on 9 if the load is 10, for
  2616. * example.
  2617. */
  2618. if (new_load > old_load)
  2619. new_load += scale-1;
  2620. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2621. }
  2622. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2623. this_rq->calc_load_update += LOAD_FREQ;
  2624. calc_load_account_active(this_rq);
  2625. }
  2626. }
  2627. #ifdef CONFIG_SMP
  2628. /*
  2629. * double_rq_lock - safely lock two runqueues
  2630. *
  2631. * Note this does not disable interrupts like task_rq_lock,
  2632. * you need to do so manually before calling.
  2633. */
  2634. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2635. __acquires(rq1->lock)
  2636. __acquires(rq2->lock)
  2637. {
  2638. BUG_ON(!irqs_disabled());
  2639. if (rq1 == rq2) {
  2640. raw_spin_lock(&rq1->lock);
  2641. __acquire(rq2->lock); /* Fake it out ;) */
  2642. } else {
  2643. if (rq1 < rq2) {
  2644. raw_spin_lock(&rq1->lock);
  2645. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2646. } else {
  2647. raw_spin_lock(&rq2->lock);
  2648. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2649. }
  2650. }
  2651. update_rq_clock(rq1);
  2652. update_rq_clock(rq2);
  2653. }
  2654. /*
  2655. * double_rq_unlock - safely unlock two runqueues
  2656. *
  2657. * Note this does not restore interrupts like task_rq_unlock,
  2658. * you need to do so manually after calling.
  2659. */
  2660. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2661. __releases(rq1->lock)
  2662. __releases(rq2->lock)
  2663. {
  2664. raw_spin_unlock(&rq1->lock);
  2665. if (rq1 != rq2)
  2666. raw_spin_unlock(&rq2->lock);
  2667. else
  2668. __release(rq2->lock);
  2669. }
  2670. /*
  2671. * sched_exec - execve() is a valuable balancing opportunity, because at
  2672. * this point the task has the smallest effective memory and cache footprint.
  2673. */
  2674. void sched_exec(void)
  2675. {
  2676. struct task_struct *p = current;
  2677. struct migration_req req;
  2678. int dest_cpu, this_cpu;
  2679. unsigned long flags;
  2680. struct rq *rq;
  2681. again:
  2682. this_cpu = get_cpu();
  2683. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2684. if (dest_cpu == this_cpu) {
  2685. put_cpu();
  2686. return;
  2687. }
  2688. rq = task_rq_lock(p, &flags);
  2689. put_cpu();
  2690. /*
  2691. * select_task_rq() can race against ->cpus_allowed
  2692. */
  2693. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2694. || unlikely(!cpu_active(dest_cpu))) {
  2695. task_rq_unlock(rq, &flags);
  2696. goto again;
  2697. }
  2698. /* force the process onto the specified CPU */
  2699. if (migrate_task(p, dest_cpu, &req)) {
  2700. /* Need to wait for migration thread (might exit: take ref). */
  2701. struct task_struct *mt = rq->migration_thread;
  2702. get_task_struct(mt);
  2703. task_rq_unlock(rq, &flags);
  2704. wake_up_process(mt);
  2705. put_task_struct(mt);
  2706. wait_for_completion(&req.done);
  2707. return;
  2708. }
  2709. task_rq_unlock(rq, &flags);
  2710. }
  2711. /*
  2712. * pull_task - move a task from a remote runqueue to the local runqueue.
  2713. * Both runqueues must be locked.
  2714. */
  2715. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2716. struct rq *this_rq, int this_cpu)
  2717. {
  2718. deactivate_task(src_rq, p, 0);
  2719. set_task_cpu(p, this_cpu);
  2720. activate_task(this_rq, p, 0);
  2721. check_preempt_curr(this_rq, p, 0);
  2722. }
  2723. /*
  2724. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2725. */
  2726. static
  2727. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2728. struct sched_domain *sd, enum cpu_idle_type idle,
  2729. int *all_pinned)
  2730. {
  2731. int tsk_cache_hot = 0;
  2732. /*
  2733. * We do not migrate tasks that are:
  2734. * 1) running (obviously), or
  2735. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2736. * 3) are cache-hot on their current CPU.
  2737. */
  2738. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2739. schedstat_inc(p, se.nr_failed_migrations_affine);
  2740. return 0;
  2741. }
  2742. *all_pinned = 0;
  2743. if (task_running(rq, p)) {
  2744. schedstat_inc(p, se.nr_failed_migrations_running);
  2745. return 0;
  2746. }
  2747. /*
  2748. * Aggressive migration if:
  2749. * 1) task is cache cold, or
  2750. * 2) too many balance attempts have failed.
  2751. */
  2752. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2753. if (!tsk_cache_hot ||
  2754. sd->nr_balance_failed > sd->cache_nice_tries) {
  2755. #ifdef CONFIG_SCHEDSTATS
  2756. if (tsk_cache_hot) {
  2757. schedstat_inc(sd, lb_hot_gained[idle]);
  2758. schedstat_inc(p, se.nr_forced_migrations);
  2759. }
  2760. #endif
  2761. return 1;
  2762. }
  2763. if (tsk_cache_hot) {
  2764. schedstat_inc(p, se.nr_failed_migrations_hot);
  2765. return 0;
  2766. }
  2767. return 1;
  2768. }
  2769. static unsigned long
  2770. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2771. unsigned long max_load_move, struct sched_domain *sd,
  2772. enum cpu_idle_type idle, int *all_pinned,
  2773. int *this_best_prio, struct rq_iterator *iterator)
  2774. {
  2775. int loops = 0, pulled = 0, pinned = 0;
  2776. struct task_struct *p;
  2777. long rem_load_move = max_load_move;
  2778. if (max_load_move == 0)
  2779. goto out;
  2780. pinned = 1;
  2781. /*
  2782. * Start the load-balancing iterator:
  2783. */
  2784. p = iterator->start(iterator->arg);
  2785. next:
  2786. if (!p || loops++ > sysctl_sched_nr_migrate)
  2787. goto out;
  2788. if ((p->se.load.weight >> 1) > rem_load_move ||
  2789. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2790. p = iterator->next(iterator->arg);
  2791. goto next;
  2792. }
  2793. pull_task(busiest, p, this_rq, this_cpu);
  2794. pulled++;
  2795. rem_load_move -= p->se.load.weight;
  2796. #ifdef CONFIG_PREEMPT
  2797. /*
  2798. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2799. * will stop after the first task is pulled to minimize the critical
  2800. * section.
  2801. */
  2802. if (idle == CPU_NEWLY_IDLE)
  2803. goto out;
  2804. #endif
  2805. /*
  2806. * We only want to steal up to the prescribed amount of weighted load.
  2807. */
  2808. if (rem_load_move > 0) {
  2809. if (p->prio < *this_best_prio)
  2810. *this_best_prio = p->prio;
  2811. p = iterator->next(iterator->arg);
  2812. goto next;
  2813. }
  2814. out:
  2815. /*
  2816. * Right now, this is one of only two places pull_task() is called,
  2817. * so we can safely collect pull_task() stats here rather than
  2818. * inside pull_task().
  2819. */
  2820. schedstat_add(sd, lb_gained[idle], pulled);
  2821. if (all_pinned)
  2822. *all_pinned = pinned;
  2823. return max_load_move - rem_load_move;
  2824. }
  2825. /*
  2826. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2827. * this_rq, as part of a balancing operation within domain "sd".
  2828. * Returns 1 if successful and 0 otherwise.
  2829. *
  2830. * Called with both runqueues locked.
  2831. */
  2832. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2833. unsigned long max_load_move,
  2834. struct sched_domain *sd, enum cpu_idle_type idle,
  2835. int *all_pinned)
  2836. {
  2837. const struct sched_class *class = sched_class_highest;
  2838. unsigned long total_load_moved = 0;
  2839. int this_best_prio = this_rq->curr->prio;
  2840. do {
  2841. total_load_moved +=
  2842. class->load_balance(this_rq, this_cpu, busiest,
  2843. max_load_move - total_load_moved,
  2844. sd, idle, all_pinned, &this_best_prio);
  2845. class = class->next;
  2846. #ifdef CONFIG_PREEMPT
  2847. /*
  2848. * NEWIDLE balancing is a source of latency, so preemptible
  2849. * kernels will stop after the first task is pulled to minimize
  2850. * the critical section.
  2851. */
  2852. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2853. break;
  2854. #endif
  2855. } while (class && max_load_move > total_load_moved);
  2856. return total_load_moved > 0;
  2857. }
  2858. static int
  2859. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2860. struct sched_domain *sd, enum cpu_idle_type idle,
  2861. struct rq_iterator *iterator)
  2862. {
  2863. struct task_struct *p = iterator->start(iterator->arg);
  2864. int pinned = 0;
  2865. while (p) {
  2866. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2867. pull_task(busiest, p, this_rq, this_cpu);
  2868. /*
  2869. * Right now, this is only the second place pull_task()
  2870. * is called, so we can safely collect pull_task()
  2871. * stats here rather than inside pull_task().
  2872. */
  2873. schedstat_inc(sd, lb_gained[idle]);
  2874. return 1;
  2875. }
  2876. p = iterator->next(iterator->arg);
  2877. }
  2878. return 0;
  2879. }
  2880. /*
  2881. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2882. * part of active balancing operations within "domain".
  2883. * Returns 1 if successful and 0 otherwise.
  2884. *
  2885. * Called with both runqueues locked.
  2886. */
  2887. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2888. struct sched_domain *sd, enum cpu_idle_type idle)
  2889. {
  2890. const struct sched_class *class;
  2891. for_each_class(class) {
  2892. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2893. return 1;
  2894. }
  2895. return 0;
  2896. }
  2897. /********** Helpers for find_busiest_group ************************/
  2898. /*
  2899. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2900. * during load balancing.
  2901. */
  2902. struct sd_lb_stats {
  2903. struct sched_group *busiest; /* Busiest group in this sd */
  2904. struct sched_group *this; /* Local group in this sd */
  2905. unsigned long total_load; /* Total load of all groups in sd */
  2906. unsigned long total_pwr; /* Total power of all groups in sd */
  2907. unsigned long avg_load; /* Average load across all groups in sd */
  2908. /** Statistics of this group */
  2909. unsigned long this_load;
  2910. unsigned long this_load_per_task;
  2911. unsigned long this_nr_running;
  2912. /* Statistics of the busiest group */
  2913. unsigned long max_load;
  2914. unsigned long busiest_load_per_task;
  2915. unsigned long busiest_nr_running;
  2916. int group_imb; /* Is there imbalance in this sd */
  2917. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2918. int power_savings_balance; /* Is powersave balance needed for this sd */
  2919. struct sched_group *group_min; /* Least loaded group in sd */
  2920. struct sched_group *group_leader; /* Group which relieves group_min */
  2921. unsigned long min_load_per_task; /* load_per_task in group_min */
  2922. unsigned long leader_nr_running; /* Nr running of group_leader */
  2923. unsigned long min_nr_running; /* Nr running of group_min */
  2924. #endif
  2925. };
  2926. /*
  2927. * sg_lb_stats - stats of a sched_group required for load_balancing
  2928. */
  2929. struct sg_lb_stats {
  2930. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2931. unsigned long group_load; /* Total load over the CPUs of the group */
  2932. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2933. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2934. unsigned long group_capacity;
  2935. int group_imb; /* Is there an imbalance in the group ? */
  2936. };
  2937. /**
  2938. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2939. * @group: The group whose first cpu is to be returned.
  2940. */
  2941. static inline unsigned int group_first_cpu(struct sched_group *group)
  2942. {
  2943. return cpumask_first(sched_group_cpus(group));
  2944. }
  2945. /**
  2946. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2947. * @sd: The sched_domain whose load_idx is to be obtained.
  2948. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2949. */
  2950. static inline int get_sd_load_idx(struct sched_domain *sd,
  2951. enum cpu_idle_type idle)
  2952. {
  2953. int load_idx;
  2954. switch (idle) {
  2955. case CPU_NOT_IDLE:
  2956. load_idx = sd->busy_idx;
  2957. break;
  2958. case CPU_NEWLY_IDLE:
  2959. load_idx = sd->newidle_idx;
  2960. break;
  2961. default:
  2962. load_idx = sd->idle_idx;
  2963. break;
  2964. }
  2965. return load_idx;
  2966. }
  2967. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2968. /**
  2969. * init_sd_power_savings_stats - Initialize power savings statistics for
  2970. * the given sched_domain, during load balancing.
  2971. *
  2972. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2973. * @sds: Variable containing the statistics for sd.
  2974. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2975. */
  2976. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2977. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2978. {
  2979. /*
  2980. * Busy processors will not participate in power savings
  2981. * balance.
  2982. */
  2983. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2984. sds->power_savings_balance = 0;
  2985. else {
  2986. sds->power_savings_balance = 1;
  2987. sds->min_nr_running = ULONG_MAX;
  2988. sds->leader_nr_running = 0;
  2989. }
  2990. }
  2991. /**
  2992. * update_sd_power_savings_stats - Update the power saving stats for a
  2993. * sched_domain while performing load balancing.
  2994. *
  2995. * @group: sched_group belonging to the sched_domain under consideration.
  2996. * @sds: Variable containing the statistics of the sched_domain
  2997. * @local_group: Does group contain the CPU for which we're performing
  2998. * load balancing ?
  2999. * @sgs: Variable containing the statistics of the group.
  3000. */
  3001. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3002. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3003. {
  3004. if (!sds->power_savings_balance)
  3005. return;
  3006. /*
  3007. * If the local group is idle or completely loaded
  3008. * no need to do power savings balance at this domain
  3009. */
  3010. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3011. !sds->this_nr_running))
  3012. sds->power_savings_balance = 0;
  3013. /*
  3014. * If a group is already running at full capacity or idle,
  3015. * don't include that group in power savings calculations
  3016. */
  3017. if (!sds->power_savings_balance ||
  3018. sgs->sum_nr_running >= sgs->group_capacity ||
  3019. !sgs->sum_nr_running)
  3020. return;
  3021. /*
  3022. * Calculate the group which has the least non-idle load.
  3023. * This is the group from where we need to pick up the load
  3024. * for saving power
  3025. */
  3026. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3027. (sgs->sum_nr_running == sds->min_nr_running &&
  3028. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3029. sds->group_min = group;
  3030. sds->min_nr_running = sgs->sum_nr_running;
  3031. sds->min_load_per_task = sgs->sum_weighted_load /
  3032. sgs->sum_nr_running;
  3033. }
  3034. /*
  3035. * Calculate the group which is almost near its
  3036. * capacity but still has some space to pick up some load
  3037. * from other group and save more power
  3038. */
  3039. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3040. return;
  3041. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3042. (sgs->sum_nr_running == sds->leader_nr_running &&
  3043. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3044. sds->group_leader = group;
  3045. sds->leader_nr_running = sgs->sum_nr_running;
  3046. }
  3047. }
  3048. /**
  3049. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3050. * @sds: Variable containing the statistics of the sched_domain
  3051. * under consideration.
  3052. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3053. * @imbalance: Variable to store the imbalance.
  3054. *
  3055. * Description:
  3056. * Check if we have potential to perform some power-savings balance.
  3057. * If yes, set the busiest group to be the least loaded group in the
  3058. * sched_domain, so that it's CPUs can be put to idle.
  3059. *
  3060. * Returns 1 if there is potential to perform power-savings balance.
  3061. * Else returns 0.
  3062. */
  3063. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3064. int this_cpu, unsigned long *imbalance)
  3065. {
  3066. if (!sds->power_savings_balance)
  3067. return 0;
  3068. if (sds->this != sds->group_leader ||
  3069. sds->group_leader == sds->group_min)
  3070. return 0;
  3071. *imbalance = sds->min_load_per_task;
  3072. sds->busiest = sds->group_min;
  3073. return 1;
  3074. }
  3075. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3076. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3077. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3078. {
  3079. return;
  3080. }
  3081. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3082. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3083. {
  3084. return;
  3085. }
  3086. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3087. int this_cpu, unsigned long *imbalance)
  3088. {
  3089. return 0;
  3090. }
  3091. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3092. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3093. {
  3094. return SCHED_LOAD_SCALE;
  3095. }
  3096. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3097. {
  3098. return default_scale_freq_power(sd, cpu);
  3099. }
  3100. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3101. {
  3102. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3103. unsigned long smt_gain = sd->smt_gain;
  3104. smt_gain /= weight;
  3105. return smt_gain;
  3106. }
  3107. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3108. {
  3109. return default_scale_smt_power(sd, cpu);
  3110. }
  3111. unsigned long scale_rt_power(int cpu)
  3112. {
  3113. struct rq *rq = cpu_rq(cpu);
  3114. u64 total, available;
  3115. sched_avg_update(rq);
  3116. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3117. available = total - rq->rt_avg;
  3118. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3119. total = SCHED_LOAD_SCALE;
  3120. total >>= SCHED_LOAD_SHIFT;
  3121. return div_u64(available, total);
  3122. }
  3123. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3124. {
  3125. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3126. unsigned long power = SCHED_LOAD_SCALE;
  3127. struct sched_group *sdg = sd->groups;
  3128. if (sched_feat(ARCH_POWER))
  3129. power *= arch_scale_freq_power(sd, cpu);
  3130. else
  3131. power *= default_scale_freq_power(sd, cpu);
  3132. power >>= SCHED_LOAD_SHIFT;
  3133. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3134. if (sched_feat(ARCH_POWER))
  3135. power *= arch_scale_smt_power(sd, cpu);
  3136. else
  3137. power *= default_scale_smt_power(sd, cpu);
  3138. power >>= SCHED_LOAD_SHIFT;
  3139. }
  3140. power *= scale_rt_power(cpu);
  3141. power >>= SCHED_LOAD_SHIFT;
  3142. if (!power)
  3143. power = 1;
  3144. sdg->cpu_power = power;
  3145. }
  3146. static void update_group_power(struct sched_domain *sd, int cpu)
  3147. {
  3148. struct sched_domain *child = sd->child;
  3149. struct sched_group *group, *sdg = sd->groups;
  3150. unsigned long power;
  3151. if (!child) {
  3152. update_cpu_power(sd, cpu);
  3153. return;
  3154. }
  3155. power = 0;
  3156. group = child->groups;
  3157. do {
  3158. power += group->cpu_power;
  3159. group = group->next;
  3160. } while (group != child->groups);
  3161. sdg->cpu_power = power;
  3162. }
  3163. /**
  3164. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3165. * @sd: The sched_domain whose statistics are to be updated.
  3166. * @group: sched_group whose statistics are to be updated.
  3167. * @this_cpu: Cpu for which load balance is currently performed.
  3168. * @idle: Idle status of this_cpu
  3169. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3170. * @sd_idle: Idle status of the sched_domain containing group.
  3171. * @local_group: Does group contain this_cpu.
  3172. * @cpus: Set of cpus considered for load balancing.
  3173. * @balance: Should we balance.
  3174. * @sgs: variable to hold the statistics for this group.
  3175. */
  3176. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3177. struct sched_group *group, int this_cpu,
  3178. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3179. int local_group, const struct cpumask *cpus,
  3180. int *balance, struct sg_lb_stats *sgs)
  3181. {
  3182. unsigned long load, max_cpu_load, min_cpu_load;
  3183. int i;
  3184. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3185. unsigned long sum_avg_load_per_task;
  3186. unsigned long avg_load_per_task;
  3187. if (local_group) {
  3188. balance_cpu = group_first_cpu(group);
  3189. if (balance_cpu == this_cpu)
  3190. update_group_power(sd, this_cpu);
  3191. }
  3192. /* Tally up the load of all CPUs in the group */
  3193. sum_avg_load_per_task = avg_load_per_task = 0;
  3194. max_cpu_load = 0;
  3195. min_cpu_load = ~0UL;
  3196. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3197. struct rq *rq = cpu_rq(i);
  3198. if (*sd_idle && rq->nr_running)
  3199. *sd_idle = 0;
  3200. /* Bias balancing toward cpus of our domain */
  3201. if (local_group) {
  3202. if (idle_cpu(i) && !first_idle_cpu) {
  3203. first_idle_cpu = 1;
  3204. balance_cpu = i;
  3205. }
  3206. load = target_load(i, load_idx);
  3207. } else {
  3208. load = source_load(i, load_idx);
  3209. if (load > max_cpu_load)
  3210. max_cpu_load = load;
  3211. if (min_cpu_load > load)
  3212. min_cpu_load = load;
  3213. }
  3214. sgs->group_load += load;
  3215. sgs->sum_nr_running += rq->nr_running;
  3216. sgs->sum_weighted_load += weighted_cpuload(i);
  3217. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3218. }
  3219. /*
  3220. * First idle cpu or the first cpu(busiest) in this sched group
  3221. * is eligible for doing load balancing at this and above
  3222. * domains. In the newly idle case, we will allow all the cpu's
  3223. * to do the newly idle load balance.
  3224. */
  3225. if (idle != CPU_NEWLY_IDLE && local_group &&
  3226. balance_cpu != this_cpu && balance) {
  3227. *balance = 0;
  3228. return;
  3229. }
  3230. /* Adjust by relative CPU power of the group */
  3231. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3232. /*
  3233. * Consider the group unbalanced when the imbalance is larger
  3234. * than the average weight of two tasks.
  3235. *
  3236. * APZ: with cgroup the avg task weight can vary wildly and
  3237. * might not be a suitable number - should we keep a
  3238. * normalized nr_running number somewhere that negates
  3239. * the hierarchy?
  3240. */
  3241. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3242. group->cpu_power;
  3243. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3244. sgs->group_imb = 1;
  3245. sgs->group_capacity =
  3246. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3247. }
  3248. /**
  3249. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3250. * @sd: sched_domain whose statistics are to be updated.
  3251. * @this_cpu: Cpu for which load balance is currently performed.
  3252. * @idle: Idle status of this_cpu
  3253. * @sd_idle: Idle status of the sched_domain containing group.
  3254. * @cpus: Set of cpus considered for load balancing.
  3255. * @balance: Should we balance.
  3256. * @sds: variable to hold the statistics for this sched_domain.
  3257. */
  3258. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3259. enum cpu_idle_type idle, int *sd_idle,
  3260. const struct cpumask *cpus, int *balance,
  3261. struct sd_lb_stats *sds)
  3262. {
  3263. struct sched_domain *child = sd->child;
  3264. struct sched_group *group = sd->groups;
  3265. struct sg_lb_stats sgs;
  3266. int load_idx, prefer_sibling = 0;
  3267. if (child && child->flags & SD_PREFER_SIBLING)
  3268. prefer_sibling = 1;
  3269. init_sd_power_savings_stats(sd, sds, idle);
  3270. load_idx = get_sd_load_idx(sd, idle);
  3271. do {
  3272. int local_group;
  3273. local_group = cpumask_test_cpu(this_cpu,
  3274. sched_group_cpus(group));
  3275. memset(&sgs, 0, sizeof(sgs));
  3276. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3277. local_group, cpus, balance, &sgs);
  3278. if (local_group && balance && !(*balance))
  3279. return;
  3280. sds->total_load += sgs.group_load;
  3281. sds->total_pwr += group->cpu_power;
  3282. /*
  3283. * In case the child domain prefers tasks go to siblings
  3284. * first, lower the group capacity to one so that we'll try
  3285. * and move all the excess tasks away.
  3286. */
  3287. if (prefer_sibling)
  3288. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3289. if (local_group) {
  3290. sds->this_load = sgs.avg_load;
  3291. sds->this = group;
  3292. sds->this_nr_running = sgs.sum_nr_running;
  3293. sds->this_load_per_task = sgs.sum_weighted_load;
  3294. } else if (sgs.avg_load > sds->max_load &&
  3295. (sgs.sum_nr_running > sgs.group_capacity ||
  3296. sgs.group_imb)) {
  3297. sds->max_load = sgs.avg_load;
  3298. sds->busiest = group;
  3299. sds->busiest_nr_running = sgs.sum_nr_running;
  3300. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3301. sds->group_imb = sgs.group_imb;
  3302. }
  3303. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3304. group = group->next;
  3305. } while (group != sd->groups);
  3306. }
  3307. /**
  3308. * fix_small_imbalance - Calculate the minor imbalance that exists
  3309. * amongst the groups of a sched_domain, during
  3310. * load balancing.
  3311. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3312. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3313. * @imbalance: Variable to store the imbalance.
  3314. */
  3315. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3316. int this_cpu, unsigned long *imbalance)
  3317. {
  3318. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3319. unsigned int imbn = 2;
  3320. if (sds->this_nr_running) {
  3321. sds->this_load_per_task /= sds->this_nr_running;
  3322. if (sds->busiest_load_per_task >
  3323. sds->this_load_per_task)
  3324. imbn = 1;
  3325. } else
  3326. sds->this_load_per_task =
  3327. cpu_avg_load_per_task(this_cpu);
  3328. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3329. sds->busiest_load_per_task * imbn) {
  3330. *imbalance = sds->busiest_load_per_task;
  3331. return;
  3332. }
  3333. /*
  3334. * OK, we don't have enough imbalance to justify moving tasks,
  3335. * however we may be able to increase total CPU power used by
  3336. * moving them.
  3337. */
  3338. pwr_now += sds->busiest->cpu_power *
  3339. min(sds->busiest_load_per_task, sds->max_load);
  3340. pwr_now += sds->this->cpu_power *
  3341. min(sds->this_load_per_task, sds->this_load);
  3342. pwr_now /= SCHED_LOAD_SCALE;
  3343. /* Amount of load we'd subtract */
  3344. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3345. sds->busiest->cpu_power;
  3346. if (sds->max_load > tmp)
  3347. pwr_move += sds->busiest->cpu_power *
  3348. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3349. /* Amount of load we'd add */
  3350. if (sds->max_load * sds->busiest->cpu_power <
  3351. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3352. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3353. sds->this->cpu_power;
  3354. else
  3355. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3356. sds->this->cpu_power;
  3357. pwr_move += sds->this->cpu_power *
  3358. min(sds->this_load_per_task, sds->this_load + tmp);
  3359. pwr_move /= SCHED_LOAD_SCALE;
  3360. /* Move if we gain throughput */
  3361. if (pwr_move > pwr_now)
  3362. *imbalance = sds->busiest_load_per_task;
  3363. }
  3364. /**
  3365. * calculate_imbalance - Calculate the amount of imbalance present within the
  3366. * groups of a given sched_domain during load balance.
  3367. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3368. * @this_cpu: Cpu for which currently load balance is being performed.
  3369. * @imbalance: The variable to store the imbalance.
  3370. */
  3371. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3372. unsigned long *imbalance)
  3373. {
  3374. unsigned long max_pull;
  3375. /*
  3376. * In the presence of smp nice balancing, certain scenarios can have
  3377. * max load less than avg load(as we skip the groups at or below
  3378. * its cpu_power, while calculating max_load..)
  3379. */
  3380. if (sds->max_load < sds->avg_load) {
  3381. *imbalance = 0;
  3382. return fix_small_imbalance(sds, this_cpu, imbalance);
  3383. }
  3384. /* Don't want to pull so many tasks that a group would go idle */
  3385. max_pull = min(sds->max_load - sds->avg_load,
  3386. sds->max_load - sds->busiest_load_per_task);
  3387. /* How much load to actually move to equalise the imbalance */
  3388. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3389. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3390. / SCHED_LOAD_SCALE;
  3391. /*
  3392. * if *imbalance is less than the average load per runnable task
  3393. * there is no gaurantee that any tasks will be moved so we'll have
  3394. * a think about bumping its value to force at least one task to be
  3395. * moved
  3396. */
  3397. if (*imbalance < sds->busiest_load_per_task)
  3398. return fix_small_imbalance(sds, this_cpu, imbalance);
  3399. }
  3400. /******* find_busiest_group() helpers end here *********************/
  3401. /**
  3402. * find_busiest_group - Returns the busiest group within the sched_domain
  3403. * if there is an imbalance. If there isn't an imbalance, and
  3404. * the user has opted for power-savings, it returns a group whose
  3405. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3406. * such a group exists.
  3407. *
  3408. * Also calculates the amount of weighted load which should be moved
  3409. * to restore balance.
  3410. *
  3411. * @sd: The sched_domain whose busiest group is to be returned.
  3412. * @this_cpu: The cpu for which load balancing is currently being performed.
  3413. * @imbalance: Variable which stores amount of weighted load which should
  3414. * be moved to restore balance/put a group to idle.
  3415. * @idle: The idle status of this_cpu.
  3416. * @sd_idle: The idleness of sd
  3417. * @cpus: The set of CPUs under consideration for load-balancing.
  3418. * @balance: Pointer to a variable indicating if this_cpu
  3419. * is the appropriate cpu to perform load balancing at this_level.
  3420. *
  3421. * Returns: - the busiest group if imbalance exists.
  3422. * - If no imbalance and user has opted for power-savings balance,
  3423. * return the least loaded group whose CPUs can be
  3424. * put to idle by rebalancing its tasks onto our group.
  3425. */
  3426. static struct sched_group *
  3427. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3428. unsigned long *imbalance, enum cpu_idle_type idle,
  3429. int *sd_idle, const struct cpumask *cpus, int *balance)
  3430. {
  3431. struct sd_lb_stats sds;
  3432. memset(&sds, 0, sizeof(sds));
  3433. /*
  3434. * Compute the various statistics relavent for load balancing at
  3435. * this level.
  3436. */
  3437. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3438. balance, &sds);
  3439. /* Cases where imbalance does not exist from POV of this_cpu */
  3440. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3441. * at this level.
  3442. * 2) There is no busy sibling group to pull from.
  3443. * 3) This group is the busiest group.
  3444. * 4) This group is more busy than the avg busieness at this
  3445. * sched_domain.
  3446. * 5) The imbalance is within the specified limit.
  3447. * 6) Any rebalance would lead to ping-pong
  3448. */
  3449. if (balance && !(*balance))
  3450. goto ret;
  3451. if (!sds.busiest || sds.busiest_nr_running == 0)
  3452. goto out_balanced;
  3453. if (sds.this_load >= sds.max_load)
  3454. goto out_balanced;
  3455. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3456. if (sds.this_load >= sds.avg_load)
  3457. goto out_balanced;
  3458. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3459. goto out_balanced;
  3460. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3461. if (sds.group_imb)
  3462. sds.busiest_load_per_task =
  3463. min(sds.busiest_load_per_task, sds.avg_load);
  3464. /*
  3465. * We're trying to get all the cpus to the average_load, so we don't
  3466. * want to push ourselves above the average load, nor do we wish to
  3467. * reduce the max loaded cpu below the average load, as either of these
  3468. * actions would just result in more rebalancing later, and ping-pong
  3469. * tasks around. Thus we look for the minimum possible imbalance.
  3470. * Negative imbalances (*we* are more loaded than anyone else) will
  3471. * be counted as no imbalance for these purposes -- we can't fix that
  3472. * by pulling tasks to us. Be careful of negative numbers as they'll
  3473. * appear as very large values with unsigned longs.
  3474. */
  3475. if (sds.max_load <= sds.busiest_load_per_task)
  3476. goto out_balanced;
  3477. /* Looks like there is an imbalance. Compute it */
  3478. calculate_imbalance(&sds, this_cpu, imbalance);
  3479. return sds.busiest;
  3480. out_balanced:
  3481. /*
  3482. * There is no obvious imbalance. But check if we can do some balancing
  3483. * to save power.
  3484. */
  3485. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3486. return sds.busiest;
  3487. ret:
  3488. *imbalance = 0;
  3489. return NULL;
  3490. }
  3491. /*
  3492. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3493. */
  3494. static struct rq *
  3495. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3496. unsigned long imbalance, const struct cpumask *cpus)
  3497. {
  3498. struct rq *busiest = NULL, *rq;
  3499. unsigned long max_load = 0;
  3500. int i;
  3501. for_each_cpu(i, sched_group_cpus(group)) {
  3502. unsigned long power = power_of(i);
  3503. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3504. unsigned long wl;
  3505. if (!cpumask_test_cpu(i, cpus))
  3506. continue;
  3507. rq = cpu_rq(i);
  3508. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3509. wl /= power;
  3510. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3511. continue;
  3512. if (wl > max_load) {
  3513. max_load = wl;
  3514. busiest = rq;
  3515. }
  3516. }
  3517. return busiest;
  3518. }
  3519. /*
  3520. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3521. * so long as it is large enough.
  3522. */
  3523. #define MAX_PINNED_INTERVAL 512
  3524. /* Working cpumask for load_balance and load_balance_newidle. */
  3525. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3526. /*
  3527. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3528. * tasks if there is an imbalance.
  3529. */
  3530. static int load_balance(int this_cpu, struct rq *this_rq,
  3531. struct sched_domain *sd, enum cpu_idle_type idle,
  3532. int *balance)
  3533. {
  3534. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3535. struct sched_group *group;
  3536. unsigned long imbalance;
  3537. struct rq *busiest;
  3538. unsigned long flags;
  3539. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3540. cpumask_copy(cpus, cpu_active_mask);
  3541. /*
  3542. * When power savings policy is enabled for the parent domain, idle
  3543. * sibling can pick up load irrespective of busy siblings. In this case,
  3544. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3545. * portraying it as CPU_NOT_IDLE.
  3546. */
  3547. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3548. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3549. sd_idle = 1;
  3550. schedstat_inc(sd, lb_count[idle]);
  3551. redo:
  3552. update_shares(sd);
  3553. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3554. cpus, balance);
  3555. if (*balance == 0)
  3556. goto out_balanced;
  3557. if (!group) {
  3558. schedstat_inc(sd, lb_nobusyg[idle]);
  3559. goto out_balanced;
  3560. }
  3561. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3562. if (!busiest) {
  3563. schedstat_inc(sd, lb_nobusyq[idle]);
  3564. goto out_balanced;
  3565. }
  3566. BUG_ON(busiest == this_rq);
  3567. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3568. ld_moved = 0;
  3569. if (busiest->nr_running > 1) {
  3570. /*
  3571. * Attempt to move tasks. If find_busiest_group has found
  3572. * an imbalance but busiest->nr_running <= 1, the group is
  3573. * still unbalanced. ld_moved simply stays zero, so it is
  3574. * correctly treated as an imbalance.
  3575. */
  3576. local_irq_save(flags);
  3577. double_rq_lock(this_rq, busiest);
  3578. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3579. imbalance, sd, idle, &all_pinned);
  3580. double_rq_unlock(this_rq, busiest);
  3581. local_irq_restore(flags);
  3582. /*
  3583. * some other cpu did the load balance for us.
  3584. */
  3585. if (ld_moved && this_cpu != smp_processor_id())
  3586. resched_cpu(this_cpu);
  3587. /* All tasks on this runqueue were pinned by CPU affinity */
  3588. if (unlikely(all_pinned)) {
  3589. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3590. if (!cpumask_empty(cpus))
  3591. goto redo;
  3592. goto out_balanced;
  3593. }
  3594. }
  3595. if (!ld_moved) {
  3596. schedstat_inc(sd, lb_failed[idle]);
  3597. sd->nr_balance_failed++;
  3598. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3599. raw_spin_lock_irqsave(&busiest->lock, flags);
  3600. /* don't kick the migration_thread, if the curr
  3601. * task on busiest cpu can't be moved to this_cpu
  3602. */
  3603. if (!cpumask_test_cpu(this_cpu,
  3604. &busiest->curr->cpus_allowed)) {
  3605. raw_spin_unlock_irqrestore(&busiest->lock,
  3606. flags);
  3607. all_pinned = 1;
  3608. goto out_one_pinned;
  3609. }
  3610. if (!busiest->active_balance) {
  3611. busiest->active_balance = 1;
  3612. busiest->push_cpu = this_cpu;
  3613. active_balance = 1;
  3614. }
  3615. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3616. if (active_balance)
  3617. wake_up_process(busiest->migration_thread);
  3618. /*
  3619. * We've kicked active balancing, reset the failure
  3620. * counter.
  3621. */
  3622. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3623. }
  3624. } else
  3625. sd->nr_balance_failed = 0;
  3626. if (likely(!active_balance)) {
  3627. /* We were unbalanced, so reset the balancing interval */
  3628. sd->balance_interval = sd->min_interval;
  3629. } else {
  3630. /*
  3631. * If we've begun active balancing, start to back off. This
  3632. * case may not be covered by the all_pinned logic if there
  3633. * is only 1 task on the busy runqueue (because we don't call
  3634. * move_tasks).
  3635. */
  3636. if (sd->balance_interval < sd->max_interval)
  3637. sd->balance_interval *= 2;
  3638. }
  3639. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3640. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3641. ld_moved = -1;
  3642. goto out;
  3643. out_balanced:
  3644. schedstat_inc(sd, lb_balanced[idle]);
  3645. sd->nr_balance_failed = 0;
  3646. out_one_pinned:
  3647. /* tune up the balancing interval */
  3648. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3649. (sd->balance_interval < sd->max_interval))
  3650. sd->balance_interval *= 2;
  3651. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3652. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3653. ld_moved = -1;
  3654. else
  3655. ld_moved = 0;
  3656. out:
  3657. if (ld_moved)
  3658. update_shares(sd);
  3659. return ld_moved;
  3660. }
  3661. /*
  3662. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3663. * tasks if there is an imbalance.
  3664. *
  3665. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3666. * this_rq is locked.
  3667. */
  3668. static int
  3669. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3670. {
  3671. struct sched_group *group;
  3672. struct rq *busiest = NULL;
  3673. unsigned long imbalance;
  3674. int ld_moved = 0;
  3675. int sd_idle = 0;
  3676. int all_pinned = 0;
  3677. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3678. cpumask_copy(cpus, cpu_active_mask);
  3679. /*
  3680. * When power savings policy is enabled for the parent domain, idle
  3681. * sibling can pick up load irrespective of busy siblings. In this case,
  3682. * let the state of idle sibling percolate up as IDLE, instead of
  3683. * portraying it as CPU_NOT_IDLE.
  3684. */
  3685. if (sd->flags & SD_SHARE_CPUPOWER &&
  3686. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3687. sd_idle = 1;
  3688. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3689. redo:
  3690. update_shares_locked(this_rq, sd);
  3691. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3692. &sd_idle, cpus, NULL);
  3693. if (!group) {
  3694. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3695. goto out_balanced;
  3696. }
  3697. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3698. if (!busiest) {
  3699. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3700. goto out_balanced;
  3701. }
  3702. BUG_ON(busiest == this_rq);
  3703. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3704. ld_moved = 0;
  3705. if (busiest->nr_running > 1) {
  3706. /* Attempt to move tasks */
  3707. double_lock_balance(this_rq, busiest);
  3708. /* this_rq->clock is already updated */
  3709. update_rq_clock(busiest);
  3710. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3711. imbalance, sd, CPU_NEWLY_IDLE,
  3712. &all_pinned);
  3713. double_unlock_balance(this_rq, busiest);
  3714. if (unlikely(all_pinned)) {
  3715. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3716. if (!cpumask_empty(cpus))
  3717. goto redo;
  3718. }
  3719. }
  3720. if (!ld_moved) {
  3721. int active_balance = 0;
  3722. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3723. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3724. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3725. return -1;
  3726. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3727. return -1;
  3728. if (sd->nr_balance_failed++ < 2)
  3729. return -1;
  3730. /*
  3731. * The only task running in a non-idle cpu can be moved to this
  3732. * cpu in an attempt to completely freeup the other CPU
  3733. * package. The same method used to move task in load_balance()
  3734. * have been extended for load_balance_newidle() to speedup
  3735. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3736. *
  3737. * The package power saving logic comes from
  3738. * find_busiest_group(). If there are no imbalance, then
  3739. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3740. * f_b_g() will select a group from which a running task may be
  3741. * pulled to this cpu in order to make the other package idle.
  3742. * If there is no opportunity to make a package idle and if
  3743. * there are no imbalance, then f_b_g() will return NULL and no
  3744. * action will be taken in load_balance_newidle().
  3745. *
  3746. * Under normal task pull operation due to imbalance, there
  3747. * will be more than one task in the source run queue and
  3748. * move_tasks() will succeed. ld_moved will be true and this
  3749. * active balance code will not be triggered.
  3750. */
  3751. /* Lock busiest in correct order while this_rq is held */
  3752. double_lock_balance(this_rq, busiest);
  3753. /*
  3754. * don't kick the migration_thread, if the curr
  3755. * task on busiest cpu can't be moved to this_cpu
  3756. */
  3757. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3758. double_unlock_balance(this_rq, busiest);
  3759. all_pinned = 1;
  3760. return ld_moved;
  3761. }
  3762. if (!busiest->active_balance) {
  3763. busiest->active_balance = 1;
  3764. busiest->push_cpu = this_cpu;
  3765. active_balance = 1;
  3766. }
  3767. double_unlock_balance(this_rq, busiest);
  3768. /*
  3769. * Should not call ttwu while holding a rq->lock
  3770. */
  3771. raw_spin_unlock(&this_rq->lock);
  3772. if (active_balance)
  3773. wake_up_process(busiest->migration_thread);
  3774. raw_spin_lock(&this_rq->lock);
  3775. } else
  3776. sd->nr_balance_failed = 0;
  3777. update_shares_locked(this_rq, sd);
  3778. return ld_moved;
  3779. out_balanced:
  3780. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3781. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3782. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3783. return -1;
  3784. sd->nr_balance_failed = 0;
  3785. return 0;
  3786. }
  3787. /*
  3788. * idle_balance is called by schedule() if this_cpu is about to become
  3789. * idle. Attempts to pull tasks from other CPUs.
  3790. */
  3791. static void idle_balance(int this_cpu, struct rq *this_rq)
  3792. {
  3793. struct sched_domain *sd;
  3794. int pulled_task = 0;
  3795. unsigned long next_balance = jiffies + HZ;
  3796. this_rq->idle_stamp = this_rq->clock;
  3797. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3798. return;
  3799. for_each_domain(this_cpu, sd) {
  3800. unsigned long interval;
  3801. if (!(sd->flags & SD_LOAD_BALANCE))
  3802. continue;
  3803. if (sd->flags & SD_BALANCE_NEWIDLE)
  3804. /* If we've pulled tasks over stop searching: */
  3805. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3806. sd);
  3807. interval = msecs_to_jiffies(sd->balance_interval);
  3808. if (time_after(next_balance, sd->last_balance + interval))
  3809. next_balance = sd->last_balance + interval;
  3810. if (pulled_task) {
  3811. this_rq->idle_stamp = 0;
  3812. break;
  3813. }
  3814. }
  3815. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3816. /*
  3817. * We are going idle. next_balance may be set based on
  3818. * a busy processor. So reset next_balance.
  3819. */
  3820. this_rq->next_balance = next_balance;
  3821. }
  3822. }
  3823. /*
  3824. * active_load_balance is run by migration threads. It pushes running tasks
  3825. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3826. * running on each physical CPU where possible, and avoids physical /
  3827. * logical imbalances.
  3828. *
  3829. * Called with busiest_rq locked.
  3830. */
  3831. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3832. {
  3833. int target_cpu = busiest_rq->push_cpu;
  3834. struct sched_domain *sd;
  3835. struct rq *target_rq;
  3836. /* Is there any task to move? */
  3837. if (busiest_rq->nr_running <= 1)
  3838. return;
  3839. target_rq = cpu_rq(target_cpu);
  3840. /*
  3841. * This condition is "impossible", if it occurs
  3842. * we need to fix it. Originally reported by
  3843. * Bjorn Helgaas on a 128-cpu setup.
  3844. */
  3845. BUG_ON(busiest_rq == target_rq);
  3846. /* move a task from busiest_rq to target_rq */
  3847. double_lock_balance(busiest_rq, target_rq);
  3848. update_rq_clock(busiest_rq);
  3849. update_rq_clock(target_rq);
  3850. /* Search for an sd spanning us and the target CPU. */
  3851. for_each_domain(target_cpu, sd) {
  3852. if ((sd->flags & SD_LOAD_BALANCE) &&
  3853. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3854. break;
  3855. }
  3856. if (likely(sd)) {
  3857. schedstat_inc(sd, alb_count);
  3858. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3859. sd, CPU_IDLE))
  3860. schedstat_inc(sd, alb_pushed);
  3861. else
  3862. schedstat_inc(sd, alb_failed);
  3863. }
  3864. double_unlock_balance(busiest_rq, target_rq);
  3865. }
  3866. #ifdef CONFIG_NO_HZ
  3867. static struct {
  3868. atomic_t load_balancer;
  3869. cpumask_var_t cpu_mask;
  3870. cpumask_var_t ilb_grp_nohz_mask;
  3871. } nohz ____cacheline_aligned = {
  3872. .load_balancer = ATOMIC_INIT(-1),
  3873. };
  3874. int get_nohz_load_balancer(void)
  3875. {
  3876. return atomic_read(&nohz.load_balancer);
  3877. }
  3878. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3879. /**
  3880. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3881. * @cpu: The cpu whose lowest level of sched domain is to
  3882. * be returned.
  3883. * @flag: The flag to check for the lowest sched_domain
  3884. * for the given cpu.
  3885. *
  3886. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3887. */
  3888. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3889. {
  3890. struct sched_domain *sd;
  3891. for_each_domain(cpu, sd)
  3892. if (sd && (sd->flags & flag))
  3893. break;
  3894. return sd;
  3895. }
  3896. /**
  3897. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3898. * @cpu: The cpu whose domains we're iterating over.
  3899. * @sd: variable holding the value of the power_savings_sd
  3900. * for cpu.
  3901. * @flag: The flag to filter the sched_domains to be iterated.
  3902. *
  3903. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3904. * set, starting from the lowest sched_domain to the highest.
  3905. */
  3906. #define for_each_flag_domain(cpu, sd, flag) \
  3907. for (sd = lowest_flag_domain(cpu, flag); \
  3908. (sd && (sd->flags & flag)); sd = sd->parent)
  3909. /**
  3910. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3911. * @ilb_group: group to be checked for semi-idleness
  3912. *
  3913. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3914. *
  3915. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3916. * and atleast one non-idle CPU. This helper function checks if the given
  3917. * sched_group is semi-idle or not.
  3918. */
  3919. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3920. {
  3921. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3922. sched_group_cpus(ilb_group));
  3923. /*
  3924. * A sched_group is semi-idle when it has atleast one busy cpu
  3925. * and atleast one idle cpu.
  3926. */
  3927. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3928. return 0;
  3929. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3930. return 0;
  3931. return 1;
  3932. }
  3933. /**
  3934. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3935. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3936. *
  3937. * Returns: Returns the id of the idle load balancer if it exists,
  3938. * Else, returns >= nr_cpu_ids.
  3939. *
  3940. * This algorithm picks the idle load balancer such that it belongs to a
  3941. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3942. * completely idle packages/cores just for the purpose of idle load balancing
  3943. * when there are other idle cpu's which are better suited for that job.
  3944. */
  3945. static int find_new_ilb(int cpu)
  3946. {
  3947. struct sched_domain *sd;
  3948. struct sched_group *ilb_group;
  3949. /*
  3950. * Have idle load balancer selection from semi-idle packages only
  3951. * when power-aware load balancing is enabled
  3952. */
  3953. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3954. goto out_done;
  3955. /*
  3956. * Optimize for the case when we have no idle CPUs or only one
  3957. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3958. */
  3959. if (cpumask_weight(nohz.cpu_mask) < 2)
  3960. goto out_done;
  3961. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3962. ilb_group = sd->groups;
  3963. do {
  3964. if (is_semi_idle_group(ilb_group))
  3965. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3966. ilb_group = ilb_group->next;
  3967. } while (ilb_group != sd->groups);
  3968. }
  3969. out_done:
  3970. return cpumask_first(nohz.cpu_mask);
  3971. }
  3972. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3973. static inline int find_new_ilb(int call_cpu)
  3974. {
  3975. return cpumask_first(nohz.cpu_mask);
  3976. }
  3977. #endif
  3978. /*
  3979. * This routine will try to nominate the ilb (idle load balancing)
  3980. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3981. * load balancing on behalf of all those cpus. If all the cpus in the system
  3982. * go into this tickless mode, then there will be no ilb owner (as there is
  3983. * no need for one) and all the cpus will sleep till the next wakeup event
  3984. * arrives...
  3985. *
  3986. * For the ilb owner, tick is not stopped. And this tick will be used
  3987. * for idle load balancing. ilb owner will still be part of
  3988. * nohz.cpu_mask..
  3989. *
  3990. * While stopping the tick, this cpu will become the ilb owner if there
  3991. * is no other owner. And will be the owner till that cpu becomes busy
  3992. * or if all cpus in the system stop their ticks at which point
  3993. * there is no need for ilb owner.
  3994. *
  3995. * When the ilb owner becomes busy, it nominates another owner, during the
  3996. * next busy scheduler_tick()
  3997. */
  3998. int select_nohz_load_balancer(int stop_tick)
  3999. {
  4000. int cpu = smp_processor_id();
  4001. if (stop_tick) {
  4002. cpu_rq(cpu)->in_nohz_recently = 1;
  4003. if (!cpu_active(cpu)) {
  4004. if (atomic_read(&nohz.load_balancer) != cpu)
  4005. return 0;
  4006. /*
  4007. * If we are going offline and still the leader,
  4008. * give up!
  4009. */
  4010. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4011. BUG();
  4012. return 0;
  4013. }
  4014. cpumask_set_cpu(cpu, nohz.cpu_mask);
  4015. /* time for ilb owner also to sleep */
  4016. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  4017. if (atomic_read(&nohz.load_balancer) == cpu)
  4018. atomic_set(&nohz.load_balancer, -1);
  4019. return 0;
  4020. }
  4021. if (atomic_read(&nohz.load_balancer) == -1) {
  4022. /* make me the ilb owner */
  4023. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  4024. return 1;
  4025. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  4026. int new_ilb;
  4027. if (!(sched_smt_power_savings ||
  4028. sched_mc_power_savings))
  4029. return 1;
  4030. /*
  4031. * Check to see if there is a more power-efficient
  4032. * ilb.
  4033. */
  4034. new_ilb = find_new_ilb(cpu);
  4035. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4036. atomic_set(&nohz.load_balancer, -1);
  4037. resched_cpu(new_ilb);
  4038. return 0;
  4039. }
  4040. return 1;
  4041. }
  4042. } else {
  4043. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4044. return 0;
  4045. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4046. if (atomic_read(&nohz.load_balancer) == cpu)
  4047. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4048. BUG();
  4049. }
  4050. return 0;
  4051. }
  4052. #endif
  4053. static DEFINE_SPINLOCK(balancing);
  4054. /*
  4055. * It checks each scheduling domain to see if it is due to be balanced,
  4056. * and initiates a balancing operation if so.
  4057. *
  4058. * Balancing parameters are set up in arch_init_sched_domains.
  4059. */
  4060. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4061. {
  4062. int balance = 1;
  4063. struct rq *rq = cpu_rq(cpu);
  4064. unsigned long interval;
  4065. struct sched_domain *sd;
  4066. /* Earliest time when we have to do rebalance again */
  4067. unsigned long next_balance = jiffies + 60*HZ;
  4068. int update_next_balance = 0;
  4069. int need_serialize;
  4070. for_each_domain(cpu, sd) {
  4071. if (!(sd->flags & SD_LOAD_BALANCE))
  4072. continue;
  4073. interval = sd->balance_interval;
  4074. if (idle != CPU_IDLE)
  4075. interval *= sd->busy_factor;
  4076. /* scale ms to jiffies */
  4077. interval = msecs_to_jiffies(interval);
  4078. if (unlikely(!interval))
  4079. interval = 1;
  4080. if (interval > HZ*NR_CPUS/10)
  4081. interval = HZ*NR_CPUS/10;
  4082. need_serialize = sd->flags & SD_SERIALIZE;
  4083. if (need_serialize) {
  4084. if (!spin_trylock(&balancing))
  4085. goto out;
  4086. }
  4087. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4088. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4089. /*
  4090. * We've pulled tasks over so either we're no
  4091. * longer idle, or one of our SMT siblings is
  4092. * not idle.
  4093. */
  4094. idle = CPU_NOT_IDLE;
  4095. }
  4096. sd->last_balance = jiffies;
  4097. }
  4098. if (need_serialize)
  4099. spin_unlock(&balancing);
  4100. out:
  4101. if (time_after(next_balance, sd->last_balance + interval)) {
  4102. next_balance = sd->last_balance + interval;
  4103. update_next_balance = 1;
  4104. }
  4105. /*
  4106. * Stop the load balance at this level. There is another
  4107. * CPU in our sched group which is doing load balancing more
  4108. * actively.
  4109. */
  4110. if (!balance)
  4111. break;
  4112. }
  4113. /*
  4114. * next_balance will be updated only when there is a need.
  4115. * When the cpu is attached to null domain for ex, it will not be
  4116. * updated.
  4117. */
  4118. if (likely(update_next_balance))
  4119. rq->next_balance = next_balance;
  4120. }
  4121. /*
  4122. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4123. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4124. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4125. */
  4126. static void run_rebalance_domains(struct softirq_action *h)
  4127. {
  4128. int this_cpu = smp_processor_id();
  4129. struct rq *this_rq = cpu_rq(this_cpu);
  4130. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4131. CPU_IDLE : CPU_NOT_IDLE;
  4132. rebalance_domains(this_cpu, idle);
  4133. #ifdef CONFIG_NO_HZ
  4134. /*
  4135. * If this cpu is the owner for idle load balancing, then do the
  4136. * balancing on behalf of the other idle cpus whose ticks are
  4137. * stopped.
  4138. */
  4139. if (this_rq->idle_at_tick &&
  4140. atomic_read(&nohz.load_balancer) == this_cpu) {
  4141. struct rq *rq;
  4142. int balance_cpu;
  4143. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4144. if (balance_cpu == this_cpu)
  4145. continue;
  4146. /*
  4147. * If this cpu gets work to do, stop the load balancing
  4148. * work being done for other cpus. Next load
  4149. * balancing owner will pick it up.
  4150. */
  4151. if (need_resched())
  4152. break;
  4153. rebalance_domains(balance_cpu, CPU_IDLE);
  4154. rq = cpu_rq(balance_cpu);
  4155. if (time_after(this_rq->next_balance, rq->next_balance))
  4156. this_rq->next_balance = rq->next_balance;
  4157. }
  4158. }
  4159. #endif
  4160. }
  4161. static inline int on_null_domain(int cpu)
  4162. {
  4163. return !rcu_dereference(cpu_rq(cpu)->sd);
  4164. }
  4165. /*
  4166. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4167. *
  4168. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4169. * idle load balancing owner or decide to stop the periodic load balancing,
  4170. * if the whole system is idle.
  4171. */
  4172. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4173. {
  4174. #ifdef CONFIG_NO_HZ
  4175. /*
  4176. * If we were in the nohz mode recently and busy at the current
  4177. * scheduler tick, then check if we need to nominate new idle
  4178. * load balancer.
  4179. */
  4180. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4181. rq->in_nohz_recently = 0;
  4182. if (atomic_read(&nohz.load_balancer) == cpu) {
  4183. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4184. atomic_set(&nohz.load_balancer, -1);
  4185. }
  4186. if (atomic_read(&nohz.load_balancer) == -1) {
  4187. int ilb = find_new_ilb(cpu);
  4188. if (ilb < nr_cpu_ids)
  4189. resched_cpu(ilb);
  4190. }
  4191. }
  4192. /*
  4193. * If this cpu is idle and doing idle load balancing for all the
  4194. * cpus with ticks stopped, is it time for that to stop?
  4195. */
  4196. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4197. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4198. resched_cpu(cpu);
  4199. return;
  4200. }
  4201. /*
  4202. * If this cpu is idle and the idle load balancing is done by
  4203. * someone else, then no need raise the SCHED_SOFTIRQ
  4204. */
  4205. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4206. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4207. return;
  4208. #endif
  4209. /* Don't need to rebalance while attached to NULL domain */
  4210. if (time_after_eq(jiffies, rq->next_balance) &&
  4211. likely(!on_null_domain(cpu)))
  4212. raise_softirq(SCHED_SOFTIRQ);
  4213. }
  4214. #else /* CONFIG_SMP */
  4215. /*
  4216. * on UP we do not need to balance between CPUs:
  4217. */
  4218. static inline void idle_balance(int cpu, struct rq *rq)
  4219. {
  4220. }
  4221. #endif
  4222. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4223. EXPORT_PER_CPU_SYMBOL(kstat);
  4224. /*
  4225. * Return any ns on the sched_clock that have not yet been accounted in
  4226. * @p in case that task is currently running.
  4227. *
  4228. * Called with task_rq_lock() held on @rq.
  4229. */
  4230. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4231. {
  4232. u64 ns = 0;
  4233. if (task_current(rq, p)) {
  4234. update_rq_clock(rq);
  4235. ns = rq->clock - p->se.exec_start;
  4236. if ((s64)ns < 0)
  4237. ns = 0;
  4238. }
  4239. return ns;
  4240. }
  4241. unsigned long long task_delta_exec(struct task_struct *p)
  4242. {
  4243. unsigned long flags;
  4244. struct rq *rq;
  4245. u64 ns = 0;
  4246. rq = task_rq_lock(p, &flags);
  4247. ns = do_task_delta_exec(p, rq);
  4248. task_rq_unlock(rq, &flags);
  4249. return ns;
  4250. }
  4251. /*
  4252. * Return accounted runtime for the task.
  4253. * In case the task is currently running, return the runtime plus current's
  4254. * pending runtime that have not been accounted yet.
  4255. */
  4256. unsigned long long task_sched_runtime(struct task_struct *p)
  4257. {
  4258. unsigned long flags;
  4259. struct rq *rq;
  4260. u64 ns = 0;
  4261. rq = task_rq_lock(p, &flags);
  4262. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4263. task_rq_unlock(rq, &flags);
  4264. return ns;
  4265. }
  4266. /*
  4267. * Return sum_exec_runtime for the thread group.
  4268. * In case the task is currently running, return the sum plus current's
  4269. * pending runtime that have not been accounted yet.
  4270. *
  4271. * Note that the thread group might have other running tasks as well,
  4272. * so the return value not includes other pending runtime that other
  4273. * running tasks might have.
  4274. */
  4275. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4276. {
  4277. struct task_cputime totals;
  4278. unsigned long flags;
  4279. struct rq *rq;
  4280. u64 ns;
  4281. rq = task_rq_lock(p, &flags);
  4282. thread_group_cputime(p, &totals);
  4283. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4284. task_rq_unlock(rq, &flags);
  4285. return ns;
  4286. }
  4287. /*
  4288. * Account user cpu time to a process.
  4289. * @p: the process that the cpu time gets accounted to
  4290. * @cputime: the cpu time spent in user space since the last update
  4291. * @cputime_scaled: cputime scaled by cpu frequency
  4292. */
  4293. void account_user_time(struct task_struct *p, cputime_t cputime,
  4294. cputime_t cputime_scaled)
  4295. {
  4296. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4297. cputime64_t tmp;
  4298. /* Add user time to process. */
  4299. p->utime = cputime_add(p->utime, cputime);
  4300. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4301. account_group_user_time(p, cputime);
  4302. /* Add user time to cpustat. */
  4303. tmp = cputime_to_cputime64(cputime);
  4304. if (TASK_NICE(p) > 0)
  4305. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4306. else
  4307. cpustat->user = cputime64_add(cpustat->user, tmp);
  4308. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4309. /* Account for user time used */
  4310. acct_update_integrals(p);
  4311. }
  4312. /*
  4313. * Account guest cpu time to a process.
  4314. * @p: the process that the cpu time gets accounted to
  4315. * @cputime: the cpu time spent in virtual machine since the last update
  4316. * @cputime_scaled: cputime scaled by cpu frequency
  4317. */
  4318. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4319. cputime_t cputime_scaled)
  4320. {
  4321. cputime64_t tmp;
  4322. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4323. tmp = cputime_to_cputime64(cputime);
  4324. /* Add guest time to process. */
  4325. p->utime = cputime_add(p->utime, cputime);
  4326. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4327. account_group_user_time(p, cputime);
  4328. p->gtime = cputime_add(p->gtime, cputime);
  4329. /* Add guest time to cpustat. */
  4330. if (TASK_NICE(p) > 0) {
  4331. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4332. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4333. } else {
  4334. cpustat->user = cputime64_add(cpustat->user, tmp);
  4335. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4336. }
  4337. }
  4338. /*
  4339. * Account system cpu time to a process.
  4340. * @p: the process that the cpu time gets accounted to
  4341. * @hardirq_offset: the offset to subtract from hardirq_count()
  4342. * @cputime: the cpu time spent in kernel space since the last update
  4343. * @cputime_scaled: cputime scaled by cpu frequency
  4344. */
  4345. void account_system_time(struct task_struct *p, int hardirq_offset,
  4346. cputime_t cputime, cputime_t cputime_scaled)
  4347. {
  4348. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4349. cputime64_t tmp;
  4350. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4351. account_guest_time(p, cputime, cputime_scaled);
  4352. return;
  4353. }
  4354. /* Add system time to process. */
  4355. p->stime = cputime_add(p->stime, cputime);
  4356. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4357. account_group_system_time(p, cputime);
  4358. /* Add system time to cpustat. */
  4359. tmp = cputime_to_cputime64(cputime);
  4360. if (hardirq_count() - hardirq_offset)
  4361. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4362. else if (softirq_count())
  4363. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4364. else
  4365. cpustat->system = cputime64_add(cpustat->system, tmp);
  4366. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4367. /* Account for system time used */
  4368. acct_update_integrals(p);
  4369. }
  4370. /*
  4371. * Account for involuntary wait time.
  4372. * @steal: the cpu time spent in involuntary wait
  4373. */
  4374. void account_steal_time(cputime_t cputime)
  4375. {
  4376. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4377. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4378. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4379. }
  4380. /*
  4381. * Account for idle time.
  4382. * @cputime: the cpu time spent in idle wait
  4383. */
  4384. void account_idle_time(cputime_t cputime)
  4385. {
  4386. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4387. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4388. struct rq *rq = this_rq();
  4389. if (atomic_read(&rq->nr_iowait) > 0)
  4390. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4391. else
  4392. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4393. }
  4394. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4395. /*
  4396. * Account a single tick of cpu time.
  4397. * @p: the process that the cpu time gets accounted to
  4398. * @user_tick: indicates if the tick is a user or a system tick
  4399. */
  4400. void account_process_tick(struct task_struct *p, int user_tick)
  4401. {
  4402. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4403. struct rq *rq = this_rq();
  4404. if (user_tick)
  4405. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4406. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4407. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4408. one_jiffy_scaled);
  4409. else
  4410. account_idle_time(cputime_one_jiffy);
  4411. }
  4412. /*
  4413. * Account multiple ticks of steal time.
  4414. * @p: the process from which the cpu time has been stolen
  4415. * @ticks: number of stolen ticks
  4416. */
  4417. void account_steal_ticks(unsigned long ticks)
  4418. {
  4419. account_steal_time(jiffies_to_cputime(ticks));
  4420. }
  4421. /*
  4422. * Account multiple ticks of idle time.
  4423. * @ticks: number of stolen ticks
  4424. */
  4425. void account_idle_ticks(unsigned long ticks)
  4426. {
  4427. account_idle_time(jiffies_to_cputime(ticks));
  4428. }
  4429. #endif
  4430. /*
  4431. * Use precise platform statistics if available:
  4432. */
  4433. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4434. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4435. {
  4436. *ut = p->utime;
  4437. *st = p->stime;
  4438. }
  4439. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4440. {
  4441. struct task_cputime cputime;
  4442. thread_group_cputime(p, &cputime);
  4443. *ut = cputime.utime;
  4444. *st = cputime.stime;
  4445. }
  4446. #else
  4447. #ifndef nsecs_to_cputime
  4448. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4449. #endif
  4450. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4451. {
  4452. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4453. /*
  4454. * Use CFS's precise accounting:
  4455. */
  4456. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4457. if (total) {
  4458. u64 temp;
  4459. temp = (u64)(rtime * utime);
  4460. do_div(temp, total);
  4461. utime = (cputime_t)temp;
  4462. } else
  4463. utime = rtime;
  4464. /*
  4465. * Compare with previous values, to keep monotonicity:
  4466. */
  4467. p->prev_utime = max(p->prev_utime, utime);
  4468. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4469. *ut = p->prev_utime;
  4470. *st = p->prev_stime;
  4471. }
  4472. /*
  4473. * Must be called with siglock held.
  4474. */
  4475. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4476. {
  4477. struct signal_struct *sig = p->signal;
  4478. struct task_cputime cputime;
  4479. cputime_t rtime, utime, total;
  4480. thread_group_cputime(p, &cputime);
  4481. total = cputime_add(cputime.utime, cputime.stime);
  4482. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4483. if (total) {
  4484. u64 temp;
  4485. temp = (u64)(rtime * cputime.utime);
  4486. do_div(temp, total);
  4487. utime = (cputime_t)temp;
  4488. } else
  4489. utime = rtime;
  4490. sig->prev_utime = max(sig->prev_utime, utime);
  4491. sig->prev_stime = max(sig->prev_stime,
  4492. cputime_sub(rtime, sig->prev_utime));
  4493. *ut = sig->prev_utime;
  4494. *st = sig->prev_stime;
  4495. }
  4496. #endif
  4497. /*
  4498. * This function gets called by the timer code, with HZ frequency.
  4499. * We call it with interrupts disabled.
  4500. *
  4501. * It also gets called by the fork code, when changing the parent's
  4502. * timeslices.
  4503. */
  4504. void scheduler_tick(void)
  4505. {
  4506. int cpu = smp_processor_id();
  4507. struct rq *rq = cpu_rq(cpu);
  4508. struct task_struct *curr = rq->curr;
  4509. sched_clock_tick();
  4510. raw_spin_lock(&rq->lock);
  4511. update_rq_clock(rq);
  4512. update_cpu_load(rq);
  4513. curr->sched_class->task_tick(rq, curr, 0);
  4514. raw_spin_unlock(&rq->lock);
  4515. perf_event_task_tick(curr, cpu);
  4516. #ifdef CONFIG_SMP
  4517. rq->idle_at_tick = idle_cpu(cpu);
  4518. trigger_load_balance(rq, cpu);
  4519. #endif
  4520. }
  4521. notrace unsigned long get_parent_ip(unsigned long addr)
  4522. {
  4523. if (in_lock_functions(addr)) {
  4524. addr = CALLER_ADDR2;
  4525. if (in_lock_functions(addr))
  4526. addr = CALLER_ADDR3;
  4527. }
  4528. return addr;
  4529. }
  4530. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4531. defined(CONFIG_PREEMPT_TRACER))
  4532. void __kprobes add_preempt_count(int val)
  4533. {
  4534. #ifdef CONFIG_DEBUG_PREEMPT
  4535. /*
  4536. * Underflow?
  4537. */
  4538. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4539. return;
  4540. #endif
  4541. preempt_count() += val;
  4542. #ifdef CONFIG_DEBUG_PREEMPT
  4543. /*
  4544. * Spinlock count overflowing soon?
  4545. */
  4546. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4547. PREEMPT_MASK - 10);
  4548. #endif
  4549. if (preempt_count() == val)
  4550. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4551. }
  4552. EXPORT_SYMBOL(add_preempt_count);
  4553. void __kprobes sub_preempt_count(int val)
  4554. {
  4555. #ifdef CONFIG_DEBUG_PREEMPT
  4556. /*
  4557. * Underflow?
  4558. */
  4559. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4560. return;
  4561. /*
  4562. * Is the spinlock portion underflowing?
  4563. */
  4564. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4565. !(preempt_count() & PREEMPT_MASK)))
  4566. return;
  4567. #endif
  4568. if (preempt_count() == val)
  4569. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4570. preempt_count() -= val;
  4571. }
  4572. EXPORT_SYMBOL(sub_preempt_count);
  4573. #endif
  4574. /*
  4575. * Print scheduling while atomic bug:
  4576. */
  4577. static noinline void __schedule_bug(struct task_struct *prev)
  4578. {
  4579. struct pt_regs *regs = get_irq_regs();
  4580. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4581. prev->comm, prev->pid, preempt_count());
  4582. debug_show_held_locks(prev);
  4583. print_modules();
  4584. if (irqs_disabled())
  4585. print_irqtrace_events(prev);
  4586. if (regs)
  4587. show_regs(regs);
  4588. else
  4589. dump_stack();
  4590. }
  4591. /*
  4592. * Various schedule()-time debugging checks and statistics:
  4593. */
  4594. static inline void schedule_debug(struct task_struct *prev)
  4595. {
  4596. /*
  4597. * Test if we are atomic. Since do_exit() needs to call into
  4598. * schedule() atomically, we ignore that path for now.
  4599. * Otherwise, whine if we are scheduling when we should not be.
  4600. */
  4601. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4602. __schedule_bug(prev);
  4603. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4604. schedstat_inc(this_rq(), sched_count);
  4605. #ifdef CONFIG_SCHEDSTATS
  4606. if (unlikely(prev->lock_depth >= 0)) {
  4607. schedstat_inc(this_rq(), bkl_count);
  4608. schedstat_inc(prev, sched_info.bkl_count);
  4609. }
  4610. #endif
  4611. }
  4612. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4613. {
  4614. if (prev->state == TASK_RUNNING) {
  4615. u64 runtime = prev->se.sum_exec_runtime;
  4616. runtime -= prev->se.prev_sum_exec_runtime;
  4617. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4618. /*
  4619. * In order to avoid avg_overlap growing stale when we are
  4620. * indeed overlapping and hence not getting put to sleep, grow
  4621. * the avg_overlap on preemption.
  4622. *
  4623. * We use the average preemption runtime because that
  4624. * correlates to the amount of cache footprint a task can
  4625. * build up.
  4626. */
  4627. update_avg(&prev->se.avg_overlap, runtime);
  4628. }
  4629. prev->sched_class->put_prev_task(rq, prev);
  4630. }
  4631. /*
  4632. * Pick up the highest-prio task:
  4633. */
  4634. static inline struct task_struct *
  4635. pick_next_task(struct rq *rq)
  4636. {
  4637. const struct sched_class *class;
  4638. struct task_struct *p;
  4639. /*
  4640. * Optimization: we know that if all tasks are in
  4641. * the fair class we can call that function directly:
  4642. */
  4643. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4644. p = fair_sched_class.pick_next_task(rq);
  4645. if (likely(p))
  4646. return p;
  4647. }
  4648. class = sched_class_highest;
  4649. for ( ; ; ) {
  4650. p = class->pick_next_task(rq);
  4651. if (p)
  4652. return p;
  4653. /*
  4654. * Will never be NULL as the idle class always
  4655. * returns a non-NULL p:
  4656. */
  4657. class = class->next;
  4658. }
  4659. }
  4660. /*
  4661. * schedule() is the main scheduler function.
  4662. */
  4663. asmlinkage void __sched schedule(void)
  4664. {
  4665. struct task_struct *prev, *next;
  4666. unsigned long *switch_count;
  4667. struct rq *rq;
  4668. int cpu;
  4669. need_resched:
  4670. preempt_disable();
  4671. cpu = smp_processor_id();
  4672. rq = cpu_rq(cpu);
  4673. rcu_sched_qs(cpu);
  4674. prev = rq->curr;
  4675. switch_count = &prev->nivcsw;
  4676. release_kernel_lock(prev);
  4677. need_resched_nonpreemptible:
  4678. schedule_debug(prev);
  4679. if (sched_feat(HRTICK))
  4680. hrtick_clear(rq);
  4681. raw_spin_lock_irq(&rq->lock);
  4682. update_rq_clock(rq);
  4683. clear_tsk_need_resched(prev);
  4684. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4685. if (unlikely(signal_pending_state(prev->state, prev)))
  4686. prev->state = TASK_RUNNING;
  4687. else
  4688. deactivate_task(rq, prev, 1);
  4689. switch_count = &prev->nvcsw;
  4690. }
  4691. pre_schedule(rq, prev);
  4692. if (unlikely(!rq->nr_running))
  4693. idle_balance(cpu, rq);
  4694. put_prev_task(rq, prev);
  4695. next = pick_next_task(rq);
  4696. if (likely(prev != next)) {
  4697. sched_info_switch(prev, next);
  4698. perf_event_task_sched_out(prev, next, cpu);
  4699. rq->nr_switches++;
  4700. rq->curr = next;
  4701. ++*switch_count;
  4702. context_switch(rq, prev, next); /* unlocks the rq */
  4703. /*
  4704. * the context switch might have flipped the stack from under
  4705. * us, hence refresh the local variables.
  4706. */
  4707. cpu = smp_processor_id();
  4708. rq = cpu_rq(cpu);
  4709. } else
  4710. raw_spin_unlock_irq(&rq->lock);
  4711. post_schedule(rq);
  4712. if (unlikely(reacquire_kernel_lock(current) < 0))
  4713. goto need_resched_nonpreemptible;
  4714. preempt_enable_no_resched();
  4715. if (need_resched())
  4716. goto need_resched;
  4717. }
  4718. EXPORT_SYMBOL(schedule);
  4719. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4720. /*
  4721. * Look out! "owner" is an entirely speculative pointer
  4722. * access and not reliable.
  4723. */
  4724. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4725. {
  4726. unsigned int cpu;
  4727. struct rq *rq;
  4728. if (!sched_feat(OWNER_SPIN))
  4729. return 0;
  4730. #ifdef CONFIG_DEBUG_PAGEALLOC
  4731. /*
  4732. * Need to access the cpu field knowing that
  4733. * DEBUG_PAGEALLOC could have unmapped it if
  4734. * the mutex owner just released it and exited.
  4735. */
  4736. if (probe_kernel_address(&owner->cpu, cpu))
  4737. goto out;
  4738. #else
  4739. cpu = owner->cpu;
  4740. #endif
  4741. /*
  4742. * Even if the access succeeded (likely case),
  4743. * the cpu field may no longer be valid.
  4744. */
  4745. if (cpu >= nr_cpumask_bits)
  4746. goto out;
  4747. /*
  4748. * We need to validate that we can do a
  4749. * get_cpu() and that we have the percpu area.
  4750. */
  4751. if (!cpu_online(cpu))
  4752. goto out;
  4753. rq = cpu_rq(cpu);
  4754. for (;;) {
  4755. /*
  4756. * Owner changed, break to re-assess state.
  4757. */
  4758. if (lock->owner != owner)
  4759. break;
  4760. /*
  4761. * Is that owner really running on that cpu?
  4762. */
  4763. if (task_thread_info(rq->curr) != owner || need_resched())
  4764. return 0;
  4765. cpu_relax();
  4766. }
  4767. out:
  4768. return 1;
  4769. }
  4770. #endif
  4771. #ifdef CONFIG_PREEMPT
  4772. /*
  4773. * this is the entry point to schedule() from in-kernel preemption
  4774. * off of preempt_enable. Kernel preemptions off return from interrupt
  4775. * occur there and call schedule directly.
  4776. */
  4777. asmlinkage void __sched preempt_schedule(void)
  4778. {
  4779. struct thread_info *ti = current_thread_info();
  4780. /*
  4781. * If there is a non-zero preempt_count or interrupts are disabled,
  4782. * we do not want to preempt the current task. Just return..
  4783. */
  4784. if (likely(ti->preempt_count || irqs_disabled()))
  4785. return;
  4786. do {
  4787. add_preempt_count(PREEMPT_ACTIVE);
  4788. schedule();
  4789. sub_preempt_count(PREEMPT_ACTIVE);
  4790. /*
  4791. * Check again in case we missed a preemption opportunity
  4792. * between schedule and now.
  4793. */
  4794. barrier();
  4795. } while (need_resched());
  4796. }
  4797. EXPORT_SYMBOL(preempt_schedule);
  4798. /*
  4799. * this is the entry point to schedule() from kernel preemption
  4800. * off of irq context.
  4801. * Note, that this is called and return with irqs disabled. This will
  4802. * protect us against recursive calling from irq.
  4803. */
  4804. asmlinkage void __sched preempt_schedule_irq(void)
  4805. {
  4806. struct thread_info *ti = current_thread_info();
  4807. /* Catch callers which need to be fixed */
  4808. BUG_ON(ti->preempt_count || !irqs_disabled());
  4809. do {
  4810. add_preempt_count(PREEMPT_ACTIVE);
  4811. local_irq_enable();
  4812. schedule();
  4813. local_irq_disable();
  4814. sub_preempt_count(PREEMPT_ACTIVE);
  4815. /*
  4816. * Check again in case we missed a preemption opportunity
  4817. * between schedule and now.
  4818. */
  4819. barrier();
  4820. } while (need_resched());
  4821. }
  4822. #endif /* CONFIG_PREEMPT */
  4823. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4824. void *key)
  4825. {
  4826. return try_to_wake_up(curr->private, mode, wake_flags);
  4827. }
  4828. EXPORT_SYMBOL(default_wake_function);
  4829. /*
  4830. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4831. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4832. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4833. *
  4834. * There are circumstances in which we can try to wake a task which has already
  4835. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4836. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4837. */
  4838. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4839. int nr_exclusive, int wake_flags, void *key)
  4840. {
  4841. wait_queue_t *curr, *next;
  4842. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4843. unsigned flags = curr->flags;
  4844. if (curr->func(curr, mode, wake_flags, key) &&
  4845. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4846. break;
  4847. }
  4848. }
  4849. /**
  4850. * __wake_up - wake up threads blocked on a waitqueue.
  4851. * @q: the waitqueue
  4852. * @mode: which threads
  4853. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4854. * @key: is directly passed to the wakeup function
  4855. *
  4856. * It may be assumed that this function implies a write memory barrier before
  4857. * changing the task state if and only if any tasks are woken up.
  4858. */
  4859. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4860. int nr_exclusive, void *key)
  4861. {
  4862. unsigned long flags;
  4863. spin_lock_irqsave(&q->lock, flags);
  4864. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4865. spin_unlock_irqrestore(&q->lock, flags);
  4866. }
  4867. EXPORT_SYMBOL(__wake_up);
  4868. /*
  4869. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4870. */
  4871. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4872. {
  4873. __wake_up_common(q, mode, 1, 0, NULL);
  4874. }
  4875. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4876. {
  4877. __wake_up_common(q, mode, 1, 0, key);
  4878. }
  4879. /**
  4880. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4881. * @q: the waitqueue
  4882. * @mode: which threads
  4883. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4884. * @key: opaque value to be passed to wakeup targets
  4885. *
  4886. * The sync wakeup differs that the waker knows that it will schedule
  4887. * away soon, so while the target thread will be woken up, it will not
  4888. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4889. * with each other. This can prevent needless bouncing between CPUs.
  4890. *
  4891. * On UP it can prevent extra preemption.
  4892. *
  4893. * It may be assumed that this function implies a write memory barrier before
  4894. * changing the task state if and only if any tasks are woken up.
  4895. */
  4896. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4897. int nr_exclusive, void *key)
  4898. {
  4899. unsigned long flags;
  4900. int wake_flags = WF_SYNC;
  4901. if (unlikely(!q))
  4902. return;
  4903. if (unlikely(!nr_exclusive))
  4904. wake_flags = 0;
  4905. spin_lock_irqsave(&q->lock, flags);
  4906. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4907. spin_unlock_irqrestore(&q->lock, flags);
  4908. }
  4909. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4910. /*
  4911. * __wake_up_sync - see __wake_up_sync_key()
  4912. */
  4913. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4914. {
  4915. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4916. }
  4917. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4918. /**
  4919. * complete: - signals a single thread waiting on this completion
  4920. * @x: holds the state of this particular completion
  4921. *
  4922. * This will wake up a single thread waiting on this completion. Threads will be
  4923. * awakened in the same order in which they were queued.
  4924. *
  4925. * See also complete_all(), wait_for_completion() and related routines.
  4926. *
  4927. * It may be assumed that this function implies a write memory barrier before
  4928. * changing the task state if and only if any tasks are woken up.
  4929. */
  4930. void complete(struct completion *x)
  4931. {
  4932. unsigned long flags;
  4933. spin_lock_irqsave(&x->wait.lock, flags);
  4934. x->done++;
  4935. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4936. spin_unlock_irqrestore(&x->wait.lock, flags);
  4937. }
  4938. EXPORT_SYMBOL(complete);
  4939. /**
  4940. * complete_all: - signals all threads waiting on this completion
  4941. * @x: holds the state of this particular completion
  4942. *
  4943. * This will wake up all threads waiting on this particular completion event.
  4944. *
  4945. * It may be assumed that this function implies a write memory barrier before
  4946. * changing the task state if and only if any tasks are woken up.
  4947. */
  4948. void complete_all(struct completion *x)
  4949. {
  4950. unsigned long flags;
  4951. spin_lock_irqsave(&x->wait.lock, flags);
  4952. x->done += UINT_MAX/2;
  4953. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4954. spin_unlock_irqrestore(&x->wait.lock, flags);
  4955. }
  4956. EXPORT_SYMBOL(complete_all);
  4957. static inline long __sched
  4958. do_wait_for_common(struct completion *x, long timeout, int state)
  4959. {
  4960. if (!x->done) {
  4961. DECLARE_WAITQUEUE(wait, current);
  4962. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4963. __add_wait_queue_tail(&x->wait, &wait);
  4964. do {
  4965. if (signal_pending_state(state, current)) {
  4966. timeout = -ERESTARTSYS;
  4967. break;
  4968. }
  4969. __set_current_state(state);
  4970. spin_unlock_irq(&x->wait.lock);
  4971. timeout = schedule_timeout(timeout);
  4972. spin_lock_irq(&x->wait.lock);
  4973. } while (!x->done && timeout);
  4974. __remove_wait_queue(&x->wait, &wait);
  4975. if (!x->done)
  4976. return timeout;
  4977. }
  4978. x->done--;
  4979. return timeout ?: 1;
  4980. }
  4981. static long __sched
  4982. wait_for_common(struct completion *x, long timeout, int state)
  4983. {
  4984. might_sleep();
  4985. spin_lock_irq(&x->wait.lock);
  4986. timeout = do_wait_for_common(x, timeout, state);
  4987. spin_unlock_irq(&x->wait.lock);
  4988. return timeout;
  4989. }
  4990. /**
  4991. * wait_for_completion: - waits for completion of a task
  4992. * @x: holds the state of this particular completion
  4993. *
  4994. * This waits to be signaled for completion of a specific task. It is NOT
  4995. * interruptible and there is no timeout.
  4996. *
  4997. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4998. * and interrupt capability. Also see complete().
  4999. */
  5000. void __sched wait_for_completion(struct completion *x)
  5001. {
  5002. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  5003. }
  5004. EXPORT_SYMBOL(wait_for_completion);
  5005. /**
  5006. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  5007. * @x: holds the state of this particular completion
  5008. * @timeout: timeout value in jiffies
  5009. *
  5010. * This waits for either a completion of a specific task to be signaled or for a
  5011. * specified timeout to expire. The timeout is in jiffies. It is not
  5012. * interruptible.
  5013. */
  5014. unsigned long __sched
  5015. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  5016. {
  5017. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  5018. }
  5019. EXPORT_SYMBOL(wait_for_completion_timeout);
  5020. /**
  5021. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  5022. * @x: holds the state of this particular completion
  5023. *
  5024. * This waits for completion of a specific task to be signaled. It is
  5025. * interruptible.
  5026. */
  5027. int __sched wait_for_completion_interruptible(struct completion *x)
  5028. {
  5029. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5030. if (t == -ERESTARTSYS)
  5031. return t;
  5032. return 0;
  5033. }
  5034. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5035. /**
  5036. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5037. * @x: holds the state of this particular completion
  5038. * @timeout: timeout value in jiffies
  5039. *
  5040. * This waits for either a completion of a specific task to be signaled or for a
  5041. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5042. */
  5043. unsigned long __sched
  5044. wait_for_completion_interruptible_timeout(struct completion *x,
  5045. unsigned long timeout)
  5046. {
  5047. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5048. }
  5049. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5050. /**
  5051. * wait_for_completion_killable: - waits for completion of a task (killable)
  5052. * @x: holds the state of this particular completion
  5053. *
  5054. * This waits to be signaled for completion of a specific task. It can be
  5055. * interrupted by a kill signal.
  5056. */
  5057. int __sched wait_for_completion_killable(struct completion *x)
  5058. {
  5059. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5060. if (t == -ERESTARTSYS)
  5061. return t;
  5062. return 0;
  5063. }
  5064. EXPORT_SYMBOL(wait_for_completion_killable);
  5065. /**
  5066. * try_wait_for_completion - try to decrement a completion without blocking
  5067. * @x: completion structure
  5068. *
  5069. * Returns: 0 if a decrement cannot be done without blocking
  5070. * 1 if a decrement succeeded.
  5071. *
  5072. * If a completion is being used as a counting completion,
  5073. * attempt to decrement the counter without blocking. This
  5074. * enables us to avoid waiting if the resource the completion
  5075. * is protecting is not available.
  5076. */
  5077. bool try_wait_for_completion(struct completion *x)
  5078. {
  5079. unsigned long flags;
  5080. int ret = 1;
  5081. spin_lock_irqsave(&x->wait.lock, flags);
  5082. if (!x->done)
  5083. ret = 0;
  5084. else
  5085. x->done--;
  5086. spin_unlock_irqrestore(&x->wait.lock, flags);
  5087. return ret;
  5088. }
  5089. EXPORT_SYMBOL(try_wait_for_completion);
  5090. /**
  5091. * completion_done - Test to see if a completion has any waiters
  5092. * @x: completion structure
  5093. *
  5094. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5095. * 1 if there are no waiters.
  5096. *
  5097. */
  5098. bool completion_done(struct completion *x)
  5099. {
  5100. unsigned long flags;
  5101. int ret = 1;
  5102. spin_lock_irqsave(&x->wait.lock, flags);
  5103. if (!x->done)
  5104. ret = 0;
  5105. spin_unlock_irqrestore(&x->wait.lock, flags);
  5106. return ret;
  5107. }
  5108. EXPORT_SYMBOL(completion_done);
  5109. static long __sched
  5110. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5111. {
  5112. unsigned long flags;
  5113. wait_queue_t wait;
  5114. init_waitqueue_entry(&wait, current);
  5115. __set_current_state(state);
  5116. spin_lock_irqsave(&q->lock, flags);
  5117. __add_wait_queue(q, &wait);
  5118. spin_unlock(&q->lock);
  5119. timeout = schedule_timeout(timeout);
  5120. spin_lock_irq(&q->lock);
  5121. __remove_wait_queue(q, &wait);
  5122. spin_unlock_irqrestore(&q->lock, flags);
  5123. return timeout;
  5124. }
  5125. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5126. {
  5127. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5128. }
  5129. EXPORT_SYMBOL(interruptible_sleep_on);
  5130. long __sched
  5131. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5132. {
  5133. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5134. }
  5135. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5136. void __sched sleep_on(wait_queue_head_t *q)
  5137. {
  5138. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5139. }
  5140. EXPORT_SYMBOL(sleep_on);
  5141. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5142. {
  5143. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5144. }
  5145. EXPORT_SYMBOL(sleep_on_timeout);
  5146. #ifdef CONFIG_RT_MUTEXES
  5147. /*
  5148. * rt_mutex_setprio - set the current priority of a task
  5149. * @p: task
  5150. * @prio: prio value (kernel-internal form)
  5151. *
  5152. * This function changes the 'effective' priority of a task. It does
  5153. * not touch ->normal_prio like __setscheduler().
  5154. *
  5155. * Used by the rt_mutex code to implement priority inheritance logic.
  5156. */
  5157. void rt_mutex_setprio(struct task_struct *p, int prio)
  5158. {
  5159. unsigned long flags;
  5160. int oldprio, on_rq, running;
  5161. struct rq *rq;
  5162. const struct sched_class *prev_class = p->sched_class;
  5163. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5164. rq = task_rq_lock(p, &flags);
  5165. update_rq_clock(rq);
  5166. oldprio = p->prio;
  5167. on_rq = p->se.on_rq;
  5168. running = task_current(rq, p);
  5169. if (on_rq)
  5170. dequeue_task(rq, p, 0);
  5171. if (running)
  5172. p->sched_class->put_prev_task(rq, p);
  5173. if (rt_prio(prio))
  5174. p->sched_class = &rt_sched_class;
  5175. else
  5176. p->sched_class = &fair_sched_class;
  5177. p->prio = prio;
  5178. if (running)
  5179. p->sched_class->set_curr_task(rq);
  5180. if (on_rq) {
  5181. enqueue_task(rq, p, 0);
  5182. check_class_changed(rq, p, prev_class, oldprio, running);
  5183. }
  5184. task_rq_unlock(rq, &flags);
  5185. }
  5186. #endif
  5187. void set_user_nice(struct task_struct *p, long nice)
  5188. {
  5189. int old_prio, delta, on_rq;
  5190. unsigned long flags;
  5191. struct rq *rq;
  5192. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5193. return;
  5194. /*
  5195. * We have to be careful, if called from sys_setpriority(),
  5196. * the task might be in the middle of scheduling on another CPU.
  5197. */
  5198. rq = task_rq_lock(p, &flags);
  5199. update_rq_clock(rq);
  5200. /*
  5201. * The RT priorities are set via sched_setscheduler(), but we still
  5202. * allow the 'normal' nice value to be set - but as expected
  5203. * it wont have any effect on scheduling until the task is
  5204. * SCHED_FIFO/SCHED_RR:
  5205. */
  5206. if (task_has_rt_policy(p)) {
  5207. p->static_prio = NICE_TO_PRIO(nice);
  5208. goto out_unlock;
  5209. }
  5210. on_rq = p->se.on_rq;
  5211. if (on_rq)
  5212. dequeue_task(rq, p, 0);
  5213. p->static_prio = NICE_TO_PRIO(nice);
  5214. set_load_weight(p);
  5215. old_prio = p->prio;
  5216. p->prio = effective_prio(p);
  5217. delta = p->prio - old_prio;
  5218. if (on_rq) {
  5219. enqueue_task(rq, p, 0);
  5220. /*
  5221. * If the task increased its priority or is running and
  5222. * lowered its priority, then reschedule its CPU:
  5223. */
  5224. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5225. resched_task(rq->curr);
  5226. }
  5227. out_unlock:
  5228. task_rq_unlock(rq, &flags);
  5229. }
  5230. EXPORT_SYMBOL(set_user_nice);
  5231. /*
  5232. * can_nice - check if a task can reduce its nice value
  5233. * @p: task
  5234. * @nice: nice value
  5235. */
  5236. int can_nice(const struct task_struct *p, const int nice)
  5237. {
  5238. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5239. int nice_rlim = 20 - nice;
  5240. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5241. capable(CAP_SYS_NICE));
  5242. }
  5243. #ifdef __ARCH_WANT_SYS_NICE
  5244. /*
  5245. * sys_nice - change the priority of the current process.
  5246. * @increment: priority increment
  5247. *
  5248. * sys_setpriority is a more generic, but much slower function that
  5249. * does similar things.
  5250. */
  5251. SYSCALL_DEFINE1(nice, int, increment)
  5252. {
  5253. long nice, retval;
  5254. /*
  5255. * Setpriority might change our priority at the same moment.
  5256. * We don't have to worry. Conceptually one call occurs first
  5257. * and we have a single winner.
  5258. */
  5259. if (increment < -40)
  5260. increment = -40;
  5261. if (increment > 40)
  5262. increment = 40;
  5263. nice = TASK_NICE(current) + increment;
  5264. if (nice < -20)
  5265. nice = -20;
  5266. if (nice > 19)
  5267. nice = 19;
  5268. if (increment < 0 && !can_nice(current, nice))
  5269. return -EPERM;
  5270. retval = security_task_setnice(current, nice);
  5271. if (retval)
  5272. return retval;
  5273. set_user_nice(current, nice);
  5274. return 0;
  5275. }
  5276. #endif
  5277. /**
  5278. * task_prio - return the priority value of a given task.
  5279. * @p: the task in question.
  5280. *
  5281. * This is the priority value as seen by users in /proc.
  5282. * RT tasks are offset by -200. Normal tasks are centered
  5283. * around 0, value goes from -16 to +15.
  5284. */
  5285. int task_prio(const struct task_struct *p)
  5286. {
  5287. return p->prio - MAX_RT_PRIO;
  5288. }
  5289. /**
  5290. * task_nice - return the nice value of a given task.
  5291. * @p: the task in question.
  5292. */
  5293. int task_nice(const struct task_struct *p)
  5294. {
  5295. return TASK_NICE(p);
  5296. }
  5297. EXPORT_SYMBOL(task_nice);
  5298. /**
  5299. * idle_cpu - is a given cpu idle currently?
  5300. * @cpu: the processor in question.
  5301. */
  5302. int idle_cpu(int cpu)
  5303. {
  5304. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5305. }
  5306. /**
  5307. * idle_task - return the idle task for a given cpu.
  5308. * @cpu: the processor in question.
  5309. */
  5310. struct task_struct *idle_task(int cpu)
  5311. {
  5312. return cpu_rq(cpu)->idle;
  5313. }
  5314. /**
  5315. * find_process_by_pid - find a process with a matching PID value.
  5316. * @pid: the pid in question.
  5317. */
  5318. static struct task_struct *find_process_by_pid(pid_t pid)
  5319. {
  5320. return pid ? find_task_by_vpid(pid) : current;
  5321. }
  5322. /* Actually do priority change: must hold rq lock. */
  5323. static void
  5324. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5325. {
  5326. BUG_ON(p->se.on_rq);
  5327. p->policy = policy;
  5328. p->rt_priority = prio;
  5329. p->normal_prio = normal_prio(p);
  5330. /* we are holding p->pi_lock already */
  5331. p->prio = rt_mutex_getprio(p);
  5332. if (rt_prio(p->prio))
  5333. p->sched_class = &rt_sched_class;
  5334. else
  5335. p->sched_class = &fair_sched_class;
  5336. set_load_weight(p);
  5337. }
  5338. /*
  5339. * check the target process has a UID that matches the current process's
  5340. */
  5341. static bool check_same_owner(struct task_struct *p)
  5342. {
  5343. const struct cred *cred = current_cred(), *pcred;
  5344. bool match;
  5345. rcu_read_lock();
  5346. pcred = __task_cred(p);
  5347. match = (cred->euid == pcred->euid ||
  5348. cred->euid == pcred->uid);
  5349. rcu_read_unlock();
  5350. return match;
  5351. }
  5352. static int __sched_setscheduler(struct task_struct *p, int policy,
  5353. struct sched_param *param, bool user)
  5354. {
  5355. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5356. unsigned long flags;
  5357. const struct sched_class *prev_class = p->sched_class;
  5358. struct rq *rq;
  5359. int reset_on_fork;
  5360. /* may grab non-irq protected spin_locks */
  5361. BUG_ON(in_interrupt());
  5362. recheck:
  5363. /* double check policy once rq lock held */
  5364. if (policy < 0) {
  5365. reset_on_fork = p->sched_reset_on_fork;
  5366. policy = oldpolicy = p->policy;
  5367. } else {
  5368. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5369. policy &= ~SCHED_RESET_ON_FORK;
  5370. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5371. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5372. policy != SCHED_IDLE)
  5373. return -EINVAL;
  5374. }
  5375. /*
  5376. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5377. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5378. * SCHED_BATCH and SCHED_IDLE is 0.
  5379. */
  5380. if (param->sched_priority < 0 ||
  5381. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5382. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5383. return -EINVAL;
  5384. if (rt_policy(policy) != (param->sched_priority != 0))
  5385. return -EINVAL;
  5386. /*
  5387. * Allow unprivileged RT tasks to decrease priority:
  5388. */
  5389. if (user && !capable(CAP_SYS_NICE)) {
  5390. if (rt_policy(policy)) {
  5391. unsigned long rlim_rtprio;
  5392. if (!lock_task_sighand(p, &flags))
  5393. return -ESRCH;
  5394. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5395. unlock_task_sighand(p, &flags);
  5396. /* can't set/change the rt policy */
  5397. if (policy != p->policy && !rlim_rtprio)
  5398. return -EPERM;
  5399. /* can't increase priority */
  5400. if (param->sched_priority > p->rt_priority &&
  5401. param->sched_priority > rlim_rtprio)
  5402. return -EPERM;
  5403. }
  5404. /*
  5405. * Like positive nice levels, dont allow tasks to
  5406. * move out of SCHED_IDLE either:
  5407. */
  5408. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5409. return -EPERM;
  5410. /* can't change other user's priorities */
  5411. if (!check_same_owner(p))
  5412. return -EPERM;
  5413. /* Normal users shall not reset the sched_reset_on_fork flag */
  5414. if (p->sched_reset_on_fork && !reset_on_fork)
  5415. return -EPERM;
  5416. }
  5417. if (user) {
  5418. #ifdef CONFIG_RT_GROUP_SCHED
  5419. /*
  5420. * Do not allow realtime tasks into groups that have no runtime
  5421. * assigned.
  5422. */
  5423. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5424. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5425. return -EPERM;
  5426. #endif
  5427. retval = security_task_setscheduler(p, policy, param);
  5428. if (retval)
  5429. return retval;
  5430. }
  5431. /*
  5432. * make sure no PI-waiters arrive (or leave) while we are
  5433. * changing the priority of the task:
  5434. */
  5435. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5436. /*
  5437. * To be able to change p->policy safely, the apropriate
  5438. * runqueue lock must be held.
  5439. */
  5440. rq = __task_rq_lock(p);
  5441. /* recheck policy now with rq lock held */
  5442. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5443. policy = oldpolicy = -1;
  5444. __task_rq_unlock(rq);
  5445. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5446. goto recheck;
  5447. }
  5448. update_rq_clock(rq);
  5449. on_rq = p->se.on_rq;
  5450. running = task_current(rq, p);
  5451. if (on_rq)
  5452. deactivate_task(rq, p, 0);
  5453. if (running)
  5454. p->sched_class->put_prev_task(rq, p);
  5455. p->sched_reset_on_fork = reset_on_fork;
  5456. oldprio = p->prio;
  5457. __setscheduler(rq, p, policy, param->sched_priority);
  5458. if (running)
  5459. p->sched_class->set_curr_task(rq);
  5460. if (on_rq) {
  5461. activate_task(rq, p, 0);
  5462. check_class_changed(rq, p, prev_class, oldprio, running);
  5463. }
  5464. __task_rq_unlock(rq);
  5465. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5466. rt_mutex_adjust_pi(p);
  5467. return 0;
  5468. }
  5469. /**
  5470. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5471. * @p: the task in question.
  5472. * @policy: new policy.
  5473. * @param: structure containing the new RT priority.
  5474. *
  5475. * NOTE that the task may be already dead.
  5476. */
  5477. int sched_setscheduler(struct task_struct *p, int policy,
  5478. struct sched_param *param)
  5479. {
  5480. return __sched_setscheduler(p, policy, param, true);
  5481. }
  5482. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5483. /**
  5484. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5485. * @p: the task in question.
  5486. * @policy: new policy.
  5487. * @param: structure containing the new RT priority.
  5488. *
  5489. * Just like sched_setscheduler, only don't bother checking if the
  5490. * current context has permission. For example, this is needed in
  5491. * stop_machine(): we create temporary high priority worker threads,
  5492. * but our caller might not have that capability.
  5493. */
  5494. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5495. struct sched_param *param)
  5496. {
  5497. return __sched_setscheduler(p, policy, param, false);
  5498. }
  5499. static int
  5500. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5501. {
  5502. struct sched_param lparam;
  5503. struct task_struct *p;
  5504. int retval;
  5505. if (!param || pid < 0)
  5506. return -EINVAL;
  5507. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5508. return -EFAULT;
  5509. rcu_read_lock();
  5510. retval = -ESRCH;
  5511. p = find_process_by_pid(pid);
  5512. if (p != NULL)
  5513. retval = sched_setscheduler(p, policy, &lparam);
  5514. rcu_read_unlock();
  5515. return retval;
  5516. }
  5517. /**
  5518. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5519. * @pid: the pid in question.
  5520. * @policy: new policy.
  5521. * @param: structure containing the new RT priority.
  5522. */
  5523. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5524. struct sched_param __user *, param)
  5525. {
  5526. /* negative values for policy are not valid */
  5527. if (policy < 0)
  5528. return -EINVAL;
  5529. return do_sched_setscheduler(pid, policy, param);
  5530. }
  5531. /**
  5532. * sys_sched_setparam - set/change the RT priority of a thread
  5533. * @pid: the pid in question.
  5534. * @param: structure containing the new RT priority.
  5535. */
  5536. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5537. {
  5538. return do_sched_setscheduler(pid, -1, param);
  5539. }
  5540. /**
  5541. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5542. * @pid: the pid in question.
  5543. */
  5544. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5545. {
  5546. struct task_struct *p;
  5547. int retval;
  5548. if (pid < 0)
  5549. return -EINVAL;
  5550. retval = -ESRCH;
  5551. rcu_read_lock();
  5552. p = find_process_by_pid(pid);
  5553. if (p) {
  5554. retval = security_task_getscheduler(p);
  5555. if (!retval)
  5556. retval = p->policy
  5557. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5558. }
  5559. rcu_read_unlock();
  5560. return retval;
  5561. }
  5562. /**
  5563. * sys_sched_getparam - get the RT priority of a thread
  5564. * @pid: the pid in question.
  5565. * @param: structure containing the RT priority.
  5566. */
  5567. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5568. {
  5569. struct sched_param lp;
  5570. struct task_struct *p;
  5571. int retval;
  5572. if (!param || pid < 0)
  5573. return -EINVAL;
  5574. rcu_read_lock();
  5575. p = find_process_by_pid(pid);
  5576. retval = -ESRCH;
  5577. if (!p)
  5578. goto out_unlock;
  5579. retval = security_task_getscheduler(p);
  5580. if (retval)
  5581. goto out_unlock;
  5582. lp.sched_priority = p->rt_priority;
  5583. rcu_read_unlock();
  5584. /*
  5585. * This one might sleep, we cannot do it with a spinlock held ...
  5586. */
  5587. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5588. return retval;
  5589. out_unlock:
  5590. rcu_read_unlock();
  5591. return retval;
  5592. }
  5593. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5594. {
  5595. cpumask_var_t cpus_allowed, new_mask;
  5596. struct task_struct *p;
  5597. int retval;
  5598. get_online_cpus();
  5599. rcu_read_lock();
  5600. p = find_process_by_pid(pid);
  5601. if (!p) {
  5602. rcu_read_unlock();
  5603. put_online_cpus();
  5604. return -ESRCH;
  5605. }
  5606. /* Prevent p going away */
  5607. get_task_struct(p);
  5608. rcu_read_unlock();
  5609. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5610. retval = -ENOMEM;
  5611. goto out_put_task;
  5612. }
  5613. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5614. retval = -ENOMEM;
  5615. goto out_free_cpus_allowed;
  5616. }
  5617. retval = -EPERM;
  5618. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5619. goto out_unlock;
  5620. retval = security_task_setscheduler(p, 0, NULL);
  5621. if (retval)
  5622. goto out_unlock;
  5623. cpuset_cpus_allowed(p, cpus_allowed);
  5624. cpumask_and(new_mask, in_mask, cpus_allowed);
  5625. again:
  5626. retval = set_cpus_allowed_ptr(p, new_mask);
  5627. if (!retval) {
  5628. cpuset_cpus_allowed(p, cpus_allowed);
  5629. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5630. /*
  5631. * We must have raced with a concurrent cpuset
  5632. * update. Just reset the cpus_allowed to the
  5633. * cpuset's cpus_allowed
  5634. */
  5635. cpumask_copy(new_mask, cpus_allowed);
  5636. goto again;
  5637. }
  5638. }
  5639. out_unlock:
  5640. free_cpumask_var(new_mask);
  5641. out_free_cpus_allowed:
  5642. free_cpumask_var(cpus_allowed);
  5643. out_put_task:
  5644. put_task_struct(p);
  5645. put_online_cpus();
  5646. return retval;
  5647. }
  5648. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5649. struct cpumask *new_mask)
  5650. {
  5651. if (len < cpumask_size())
  5652. cpumask_clear(new_mask);
  5653. else if (len > cpumask_size())
  5654. len = cpumask_size();
  5655. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5656. }
  5657. /**
  5658. * sys_sched_setaffinity - set the cpu affinity of a process
  5659. * @pid: pid of the process
  5660. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5661. * @user_mask_ptr: user-space pointer to the new cpu mask
  5662. */
  5663. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5664. unsigned long __user *, user_mask_ptr)
  5665. {
  5666. cpumask_var_t new_mask;
  5667. int retval;
  5668. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5669. return -ENOMEM;
  5670. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5671. if (retval == 0)
  5672. retval = sched_setaffinity(pid, new_mask);
  5673. free_cpumask_var(new_mask);
  5674. return retval;
  5675. }
  5676. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5677. {
  5678. struct task_struct *p;
  5679. unsigned long flags;
  5680. struct rq *rq;
  5681. int retval;
  5682. get_online_cpus();
  5683. rcu_read_lock();
  5684. retval = -ESRCH;
  5685. p = find_process_by_pid(pid);
  5686. if (!p)
  5687. goto out_unlock;
  5688. retval = security_task_getscheduler(p);
  5689. if (retval)
  5690. goto out_unlock;
  5691. rq = task_rq_lock(p, &flags);
  5692. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5693. task_rq_unlock(rq, &flags);
  5694. out_unlock:
  5695. rcu_read_unlock();
  5696. put_online_cpus();
  5697. return retval;
  5698. }
  5699. /**
  5700. * sys_sched_getaffinity - get the cpu affinity of a process
  5701. * @pid: pid of the process
  5702. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5703. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5704. */
  5705. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5706. unsigned long __user *, user_mask_ptr)
  5707. {
  5708. int ret;
  5709. cpumask_var_t mask;
  5710. if (len < cpumask_size())
  5711. return -EINVAL;
  5712. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5713. return -ENOMEM;
  5714. ret = sched_getaffinity(pid, mask);
  5715. if (ret == 0) {
  5716. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5717. ret = -EFAULT;
  5718. else
  5719. ret = cpumask_size();
  5720. }
  5721. free_cpumask_var(mask);
  5722. return ret;
  5723. }
  5724. /**
  5725. * sys_sched_yield - yield the current processor to other threads.
  5726. *
  5727. * This function yields the current CPU to other tasks. If there are no
  5728. * other threads running on this CPU then this function will return.
  5729. */
  5730. SYSCALL_DEFINE0(sched_yield)
  5731. {
  5732. struct rq *rq = this_rq_lock();
  5733. schedstat_inc(rq, yld_count);
  5734. current->sched_class->yield_task(rq);
  5735. /*
  5736. * Since we are going to call schedule() anyway, there's
  5737. * no need to preempt or enable interrupts:
  5738. */
  5739. __release(rq->lock);
  5740. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5741. do_raw_spin_unlock(&rq->lock);
  5742. preempt_enable_no_resched();
  5743. schedule();
  5744. return 0;
  5745. }
  5746. static inline int should_resched(void)
  5747. {
  5748. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5749. }
  5750. static void __cond_resched(void)
  5751. {
  5752. add_preempt_count(PREEMPT_ACTIVE);
  5753. schedule();
  5754. sub_preempt_count(PREEMPT_ACTIVE);
  5755. }
  5756. int __sched _cond_resched(void)
  5757. {
  5758. if (should_resched()) {
  5759. __cond_resched();
  5760. return 1;
  5761. }
  5762. return 0;
  5763. }
  5764. EXPORT_SYMBOL(_cond_resched);
  5765. /*
  5766. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5767. * call schedule, and on return reacquire the lock.
  5768. *
  5769. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5770. * operations here to prevent schedule() from being called twice (once via
  5771. * spin_unlock(), once by hand).
  5772. */
  5773. int __cond_resched_lock(spinlock_t *lock)
  5774. {
  5775. int resched = should_resched();
  5776. int ret = 0;
  5777. lockdep_assert_held(lock);
  5778. if (spin_needbreak(lock) || resched) {
  5779. spin_unlock(lock);
  5780. if (resched)
  5781. __cond_resched();
  5782. else
  5783. cpu_relax();
  5784. ret = 1;
  5785. spin_lock(lock);
  5786. }
  5787. return ret;
  5788. }
  5789. EXPORT_SYMBOL(__cond_resched_lock);
  5790. int __sched __cond_resched_softirq(void)
  5791. {
  5792. BUG_ON(!in_softirq());
  5793. if (should_resched()) {
  5794. local_bh_enable();
  5795. __cond_resched();
  5796. local_bh_disable();
  5797. return 1;
  5798. }
  5799. return 0;
  5800. }
  5801. EXPORT_SYMBOL(__cond_resched_softirq);
  5802. /**
  5803. * yield - yield the current processor to other threads.
  5804. *
  5805. * This is a shortcut for kernel-space yielding - it marks the
  5806. * thread runnable and calls sys_sched_yield().
  5807. */
  5808. void __sched yield(void)
  5809. {
  5810. set_current_state(TASK_RUNNING);
  5811. sys_sched_yield();
  5812. }
  5813. EXPORT_SYMBOL(yield);
  5814. /*
  5815. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5816. * that process accounting knows that this is a task in IO wait state.
  5817. */
  5818. void __sched io_schedule(void)
  5819. {
  5820. struct rq *rq = raw_rq();
  5821. delayacct_blkio_start();
  5822. atomic_inc(&rq->nr_iowait);
  5823. current->in_iowait = 1;
  5824. schedule();
  5825. current->in_iowait = 0;
  5826. atomic_dec(&rq->nr_iowait);
  5827. delayacct_blkio_end();
  5828. }
  5829. EXPORT_SYMBOL(io_schedule);
  5830. long __sched io_schedule_timeout(long timeout)
  5831. {
  5832. struct rq *rq = raw_rq();
  5833. long ret;
  5834. delayacct_blkio_start();
  5835. atomic_inc(&rq->nr_iowait);
  5836. current->in_iowait = 1;
  5837. ret = schedule_timeout(timeout);
  5838. current->in_iowait = 0;
  5839. atomic_dec(&rq->nr_iowait);
  5840. delayacct_blkio_end();
  5841. return ret;
  5842. }
  5843. /**
  5844. * sys_sched_get_priority_max - return maximum RT priority.
  5845. * @policy: scheduling class.
  5846. *
  5847. * this syscall returns the maximum rt_priority that can be used
  5848. * by a given scheduling class.
  5849. */
  5850. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5851. {
  5852. int ret = -EINVAL;
  5853. switch (policy) {
  5854. case SCHED_FIFO:
  5855. case SCHED_RR:
  5856. ret = MAX_USER_RT_PRIO-1;
  5857. break;
  5858. case SCHED_NORMAL:
  5859. case SCHED_BATCH:
  5860. case SCHED_IDLE:
  5861. ret = 0;
  5862. break;
  5863. }
  5864. return ret;
  5865. }
  5866. /**
  5867. * sys_sched_get_priority_min - return minimum RT priority.
  5868. * @policy: scheduling class.
  5869. *
  5870. * this syscall returns the minimum rt_priority that can be used
  5871. * by a given scheduling class.
  5872. */
  5873. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5874. {
  5875. int ret = -EINVAL;
  5876. switch (policy) {
  5877. case SCHED_FIFO:
  5878. case SCHED_RR:
  5879. ret = 1;
  5880. break;
  5881. case SCHED_NORMAL:
  5882. case SCHED_BATCH:
  5883. case SCHED_IDLE:
  5884. ret = 0;
  5885. }
  5886. return ret;
  5887. }
  5888. /**
  5889. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5890. * @pid: pid of the process.
  5891. * @interval: userspace pointer to the timeslice value.
  5892. *
  5893. * this syscall writes the default timeslice value of a given process
  5894. * into the user-space timespec buffer. A value of '0' means infinity.
  5895. */
  5896. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5897. struct timespec __user *, interval)
  5898. {
  5899. struct task_struct *p;
  5900. unsigned int time_slice;
  5901. unsigned long flags;
  5902. struct rq *rq;
  5903. int retval;
  5904. struct timespec t;
  5905. if (pid < 0)
  5906. return -EINVAL;
  5907. retval = -ESRCH;
  5908. rcu_read_lock();
  5909. p = find_process_by_pid(pid);
  5910. if (!p)
  5911. goto out_unlock;
  5912. retval = security_task_getscheduler(p);
  5913. if (retval)
  5914. goto out_unlock;
  5915. rq = task_rq_lock(p, &flags);
  5916. time_slice = p->sched_class->get_rr_interval(rq, p);
  5917. task_rq_unlock(rq, &flags);
  5918. rcu_read_unlock();
  5919. jiffies_to_timespec(time_slice, &t);
  5920. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5921. return retval;
  5922. out_unlock:
  5923. rcu_read_unlock();
  5924. return retval;
  5925. }
  5926. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5927. void sched_show_task(struct task_struct *p)
  5928. {
  5929. unsigned long free = 0;
  5930. unsigned state;
  5931. state = p->state ? __ffs(p->state) + 1 : 0;
  5932. pr_info("%-13.13s %c", p->comm,
  5933. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5934. #if BITS_PER_LONG == 32
  5935. if (state == TASK_RUNNING)
  5936. pr_cont(" running ");
  5937. else
  5938. pr_cont(" %08lx ", thread_saved_pc(p));
  5939. #else
  5940. if (state == TASK_RUNNING)
  5941. pr_cont(" running task ");
  5942. else
  5943. pr_cont(" %016lx ", thread_saved_pc(p));
  5944. #endif
  5945. #ifdef CONFIG_DEBUG_STACK_USAGE
  5946. free = stack_not_used(p);
  5947. #endif
  5948. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5949. task_pid_nr(p), task_pid_nr(p->real_parent),
  5950. (unsigned long)task_thread_info(p)->flags);
  5951. show_stack(p, NULL);
  5952. }
  5953. void show_state_filter(unsigned long state_filter)
  5954. {
  5955. struct task_struct *g, *p;
  5956. #if BITS_PER_LONG == 32
  5957. pr_info(" task PC stack pid father\n");
  5958. #else
  5959. pr_info(" task PC stack pid father\n");
  5960. #endif
  5961. read_lock(&tasklist_lock);
  5962. do_each_thread(g, p) {
  5963. /*
  5964. * reset the NMI-timeout, listing all files on a slow
  5965. * console might take alot of time:
  5966. */
  5967. touch_nmi_watchdog();
  5968. if (!state_filter || (p->state & state_filter))
  5969. sched_show_task(p);
  5970. } while_each_thread(g, p);
  5971. touch_all_softlockup_watchdogs();
  5972. #ifdef CONFIG_SCHED_DEBUG
  5973. sysrq_sched_debug_show();
  5974. #endif
  5975. read_unlock(&tasklist_lock);
  5976. /*
  5977. * Only show locks if all tasks are dumped:
  5978. */
  5979. if (!state_filter)
  5980. debug_show_all_locks();
  5981. }
  5982. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5983. {
  5984. idle->sched_class = &idle_sched_class;
  5985. }
  5986. /**
  5987. * init_idle - set up an idle thread for a given CPU
  5988. * @idle: task in question
  5989. * @cpu: cpu the idle task belongs to
  5990. *
  5991. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5992. * flag, to make booting more robust.
  5993. */
  5994. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5995. {
  5996. struct rq *rq = cpu_rq(cpu);
  5997. unsigned long flags;
  5998. raw_spin_lock_irqsave(&rq->lock, flags);
  5999. __sched_fork(idle);
  6000. idle->state = TASK_RUNNING;
  6001. idle->se.exec_start = sched_clock();
  6002. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  6003. __set_task_cpu(idle, cpu);
  6004. rq->curr = rq->idle = idle;
  6005. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  6006. idle->oncpu = 1;
  6007. #endif
  6008. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6009. /* Set the preempt count _outside_ the spinlocks! */
  6010. #if defined(CONFIG_PREEMPT)
  6011. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  6012. #else
  6013. task_thread_info(idle)->preempt_count = 0;
  6014. #endif
  6015. /*
  6016. * The idle tasks have their own, simple scheduling class:
  6017. */
  6018. idle->sched_class = &idle_sched_class;
  6019. ftrace_graph_init_task(idle);
  6020. }
  6021. /*
  6022. * In a system that switches off the HZ timer nohz_cpu_mask
  6023. * indicates which cpus entered this state. This is used
  6024. * in the rcu update to wait only for active cpus. For system
  6025. * which do not switch off the HZ timer nohz_cpu_mask should
  6026. * always be CPU_BITS_NONE.
  6027. */
  6028. cpumask_var_t nohz_cpu_mask;
  6029. /*
  6030. * Increase the granularity value when there are more CPUs,
  6031. * because with more CPUs the 'effective latency' as visible
  6032. * to users decreases. But the relationship is not linear,
  6033. * so pick a second-best guess by going with the log2 of the
  6034. * number of CPUs.
  6035. *
  6036. * This idea comes from the SD scheduler of Con Kolivas:
  6037. */
  6038. static int get_update_sysctl_factor(void)
  6039. {
  6040. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  6041. unsigned int factor;
  6042. switch (sysctl_sched_tunable_scaling) {
  6043. case SCHED_TUNABLESCALING_NONE:
  6044. factor = 1;
  6045. break;
  6046. case SCHED_TUNABLESCALING_LINEAR:
  6047. factor = cpus;
  6048. break;
  6049. case SCHED_TUNABLESCALING_LOG:
  6050. default:
  6051. factor = 1 + ilog2(cpus);
  6052. break;
  6053. }
  6054. return factor;
  6055. }
  6056. static void update_sysctl(void)
  6057. {
  6058. unsigned int factor = get_update_sysctl_factor();
  6059. #define SET_SYSCTL(name) \
  6060. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6061. SET_SYSCTL(sched_min_granularity);
  6062. SET_SYSCTL(sched_latency);
  6063. SET_SYSCTL(sched_wakeup_granularity);
  6064. SET_SYSCTL(sched_shares_ratelimit);
  6065. #undef SET_SYSCTL
  6066. }
  6067. static inline void sched_init_granularity(void)
  6068. {
  6069. update_sysctl();
  6070. }
  6071. #ifdef CONFIG_SMP
  6072. /*
  6073. * This is how migration works:
  6074. *
  6075. * 1) we queue a struct migration_req structure in the source CPU's
  6076. * runqueue and wake up that CPU's migration thread.
  6077. * 2) we down() the locked semaphore => thread blocks.
  6078. * 3) migration thread wakes up (implicitly it forces the migrated
  6079. * thread off the CPU)
  6080. * 4) it gets the migration request and checks whether the migrated
  6081. * task is still in the wrong runqueue.
  6082. * 5) if it's in the wrong runqueue then the migration thread removes
  6083. * it and puts it into the right queue.
  6084. * 6) migration thread up()s the semaphore.
  6085. * 7) we wake up and the migration is done.
  6086. */
  6087. /*
  6088. * Change a given task's CPU affinity. Migrate the thread to a
  6089. * proper CPU and schedule it away if the CPU it's executing on
  6090. * is removed from the allowed bitmask.
  6091. *
  6092. * NOTE: the caller must have a valid reference to the task, the
  6093. * task must not exit() & deallocate itself prematurely. The
  6094. * call is not atomic; no spinlocks may be held.
  6095. */
  6096. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6097. {
  6098. struct migration_req req;
  6099. unsigned long flags;
  6100. struct rq *rq;
  6101. int ret = 0;
  6102. /*
  6103. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  6104. * the ->cpus_allowed mask from under waking tasks, which would be
  6105. * possible when we change rq->lock in ttwu(), so synchronize against
  6106. * TASK_WAKING to avoid that.
  6107. */
  6108. again:
  6109. while (p->state == TASK_WAKING)
  6110. cpu_relax();
  6111. rq = task_rq_lock(p, &flags);
  6112. if (p->state == TASK_WAKING) {
  6113. task_rq_unlock(rq, &flags);
  6114. goto again;
  6115. }
  6116. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6117. ret = -EINVAL;
  6118. goto out;
  6119. }
  6120. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6121. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6122. ret = -EINVAL;
  6123. goto out;
  6124. }
  6125. if (p->sched_class->set_cpus_allowed)
  6126. p->sched_class->set_cpus_allowed(p, new_mask);
  6127. else {
  6128. cpumask_copy(&p->cpus_allowed, new_mask);
  6129. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6130. }
  6131. /* Can the task run on the task's current CPU? If so, we're done */
  6132. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6133. goto out;
  6134. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6135. /* Need help from migration thread: drop lock and wait. */
  6136. struct task_struct *mt = rq->migration_thread;
  6137. get_task_struct(mt);
  6138. task_rq_unlock(rq, &flags);
  6139. wake_up_process(rq->migration_thread);
  6140. put_task_struct(mt);
  6141. wait_for_completion(&req.done);
  6142. tlb_migrate_finish(p->mm);
  6143. return 0;
  6144. }
  6145. out:
  6146. task_rq_unlock(rq, &flags);
  6147. return ret;
  6148. }
  6149. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6150. /*
  6151. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6152. * this because either it can't run here any more (set_cpus_allowed()
  6153. * away from this CPU, or CPU going down), or because we're
  6154. * attempting to rebalance this task on exec (sched_exec).
  6155. *
  6156. * So we race with normal scheduler movements, but that's OK, as long
  6157. * as the task is no longer on this CPU.
  6158. *
  6159. * Returns non-zero if task was successfully migrated.
  6160. */
  6161. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6162. {
  6163. struct rq *rq_dest, *rq_src;
  6164. int ret = 0;
  6165. if (unlikely(!cpu_active(dest_cpu)))
  6166. return ret;
  6167. rq_src = cpu_rq(src_cpu);
  6168. rq_dest = cpu_rq(dest_cpu);
  6169. double_rq_lock(rq_src, rq_dest);
  6170. /* Already moved. */
  6171. if (task_cpu(p) != src_cpu)
  6172. goto done;
  6173. /* Affinity changed (again). */
  6174. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6175. goto fail;
  6176. /*
  6177. * If we're not on a rq, the next wake-up will ensure we're
  6178. * placed properly.
  6179. */
  6180. if (p->se.on_rq) {
  6181. deactivate_task(rq_src, p, 0);
  6182. set_task_cpu(p, dest_cpu);
  6183. activate_task(rq_dest, p, 0);
  6184. check_preempt_curr(rq_dest, p, 0);
  6185. }
  6186. done:
  6187. ret = 1;
  6188. fail:
  6189. double_rq_unlock(rq_src, rq_dest);
  6190. return ret;
  6191. }
  6192. #define RCU_MIGRATION_IDLE 0
  6193. #define RCU_MIGRATION_NEED_QS 1
  6194. #define RCU_MIGRATION_GOT_QS 2
  6195. #define RCU_MIGRATION_MUST_SYNC 3
  6196. /*
  6197. * migration_thread - this is a highprio system thread that performs
  6198. * thread migration by bumping thread off CPU then 'pushing' onto
  6199. * another runqueue.
  6200. */
  6201. static int migration_thread(void *data)
  6202. {
  6203. int badcpu;
  6204. int cpu = (long)data;
  6205. struct rq *rq;
  6206. rq = cpu_rq(cpu);
  6207. BUG_ON(rq->migration_thread != current);
  6208. set_current_state(TASK_INTERRUPTIBLE);
  6209. while (!kthread_should_stop()) {
  6210. struct migration_req *req;
  6211. struct list_head *head;
  6212. raw_spin_lock_irq(&rq->lock);
  6213. if (cpu_is_offline(cpu)) {
  6214. raw_spin_unlock_irq(&rq->lock);
  6215. break;
  6216. }
  6217. if (rq->active_balance) {
  6218. active_load_balance(rq, cpu);
  6219. rq->active_balance = 0;
  6220. }
  6221. head = &rq->migration_queue;
  6222. if (list_empty(head)) {
  6223. raw_spin_unlock_irq(&rq->lock);
  6224. schedule();
  6225. set_current_state(TASK_INTERRUPTIBLE);
  6226. continue;
  6227. }
  6228. req = list_entry(head->next, struct migration_req, list);
  6229. list_del_init(head->next);
  6230. if (req->task != NULL) {
  6231. raw_spin_unlock(&rq->lock);
  6232. __migrate_task(req->task, cpu, req->dest_cpu);
  6233. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6234. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6235. raw_spin_unlock(&rq->lock);
  6236. } else {
  6237. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6238. raw_spin_unlock(&rq->lock);
  6239. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6240. }
  6241. local_irq_enable();
  6242. complete(&req->done);
  6243. }
  6244. __set_current_state(TASK_RUNNING);
  6245. return 0;
  6246. }
  6247. #ifdef CONFIG_HOTPLUG_CPU
  6248. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6249. {
  6250. int ret;
  6251. local_irq_disable();
  6252. ret = __migrate_task(p, src_cpu, dest_cpu);
  6253. local_irq_enable();
  6254. return ret;
  6255. }
  6256. /*
  6257. * Figure out where task on dead CPU should go, use force if necessary.
  6258. */
  6259. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6260. {
  6261. int dest_cpu;
  6262. again:
  6263. dest_cpu = select_fallback_rq(dead_cpu, p);
  6264. /* It can have affinity changed while we were choosing. */
  6265. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6266. goto again;
  6267. }
  6268. /*
  6269. * While a dead CPU has no uninterruptible tasks queued at this point,
  6270. * it might still have a nonzero ->nr_uninterruptible counter, because
  6271. * for performance reasons the counter is not stricly tracking tasks to
  6272. * their home CPUs. So we just add the counter to another CPU's counter,
  6273. * to keep the global sum constant after CPU-down:
  6274. */
  6275. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6276. {
  6277. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6278. unsigned long flags;
  6279. local_irq_save(flags);
  6280. double_rq_lock(rq_src, rq_dest);
  6281. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6282. rq_src->nr_uninterruptible = 0;
  6283. double_rq_unlock(rq_src, rq_dest);
  6284. local_irq_restore(flags);
  6285. }
  6286. /* Run through task list and migrate tasks from the dead cpu. */
  6287. static void migrate_live_tasks(int src_cpu)
  6288. {
  6289. struct task_struct *p, *t;
  6290. read_lock(&tasklist_lock);
  6291. do_each_thread(t, p) {
  6292. if (p == current)
  6293. continue;
  6294. if (task_cpu(p) == src_cpu)
  6295. move_task_off_dead_cpu(src_cpu, p);
  6296. } while_each_thread(t, p);
  6297. read_unlock(&tasklist_lock);
  6298. }
  6299. /*
  6300. * Schedules idle task to be the next runnable task on current CPU.
  6301. * It does so by boosting its priority to highest possible.
  6302. * Used by CPU offline code.
  6303. */
  6304. void sched_idle_next(void)
  6305. {
  6306. int this_cpu = smp_processor_id();
  6307. struct rq *rq = cpu_rq(this_cpu);
  6308. struct task_struct *p = rq->idle;
  6309. unsigned long flags;
  6310. /* cpu has to be offline */
  6311. BUG_ON(cpu_online(this_cpu));
  6312. /*
  6313. * Strictly not necessary since rest of the CPUs are stopped by now
  6314. * and interrupts disabled on the current cpu.
  6315. */
  6316. raw_spin_lock_irqsave(&rq->lock, flags);
  6317. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6318. update_rq_clock(rq);
  6319. activate_task(rq, p, 0);
  6320. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6321. }
  6322. /*
  6323. * Ensures that the idle task is using init_mm right before its cpu goes
  6324. * offline.
  6325. */
  6326. void idle_task_exit(void)
  6327. {
  6328. struct mm_struct *mm = current->active_mm;
  6329. BUG_ON(cpu_online(smp_processor_id()));
  6330. if (mm != &init_mm)
  6331. switch_mm(mm, &init_mm, current);
  6332. mmdrop(mm);
  6333. }
  6334. /* called under rq->lock with disabled interrupts */
  6335. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6336. {
  6337. struct rq *rq = cpu_rq(dead_cpu);
  6338. /* Must be exiting, otherwise would be on tasklist. */
  6339. BUG_ON(!p->exit_state);
  6340. /* Cannot have done final schedule yet: would have vanished. */
  6341. BUG_ON(p->state == TASK_DEAD);
  6342. get_task_struct(p);
  6343. /*
  6344. * Drop lock around migration; if someone else moves it,
  6345. * that's OK. No task can be added to this CPU, so iteration is
  6346. * fine.
  6347. */
  6348. raw_spin_unlock_irq(&rq->lock);
  6349. move_task_off_dead_cpu(dead_cpu, p);
  6350. raw_spin_lock_irq(&rq->lock);
  6351. put_task_struct(p);
  6352. }
  6353. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6354. static void migrate_dead_tasks(unsigned int dead_cpu)
  6355. {
  6356. struct rq *rq = cpu_rq(dead_cpu);
  6357. struct task_struct *next;
  6358. for ( ; ; ) {
  6359. if (!rq->nr_running)
  6360. break;
  6361. update_rq_clock(rq);
  6362. next = pick_next_task(rq);
  6363. if (!next)
  6364. break;
  6365. next->sched_class->put_prev_task(rq, next);
  6366. migrate_dead(dead_cpu, next);
  6367. }
  6368. }
  6369. /*
  6370. * remove the tasks which were accounted by rq from calc_load_tasks.
  6371. */
  6372. static void calc_global_load_remove(struct rq *rq)
  6373. {
  6374. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6375. rq->calc_load_active = 0;
  6376. }
  6377. #endif /* CONFIG_HOTPLUG_CPU */
  6378. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6379. static struct ctl_table sd_ctl_dir[] = {
  6380. {
  6381. .procname = "sched_domain",
  6382. .mode = 0555,
  6383. },
  6384. {}
  6385. };
  6386. static struct ctl_table sd_ctl_root[] = {
  6387. {
  6388. .procname = "kernel",
  6389. .mode = 0555,
  6390. .child = sd_ctl_dir,
  6391. },
  6392. {}
  6393. };
  6394. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6395. {
  6396. struct ctl_table *entry =
  6397. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6398. return entry;
  6399. }
  6400. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6401. {
  6402. struct ctl_table *entry;
  6403. /*
  6404. * In the intermediate directories, both the child directory and
  6405. * procname are dynamically allocated and could fail but the mode
  6406. * will always be set. In the lowest directory the names are
  6407. * static strings and all have proc handlers.
  6408. */
  6409. for (entry = *tablep; entry->mode; entry++) {
  6410. if (entry->child)
  6411. sd_free_ctl_entry(&entry->child);
  6412. if (entry->proc_handler == NULL)
  6413. kfree(entry->procname);
  6414. }
  6415. kfree(*tablep);
  6416. *tablep = NULL;
  6417. }
  6418. static void
  6419. set_table_entry(struct ctl_table *entry,
  6420. const char *procname, void *data, int maxlen,
  6421. mode_t mode, proc_handler *proc_handler)
  6422. {
  6423. entry->procname = procname;
  6424. entry->data = data;
  6425. entry->maxlen = maxlen;
  6426. entry->mode = mode;
  6427. entry->proc_handler = proc_handler;
  6428. }
  6429. static struct ctl_table *
  6430. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6431. {
  6432. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6433. if (table == NULL)
  6434. return NULL;
  6435. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6436. sizeof(long), 0644, proc_doulongvec_minmax);
  6437. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6438. sizeof(long), 0644, proc_doulongvec_minmax);
  6439. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6440. sizeof(int), 0644, proc_dointvec_minmax);
  6441. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6442. sizeof(int), 0644, proc_dointvec_minmax);
  6443. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6444. sizeof(int), 0644, proc_dointvec_minmax);
  6445. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6446. sizeof(int), 0644, proc_dointvec_minmax);
  6447. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6448. sizeof(int), 0644, proc_dointvec_minmax);
  6449. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6450. sizeof(int), 0644, proc_dointvec_minmax);
  6451. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6452. sizeof(int), 0644, proc_dointvec_minmax);
  6453. set_table_entry(&table[9], "cache_nice_tries",
  6454. &sd->cache_nice_tries,
  6455. sizeof(int), 0644, proc_dointvec_minmax);
  6456. set_table_entry(&table[10], "flags", &sd->flags,
  6457. sizeof(int), 0644, proc_dointvec_minmax);
  6458. set_table_entry(&table[11], "name", sd->name,
  6459. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6460. /* &table[12] is terminator */
  6461. return table;
  6462. }
  6463. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6464. {
  6465. struct ctl_table *entry, *table;
  6466. struct sched_domain *sd;
  6467. int domain_num = 0, i;
  6468. char buf[32];
  6469. for_each_domain(cpu, sd)
  6470. domain_num++;
  6471. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6472. if (table == NULL)
  6473. return NULL;
  6474. i = 0;
  6475. for_each_domain(cpu, sd) {
  6476. snprintf(buf, 32, "domain%d", i);
  6477. entry->procname = kstrdup(buf, GFP_KERNEL);
  6478. entry->mode = 0555;
  6479. entry->child = sd_alloc_ctl_domain_table(sd);
  6480. entry++;
  6481. i++;
  6482. }
  6483. return table;
  6484. }
  6485. static struct ctl_table_header *sd_sysctl_header;
  6486. static void register_sched_domain_sysctl(void)
  6487. {
  6488. int i, cpu_num = num_possible_cpus();
  6489. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6490. char buf[32];
  6491. WARN_ON(sd_ctl_dir[0].child);
  6492. sd_ctl_dir[0].child = entry;
  6493. if (entry == NULL)
  6494. return;
  6495. for_each_possible_cpu(i) {
  6496. snprintf(buf, 32, "cpu%d", i);
  6497. entry->procname = kstrdup(buf, GFP_KERNEL);
  6498. entry->mode = 0555;
  6499. entry->child = sd_alloc_ctl_cpu_table(i);
  6500. entry++;
  6501. }
  6502. WARN_ON(sd_sysctl_header);
  6503. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6504. }
  6505. /* may be called multiple times per register */
  6506. static void unregister_sched_domain_sysctl(void)
  6507. {
  6508. if (sd_sysctl_header)
  6509. unregister_sysctl_table(sd_sysctl_header);
  6510. sd_sysctl_header = NULL;
  6511. if (sd_ctl_dir[0].child)
  6512. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6513. }
  6514. #else
  6515. static void register_sched_domain_sysctl(void)
  6516. {
  6517. }
  6518. static void unregister_sched_domain_sysctl(void)
  6519. {
  6520. }
  6521. #endif
  6522. static void set_rq_online(struct rq *rq)
  6523. {
  6524. if (!rq->online) {
  6525. const struct sched_class *class;
  6526. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6527. rq->online = 1;
  6528. for_each_class(class) {
  6529. if (class->rq_online)
  6530. class->rq_online(rq);
  6531. }
  6532. }
  6533. }
  6534. static void set_rq_offline(struct rq *rq)
  6535. {
  6536. if (rq->online) {
  6537. const struct sched_class *class;
  6538. for_each_class(class) {
  6539. if (class->rq_offline)
  6540. class->rq_offline(rq);
  6541. }
  6542. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6543. rq->online = 0;
  6544. }
  6545. }
  6546. /*
  6547. * migration_call - callback that gets triggered when a CPU is added.
  6548. * Here we can start up the necessary migration thread for the new CPU.
  6549. */
  6550. static int __cpuinit
  6551. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6552. {
  6553. struct task_struct *p;
  6554. int cpu = (long)hcpu;
  6555. unsigned long flags;
  6556. struct rq *rq;
  6557. switch (action) {
  6558. case CPU_UP_PREPARE:
  6559. case CPU_UP_PREPARE_FROZEN:
  6560. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6561. if (IS_ERR(p))
  6562. return NOTIFY_BAD;
  6563. kthread_bind(p, cpu);
  6564. /* Must be high prio: stop_machine expects to yield to it. */
  6565. rq = task_rq_lock(p, &flags);
  6566. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6567. task_rq_unlock(rq, &flags);
  6568. get_task_struct(p);
  6569. cpu_rq(cpu)->migration_thread = p;
  6570. rq->calc_load_update = calc_load_update;
  6571. break;
  6572. case CPU_ONLINE:
  6573. case CPU_ONLINE_FROZEN:
  6574. /* Strictly unnecessary, as first user will wake it. */
  6575. wake_up_process(cpu_rq(cpu)->migration_thread);
  6576. /* Update our root-domain */
  6577. rq = cpu_rq(cpu);
  6578. raw_spin_lock_irqsave(&rq->lock, flags);
  6579. if (rq->rd) {
  6580. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6581. set_rq_online(rq);
  6582. }
  6583. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6584. break;
  6585. #ifdef CONFIG_HOTPLUG_CPU
  6586. case CPU_UP_CANCELED:
  6587. case CPU_UP_CANCELED_FROZEN:
  6588. if (!cpu_rq(cpu)->migration_thread)
  6589. break;
  6590. /* Unbind it from offline cpu so it can run. Fall thru. */
  6591. kthread_bind(cpu_rq(cpu)->migration_thread,
  6592. cpumask_any(cpu_online_mask));
  6593. kthread_stop(cpu_rq(cpu)->migration_thread);
  6594. put_task_struct(cpu_rq(cpu)->migration_thread);
  6595. cpu_rq(cpu)->migration_thread = NULL;
  6596. break;
  6597. case CPU_DEAD:
  6598. case CPU_DEAD_FROZEN:
  6599. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6600. migrate_live_tasks(cpu);
  6601. rq = cpu_rq(cpu);
  6602. kthread_stop(rq->migration_thread);
  6603. put_task_struct(rq->migration_thread);
  6604. rq->migration_thread = NULL;
  6605. /* Idle task back to normal (off runqueue, low prio) */
  6606. raw_spin_lock_irq(&rq->lock);
  6607. update_rq_clock(rq);
  6608. deactivate_task(rq, rq->idle, 0);
  6609. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6610. rq->idle->sched_class = &idle_sched_class;
  6611. migrate_dead_tasks(cpu);
  6612. raw_spin_unlock_irq(&rq->lock);
  6613. cpuset_unlock();
  6614. migrate_nr_uninterruptible(rq);
  6615. BUG_ON(rq->nr_running != 0);
  6616. calc_global_load_remove(rq);
  6617. /*
  6618. * No need to migrate the tasks: it was best-effort if
  6619. * they didn't take sched_hotcpu_mutex. Just wake up
  6620. * the requestors.
  6621. */
  6622. raw_spin_lock_irq(&rq->lock);
  6623. while (!list_empty(&rq->migration_queue)) {
  6624. struct migration_req *req;
  6625. req = list_entry(rq->migration_queue.next,
  6626. struct migration_req, list);
  6627. list_del_init(&req->list);
  6628. raw_spin_unlock_irq(&rq->lock);
  6629. complete(&req->done);
  6630. raw_spin_lock_irq(&rq->lock);
  6631. }
  6632. raw_spin_unlock_irq(&rq->lock);
  6633. break;
  6634. case CPU_DYING:
  6635. case CPU_DYING_FROZEN:
  6636. /* Update our root-domain */
  6637. rq = cpu_rq(cpu);
  6638. raw_spin_lock_irqsave(&rq->lock, flags);
  6639. if (rq->rd) {
  6640. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6641. set_rq_offline(rq);
  6642. }
  6643. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6644. break;
  6645. #endif
  6646. }
  6647. return NOTIFY_OK;
  6648. }
  6649. /*
  6650. * Register at high priority so that task migration (migrate_all_tasks)
  6651. * happens before everything else. This has to be lower priority than
  6652. * the notifier in the perf_event subsystem, though.
  6653. */
  6654. static struct notifier_block __cpuinitdata migration_notifier = {
  6655. .notifier_call = migration_call,
  6656. .priority = 10
  6657. };
  6658. static int __init migration_init(void)
  6659. {
  6660. void *cpu = (void *)(long)smp_processor_id();
  6661. int err;
  6662. /* Start one for the boot CPU: */
  6663. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6664. BUG_ON(err == NOTIFY_BAD);
  6665. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6666. register_cpu_notifier(&migration_notifier);
  6667. return 0;
  6668. }
  6669. early_initcall(migration_init);
  6670. #endif
  6671. #ifdef CONFIG_SMP
  6672. #ifdef CONFIG_SCHED_DEBUG
  6673. static __read_mostly int sched_domain_debug_enabled;
  6674. static int __init sched_domain_debug_setup(char *str)
  6675. {
  6676. sched_domain_debug_enabled = 1;
  6677. return 0;
  6678. }
  6679. early_param("sched_debug", sched_domain_debug_setup);
  6680. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6681. struct cpumask *groupmask)
  6682. {
  6683. struct sched_group *group = sd->groups;
  6684. char str[256];
  6685. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6686. cpumask_clear(groupmask);
  6687. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6688. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6689. pr_cont("does not load-balance\n");
  6690. if (sd->parent)
  6691. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6692. return -1;
  6693. }
  6694. pr_cont("span %s level %s\n", str, sd->name);
  6695. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6696. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6697. }
  6698. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6699. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6700. }
  6701. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6702. do {
  6703. if (!group) {
  6704. pr_cont("\n");
  6705. pr_err("ERROR: group is NULL\n");
  6706. break;
  6707. }
  6708. if (!group->cpu_power) {
  6709. pr_cont("\n");
  6710. pr_err("ERROR: domain->cpu_power not set\n");
  6711. break;
  6712. }
  6713. if (!cpumask_weight(sched_group_cpus(group))) {
  6714. pr_cont("\n");
  6715. pr_err("ERROR: empty group\n");
  6716. break;
  6717. }
  6718. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6719. pr_cont("\n");
  6720. pr_err("ERROR: repeated CPUs\n");
  6721. break;
  6722. }
  6723. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6724. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6725. pr_cont(" %s", str);
  6726. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6727. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6728. }
  6729. group = group->next;
  6730. } while (group != sd->groups);
  6731. pr_cont("\n");
  6732. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6733. pr_err("ERROR: groups don't span domain->span\n");
  6734. if (sd->parent &&
  6735. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6736. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6737. return 0;
  6738. }
  6739. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6740. {
  6741. cpumask_var_t groupmask;
  6742. int level = 0;
  6743. if (!sched_domain_debug_enabled)
  6744. return;
  6745. if (!sd) {
  6746. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6747. return;
  6748. }
  6749. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6750. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6751. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6752. return;
  6753. }
  6754. for (;;) {
  6755. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6756. break;
  6757. level++;
  6758. sd = sd->parent;
  6759. if (!sd)
  6760. break;
  6761. }
  6762. free_cpumask_var(groupmask);
  6763. }
  6764. #else /* !CONFIG_SCHED_DEBUG */
  6765. # define sched_domain_debug(sd, cpu) do { } while (0)
  6766. #endif /* CONFIG_SCHED_DEBUG */
  6767. static int sd_degenerate(struct sched_domain *sd)
  6768. {
  6769. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6770. return 1;
  6771. /* Following flags need at least 2 groups */
  6772. if (sd->flags & (SD_LOAD_BALANCE |
  6773. SD_BALANCE_NEWIDLE |
  6774. SD_BALANCE_FORK |
  6775. SD_BALANCE_EXEC |
  6776. SD_SHARE_CPUPOWER |
  6777. SD_SHARE_PKG_RESOURCES)) {
  6778. if (sd->groups != sd->groups->next)
  6779. return 0;
  6780. }
  6781. /* Following flags don't use groups */
  6782. if (sd->flags & (SD_WAKE_AFFINE))
  6783. return 0;
  6784. return 1;
  6785. }
  6786. static int
  6787. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6788. {
  6789. unsigned long cflags = sd->flags, pflags = parent->flags;
  6790. if (sd_degenerate(parent))
  6791. return 1;
  6792. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6793. return 0;
  6794. /* Flags needing groups don't count if only 1 group in parent */
  6795. if (parent->groups == parent->groups->next) {
  6796. pflags &= ~(SD_LOAD_BALANCE |
  6797. SD_BALANCE_NEWIDLE |
  6798. SD_BALANCE_FORK |
  6799. SD_BALANCE_EXEC |
  6800. SD_SHARE_CPUPOWER |
  6801. SD_SHARE_PKG_RESOURCES);
  6802. if (nr_node_ids == 1)
  6803. pflags &= ~SD_SERIALIZE;
  6804. }
  6805. if (~cflags & pflags)
  6806. return 0;
  6807. return 1;
  6808. }
  6809. static void free_rootdomain(struct root_domain *rd)
  6810. {
  6811. synchronize_sched();
  6812. cpupri_cleanup(&rd->cpupri);
  6813. free_cpumask_var(rd->rto_mask);
  6814. free_cpumask_var(rd->online);
  6815. free_cpumask_var(rd->span);
  6816. kfree(rd);
  6817. }
  6818. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6819. {
  6820. struct root_domain *old_rd = NULL;
  6821. unsigned long flags;
  6822. raw_spin_lock_irqsave(&rq->lock, flags);
  6823. if (rq->rd) {
  6824. old_rd = rq->rd;
  6825. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6826. set_rq_offline(rq);
  6827. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6828. /*
  6829. * If we dont want to free the old_rt yet then
  6830. * set old_rd to NULL to skip the freeing later
  6831. * in this function:
  6832. */
  6833. if (!atomic_dec_and_test(&old_rd->refcount))
  6834. old_rd = NULL;
  6835. }
  6836. atomic_inc(&rd->refcount);
  6837. rq->rd = rd;
  6838. cpumask_set_cpu(rq->cpu, rd->span);
  6839. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6840. set_rq_online(rq);
  6841. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6842. if (old_rd)
  6843. free_rootdomain(old_rd);
  6844. }
  6845. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6846. {
  6847. gfp_t gfp = GFP_KERNEL;
  6848. memset(rd, 0, sizeof(*rd));
  6849. if (bootmem)
  6850. gfp = GFP_NOWAIT;
  6851. if (!alloc_cpumask_var(&rd->span, gfp))
  6852. goto out;
  6853. if (!alloc_cpumask_var(&rd->online, gfp))
  6854. goto free_span;
  6855. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6856. goto free_online;
  6857. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6858. goto free_rto_mask;
  6859. return 0;
  6860. free_rto_mask:
  6861. free_cpumask_var(rd->rto_mask);
  6862. free_online:
  6863. free_cpumask_var(rd->online);
  6864. free_span:
  6865. free_cpumask_var(rd->span);
  6866. out:
  6867. return -ENOMEM;
  6868. }
  6869. static void init_defrootdomain(void)
  6870. {
  6871. init_rootdomain(&def_root_domain, true);
  6872. atomic_set(&def_root_domain.refcount, 1);
  6873. }
  6874. static struct root_domain *alloc_rootdomain(void)
  6875. {
  6876. struct root_domain *rd;
  6877. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6878. if (!rd)
  6879. return NULL;
  6880. if (init_rootdomain(rd, false) != 0) {
  6881. kfree(rd);
  6882. return NULL;
  6883. }
  6884. return rd;
  6885. }
  6886. /*
  6887. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6888. * hold the hotplug lock.
  6889. */
  6890. static void
  6891. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6892. {
  6893. struct rq *rq = cpu_rq(cpu);
  6894. struct sched_domain *tmp;
  6895. /* Remove the sched domains which do not contribute to scheduling. */
  6896. for (tmp = sd; tmp; ) {
  6897. struct sched_domain *parent = tmp->parent;
  6898. if (!parent)
  6899. break;
  6900. if (sd_parent_degenerate(tmp, parent)) {
  6901. tmp->parent = parent->parent;
  6902. if (parent->parent)
  6903. parent->parent->child = tmp;
  6904. } else
  6905. tmp = tmp->parent;
  6906. }
  6907. if (sd && sd_degenerate(sd)) {
  6908. sd = sd->parent;
  6909. if (sd)
  6910. sd->child = NULL;
  6911. }
  6912. sched_domain_debug(sd, cpu);
  6913. rq_attach_root(rq, rd);
  6914. rcu_assign_pointer(rq->sd, sd);
  6915. }
  6916. /* cpus with isolated domains */
  6917. static cpumask_var_t cpu_isolated_map;
  6918. /* Setup the mask of cpus configured for isolated domains */
  6919. static int __init isolated_cpu_setup(char *str)
  6920. {
  6921. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6922. cpulist_parse(str, cpu_isolated_map);
  6923. return 1;
  6924. }
  6925. __setup("isolcpus=", isolated_cpu_setup);
  6926. /*
  6927. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6928. * to a function which identifies what group(along with sched group) a CPU
  6929. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6930. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6931. *
  6932. * init_sched_build_groups will build a circular linked list of the groups
  6933. * covered by the given span, and will set each group's ->cpumask correctly,
  6934. * and ->cpu_power to 0.
  6935. */
  6936. static void
  6937. init_sched_build_groups(const struct cpumask *span,
  6938. const struct cpumask *cpu_map,
  6939. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6940. struct sched_group **sg,
  6941. struct cpumask *tmpmask),
  6942. struct cpumask *covered, struct cpumask *tmpmask)
  6943. {
  6944. struct sched_group *first = NULL, *last = NULL;
  6945. int i;
  6946. cpumask_clear(covered);
  6947. for_each_cpu(i, span) {
  6948. struct sched_group *sg;
  6949. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6950. int j;
  6951. if (cpumask_test_cpu(i, covered))
  6952. continue;
  6953. cpumask_clear(sched_group_cpus(sg));
  6954. sg->cpu_power = 0;
  6955. for_each_cpu(j, span) {
  6956. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6957. continue;
  6958. cpumask_set_cpu(j, covered);
  6959. cpumask_set_cpu(j, sched_group_cpus(sg));
  6960. }
  6961. if (!first)
  6962. first = sg;
  6963. if (last)
  6964. last->next = sg;
  6965. last = sg;
  6966. }
  6967. last->next = first;
  6968. }
  6969. #define SD_NODES_PER_DOMAIN 16
  6970. #ifdef CONFIG_NUMA
  6971. /**
  6972. * find_next_best_node - find the next node to include in a sched_domain
  6973. * @node: node whose sched_domain we're building
  6974. * @used_nodes: nodes already in the sched_domain
  6975. *
  6976. * Find the next node to include in a given scheduling domain. Simply
  6977. * finds the closest node not already in the @used_nodes map.
  6978. *
  6979. * Should use nodemask_t.
  6980. */
  6981. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6982. {
  6983. int i, n, val, min_val, best_node = 0;
  6984. min_val = INT_MAX;
  6985. for (i = 0; i < nr_node_ids; i++) {
  6986. /* Start at @node */
  6987. n = (node + i) % nr_node_ids;
  6988. if (!nr_cpus_node(n))
  6989. continue;
  6990. /* Skip already used nodes */
  6991. if (node_isset(n, *used_nodes))
  6992. continue;
  6993. /* Simple min distance search */
  6994. val = node_distance(node, n);
  6995. if (val < min_val) {
  6996. min_val = val;
  6997. best_node = n;
  6998. }
  6999. }
  7000. node_set(best_node, *used_nodes);
  7001. return best_node;
  7002. }
  7003. /**
  7004. * sched_domain_node_span - get a cpumask for a node's sched_domain
  7005. * @node: node whose cpumask we're constructing
  7006. * @span: resulting cpumask
  7007. *
  7008. * Given a node, construct a good cpumask for its sched_domain to span. It
  7009. * should be one that prevents unnecessary balancing, but also spreads tasks
  7010. * out optimally.
  7011. */
  7012. static void sched_domain_node_span(int node, struct cpumask *span)
  7013. {
  7014. nodemask_t used_nodes;
  7015. int i;
  7016. cpumask_clear(span);
  7017. nodes_clear(used_nodes);
  7018. cpumask_or(span, span, cpumask_of_node(node));
  7019. node_set(node, used_nodes);
  7020. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  7021. int next_node = find_next_best_node(node, &used_nodes);
  7022. cpumask_or(span, span, cpumask_of_node(next_node));
  7023. }
  7024. }
  7025. #endif /* CONFIG_NUMA */
  7026. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7027. /*
  7028. * The cpus mask in sched_group and sched_domain hangs off the end.
  7029. *
  7030. * ( See the the comments in include/linux/sched.h:struct sched_group
  7031. * and struct sched_domain. )
  7032. */
  7033. struct static_sched_group {
  7034. struct sched_group sg;
  7035. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7036. };
  7037. struct static_sched_domain {
  7038. struct sched_domain sd;
  7039. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7040. };
  7041. struct s_data {
  7042. #ifdef CONFIG_NUMA
  7043. int sd_allnodes;
  7044. cpumask_var_t domainspan;
  7045. cpumask_var_t covered;
  7046. cpumask_var_t notcovered;
  7047. #endif
  7048. cpumask_var_t nodemask;
  7049. cpumask_var_t this_sibling_map;
  7050. cpumask_var_t this_core_map;
  7051. cpumask_var_t send_covered;
  7052. cpumask_var_t tmpmask;
  7053. struct sched_group **sched_group_nodes;
  7054. struct root_domain *rd;
  7055. };
  7056. enum s_alloc {
  7057. sa_sched_groups = 0,
  7058. sa_rootdomain,
  7059. sa_tmpmask,
  7060. sa_send_covered,
  7061. sa_this_core_map,
  7062. sa_this_sibling_map,
  7063. sa_nodemask,
  7064. sa_sched_group_nodes,
  7065. #ifdef CONFIG_NUMA
  7066. sa_notcovered,
  7067. sa_covered,
  7068. sa_domainspan,
  7069. #endif
  7070. sa_none,
  7071. };
  7072. /*
  7073. * SMT sched-domains:
  7074. */
  7075. #ifdef CONFIG_SCHED_SMT
  7076. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7077. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7078. static int
  7079. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7080. struct sched_group **sg, struct cpumask *unused)
  7081. {
  7082. if (sg)
  7083. *sg = &per_cpu(sched_groups, cpu).sg;
  7084. return cpu;
  7085. }
  7086. #endif /* CONFIG_SCHED_SMT */
  7087. /*
  7088. * multi-core sched-domains:
  7089. */
  7090. #ifdef CONFIG_SCHED_MC
  7091. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7092. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7093. #endif /* CONFIG_SCHED_MC */
  7094. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7095. static int
  7096. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7097. struct sched_group **sg, struct cpumask *mask)
  7098. {
  7099. int group;
  7100. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7101. group = cpumask_first(mask);
  7102. if (sg)
  7103. *sg = &per_cpu(sched_group_core, group).sg;
  7104. return group;
  7105. }
  7106. #elif defined(CONFIG_SCHED_MC)
  7107. static int
  7108. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7109. struct sched_group **sg, struct cpumask *unused)
  7110. {
  7111. if (sg)
  7112. *sg = &per_cpu(sched_group_core, cpu).sg;
  7113. return cpu;
  7114. }
  7115. #endif
  7116. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7117. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7118. static int
  7119. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7120. struct sched_group **sg, struct cpumask *mask)
  7121. {
  7122. int group;
  7123. #ifdef CONFIG_SCHED_MC
  7124. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7125. group = cpumask_first(mask);
  7126. #elif defined(CONFIG_SCHED_SMT)
  7127. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7128. group = cpumask_first(mask);
  7129. #else
  7130. group = cpu;
  7131. #endif
  7132. if (sg)
  7133. *sg = &per_cpu(sched_group_phys, group).sg;
  7134. return group;
  7135. }
  7136. #ifdef CONFIG_NUMA
  7137. /*
  7138. * The init_sched_build_groups can't handle what we want to do with node
  7139. * groups, so roll our own. Now each node has its own list of groups which
  7140. * gets dynamically allocated.
  7141. */
  7142. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7143. static struct sched_group ***sched_group_nodes_bycpu;
  7144. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7145. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7146. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7147. struct sched_group **sg,
  7148. struct cpumask *nodemask)
  7149. {
  7150. int group;
  7151. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7152. group = cpumask_first(nodemask);
  7153. if (sg)
  7154. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7155. return group;
  7156. }
  7157. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7158. {
  7159. struct sched_group *sg = group_head;
  7160. int j;
  7161. if (!sg)
  7162. return;
  7163. do {
  7164. for_each_cpu(j, sched_group_cpus(sg)) {
  7165. struct sched_domain *sd;
  7166. sd = &per_cpu(phys_domains, j).sd;
  7167. if (j != group_first_cpu(sd->groups)) {
  7168. /*
  7169. * Only add "power" once for each
  7170. * physical package.
  7171. */
  7172. continue;
  7173. }
  7174. sg->cpu_power += sd->groups->cpu_power;
  7175. }
  7176. sg = sg->next;
  7177. } while (sg != group_head);
  7178. }
  7179. static int build_numa_sched_groups(struct s_data *d,
  7180. const struct cpumask *cpu_map, int num)
  7181. {
  7182. struct sched_domain *sd;
  7183. struct sched_group *sg, *prev;
  7184. int n, j;
  7185. cpumask_clear(d->covered);
  7186. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7187. if (cpumask_empty(d->nodemask)) {
  7188. d->sched_group_nodes[num] = NULL;
  7189. goto out;
  7190. }
  7191. sched_domain_node_span(num, d->domainspan);
  7192. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7193. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7194. GFP_KERNEL, num);
  7195. if (!sg) {
  7196. pr_warning("Can not alloc domain group for node %d\n", num);
  7197. return -ENOMEM;
  7198. }
  7199. d->sched_group_nodes[num] = sg;
  7200. for_each_cpu(j, d->nodemask) {
  7201. sd = &per_cpu(node_domains, j).sd;
  7202. sd->groups = sg;
  7203. }
  7204. sg->cpu_power = 0;
  7205. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7206. sg->next = sg;
  7207. cpumask_or(d->covered, d->covered, d->nodemask);
  7208. prev = sg;
  7209. for (j = 0; j < nr_node_ids; j++) {
  7210. n = (num + j) % nr_node_ids;
  7211. cpumask_complement(d->notcovered, d->covered);
  7212. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7213. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7214. if (cpumask_empty(d->tmpmask))
  7215. break;
  7216. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7217. if (cpumask_empty(d->tmpmask))
  7218. continue;
  7219. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7220. GFP_KERNEL, num);
  7221. if (!sg) {
  7222. pr_warning("Can not alloc domain group for node %d\n",
  7223. j);
  7224. return -ENOMEM;
  7225. }
  7226. sg->cpu_power = 0;
  7227. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7228. sg->next = prev->next;
  7229. cpumask_or(d->covered, d->covered, d->tmpmask);
  7230. prev->next = sg;
  7231. prev = sg;
  7232. }
  7233. out:
  7234. return 0;
  7235. }
  7236. #endif /* CONFIG_NUMA */
  7237. #ifdef CONFIG_NUMA
  7238. /* Free memory allocated for various sched_group structures */
  7239. static void free_sched_groups(const struct cpumask *cpu_map,
  7240. struct cpumask *nodemask)
  7241. {
  7242. int cpu, i;
  7243. for_each_cpu(cpu, cpu_map) {
  7244. struct sched_group **sched_group_nodes
  7245. = sched_group_nodes_bycpu[cpu];
  7246. if (!sched_group_nodes)
  7247. continue;
  7248. for (i = 0; i < nr_node_ids; i++) {
  7249. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7250. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7251. if (cpumask_empty(nodemask))
  7252. continue;
  7253. if (sg == NULL)
  7254. continue;
  7255. sg = sg->next;
  7256. next_sg:
  7257. oldsg = sg;
  7258. sg = sg->next;
  7259. kfree(oldsg);
  7260. if (oldsg != sched_group_nodes[i])
  7261. goto next_sg;
  7262. }
  7263. kfree(sched_group_nodes);
  7264. sched_group_nodes_bycpu[cpu] = NULL;
  7265. }
  7266. }
  7267. #else /* !CONFIG_NUMA */
  7268. static void free_sched_groups(const struct cpumask *cpu_map,
  7269. struct cpumask *nodemask)
  7270. {
  7271. }
  7272. #endif /* CONFIG_NUMA */
  7273. /*
  7274. * Initialize sched groups cpu_power.
  7275. *
  7276. * cpu_power indicates the capacity of sched group, which is used while
  7277. * distributing the load between different sched groups in a sched domain.
  7278. * Typically cpu_power for all the groups in a sched domain will be same unless
  7279. * there are asymmetries in the topology. If there are asymmetries, group
  7280. * having more cpu_power will pickup more load compared to the group having
  7281. * less cpu_power.
  7282. */
  7283. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7284. {
  7285. struct sched_domain *child;
  7286. struct sched_group *group;
  7287. long power;
  7288. int weight;
  7289. WARN_ON(!sd || !sd->groups);
  7290. if (cpu != group_first_cpu(sd->groups))
  7291. return;
  7292. child = sd->child;
  7293. sd->groups->cpu_power = 0;
  7294. if (!child) {
  7295. power = SCHED_LOAD_SCALE;
  7296. weight = cpumask_weight(sched_domain_span(sd));
  7297. /*
  7298. * SMT siblings share the power of a single core.
  7299. * Usually multiple threads get a better yield out of
  7300. * that one core than a single thread would have,
  7301. * reflect that in sd->smt_gain.
  7302. */
  7303. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7304. power *= sd->smt_gain;
  7305. power /= weight;
  7306. power >>= SCHED_LOAD_SHIFT;
  7307. }
  7308. sd->groups->cpu_power += power;
  7309. return;
  7310. }
  7311. /*
  7312. * Add cpu_power of each child group to this groups cpu_power.
  7313. */
  7314. group = child->groups;
  7315. do {
  7316. sd->groups->cpu_power += group->cpu_power;
  7317. group = group->next;
  7318. } while (group != child->groups);
  7319. }
  7320. /*
  7321. * Initializers for schedule domains
  7322. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7323. */
  7324. #ifdef CONFIG_SCHED_DEBUG
  7325. # define SD_INIT_NAME(sd, type) sd->name = #type
  7326. #else
  7327. # define SD_INIT_NAME(sd, type) do { } while (0)
  7328. #endif
  7329. #define SD_INIT(sd, type) sd_init_##type(sd)
  7330. #define SD_INIT_FUNC(type) \
  7331. static noinline void sd_init_##type(struct sched_domain *sd) \
  7332. { \
  7333. memset(sd, 0, sizeof(*sd)); \
  7334. *sd = SD_##type##_INIT; \
  7335. sd->level = SD_LV_##type; \
  7336. SD_INIT_NAME(sd, type); \
  7337. }
  7338. SD_INIT_FUNC(CPU)
  7339. #ifdef CONFIG_NUMA
  7340. SD_INIT_FUNC(ALLNODES)
  7341. SD_INIT_FUNC(NODE)
  7342. #endif
  7343. #ifdef CONFIG_SCHED_SMT
  7344. SD_INIT_FUNC(SIBLING)
  7345. #endif
  7346. #ifdef CONFIG_SCHED_MC
  7347. SD_INIT_FUNC(MC)
  7348. #endif
  7349. static int default_relax_domain_level = -1;
  7350. static int __init setup_relax_domain_level(char *str)
  7351. {
  7352. unsigned long val;
  7353. val = simple_strtoul(str, NULL, 0);
  7354. if (val < SD_LV_MAX)
  7355. default_relax_domain_level = val;
  7356. return 1;
  7357. }
  7358. __setup("relax_domain_level=", setup_relax_domain_level);
  7359. static void set_domain_attribute(struct sched_domain *sd,
  7360. struct sched_domain_attr *attr)
  7361. {
  7362. int request;
  7363. if (!attr || attr->relax_domain_level < 0) {
  7364. if (default_relax_domain_level < 0)
  7365. return;
  7366. else
  7367. request = default_relax_domain_level;
  7368. } else
  7369. request = attr->relax_domain_level;
  7370. if (request < sd->level) {
  7371. /* turn off idle balance on this domain */
  7372. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7373. } else {
  7374. /* turn on idle balance on this domain */
  7375. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7376. }
  7377. }
  7378. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7379. const struct cpumask *cpu_map)
  7380. {
  7381. switch (what) {
  7382. case sa_sched_groups:
  7383. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7384. d->sched_group_nodes = NULL;
  7385. case sa_rootdomain:
  7386. free_rootdomain(d->rd); /* fall through */
  7387. case sa_tmpmask:
  7388. free_cpumask_var(d->tmpmask); /* fall through */
  7389. case sa_send_covered:
  7390. free_cpumask_var(d->send_covered); /* fall through */
  7391. case sa_this_core_map:
  7392. free_cpumask_var(d->this_core_map); /* fall through */
  7393. case sa_this_sibling_map:
  7394. free_cpumask_var(d->this_sibling_map); /* fall through */
  7395. case sa_nodemask:
  7396. free_cpumask_var(d->nodemask); /* fall through */
  7397. case sa_sched_group_nodes:
  7398. #ifdef CONFIG_NUMA
  7399. kfree(d->sched_group_nodes); /* fall through */
  7400. case sa_notcovered:
  7401. free_cpumask_var(d->notcovered); /* fall through */
  7402. case sa_covered:
  7403. free_cpumask_var(d->covered); /* fall through */
  7404. case sa_domainspan:
  7405. free_cpumask_var(d->domainspan); /* fall through */
  7406. #endif
  7407. case sa_none:
  7408. break;
  7409. }
  7410. }
  7411. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7412. const struct cpumask *cpu_map)
  7413. {
  7414. #ifdef CONFIG_NUMA
  7415. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7416. return sa_none;
  7417. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7418. return sa_domainspan;
  7419. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7420. return sa_covered;
  7421. /* Allocate the per-node list of sched groups */
  7422. d->sched_group_nodes = kcalloc(nr_node_ids,
  7423. sizeof(struct sched_group *), GFP_KERNEL);
  7424. if (!d->sched_group_nodes) {
  7425. pr_warning("Can not alloc sched group node list\n");
  7426. return sa_notcovered;
  7427. }
  7428. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7429. #endif
  7430. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7431. return sa_sched_group_nodes;
  7432. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7433. return sa_nodemask;
  7434. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7435. return sa_this_sibling_map;
  7436. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7437. return sa_this_core_map;
  7438. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7439. return sa_send_covered;
  7440. d->rd = alloc_rootdomain();
  7441. if (!d->rd) {
  7442. pr_warning("Cannot alloc root domain\n");
  7443. return sa_tmpmask;
  7444. }
  7445. return sa_rootdomain;
  7446. }
  7447. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7448. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7449. {
  7450. struct sched_domain *sd = NULL;
  7451. #ifdef CONFIG_NUMA
  7452. struct sched_domain *parent;
  7453. d->sd_allnodes = 0;
  7454. if (cpumask_weight(cpu_map) >
  7455. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7456. sd = &per_cpu(allnodes_domains, i).sd;
  7457. SD_INIT(sd, ALLNODES);
  7458. set_domain_attribute(sd, attr);
  7459. cpumask_copy(sched_domain_span(sd), cpu_map);
  7460. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7461. d->sd_allnodes = 1;
  7462. }
  7463. parent = sd;
  7464. sd = &per_cpu(node_domains, i).sd;
  7465. SD_INIT(sd, NODE);
  7466. set_domain_attribute(sd, attr);
  7467. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7468. sd->parent = parent;
  7469. if (parent)
  7470. parent->child = sd;
  7471. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7472. #endif
  7473. return sd;
  7474. }
  7475. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7476. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7477. struct sched_domain *parent, int i)
  7478. {
  7479. struct sched_domain *sd;
  7480. sd = &per_cpu(phys_domains, i).sd;
  7481. SD_INIT(sd, CPU);
  7482. set_domain_attribute(sd, attr);
  7483. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7484. sd->parent = parent;
  7485. if (parent)
  7486. parent->child = sd;
  7487. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7488. return sd;
  7489. }
  7490. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7491. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7492. struct sched_domain *parent, int i)
  7493. {
  7494. struct sched_domain *sd = parent;
  7495. #ifdef CONFIG_SCHED_MC
  7496. sd = &per_cpu(core_domains, i).sd;
  7497. SD_INIT(sd, MC);
  7498. set_domain_attribute(sd, attr);
  7499. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7500. sd->parent = parent;
  7501. parent->child = sd;
  7502. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7503. #endif
  7504. return sd;
  7505. }
  7506. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7507. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7508. struct sched_domain *parent, int i)
  7509. {
  7510. struct sched_domain *sd = parent;
  7511. #ifdef CONFIG_SCHED_SMT
  7512. sd = &per_cpu(cpu_domains, i).sd;
  7513. SD_INIT(sd, SIBLING);
  7514. set_domain_attribute(sd, attr);
  7515. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7516. sd->parent = parent;
  7517. parent->child = sd;
  7518. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7519. #endif
  7520. return sd;
  7521. }
  7522. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7523. const struct cpumask *cpu_map, int cpu)
  7524. {
  7525. switch (l) {
  7526. #ifdef CONFIG_SCHED_SMT
  7527. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7528. cpumask_and(d->this_sibling_map, cpu_map,
  7529. topology_thread_cpumask(cpu));
  7530. if (cpu == cpumask_first(d->this_sibling_map))
  7531. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7532. &cpu_to_cpu_group,
  7533. d->send_covered, d->tmpmask);
  7534. break;
  7535. #endif
  7536. #ifdef CONFIG_SCHED_MC
  7537. case SD_LV_MC: /* set up multi-core groups */
  7538. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7539. if (cpu == cpumask_first(d->this_core_map))
  7540. init_sched_build_groups(d->this_core_map, cpu_map,
  7541. &cpu_to_core_group,
  7542. d->send_covered, d->tmpmask);
  7543. break;
  7544. #endif
  7545. case SD_LV_CPU: /* set up physical groups */
  7546. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7547. if (!cpumask_empty(d->nodemask))
  7548. init_sched_build_groups(d->nodemask, cpu_map,
  7549. &cpu_to_phys_group,
  7550. d->send_covered, d->tmpmask);
  7551. break;
  7552. #ifdef CONFIG_NUMA
  7553. case SD_LV_ALLNODES:
  7554. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7555. d->send_covered, d->tmpmask);
  7556. break;
  7557. #endif
  7558. default:
  7559. break;
  7560. }
  7561. }
  7562. /*
  7563. * Build sched domains for a given set of cpus and attach the sched domains
  7564. * to the individual cpus
  7565. */
  7566. static int __build_sched_domains(const struct cpumask *cpu_map,
  7567. struct sched_domain_attr *attr)
  7568. {
  7569. enum s_alloc alloc_state = sa_none;
  7570. struct s_data d;
  7571. struct sched_domain *sd;
  7572. int i;
  7573. #ifdef CONFIG_NUMA
  7574. d.sd_allnodes = 0;
  7575. #endif
  7576. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7577. if (alloc_state != sa_rootdomain)
  7578. goto error;
  7579. alloc_state = sa_sched_groups;
  7580. /*
  7581. * Set up domains for cpus specified by the cpu_map.
  7582. */
  7583. for_each_cpu(i, cpu_map) {
  7584. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7585. cpu_map);
  7586. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7587. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7588. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7589. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7590. }
  7591. for_each_cpu(i, cpu_map) {
  7592. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7593. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7594. }
  7595. /* Set up physical groups */
  7596. for (i = 0; i < nr_node_ids; i++)
  7597. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7598. #ifdef CONFIG_NUMA
  7599. /* Set up node groups */
  7600. if (d.sd_allnodes)
  7601. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7602. for (i = 0; i < nr_node_ids; i++)
  7603. if (build_numa_sched_groups(&d, cpu_map, i))
  7604. goto error;
  7605. #endif
  7606. /* Calculate CPU power for physical packages and nodes */
  7607. #ifdef CONFIG_SCHED_SMT
  7608. for_each_cpu(i, cpu_map) {
  7609. sd = &per_cpu(cpu_domains, i).sd;
  7610. init_sched_groups_power(i, sd);
  7611. }
  7612. #endif
  7613. #ifdef CONFIG_SCHED_MC
  7614. for_each_cpu(i, cpu_map) {
  7615. sd = &per_cpu(core_domains, i).sd;
  7616. init_sched_groups_power(i, sd);
  7617. }
  7618. #endif
  7619. for_each_cpu(i, cpu_map) {
  7620. sd = &per_cpu(phys_domains, i).sd;
  7621. init_sched_groups_power(i, sd);
  7622. }
  7623. #ifdef CONFIG_NUMA
  7624. for (i = 0; i < nr_node_ids; i++)
  7625. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7626. if (d.sd_allnodes) {
  7627. struct sched_group *sg;
  7628. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7629. d.tmpmask);
  7630. init_numa_sched_groups_power(sg);
  7631. }
  7632. #endif
  7633. /* Attach the domains */
  7634. for_each_cpu(i, cpu_map) {
  7635. #ifdef CONFIG_SCHED_SMT
  7636. sd = &per_cpu(cpu_domains, i).sd;
  7637. #elif defined(CONFIG_SCHED_MC)
  7638. sd = &per_cpu(core_domains, i).sd;
  7639. #else
  7640. sd = &per_cpu(phys_domains, i).sd;
  7641. #endif
  7642. cpu_attach_domain(sd, d.rd, i);
  7643. }
  7644. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7645. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7646. return 0;
  7647. error:
  7648. __free_domain_allocs(&d, alloc_state, cpu_map);
  7649. return -ENOMEM;
  7650. }
  7651. static int build_sched_domains(const struct cpumask *cpu_map)
  7652. {
  7653. return __build_sched_domains(cpu_map, NULL);
  7654. }
  7655. static cpumask_var_t *doms_cur; /* current sched domains */
  7656. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7657. static struct sched_domain_attr *dattr_cur;
  7658. /* attribues of custom domains in 'doms_cur' */
  7659. /*
  7660. * Special case: If a kmalloc of a doms_cur partition (array of
  7661. * cpumask) fails, then fallback to a single sched domain,
  7662. * as determined by the single cpumask fallback_doms.
  7663. */
  7664. static cpumask_var_t fallback_doms;
  7665. /*
  7666. * arch_update_cpu_topology lets virtualized architectures update the
  7667. * cpu core maps. It is supposed to return 1 if the topology changed
  7668. * or 0 if it stayed the same.
  7669. */
  7670. int __attribute__((weak)) arch_update_cpu_topology(void)
  7671. {
  7672. return 0;
  7673. }
  7674. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7675. {
  7676. int i;
  7677. cpumask_var_t *doms;
  7678. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7679. if (!doms)
  7680. return NULL;
  7681. for (i = 0; i < ndoms; i++) {
  7682. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7683. free_sched_domains(doms, i);
  7684. return NULL;
  7685. }
  7686. }
  7687. return doms;
  7688. }
  7689. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7690. {
  7691. unsigned int i;
  7692. for (i = 0; i < ndoms; i++)
  7693. free_cpumask_var(doms[i]);
  7694. kfree(doms);
  7695. }
  7696. /*
  7697. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7698. * For now this just excludes isolated cpus, but could be used to
  7699. * exclude other special cases in the future.
  7700. */
  7701. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7702. {
  7703. int err;
  7704. arch_update_cpu_topology();
  7705. ndoms_cur = 1;
  7706. doms_cur = alloc_sched_domains(ndoms_cur);
  7707. if (!doms_cur)
  7708. doms_cur = &fallback_doms;
  7709. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7710. dattr_cur = NULL;
  7711. err = build_sched_domains(doms_cur[0]);
  7712. register_sched_domain_sysctl();
  7713. return err;
  7714. }
  7715. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7716. struct cpumask *tmpmask)
  7717. {
  7718. free_sched_groups(cpu_map, tmpmask);
  7719. }
  7720. /*
  7721. * Detach sched domains from a group of cpus specified in cpu_map
  7722. * These cpus will now be attached to the NULL domain
  7723. */
  7724. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7725. {
  7726. /* Save because hotplug lock held. */
  7727. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7728. int i;
  7729. for_each_cpu(i, cpu_map)
  7730. cpu_attach_domain(NULL, &def_root_domain, i);
  7731. synchronize_sched();
  7732. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7733. }
  7734. /* handle null as "default" */
  7735. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7736. struct sched_domain_attr *new, int idx_new)
  7737. {
  7738. struct sched_domain_attr tmp;
  7739. /* fast path */
  7740. if (!new && !cur)
  7741. return 1;
  7742. tmp = SD_ATTR_INIT;
  7743. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7744. new ? (new + idx_new) : &tmp,
  7745. sizeof(struct sched_domain_attr));
  7746. }
  7747. /*
  7748. * Partition sched domains as specified by the 'ndoms_new'
  7749. * cpumasks in the array doms_new[] of cpumasks. This compares
  7750. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7751. * It destroys each deleted domain and builds each new domain.
  7752. *
  7753. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7754. * The masks don't intersect (don't overlap.) We should setup one
  7755. * sched domain for each mask. CPUs not in any of the cpumasks will
  7756. * not be load balanced. If the same cpumask appears both in the
  7757. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7758. * it as it is.
  7759. *
  7760. * The passed in 'doms_new' should be allocated using
  7761. * alloc_sched_domains. This routine takes ownership of it and will
  7762. * free_sched_domains it when done with it. If the caller failed the
  7763. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7764. * and partition_sched_domains() will fallback to the single partition
  7765. * 'fallback_doms', it also forces the domains to be rebuilt.
  7766. *
  7767. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7768. * ndoms_new == 0 is a special case for destroying existing domains,
  7769. * and it will not create the default domain.
  7770. *
  7771. * Call with hotplug lock held
  7772. */
  7773. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7774. struct sched_domain_attr *dattr_new)
  7775. {
  7776. int i, j, n;
  7777. int new_topology;
  7778. mutex_lock(&sched_domains_mutex);
  7779. /* always unregister in case we don't destroy any domains */
  7780. unregister_sched_domain_sysctl();
  7781. /* Let architecture update cpu core mappings. */
  7782. new_topology = arch_update_cpu_topology();
  7783. n = doms_new ? ndoms_new : 0;
  7784. /* Destroy deleted domains */
  7785. for (i = 0; i < ndoms_cur; i++) {
  7786. for (j = 0; j < n && !new_topology; j++) {
  7787. if (cpumask_equal(doms_cur[i], doms_new[j])
  7788. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7789. goto match1;
  7790. }
  7791. /* no match - a current sched domain not in new doms_new[] */
  7792. detach_destroy_domains(doms_cur[i]);
  7793. match1:
  7794. ;
  7795. }
  7796. if (doms_new == NULL) {
  7797. ndoms_cur = 0;
  7798. doms_new = &fallback_doms;
  7799. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7800. WARN_ON_ONCE(dattr_new);
  7801. }
  7802. /* Build new domains */
  7803. for (i = 0; i < ndoms_new; i++) {
  7804. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7805. if (cpumask_equal(doms_new[i], doms_cur[j])
  7806. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7807. goto match2;
  7808. }
  7809. /* no match - add a new doms_new */
  7810. __build_sched_domains(doms_new[i],
  7811. dattr_new ? dattr_new + i : NULL);
  7812. match2:
  7813. ;
  7814. }
  7815. /* Remember the new sched domains */
  7816. if (doms_cur != &fallback_doms)
  7817. free_sched_domains(doms_cur, ndoms_cur);
  7818. kfree(dattr_cur); /* kfree(NULL) is safe */
  7819. doms_cur = doms_new;
  7820. dattr_cur = dattr_new;
  7821. ndoms_cur = ndoms_new;
  7822. register_sched_domain_sysctl();
  7823. mutex_unlock(&sched_domains_mutex);
  7824. }
  7825. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7826. static void arch_reinit_sched_domains(void)
  7827. {
  7828. get_online_cpus();
  7829. /* Destroy domains first to force the rebuild */
  7830. partition_sched_domains(0, NULL, NULL);
  7831. rebuild_sched_domains();
  7832. put_online_cpus();
  7833. }
  7834. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7835. {
  7836. unsigned int level = 0;
  7837. if (sscanf(buf, "%u", &level) != 1)
  7838. return -EINVAL;
  7839. /*
  7840. * level is always be positive so don't check for
  7841. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7842. * What happens on 0 or 1 byte write,
  7843. * need to check for count as well?
  7844. */
  7845. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7846. return -EINVAL;
  7847. if (smt)
  7848. sched_smt_power_savings = level;
  7849. else
  7850. sched_mc_power_savings = level;
  7851. arch_reinit_sched_domains();
  7852. return count;
  7853. }
  7854. #ifdef CONFIG_SCHED_MC
  7855. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7856. char *page)
  7857. {
  7858. return sprintf(page, "%u\n", sched_mc_power_savings);
  7859. }
  7860. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7861. const char *buf, size_t count)
  7862. {
  7863. return sched_power_savings_store(buf, count, 0);
  7864. }
  7865. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7866. sched_mc_power_savings_show,
  7867. sched_mc_power_savings_store);
  7868. #endif
  7869. #ifdef CONFIG_SCHED_SMT
  7870. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7871. char *page)
  7872. {
  7873. return sprintf(page, "%u\n", sched_smt_power_savings);
  7874. }
  7875. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7876. const char *buf, size_t count)
  7877. {
  7878. return sched_power_savings_store(buf, count, 1);
  7879. }
  7880. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7881. sched_smt_power_savings_show,
  7882. sched_smt_power_savings_store);
  7883. #endif
  7884. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7885. {
  7886. int err = 0;
  7887. #ifdef CONFIG_SCHED_SMT
  7888. if (smt_capable())
  7889. err = sysfs_create_file(&cls->kset.kobj,
  7890. &attr_sched_smt_power_savings.attr);
  7891. #endif
  7892. #ifdef CONFIG_SCHED_MC
  7893. if (!err && mc_capable())
  7894. err = sysfs_create_file(&cls->kset.kobj,
  7895. &attr_sched_mc_power_savings.attr);
  7896. #endif
  7897. return err;
  7898. }
  7899. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7900. #ifndef CONFIG_CPUSETS
  7901. /*
  7902. * Add online and remove offline CPUs from the scheduler domains.
  7903. * When cpusets are enabled they take over this function.
  7904. */
  7905. static int update_sched_domains(struct notifier_block *nfb,
  7906. unsigned long action, void *hcpu)
  7907. {
  7908. switch (action) {
  7909. case CPU_ONLINE:
  7910. case CPU_ONLINE_FROZEN:
  7911. case CPU_DOWN_PREPARE:
  7912. case CPU_DOWN_PREPARE_FROZEN:
  7913. case CPU_DOWN_FAILED:
  7914. case CPU_DOWN_FAILED_FROZEN:
  7915. partition_sched_domains(1, NULL, NULL);
  7916. return NOTIFY_OK;
  7917. default:
  7918. return NOTIFY_DONE;
  7919. }
  7920. }
  7921. #endif
  7922. static int update_runtime(struct notifier_block *nfb,
  7923. unsigned long action, void *hcpu)
  7924. {
  7925. int cpu = (int)(long)hcpu;
  7926. switch (action) {
  7927. case CPU_DOWN_PREPARE:
  7928. case CPU_DOWN_PREPARE_FROZEN:
  7929. disable_runtime(cpu_rq(cpu));
  7930. return NOTIFY_OK;
  7931. case CPU_DOWN_FAILED:
  7932. case CPU_DOWN_FAILED_FROZEN:
  7933. case CPU_ONLINE:
  7934. case CPU_ONLINE_FROZEN:
  7935. enable_runtime(cpu_rq(cpu));
  7936. return NOTIFY_OK;
  7937. default:
  7938. return NOTIFY_DONE;
  7939. }
  7940. }
  7941. void __init sched_init_smp(void)
  7942. {
  7943. cpumask_var_t non_isolated_cpus;
  7944. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7945. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7946. #if defined(CONFIG_NUMA)
  7947. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7948. GFP_KERNEL);
  7949. BUG_ON(sched_group_nodes_bycpu == NULL);
  7950. #endif
  7951. get_online_cpus();
  7952. mutex_lock(&sched_domains_mutex);
  7953. arch_init_sched_domains(cpu_active_mask);
  7954. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7955. if (cpumask_empty(non_isolated_cpus))
  7956. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7957. mutex_unlock(&sched_domains_mutex);
  7958. put_online_cpus();
  7959. #ifndef CONFIG_CPUSETS
  7960. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7961. hotcpu_notifier(update_sched_domains, 0);
  7962. #endif
  7963. /* RT runtime code needs to handle some hotplug events */
  7964. hotcpu_notifier(update_runtime, 0);
  7965. init_hrtick();
  7966. /* Move init over to a non-isolated CPU */
  7967. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7968. BUG();
  7969. sched_init_granularity();
  7970. free_cpumask_var(non_isolated_cpus);
  7971. init_sched_rt_class();
  7972. }
  7973. #else
  7974. void __init sched_init_smp(void)
  7975. {
  7976. sched_init_granularity();
  7977. }
  7978. #endif /* CONFIG_SMP */
  7979. const_debug unsigned int sysctl_timer_migration = 1;
  7980. int in_sched_functions(unsigned long addr)
  7981. {
  7982. return in_lock_functions(addr) ||
  7983. (addr >= (unsigned long)__sched_text_start
  7984. && addr < (unsigned long)__sched_text_end);
  7985. }
  7986. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7987. {
  7988. cfs_rq->tasks_timeline = RB_ROOT;
  7989. INIT_LIST_HEAD(&cfs_rq->tasks);
  7990. #ifdef CONFIG_FAIR_GROUP_SCHED
  7991. cfs_rq->rq = rq;
  7992. #endif
  7993. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7994. }
  7995. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7996. {
  7997. struct rt_prio_array *array;
  7998. int i;
  7999. array = &rt_rq->active;
  8000. for (i = 0; i < MAX_RT_PRIO; i++) {
  8001. INIT_LIST_HEAD(array->queue + i);
  8002. __clear_bit(i, array->bitmap);
  8003. }
  8004. /* delimiter for bitsearch: */
  8005. __set_bit(MAX_RT_PRIO, array->bitmap);
  8006. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  8007. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  8008. #ifdef CONFIG_SMP
  8009. rt_rq->highest_prio.next = MAX_RT_PRIO;
  8010. #endif
  8011. #endif
  8012. #ifdef CONFIG_SMP
  8013. rt_rq->rt_nr_migratory = 0;
  8014. rt_rq->overloaded = 0;
  8015. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  8016. #endif
  8017. rt_rq->rt_time = 0;
  8018. rt_rq->rt_throttled = 0;
  8019. rt_rq->rt_runtime = 0;
  8020. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  8021. #ifdef CONFIG_RT_GROUP_SCHED
  8022. rt_rq->rt_nr_boosted = 0;
  8023. rt_rq->rq = rq;
  8024. #endif
  8025. }
  8026. #ifdef CONFIG_FAIR_GROUP_SCHED
  8027. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8028. struct sched_entity *se, int cpu, int add,
  8029. struct sched_entity *parent)
  8030. {
  8031. struct rq *rq = cpu_rq(cpu);
  8032. tg->cfs_rq[cpu] = cfs_rq;
  8033. init_cfs_rq(cfs_rq, rq);
  8034. cfs_rq->tg = tg;
  8035. if (add)
  8036. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8037. tg->se[cpu] = se;
  8038. /* se could be NULL for init_task_group */
  8039. if (!se)
  8040. return;
  8041. if (!parent)
  8042. se->cfs_rq = &rq->cfs;
  8043. else
  8044. se->cfs_rq = parent->my_q;
  8045. se->my_q = cfs_rq;
  8046. se->load.weight = tg->shares;
  8047. se->load.inv_weight = 0;
  8048. se->parent = parent;
  8049. }
  8050. #endif
  8051. #ifdef CONFIG_RT_GROUP_SCHED
  8052. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8053. struct sched_rt_entity *rt_se, int cpu, int add,
  8054. struct sched_rt_entity *parent)
  8055. {
  8056. struct rq *rq = cpu_rq(cpu);
  8057. tg->rt_rq[cpu] = rt_rq;
  8058. init_rt_rq(rt_rq, rq);
  8059. rt_rq->tg = tg;
  8060. rt_rq->rt_se = rt_se;
  8061. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8062. if (add)
  8063. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8064. tg->rt_se[cpu] = rt_se;
  8065. if (!rt_se)
  8066. return;
  8067. if (!parent)
  8068. rt_se->rt_rq = &rq->rt;
  8069. else
  8070. rt_se->rt_rq = parent->my_q;
  8071. rt_se->my_q = rt_rq;
  8072. rt_se->parent = parent;
  8073. INIT_LIST_HEAD(&rt_se->run_list);
  8074. }
  8075. #endif
  8076. void __init sched_init(void)
  8077. {
  8078. int i, j;
  8079. unsigned long alloc_size = 0, ptr;
  8080. #ifdef CONFIG_FAIR_GROUP_SCHED
  8081. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8082. #endif
  8083. #ifdef CONFIG_RT_GROUP_SCHED
  8084. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8085. #endif
  8086. #ifdef CONFIG_USER_SCHED
  8087. alloc_size *= 2;
  8088. #endif
  8089. #ifdef CONFIG_CPUMASK_OFFSTACK
  8090. alloc_size += num_possible_cpus() * cpumask_size();
  8091. #endif
  8092. if (alloc_size) {
  8093. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8094. #ifdef CONFIG_FAIR_GROUP_SCHED
  8095. init_task_group.se = (struct sched_entity **)ptr;
  8096. ptr += nr_cpu_ids * sizeof(void **);
  8097. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8098. ptr += nr_cpu_ids * sizeof(void **);
  8099. #ifdef CONFIG_USER_SCHED
  8100. root_task_group.se = (struct sched_entity **)ptr;
  8101. ptr += nr_cpu_ids * sizeof(void **);
  8102. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8103. ptr += nr_cpu_ids * sizeof(void **);
  8104. #endif /* CONFIG_USER_SCHED */
  8105. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8106. #ifdef CONFIG_RT_GROUP_SCHED
  8107. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8108. ptr += nr_cpu_ids * sizeof(void **);
  8109. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8110. ptr += nr_cpu_ids * sizeof(void **);
  8111. #ifdef CONFIG_USER_SCHED
  8112. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8113. ptr += nr_cpu_ids * sizeof(void **);
  8114. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8115. ptr += nr_cpu_ids * sizeof(void **);
  8116. #endif /* CONFIG_USER_SCHED */
  8117. #endif /* CONFIG_RT_GROUP_SCHED */
  8118. #ifdef CONFIG_CPUMASK_OFFSTACK
  8119. for_each_possible_cpu(i) {
  8120. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8121. ptr += cpumask_size();
  8122. }
  8123. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8124. }
  8125. #ifdef CONFIG_SMP
  8126. init_defrootdomain();
  8127. #endif
  8128. init_rt_bandwidth(&def_rt_bandwidth,
  8129. global_rt_period(), global_rt_runtime());
  8130. #ifdef CONFIG_RT_GROUP_SCHED
  8131. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8132. global_rt_period(), global_rt_runtime());
  8133. #ifdef CONFIG_USER_SCHED
  8134. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8135. global_rt_period(), RUNTIME_INF);
  8136. #endif /* CONFIG_USER_SCHED */
  8137. #endif /* CONFIG_RT_GROUP_SCHED */
  8138. #ifdef CONFIG_GROUP_SCHED
  8139. list_add(&init_task_group.list, &task_groups);
  8140. INIT_LIST_HEAD(&init_task_group.children);
  8141. #ifdef CONFIG_USER_SCHED
  8142. INIT_LIST_HEAD(&root_task_group.children);
  8143. init_task_group.parent = &root_task_group;
  8144. list_add(&init_task_group.siblings, &root_task_group.children);
  8145. #endif /* CONFIG_USER_SCHED */
  8146. #endif /* CONFIG_GROUP_SCHED */
  8147. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8148. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8149. __alignof__(unsigned long));
  8150. #endif
  8151. for_each_possible_cpu(i) {
  8152. struct rq *rq;
  8153. rq = cpu_rq(i);
  8154. raw_spin_lock_init(&rq->lock);
  8155. rq->nr_running = 0;
  8156. rq->calc_load_active = 0;
  8157. rq->calc_load_update = jiffies + LOAD_FREQ;
  8158. init_cfs_rq(&rq->cfs, rq);
  8159. init_rt_rq(&rq->rt, rq);
  8160. #ifdef CONFIG_FAIR_GROUP_SCHED
  8161. init_task_group.shares = init_task_group_load;
  8162. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8163. #ifdef CONFIG_CGROUP_SCHED
  8164. /*
  8165. * How much cpu bandwidth does init_task_group get?
  8166. *
  8167. * In case of task-groups formed thr' the cgroup filesystem, it
  8168. * gets 100% of the cpu resources in the system. This overall
  8169. * system cpu resource is divided among the tasks of
  8170. * init_task_group and its child task-groups in a fair manner,
  8171. * based on each entity's (task or task-group's) weight
  8172. * (se->load.weight).
  8173. *
  8174. * In other words, if init_task_group has 10 tasks of weight
  8175. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8176. * then A0's share of the cpu resource is:
  8177. *
  8178. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8179. *
  8180. * We achieve this by letting init_task_group's tasks sit
  8181. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8182. */
  8183. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8184. #elif defined CONFIG_USER_SCHED
  8185. root_task_group.shares = NICE_0_LOAD;
  8186. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8187. /*
  8188. * In case of task-groups formed thr' the user id of tasks,
  8189. * init_task_group represents tasks belonging to root user.
  8190. * Hence it forms a sibling of all subsequent groups formed.
  8191. * In this case, init_task_group gets only a fraction of overall
  8192. * system cpu resource, based on the weight assigned to root
  8193. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8194. * by letting tasks of init_task_group sit in a separate cfs_rq
  8195. * (init_tg_cfs_rq) and having one entity represent this group of
  8196. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8197. */
  8198. init_tg_cfs_entry(&init_task_group,
  8199. &per_cpu(init_tg_cfs_rq, i),
  8200. &per_cpu(init_sched_entity, i), i, 1,
  8201. root_task_group.se[i]);
  8202. #endif
  8203. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8204. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8205. #ifdef CONFIG_RT_GROUP_SCHED
  8206. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8207. #ifdef CONFIG_CGROUP_SCHED
  8208. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8209. #elif defined CONFIG_USER_SCHED
  8210. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8211. init_tg_rt_entry(&init_task_group,
  8212. &per_cpu(init_rt_rq_var, i),
  8213. &per_cpu(init_sched_rt_entity, i), i, 1,
  8214. root_task_group.rt_se[i]);
  8215. #endif
  8216. #endif
  8217. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8218. rq->cpu_load[j] = 0;
  8219. #ifdef CONFIG_SMP
  8220. rq->sd = NULL;
  8221. rq->rd = NULL;
  8222. rq->post_schedule = 0;
  8223. rq->active_balance = 0;
  8224. rq->next_balance = jiffies;
  8225. rq->push_cpu = 0;
  8226. rq->cpu = i;
  8227. rq->online = 0;
  8228. rq->migration_thread = NULL;
  8229. rq->idle_stamp = 0;
  8230. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8231. INIT_LIST_HEAD(&rq->migration_queue);
  8232. rq_attach_root(rq, &def_root_domain);
  8233. #endif
  8234. init_rq_hrtick(rq);
  8235. atomic_set(&rq->nr_iowait, 0);
  8236. }
  8237. set_load_weight(&init_task);
  8238. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8239. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8240. #endif
  8241. #ifdef CONFIG_SMP
  8242. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8243. #endif
  8244. #ifdef CONFIG_RT_MUTEXES
  8245. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8246. #endif
  8247. /*
  8248. * The boot idle thread does lazy MMU switching as well:
  8249. */
  8250. atomic_inc(&init_mm.mm_count);
  8251. enter_lazy_tlb(&init_mm, current);
  8252. /*
  8253. * Make us the idle thread. Technically, schedule() should not be
  8254. * called from this thread, however somewhere below it might be,
  8255. * but because we are the idle thread, we just pick up running again
  8256. * when this runqueue becomes "idle".
  8257. */
  8258. init_idle(current, smp_processor_id());
  8259. calc_load_update = jiffies + LOAD_FREQ;
  8260. /*
  8261. * During early bootup we pretend to be a normal task:
  8262. */
  8263. current->sched_class = &fair_sched_class;
  8264. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8265. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8266. #ifdef CONFIG_SMP
  8267. #ifdef CONFIG_NO_HZ
  8268. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8269. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8270. #endif
  8271. /* May be allocated at isolcpus cmdline parse time */
  8272. if (cpu_isolated_map == NULL)
  8273. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8274. #endif /* SMP */
  8275. perf_event_init();
  8276. scheduler_running = 1;
  8277. }
  8278. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8279. static inline int preempt_count_equals(int preempt_offset)
  8280. {
  8281. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8282. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8283. }
  8284. void __might_sleep(char *file, int line, int preempt_offset)
  8285. {
  8286. #ifdef in_atomic
  8287. static unsigned long prev_jiffy; /* ratelimiting */
  8288. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8289. system_state != SYSTEM_RUNNING || oops_in_progress)
  8290. return;
  8291. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8292. return;
  8293. prev_jiffy = jiffies;
  8294. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8295. file, line);
  8296. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8297. in_atomic(), irqs_disabled(),
  8298. current->pid, current->comm);
  8299. debug_show_held_locks(current);
  8300. if (irqs_disabled())
  8301. print_irqtrace_events(current);
  8302. dump_stack();
  8303. #endif
  8304. }
  8305. EXPORT_SYMBOL(__might_sleep);
  8306. #endif
  8307. #ifdef CONFIG_MAGIC_SYSRQ
  8308. static void normalize_task(struct rq *rq, struct task_struct *p)
  8309. {
  8310. int on_rq;
  8311. update_rq_clock(rq);
  8312. on_rq = p->se.on_rq;
  8313. if (on_rq)
  8314. deactivate_task(rq, p, 0);
  8315. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8316. if (on_rq) {
  8317. activate_task(rq, p, 0);
  8318. resched_task(rq->curr);
  8319. }
  8320. }
  8321. void normalize_rt_tasks(void)
  8322. {
  8323. struct task_struct *g, *p;
  8324. unsigned long flags;
  8325. struct rq *rq;
  8326. read_lock_irqsave(&tasklist_lock, flags);
  8327. do_each_thread(g, p) {
  8328. /*
  8329. * Only normalize user tasks:
  8330. */
  8331. if (!p->mm)
  8332. continue;
  8333. p->se.exec_start = 0;
  8334. #ifdef CONFIG_SCHEDSTATS
  8335. p->se.wait_start = 0;
  8336. p->se.sleep_start = 0;
  8337. p->se.block_start = 0;
  8338. #endif
  8339. if (!rt_task(p)) {
  8340. /*
  8341. * Renice negative nice level userspace
  8342. * tasks back to 0:
  8343. */
  8344. if (TASK_NICE(p) < 0 && p->mm)
  8345. set_user_nice(p, 0);
  8346. continue;
  8347. }
  8348. raw_spin_lock(&p->pi_lock);
  8349. rq = __task_rq_lock(p);
  8350. normalize_task(rq, p);
  8351. __task_rq_unlock(rq);
  8352. raw_spin_unlock(&p->pi_lock);
  8353. } while_each_thread(g, p);
  8354. read_unlock_irqrestore(&tasklist_lock, flags);
  8355. }
  8356. #endif /* CONFIG_MAGIC_SYSRQ */
  8357. #ifdef CONFIG_IA64
  8358. /*
  8359. * These functions are only useful for the IA64 MCA handling.
  8360. *
  8361. * They can only be called when the whole system has been
  8362. * stopped - every CPU needs to be quiescent, and no scheduling
  8363. * activity can take place. Using them for anything else would
  8364. * be a serious bug, and as a result, they aren't even visible
  8365. * under any other configuration.
  8366. */
  8367. /**
  8368. * curr_task - return the current task for a given cpu.
  8369. * @cpu: the processor in question.
  8370. *
  8371. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8372. */
  8373. struct task_struct *curr_task(int cpu)
  8374. {
  8375. return cpu_curr(cpu);
  8376. }
  8377. /**
  8378. * set_curr_task - set the current task for a given cpu.
  8379. * @cpu: the processor in question.
  8380. * @p: the task pointer to set.
  8381. *
  8382. * Description: This function must only be used when non-maskable interrupts
  8383. * are serviced on a separate stack. It allows the architecture to switch the
  8384. * notion of the current task on a cpu in a non-blocking manner. This function
  8385. * must be called with all CPU's synchronized, and interrupts disabled, the
  8386. * and caller must save the original value of the current task (see
  8387. * curr_task() above) and restore that value before reenabling interrupts and
  8388. * re-starting the system.
  8389. *
  8390. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8391. */
  8392. void set_curr_task(int cpu, struct task_struct *p)
  8393. {
  8394. cpu_curr(cpu) = p;
  8395. }
  8396. #endif
  8397. #ifdef CONFIG_FAIR_GROUP_SCHED
  8398. static void free_fair_sched_group(struct task_group *tg)
  8399. {
  8400. int i;
  8401. for_each_possible_cpu(i) {
  8402. if (tg->cfs_rq)
  8403. kfree(tg->cfs_rq[i]);
  8404. if (tg->se)
  8405. kfree(tg->se[i]);
  8406. }
  8407. kfree(tg->cfs_rq);
  8408. kfree(tg->se);
  8409. }
  8410. static
  8411. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8412. {
  8413. struct cfs_rq *cfs_rq;
  8414. struct sched_entity *se;
  8415. struct rq *rq;
  8416. int i;
  8417. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8418. if (!tg->cfs_rq)
  8419. goto err;
  8420. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8421. if (!tg->se)
  8422. goto err;
  8423. tg->shares = NICE_0_LOAD;
  8424. for_each_possible_cpu(i) {
  8425. rq = cpu_rq(i);
  8426. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8427. GFP_KERNEL, cpu_to_node(i));
  8428. if (!cfs_rq)
  8429. goto err;
  8430. se = kzalloc_node(sizeof(struct sched_entity),
  8431. GFP_KERNEL, cpu_to_node(i));
  8432. if (!se)
  8433. goto err_free_rq;
  8434. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8435. }
  8436. return 1;
  8437. err_free_rq:
  8438. kfree(cfs_rq);
  8439. err:
  8440. return 0;
  8441. }
  8442. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8443. {
  8444. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8445. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8446. }
  8447. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8448. {
  8449. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8450. }
  8451. #else /* !CONFG_FAIR_GROUP_SCHED */
  8452. static inline void free_fair_sched_group(struct task_group *tg)
  8453. {
  8454. }
  8455. static inline
  8456. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8457. {
  8458. return 1;
  8459. }
  8460. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8461. {
  8462. }
  8463. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8464. {
  8465. }
  8466. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8467. #ifdef CONFIG_RT_GROUP_SCHED
  8468. static void free_rt_sched_group(struct task_group *tg)
  8469. {
  8470. int i;
  8471. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8472. for_each_possible_cpu(i) {
  8473. if (tg->rt_rq)
  8474. kfree(tg->rt_rq[i]);
  8475. if (tg->rt_se)
  8476. kfree(tg->rt_se[i]);
  8477. }
  8478. kfree(tg->rt_rq);
  8479. kfree(tg->rt_se);
  8480. }
  8481. static
  8482. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8483. {
  8484. struct rt_rq *rt_rq;
  8485. struct sched_rt_entity *rt_se;
  8486. struct rq *rq;
  8487. int i;
  8488. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8489. if (!tg->rt_rq)
  8490. goto err;
  8491. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8492. if (!tg->rt_se)
  8493. goto err;
  8494. init_rt_bandwidth(&tg->rt_bandwidth,
  8495. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8496. for_each_possible_cpu(i) {
  8497. rq = cpu_rq(i);
  8498. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8499. GFP_KERNEL, cpu_to_node(i));
  8500. if (!rt_rq)
  8501. goto err;
  8502. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8503. GFP_KERNEL, cpu_to_node(i));
  8504. if (!rt_se)
  8505. goto err_free_rq;
  8506. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8507. }
  8508. return 1;
  8509. err_free_rq:
  8510. kfree(rt_rq);
  8511. err:
  8512. return 0;
  8513. }
  8514. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8515. {
  8516. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8517. &cpu_rq(cpu)->leaf_rt_rq_list);
  8518. }
  8519. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8520. {
  8521. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8522. }
  8523. #else /* !CONFIG_RT_GROUP_SCHED */
  8524. static inline void free_rt_sched_group(struct task_group *tg)
  8525. {
  8526. }
  8527. static inline
  8528. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8529. {
  8530. return 1;
  8531. }
  8532. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8533. {
  8534. }
  8535. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8536. {
  8537. }
  8538. #endif /* CONFIG_RT_GROUP_SCHED */
  8539. #ifdef CONFIG_GROUP_SCHED
  8540. static void free_sched_group(struct task_group *tg)
  8541. {
  8542. free_fair_sched_group(tg);
  8543. free_rt_sched_group(tg);
  8544. kfree(tg);
  8545. }
  8546. /* allocate runqueue etc for a new task group */
  8547. struct task_group *sched_create_group(struct task_group *parent)
  8548. {
  8549. struct task_group *tg;
  8550. unsigned long flags;
  8551. int i;
  8552. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8553. if (!tg)
  8554. return ERR_PTR(-ENOMEM);
  8555. if (!alloc_fair_sched_group(tg, parent))
  8556. goto err;
  8557. if (!alloc_rt_sched_group(tg, parent))
  8558. goto err;
  8559. spin_lock_irqsave(&task_group_lock, flags);
  8560. for_each_possible_cpu(i) {
  8561. register_fair_sched_group(tg, i);
  8562. register_rt_sched_group(tg, i);
  8563. }
  8564. list_add_rcu(&tg->list, &task_groups);
  8565. WARN_ON(!parent); /* root should already exist */
  8566. tg->parent = parent;
  8567. INIT_LIST_HEAD(&tg->children);
  8568. list_add_rcu(&tg->siblings, &parent->children);
  8569. spin_unlock_irqrestore(&task_group_lock, flags);
  8570. return tg;
  8571. err:
  8572. free_sched_group(tg);
  8573. return ERR_PTR(-ENOMEM);
  8574. }
  8575. /* rcu callback to free various structures associated with a task group */
  8576. static void free_sched_group_rcu(struct rcu_head *rhp)
  8577. {
  8578. /* now it should be safe to free those cfs_rqs */
  8579. free_sched_group(container_of(rhp, struct task_group, rcu));
  8580. }
  8581. /* Destroy runqueue etc associated with a task group */
  8582. void sched_destroy_group(struct task_group *tg)
  8583. {
  8584. unsigned long flags;
  8585. int i;
  8586. spin_lock_irqsave(&task_group_lock, flags);
  8587. for_each_possible_cpu(i) {
  8588. unregister_fair_sched_group(tg, i);
  8589. unregister_rt_sched_group(tg, i);
  8590. }
  8591. list_del_rcu(&tg->list);
  8592. list_del_rcu(&tg->siblings);
  8593. spin_unlock_irqrestore(&task_group_lock, flags);
  8594. /* wait for possible concurrent references to cfs_rqs complete */
  8595. call_rcu(&tg->rcu, free_sched_group_rcu);
  8596. }
  8597. /* change task's runqueue when it moves between groups.
  8598. * The caller of this function should have put the task in its new group
  8599. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8600. * reflect its new group.
  8601. */
  8602. void sched_move_task(struct task_struct *tsk)
  8603. {
  8604. int on_rq, running;
  8605. unsigned long flags;
  8606. struct rq *rq;
  8607. rq = task_rq_lock(tsk, &flags);
  8608. update_rq_clock(rq);
  8609. running = task_current(rq, tsk);
  8610. on_rq = tsk->se.on_rq;
  8611. if (on_rq)
  8612. dequeue_task(rq, tsk, 0);
  8613. if (unlikely(running))
  8614. tsk->sched_class->put_prev_task(rq, tsk);
  8615. set_task_rq(tsk, task_cpu(tsk));
  8616. #ifdef CONFIG_FAIR_GROUP_SCHED
  8617. if (tsk->sched_class->moved_group)
  8618. tsk->sched_class->moved_group(tsk);
  8619. #endif
  8620. if (unlikely(running))
  8621. tsk->sched_class->set_curr_task(rq);
  8622. if (on_rq)
  8623. enqueue_task(rq, tsk, 0);
  8624. task_rq_unlock(rq, &flags);
  8625. }
  8626. #endif /* CONFIG_GROUP_SCHED */
  8627. #ifdef CONFIG_FAIR_GROUP_SCHED
  8628. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8629. {
  8630. struct cfs_rq *cfs_rq = se->cfs_rq;
  8631. int on_rq;
  8632. on_rq = se->on_rq;
  8633. if (on_rq)
  8634. dequeue_entity(cfs_rq, se, 0);
  8635. se->load.weight = shares;
  8636. se->load.inv_weight = 0;
  8637. if (on_rq)
  8638. enqueue_entity(cfs_rq, se, 0);
  8639. }
  8640. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8641. {
  8642. struct cfs_rq *cfs_rq = se->cfs_rq;
  8643. struct rq *rq = cfs_rq->rq;
  8644. unsigned long flags;
  8645. raw_spin_lock_irqsave(&rq->lock, flags);
  8646. __set_se_shares(se, shares);
  8647. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8648. }
  8649. static DEFINE_MUTEX(shares_mutex);
  8650. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8651. {
  8652. int i;
  8653. unsigned long flags;
  8654. /*
  8655. * We can't change the weight of the root cgroup.
  8656. */
  8657. if (!tg->se[0])
  8658. return -EINVAL;
  8659. if (shares < MIN_SHARES)
  8660. shares = MIN_SHARES;
  8661. else if (shares > MAX_SHARES)
  8662. shares = MAX_SHARES;
  8663. mutex_lock(&shares_mutex);
  8664. if (tg->shares == shares)
  8665. goto done;
  8666. spin_lock_irqsave(&task_group_lock, flags);
  8667. for_each_possible_cpu(i)
  8668. unregister_fair_sched_group(tg, i);
  8669. list_del_rcu(&tg->siblings);
  8670. spin_unlock_irqrestore(&task_group_lock, flags);
  8671. /* wait for any ongoing reference to this group to finish */
  8672. synchronize_sched();
  8673. /*
  8674. * Now we are free to modify the group's share on each cpu
  8675. * w/o tripping rebalance_share or load_balance_fair.
  8676. */
  8677. tg->shares = shares;
  8678. for_each_possible_cpu(i) {
  8679. /*
  8680. * force a rebalance
  8681. */
  8682. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8683. set_se_shares(tg->se[i], shares);
  8684. }
  8685. /*
  8686. * Enable load balance activity on this group, by inserting it back on
  8687. * each cpu's rq->leaf_cfs_rq_list.
  8688. */
  8689. spin_lock_irqsave(&task_group_lock, flags);
  8690. for_each_possible_cpu(i)
  8691. register_fair_sched_group(tg, i);
  8692. list_add_rcu(&tg->siblings, &tg->parent->children);
  8693. spin_unlock_irqrestore(&task_group_lock, flags);
  8694. done:
  8695. mutex_unlock(&shares_mutex);
  8696. return 0;
  8697. }
  8698. unsigned long sched_group_shares(struct task_group *tg)
  8699. {
  8700. return tg->shares;
  8701. }
  8702. #endif
  8703. #ifdef CONFIG_RT_GROUP_SCHED
  8704. /*
  8705. * Ensure that the real time constraints are schedulable.
  8706. */
  8707. static DEFINE_MUTEX(rt_constraints_mutex);
  8708. static unsigned long to_ratio(u64 period, u64 runtime)
  8709. {
  8710. if (runtime == RUNTIME_INF)
  8711. return 1ULL << 20;
  8712. return div64_u64(runtime << 20, period);
  8713. }
  8714. /* Must be called with tasklist_lock held */
  8715. static inline int tg_has_rt_tasks(struct task_group *tg)
  8716. {
  8717. struct task_struct *g, *p;
  8718. do_each_thread(g, p) {
  8719. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8720. return 1;
  8721. } while_each_thread(g, p);
  8722. return 0;
  8723. }
  8724. struct rt_schedulable_data {
  8725. struct task_group *tg;
  8726. u64 rt_period;
  8727. u64 rt_runtime;
  8728. };
  8729. static int tg_schedulable(struct task_group *tg, void *data)
  8730. {
  8731. struct rt_schedulable_data *d = data;
  8732. struct task_group *child;
  8733. unsigned long total, sum = 0;
  8734. u64 period, runtime;
  8735. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8736. runtime = tg->rt_bandwidth.rt_runtime;
  8737. if (tg == d->tg) {
  8738. period = d->rt_period;
  8739. runtime = d->rt_runtime;
  8740. }
  8741. #ifdef CONFIG_USER_SCHED
  8742. if (tg == &root_task_group) {
  8743. period = global_rt_period();
  8744. runtime = global_rt_runtime();
  8745. }
  8746. #endif
  8747. /*
  8748. * Cannot have more runtime than the period.
  8749. */
  8750. if (runtime > period && runtime != RUNTIME_INF)
  8751. return -EINVAL;
  8752. /*
  8753. * Ensure we don't starve existing RT tasks.
  8754. */
  8755. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8756. return -EBUSY;
  8757. total = to_ratio(period, runtime);
  8758. /*
  8759. * Nobody can have more than the global setting allows.
  8760. */
  8761. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8762. return -EINVAL;
  8763. /*
  8764. * The sum of our children's runtime should not exceed our own.
  8765. */
  8766. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8767. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8768. runtime = child->rt_bandwidth.rt_runtime;
  8769. if (child == d->tg) {
  8770. period = d->rt_period;
  8771. runtime = d->rt_runtime;
  8772. }
  8773. sum += to_ratio(period, runtime);
  8774. }
  8775. if (sum > total)
  8776. return -EINVAL;
  8777. return 0;
  8778. }
  8779. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8780. {
  8781. struct rt_schedulable_data data = {
  8782. .tg = tg,
  8783. .rt_period = period,
  8784. .rt_runtime = runtime,
  8785. };
  8786. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8787. }
  8788. static int tg_set_bandwidth(struct task_group *tg,
  8789. u64 rt_period, u64 rt_runtime)
  8790. {
  8791. int i, err = 0;
  8792. mutex_lock(&rt_constraints_mutex);
  8793. read_lock(&tasklist_lock);
  8794. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8795. if (err)
  8796. goto unlock;
  8797. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8798. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8799. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8800. for_each_possible_cpu(i) {
  8801. struct rt_rq *rt_rq = tg->rt_rq[i];
  8802. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8803. rt_rq->rt_runtime = rt_runtime;
  8804. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8805. }
  8806. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8807. unlock:
  8808. read_unlock(&tasklist_lock);
  8809. mutex_unlock(&rt_constraints_mutex);
  8810. return err;
  8811. }
  8812. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8813. {
  8814. u64 rt_runtime, rt_period;
  8815. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8816. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8817. if (rt_runtime_us < 0)
  8818. rt_runtime = RUNTIME_INF;
  8819. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8820. }
  8821. long sched_group_rt_runtime(struct task_group *tg)
  8822. {
  8823. u64 rt_runtime_us;
  8824. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8825. return -1;
  8826. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8827. do_div(rt_runtime_us, NSEC_PER_USEC);
  8828. return rt_runtime_us;
  8829. }
  8830. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8831. {
  8832. u64 rt_runtime, rt_period;
  8833. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8834. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8835. if (rt_period == 0)
  8836. return -EINVAL;
  8837. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8838. }
  8839. long sched_group_rt_period(struct task_group *tg)
  8840. {
  8841. u64 rt_period_us;
  8842. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8843. do_div(rt_period_us, NSEC_PER_USEC);
  8844. return rt_period_us;
  8845. }
  8846. static int sched_rt_global_constraints(void)
  8847. {
  8848. u64 runtime, period;
  8849. int ret = 0;
  8850. if (sysctl_sched_rt_period <= 0)
  8851. return -EINVAL;
  8852. runtime = global_rt_runtime();
  8853. period = global_rt_period();
  8854. /*
  8855. * Sanity check on the sysctl variables.
  8856. */
  8857. if (runtime > period && runtime != RUNTIME_INF)
  8858. return -EINVAL;
  8859. mutex_lock(&rt_constraints_mutex);
  8860. read_lock(&tasklist_lock);
  8861. ret = __rt_schedulable(NULL, 0, 0);
  8862. read_unlock(&tasklist_lock);
  8863. mutex_unlock(&rt_constraints_mutex);
  8864. return ret;
  8865. }
  8866. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8867. {
  8868. /* Don't accept realtime tasks when there is no way for them to run */
  8869. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8870. return 0;
  8871. return 1;
  8872. }
  8873. #else /* !CONFIG_RT_GROUP_SCHED */
  8874. static int sched_rt_global_constraints(void)
  8875. {
  8876. unsigned long flags;
  8877. int i;
  8878. if (sysctl_sched_rt_period <= 0)
  8879. return -EINVAL;
  8880. /*
  8881. * There's always some RT tasks in the root group
  8882. * -- migration, kstopmachine etc..
  8883. */
  8884. if (sysctl_sched_rt_runtime == 0)
  8885. return -EBUSY;
  8886. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8887. for_each_possible_cpu(i) {
  8888. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8889. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8890. rt_rq->rt_runtime = global_rt_runtime();
  8891. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8892. }
  8893. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8894. return 0;
  8895. }
  8896. #endif /* CONFIG_RT_GROUP_SCHED */
  8897. int sched_rt_handler(struct ctl_table *table, int write,
  8898. void __user *buffer, size_t *lenp,
  8899. loff_t *ppos)
  8900. {
  8901. int ret;
  8902. int old_period, old_runtime;
  8903. static DEFINE_MUTEX(mutex);
  8904. mutex_lock(&mutex);
  8905. old_period = sysctl_sched_rt_period;
  8906. old_runtime = sysctl_sched_rt_runtime;
  8907. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8908. if (!ret && write) {
  8909. ret = sched_rt_global_constraints();
  8910. if (ret) {
  8911. sysctl_sched_rt_period = old_period;
  8912. sysctl_sched_rt_runtime = old_runtime;
  8913. } else {
  8914. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8915. def_rt_bandwidth.rt_period =
  8916. ns_to_ktime(global_rt_period());
  8917. }
  8918. }
  8919. mutex_unlock(&mutex);
  8920. return ret;
  8921. }
  8922. #ifdef CONFIG_CGROUP_SCHED
  8923. /* return corresponding task_group object of a cgroup */
  8924. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8925. {
  8926. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8927. struct task_group, css);
  8928. }
  8929. static struct cgroup_subsys_state *
  8930. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8931. {
  8932. struct task_group *tg, *parent;
  8933. if (!cgrp->parent) {
  8934. /* This is early initialization for the top cgroup */
  8935. return &init_task_group.css;
  8936. }
  8937. parent = cgroup_tg(cgrp->parent);
  8938. tg = sched_create_group(parent);
  8939. if (IS_ERR(tg))
  8940. return ERR_PTR(-ENOMEM);
  8941. return &tg->css;
  8942. }
  8943. static void
  8944. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8945. {
  8946. struct task_group *tg = cgroup_tg(cgrp);
  8947. sched_destroy_group(tg);
  8948. }
  8949. static int
  8950. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8951. {
  8952. #ifdef CONFIG_RT_GROUP_SCHED
  8953. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8954. return -EINVAL;
  8955. #else
  8956. /* We don't support RT-tasks being in separate groups */
  8957. if (tsk->sched_class != &fair_sched_class)
  8958. return -EINVAL;
  8959. #endif
  8960. return 0;
  8961. }
  8962. static int
  8963. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8964. struct task_struct *tsk, bool threadgroup)
  8965. {
  8966. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8967. if (retval)
  8968. return retval;
  8969. if (threadgroup) {
  8970. struct task_struct *c;
  8971. rcu_read_lock();
  8972. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8973. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8974. if (retval) {
  8975. rcu_read_unlock();
  8976. return retval;
  8977. }
  8978. }
  8979. rcu_read_unlock();
  8980. }
  8981. return 0;
  8982. }
  8983. static void
  8984. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8985. struct cgroup *old_cont, struct task_struct *tsk,
  8986. bool threadgroup)
  8987. {
  8988. sched_move_task(tsk);
  8989. if (threadgroup) {
  8990. struct task_struct *c;
  8991. rcu_read_lock();
  8992. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8993. sched_move_task(c);
  8994. }
  8995. rcu_read_unlock();
  8996. }
  8997. }
  8998. #ifdef CONFIG_FAIR_GROUP_SCHED
  8999. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  9000. u64 shareval)
  9001. {
  9002. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  9003. }
  9004. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  9005. {
  9006. struct task_group *tg = cgroup_tg(cgrp);
  9007. return (u64) tg->shares;
  9008. }
  9009. #endif /* CONFIG_FAIR_GROUP_SCHED */
  9010. #ifdef CONFIG_RT_GROUP_SCHED
  9011. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  9012. s64 val)
  9013. {
  9014. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  9015. }
  9016. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  9017. {
  9018. return sched_group_rt_runtime(cgroup_tg(cgrp));
  9019. }
  9020. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  9021. u64 rt_period_us)
  9022. {
  9023. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  9024. }
  9025. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  9026. {
  9027. return sched_group_rt_period(cgroup_tg(cgrp));
  9028. }
  9029. #endif /* CONFIG_RT_GROUP_SCHED */
  9030. static struct cftype cpu_files[] = {
  9031. #ifdef CONFIG_FAIR_GROUP_SCHED
  9032. {
  9033. .name = "shares",
  9034. .read_u64 = cpu_shares_read_u64,
  9035. .write_u64 = cpu_shares_write_u64,
  9036. },
  9037. #endif
  9038. #ifdef CONFIG_RT_GROUP_SCHED
  9039. {
  9040. .name = "rt_runtime_us",
  9041. .read_s64 = cpu_rt_runtime_read,
  9042. .write_s64 = cpu_rt_runtime_write,
  9043. },
  9044. {
  9045. .name = "rt_period_us",
  9046. .read_u64 = cpu_rt_period_read_uint,
  9047. .write_u64 = cpu_rt_period_write_uint,
  9048. },
  9049. #endif
  9050. };
  9051. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9052. {
  9053. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9054. }
  9055. struct cgroup_subsys cpu_cgroup_subsys = {
  9056. .name = "cpu",
  9057. .create = cpu_cgroup_create,
  9058. .destroy = cpu_cgroup_destroy,
  9059. .can_attach = cpu_cgroup_can_attach,
  9060. .attach = cpu_cgroup_attach,
  9061. .populate = cpu_cgroup_populate,
  9062. .subsys_id = cpu_cgroup_subsys_id,
  9063. .early_init = 1,
  9064. };
  9065. #endif /* CONFIG_CGROUP_SCHED */
  9066. #ifdef CONFIG_CGROUP_CPUACCT
  9067. /*
  9068. * CPU accounting code for task groups.
  9069. *
  9070. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9071. * (balbir@in.ibm.com).
  9072. */
  9073. /* track cpu usage of a group of tasks and its child groups */
  9074. struct cpuacct {
  9075. struct cgroup_subsys_state css;
  9076. /* cpuusage holds pointer to a u64-type object on every cpu */
  9077. u64 *cpuusage;
  9078. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9079. struct cpuacct *parent;
  9080. };
  9081. struct cgroup_subsys cpuacct_subsys;
  9082. /* return cpu accounting group corresponding to this container */
  9083. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9084. {
  9085. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9086. struct cpuacct, css);
  9087. }
  9088. /* return cpu accounting group to which this task belongs */
  9089. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9090. {
  9091. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9092. struct cpuacct, css);
  9093. }
  9094. /* create a new cpu accounting group */
  9095. static struct cgroup_subsys_state *cpuacct_create(
  9096. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9097. {
  9098. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9099. int i;
  9100. if (!ca)
  9101. goto out;
  9102. ca->cpuusage = alloc_percpu(u64);
  9103. if (!ca->cpuusage)
  9104. goto out_free_ca;
  9105. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9106. if (percpu_counter_init(&ca->cpustat[i], 0))
  9107. goto out_free_counters;
  9108. if (cgrp->parent)
  9109. ca->parent = cgroup_ca(cgrp->parent);
  9110. return &ca->css;
  9111. out_free_counters:
  9112. while (--i >= 0)
  9113. percpu_counter_destroy(&ca->cpustat[i]);
  9114. free_percpu(ca->cpuusage);
  9115. out_free_ca:
  9116. kfree(ca);
  9117. out:
  9118. return ERR_PTR(-ENOMEM);
  9119. }
  9120. /* destroy an existing cpu accounting group */
  9121. static void
  9122. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9123. {
  9124. struct cpuacct *ca = cgroup_ca(cgrp);
  9125. int i;
  9126. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9127. percpu_counter_destroy(&ca->cpustat[i]);
  9128. free_percpu(ca->cpuusage);
  9129. kfree(ca);
  9130. }
  9131. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9132. {
  9133. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9134. u64 data;
  9135. #ifndef CONFIG_64BIT
  9136. /*
  9137. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9138. */
  9139. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9140. data = *cpuusage;
  9141. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9142. #else
  9143. data = *cpuusage;
  9144. #endif
  9145. return data;
  9146. }
  9147. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9148. {
  9149. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9150. #ifndef CONFIG_64BIT
  9151. /*
  9152. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9153. */
  9154. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9155. *cpuusage = val;
  9156. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9157. #else
  9158. *cpuusage = val;
  9159. #endif
  9160. }
  9161. /* return total cpu usage (in nanoseconds) of a group */
  9162. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9163. {
  9164. struct cpuacct *ca = cgroup_ca(cgrp);
  9165. u64 totalcpuusage = 0;
  9166. int i;
  9167. for_each_present_cpu(i)
  9168. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9169. return totalcpuusage;
  9170. }
  9171. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9172. u64 reset)
  9173. {
  9174. struct cpuacct *ca = cgroup_ca(cgrp);
  9175. int err = 0;
  9176. int i;
  9177. if (reset) {
  9178. err = -EINVAL;
  9179. goto out;
  9180. }
  9181. for_each_present_cpu(i)
  9182. cpuacct_cpuusage_write(ca, i, 0);
  9183. out:
  9184. return err;
  9185. }
  9186. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9187. struct seq_file *m)
  9188. {
  9189. struct cpuacct *ca = cgroup_ca(cgroup);
  9190. u64 percpu;
  9191. int i;
  9192. for_each_present_cpu(i) {
  9193. percpu = cpuacct_cpuusage_read(ca, i);
  9194. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9195. }
  9196. seq_printf(m, "\n");
  9197. return 0;
  9198. }
  9199. static const char *cpuacct_stat_desc[] = {
  9200. [CPUACCT_STAT_USER] = "user",
  9201. [CPUACCT_STAT_SYSTEM] = "system",
  9202. };
  9203. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9204. struct cgroup_map_cb *cb)
  9205. {
  9206. struct cpuacct *ca = cgroup_ca(cgrp);
  9207. int i;
  9208. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9209. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9210. val = cputime64_to_clock_t(val);
  9211. cb->fill(cb, cpuacct_stat_desc[i], val);
  9212. }
  9213. return 0;
  9214. }
  9215. static struct cftype files[] = {
  9216. {
  9217. .name = "usage",
  9218. .read_u64 = cpuusage_read,
  9219. .write_u64 = cpuusage_write,
  9220. },
  9221. {
  9222. .name = "usage_percpu",
  9223. .read_seq_string = cpuacct_percpu_seq_read,
  9224. },
  9225. {
  9226. .name = "stat",
  9227. .read_map = cpuacct_stats_show,
  9228. },
  9229. };
  9230. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9231. {
  9232. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9233. }
  9234. /*
  9235. * charge this task's execution time to its accounting group.
  9236. *
  9237. * called with rq->lock held.
  9238. */
  9239. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9240. {
  9241. struct cpuacct *ca;
  9242. int cpu;
  9243. if (unlikely(!cpuacct_subsys.active))
  9244. return;
  9245. cpu = task_cpu(tsk);
  9246. rcu_read_lock();
  9247. ca = task_ca(tsk);
  9248. for (; ca; ca = ca->parent) {
  9249. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9250. *cpuusage += cputime;
  9251. }
  9252. rcu_read_unlock();
  9253. }
  9254. /*
  9255. * Charge the system/user time to the task's accounting group.
  9256. */
  9257. static void cpuacct_update_stats(struct task_struct *tsk,
  9258. enum cpuacct_stat_index idx, cputime_t val)
  9259. {
  9260. struct cpuacct *ca;
  9261. if (unlikely(!cpuacct_subsys.active))
  9262. return;
  9263. rcu_read_lock();
  9264. ca = task_ca(tsk);
  9265. do {
  9266. percpu_counter_add(&ca->cpustat[idx], val);
  9267. ca = ca->parent;
  9268. } while (ca);
  9269. rcu_read_unlock();
  9270. }
  9271. struct cgroup_subsys cpuacct_subsys = {
  9272. .name = "cpuacct",
  9273. .create = cpuacct_create,
  9274. .destroy = cpuacct_destroy,
  9275. .populate = cpuacct_populate,
  9276. .subsys_id = cpuacct_subsys_id,
  9277. };
  9278. #endif /* CONFIG_CGROUP_CPUACCT */
  9279. #ifndef CONFIG_SMP
  9280. int rcu_expedited_torture_stats(char *page)
  9281. {
  9282. return 0;
  9283. }
  9284. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9285. void synchronize_sched_expedited(void)
  9286. {
  9287. }
  9288. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9289. #else /* #ifndef CONFIG_SMP */
  9290. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9291. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9292. #define RCU_EXPEDITED_STATE_POST -2
  9293. #define RCU_EXPEDITED_STATE_IDLE -1
  9294. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9295. int rcu_expedited_torture_stats(char *page)
  9296. {
  9297. int cnt = 0;
  9298. int cpu;
  9299. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9300. for_each_online_cpu(cpu) {
  9301. cnt += sprintf(&page[cnt], " %d:%d",
  9302. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9303. }
  9304. cnt += sprintf(&page[cnt], "\n");
  9305. return cnt;
  9306. }
  9307. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9308. static long synchronize_sched_expedited_count;
  9309. /*
  9310. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9311. * approach to force grace period to end quickly. This consumes
  9312. * significant time on all CPUs, and is thus not recommended for
  9313. * any sort of common-case code.
  9314. *
  9315. * Note that it is illegal to call this function while holding any
  9316. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9317. * observe this restriction will result in deadlock.
  9318. */
  9319. void synchronize_sched_expedited(void)
  9320. {
  9321. int cpu;
  9322. unsigned long flags;
  9323. bool need_full_sync = 0;
  9324. struct rq *rq;
  9325. struct migration_req *req;
  9326. long snap;
  9327. int trycount = 0;
  9328. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9329. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9330. get_online_cpus();
  9331. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9332. put_online_cpus();
  9333. if (trycount++ < 10)
  9334. udelay(trycount * num_online_cpus());
  9335. else {
  9336. synchronize_sched();
  9337. return;
  9338. }
  9339. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9340. smp_mb(); /* ensure test happens before caller kfree */
  9341. return;
  9342. }
  9343. get_online_cpus();
  9344. }
  9345. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9346. for_each_online_cpu(cpu) {
  9347. rq = cpu_rq(cpu);
  9348. req = &per_cpu(rcu_migration_req, cpu);
  9349. init_completion(&req->done);
  9350. req->task = NULL;
  9351. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9352. raw_spin_lock_irqsave(&rq->lock, flags);
  9353. list_add(&req->list, &rq->migration_queue);
  9354. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9355. wake_up_process(rq->migration_thread);
  9356. }
  9357. for_each_online_cpu(cpu) {
  9358. rcu_expedited_state = cpu;
  9359. req = &per_cpu(rcu_migration_req, cpu);
  9360. rq = cpu_rq(cpu);
  9361. wait_for_completion(&req->done);
  9362. raw_spin_lock_irqsave(&rq->lock, flags);
  9363. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9364. need_full_sync = 1;
  9365. req->dest_cpu = RCU_MIGRATION_IDLE;
  9366. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9367. }
  9368. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9369. synchronize_sched_expedited_count++;
  9370. mutex_unlock(&rcu_sched_expedited_mutex);
  9371. put_online_cpus();
  9372. if (need_full_sync)
  9373. synchronize_sched();
  9374. }
  9375. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9376. #endif /* #else #ifndef CONFIG_SMP */