skbuff.h 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. #include <linux/sched.h>
  33. #include <net/flow_keys.h>
  34. /* A. Checksumming of received packets by device.
  35. *
  36. * CHECKSUM_NONE:
  37. *
  38. * Device failed to checksum this packet e.g. due to lack of capabilities.
  39. * The packet contains full (though not verified) checksum in packet but
  40. * not in skb->csum. Thus, skb->csum is undefined in this case.
  41. *
  42. * CHECKSUM_UNNECESSARY:
  43. *
  44. * The hardware you're dealing with doesn't calculate the full checksum
  45. * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  46. * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
  47. * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
  48. * undefined in this case though. It is a bad option, but, unfortunately,
  49. * nowadays most vendors do this. Apparently with the secret goal to sell
  50. * you new devices, when you will add new protocol to your host, f.e. IPv6 8)
  51. *
  52. * CHECKSUM_COMPLETE:
  53. *
  54. * This is the most generic way. The device supplied checksum of the _whole_
  55. * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  56. * hardware doesn't need to parse L3/L4 headers to implement this.
  57. *
  58. * Note: Even if device supports only some protocols, but is able to produce
  59. * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  60. *
  61. * CHECKSUM_PARTIAL:
  62. *
  63. * This is identical to the case for output below. This may occur on a packet
  64. * received directly from another Linux OS, e.g., a virtualized Linux kernel
  65. * on the same host. The packet can be treated in the same way as
  66. * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
  67. * checksum must be filled in by the OS or the hardware.
  68. *
  69. * B. Checksumming on output.
  70. *
  71. * CHECKSUM_NONE:
  72. *
  73. * The skb was already checksummed by the protocol, or a checksum is not
  74. * required.
  75. *
  76. * CHECKSUM_PARTIAL:
  77. *
  78. * The device is required to checksum the packet as seen by hard_start_xmit()
  79. * from skb->csum_start up to the end, and to record/write the checksum at
  80. * offset skb->csum_start + skb->csum_offset.
  81. *
  82. * The device must show its capabilities in dev->features, set up at device
  83. * setup time, e.g. netdev_features.h:
  84. *
  85. * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
  86. * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
  87. * IPv4. Sigh. Vendors like this way for an unknown reason.
  88. * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
  89. * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
  90. * NETIF_F_... - Well, you get the picture.
  91. *
  92. * CHECKSUM_UNNECESSARY:
  93. *
  94. * Normally, the device will do per protocol specific checksumming. Protocol
  95. * implementations that do not want the NIC to perform the checksum
  96. * calculation should use this flag in their outgoing skbs.
  97. *
  98. * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
  99. * offload. Correspondingly, the FCoE protocol driver
  100. * stack should use CHECKSUM_UNNECESSARY.
  101. *
  102. * Any questions? No questions, good. --ANK
  103. */
  104. /* Don't change this without changing skb_csum_unnecessary! */
  105. #define CHECKSUM_NONE 0
  106. #define CHECKSUM_UNNECESSARY 1
  107. #define CHECKSUM_COMPLETE 2
  108. #define CHECKSUM_PARTIAL 3
  109. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  110. ~(SMP_CACHE_BYTES - 1))
  111. #define SKB_WITH_OVERHEAD(X) \
  112. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  113. #define SKB_MAX_ORDER(X, ORDER) \
  114. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  115. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  116. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  117. /* return minimum truesize of one skb containing X bytes of data */
  118. #define SKB_TRUESIZE(X) ((X) + \
  119. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  120. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  121. struct net_device;
  122. struct scatterlist;
  123. struct pipe_inode_info;
  124. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  125. struct nf_conntrack {
  126. atomic_t use;
  127. };
  128. #endif
  129. #ifdef CONFIG_BRIDGE_NETFILTER
  130. struct nf_bridge_info {
  131. atomic_t use;
  132. unsigned int mask;
  133. struct net_device *physindev;
  134. struct net_device *physoutdev;
  135. unsigned long data[32 / sizeof(unsigned long)];
  136. };
  137. #endif
  138. struct sk_buff_head {
  139. /* These two members must be first. */
  140. struct sk_buff *next;
  141. struct sk_buff *prev;
  142. __u32 qlen;
  143. spinlock_t lock;
  144. };
  145. struct sk_buff;
  146. /* To allow 64K frame to be packed as single skb without frag_list we
  147. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  148. * buffers which do not start on a page boundary.
  149. *
  150. * Since GRO uses frags we allocate at least 16 regardless of page
  151. * size.
  152. */
  153. #if (65536/PAGE_SIZE + 1) < 16
  154. #define MAX_SKB_FRAGS 16UL
  155. #else
  156. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  157. #endif
  158. typedef struct skb_frag_struct skb_frag_t;
  159. struct skb_frag_struct {
  160. struct {
  161. struct page *p;
  162. } page;
  163. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  164. __u32 page_offset;
  165. __u32 size;
  166. #else
  167. __u16 page_offset;
  168. __u16 size;
  169. #endif
  170. };
  171. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  172. {
  173. return frag->size;
  174. }
  175. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  176. {
  177. frag->size = size;
  178. }
  179. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  180. {
  181. frag->size += delta;
  182. }
  183. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  184. {
  185. frag->size -= delta;
  186. }
  187. #define HAVE_HW_TIME_STAMP
  188. /**
  189. * struct skb_shared_hwtstamps - hardware time stamps
  190. * @hwtstamp: hardware time stamp transformed into duration
  191. * since arbitrary point in time
  192. * @syststamp: hwtstamp transformed to system time base
  193. *
  194. * Software time stamps generated by ktime_get_real() are stored in
  195. * skb->tstamp. The relation between the different kinds of time
  196. * stamps is as follows:
  197. *
  198. * syststamp and tstamp can be compared against each other in
  199. * arbitrary combinations. The accuracy of a
  200. * syststamp/tstamp/"syststamp from other device" comparison is
  201. * limited by the accuracy of the transformation into system time
  202. * base. This depends on the device driver and its underlying
  203. * hardware.
  204. *
  205. * hwtstamps can only be compared against other hwtstamps from
  206. * the same device.
  207. *
  208. * This structure is attached to packets as part of the
  209. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  210. */
  211. struct skb_shared_hwtstamps {
  212. ktime_t hwtstamp;
  213. ktime_t syststamp;
  214. };
  215. /* Definitions for tx_flags in struct skb_shared_info */
  216. enum {
  217. /* generate hardware time stamp */
  218. SKBTX_HW_TSTAMP = 1 << 0,
  219. /* generate software time stamp */
  220. SKBTX_SW_TSTAMP = 1 << 1,
  221. /* device driver is going to provide hardware time stamp */
  222. SKBTX_IN_PROGRESS = 1 << 2,
  223. /* device driver supports TX zero-copy buffers */
  224. SKBTX_DEV_ZEROCOPY = 1 << 3,
  225. /* generate wifi status information (where possible) */
  226. SKBTX_WIFI_STATUS = 1 << 4,
  227. /* This indicates at least one fragment might be overwritten
  228. * (as in vmsplice(), sendfile() ...)
  229. * If we need to compute a TX checksum, we'll need to copy
  230. * all frags to avoid possible bad checksum
  231. */
  232. SKBTX_SHARED_FRAG = 1 << 5,
  233. };
  234. /*
  235. * The callback notifies userspace to release buffers when skb DMA is done in
  236. * lower device, the skb last reference should be 0 when calling this.
  237. * The zerocopy_success argument is true if zero copy transmit occurred,
  238. * false on data copy or out of memory error caused by data copy attempt.
  239. * The ctx field is used to track device context.
  240. * The desc field is used to track userspace buffer index.
  241. */
  242. struct ubuf_info {
  243. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  244. void *ctx;
  245. unsigned long desc;
  246. };
  247. /* This data is invariant across clones and lives at
  248. * the end of the header data, ie. at skb->end.
  249. */
  250. struct skb_shared_info {
  251. unsigned char nr_frags;
  252. __u8 tx_flags;
  253. unsigned short gso_size;
  254. /* Warning: this field is not always filled in (UFO)! */
  255. unsigned short gso_segs;
  256. unsigned short gso_type;
  257. struct sk_buff *frag_list;
  258. struct skb_shared_hwtstamps hwtstamps;
  259. __be32 ip6_frag_id;
  260. /*
  261. * Warning : all fields before dataref are cleared in __alloc_skb()
  262. */
  263. atomic_t dataref;
  264. /* Intermediate layers must ensure that destructor_arg
  265. * remains valid until skb destructor */
  266. void * destructor_arg;
  267. /* must be last field, see pskb_expand_head() */
  268. skb_frag_t frags[MAX_SKB_FRAGS];
  269. };
  270. /* We divide dataref into two halves. The higher 16 bits hold references
  271. * to the payload part of skb->data. The lower 16 bits hold references to
  272. * the entire skb->data. A clone of a headerless skb holds the length of
  273. * the header in skb->hdr_len.
  274. *
  275. * All users must obey the rule that the skb->data reference count must be
  276. * greater than or equal to the payload reference count.
  277. *
  278. * Holding a reference to the payload part means that the user does not
  279. * care about modifications to the header part of skb->data.
  280. */
  281. #define SKB_DATAREF_SHIFT 16
  282. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  283. enum {
  284. SKB_FCLONE_UNAVAILABLE,
  285. SKB_FCLONE_ORIG,
  286. SKB_FCLONE_CLONE,
  287. };
  288. enum {
  289. SKB_GSO_TCPV4 = 1 << 0,
  290. SKB_GSO_UDP = 1 << 1,
  291. /* This indicates the skb is from an untrusted source. */
  292. SKB_GSO_DODGY = 1 << 2,
  293. /* This indicates the tcp segment has CWR set. */
  294. SKB_GSO_TCP_ECN = 1 << 3,
  295. SKB_GSO_TCPV6 = 1 << 4,
  296. SKB_GSO_FCOE = 1 << 5,
  297. SKB_GSO_GRE = 1 << 6,
  298. SKB_GSO_IPIP = 1 << 7,
  299. SKB_GSO_SIT = 1 << 8,
  300. SKB_GSO_UDP_TUNNEL = 1 << 9,
  301. SKB_GSO_MPLS = 1 << 10,
  302. SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
  303. SKB_GSO_GRE_CSUM = 1 << 12,
  304. };
  305. #if BITS_PER_LONG > 32
  306. #define NET_SKBUFF_DATA_USES_OFFSET 1
  307. #endif
  308. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  309. typedef unsigned int sk_buff_data_t;
  310. #else
  311. typedef unsigned char *sk_buff_data_t;
  312. #endif
  313. /**
  314. * struct skb_mstamp - multi resolution time stamps
  315. * @stamp_us: timestamp in us resolution
  316. * @stamp_jiffies: timestamp in jiffies
  317. */
  318. struct skb_mstamp {
  319. union {
  320. u64 v64;
  321. struct {
  322. u32 stamp_us;
  323. u32 stamp_jiffies;
  324. };
  325. };
  326. };
  327. /**
  328. * skb_mstamp_get - get current timestamp
  329. * @cl: place to store timestamps
  330. */
  331. static inline void skb_mstamp_get(struct skb_mstamp *cl)
  332. {
  333. u64 val = local_clock();
  334. do_div(val, NSEC_PER_USEC);
  335. cl->stamp_us = (u32)val;
  336. cl->stamp_jiffies = (u32)jiffies;
  337. }
  338. /**
  339. * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
  340. * @t1: pointer to newest sample
  341. * @t0: pointer to oldest sample
  342. */
  343. static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
  344. const struct skb_mstamp *t0)
  345. {
  346. s32 delta_us = t1->stamp_us - t0->stamp_us;
  347. u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
  348. /* If delta_us is negative, this might be because interval is too big,
  349. * or local_clock() drift is too big : fallback using jiffies.
  350. */
  351. if (delta_us <= 0 ||
  352. delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
  353. delta_us = jiffies_to_usecs(delta_jiffies);
  354. return delta_us;
  355. }
  356. /**
  357. * struct sk_buff - socket buffer
  358. * @next: Next buffer in list
  359. * @prev: Previous buffer in list
  360. * @tstamp: Time we arrived/left
  361. * @sk: Socket we are owned by
  362. * @dev: Device we arrived on/are leaving by
  363. * @cb: Control buffer. Free for use by every layer. Put private vars here
  364. * @_skb_refdst: destination entry (with norefcount bit)
  365. * @sp: the security path, used for xfrm
  366. * @len: Length of actual data
  367. * @data_len: Data length
  368. * @mac_len: Length of link layer header
  369. * @hdr_len: writable header length of cloned skb
  370. * @csum: Checksum (must include start/offset pair)
  371. * @csum_start: Offset from skb->head where checksumming should start
  372. * @csum_offset: Offset from csum_start where checksum should be stored
  373. * @priority: Packet queueing priority
  374. * @ignore_df: allow local fragmentation
  375. * @cloned: Head may be cloned (check refcnt to be sure)
  376. * @ip_summed: Driver fed us an IP checksum
  377. * @nohdr: Payload reference only, must not modify header
  378. * @nfctinfo: Relationship of this skb to the connection
  379. * @pkt_type: Packet class
  380. * @fclone: skbuff clone status
  381. * @ipvs_property: skbuff is owned by ipvs
  382. * @peeked: this packet has been seen already, so stats have been
  383. * done for it, don't do them again
  384. * @nf_trace: netfilter packet trace flag
  385. * @protocol: Packet protocol from driver
  386. * @destructor: Destruct function
  387. * @nfct: Associated connection, if any
  388. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  389. * @skb_iif: ifindex of device we arrived on
  390. * @tc_index: Traffic control index
  391. * @tc_verd: traffic control verdict
  392. * @hash: the packet hash
  393. * @queue_mapping: Queue mapping for multiqueue devices
  394. * @ndisc_nodetype: router type (from link layer)
  395. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  396. * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
  397. * ports.
  398. * @wifi_acked_valid: wifi_acked was set
  399. * @wifi_acked: whether frame was acked on wifi or not
  400. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  401. * @dma_cookie: a cookie to one of several possible DMA operations
  402. * done by skb DMA functions
  403. * @napi_id: id of the NAPI struct this skb came from
  404. * @secmark: security marking
  405. * @mark: Generic packet mark
  406. * @dropcount: total number of sk_receive_queue overflows
  407. * @vlan_proto: vlan encapsulation protocol
  408. * @vlan_tci: vlan tag control information
  409. * @inner_protocol: Protocol (encapsulation)
  410. * @inner_transport_header: Inner transport layer header (encapsulation)
  411. * @inner_network_header: Network layer header (encapsulation)
  412. * @inner_mac_header: Link layer header (encapsulation)
  413. * @transport_header: Transport layer header
  414. * @network_header: Network layer header
  415. * @mac_header: Link layer header
  416. * @tail: Tail pointer
  417. * @end: End pointer
  418. * @head: Head of buffer
  419. * @data: Data head pointer
  420. * @truesize: Buffer size
  421. * @users: User count - see {datagram,tcp}.c
  422. */
  423. struct sk_buff {
  424. /* These two members must be first. */
  425. struct sk_buff *next;
  426. struct sk_buff *prev;
  427. union {
  428. ktime_t tstamp;
  429. struct skb_mstamp skb_mstamp;
  430. };
  431. struct sock *sk;
  432. struct net_device *dev;
  433. /*
  434. * This is the control buffer. It is free to use for every
  435. * layer. Please put your private variables there. If you
  436. * want to keep them across layers you have to do a skb_clone()
  437. * first. This is owned by whoever has the skb queued ATM.
  438. */
  439. char cb[48] __aligned(8);
  440. unsigned long _skb_refdst;
  441. #ifdef CONFIG_XFRM
  442. struct sec_path *sp;
  443. #endif
  444. unsigned int len,
  445. data_len;
  446. __u16 mac_len,
  447. hdr_len;
  448. union {
  449. __wsum csum;
  450. struct {
  451. __u16 csum_start;
  452. __u16 csum_offset;
  453. };
  454. };
  455. __u32 priority;
  456. kmemcheck_bitfield_begin(flags1);
  457. __u8 ignore_df:1,
  458. cloned:1,
  459. ip_summed:2,
  460. nohdr:1,
  461. nfctinfo:3;
  462. __u8 pkt_type:3,
  463. fclone:2,
  464. ipvs_property:1,
  465. peeked:1,
  466. nf_trace:1;
  467. kmemcheck_bitfield_end(flags1);
  468. __be16 protocol;
  469. void (*destructor)(struct sk_buff *skb);
  470. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  471. struct nf_conntrack *nfct;
  472. #endif
  473. #ifdef CONFIG_BRIDGE_NETFILTER
  474. struct nf_bridge_info *nf_bridge;
  475. #endif
  476. int skb_iif;
  477. __u32 hash;
  478. __be16 vlan_proto;
  479. __u16 vlan_tci;
  480. #ifdef CONFIG_NET_SCHED
  481. __u16 tc_index; /* traffic control index */
  482. #ifdef CONFIG_NET_CLS_ACT
  483. __u16 tc_verd; /* traffic control verdict */
  484. #endif
  485. #endif
  486. __u16 queue_mapping;
  487. kmemcheck_bitfield_begin(flags2);
  488. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  489. __u8 ndisc_nodetype:2;
  490. #endif
  491. __u8 pfmemalloc:1;
  492. __u8 ooo_okay:1;
  493. __u8 l4_hash:1;
  494. __u8 wifi_acked_valid:1;
  495. __u8 wifi_acked:1;
  496. __u8 no_fcs:1;
  497. __u8 head_frag:1;
  498. /* Encapsulation protocol and NIC drivers should use
  499. * this flag to indicate to each other if the skb contains
  500. * encapsulated packet or not and maybe use the inner packet
  501. * headers if needed
  502. */
  503. __u8 encapsulation:1;
  504. __u8 encap_hdr_csum:1;
  505. __u8 csum_valid:1;
  506. /* 4/6 bit hole (depending on ndisc_nodetype presence) */
  507. kmemcheck_bitfield_end(flags2);
  508. #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
  509. union {
  510. unsigned int napi_id;
  511. dma_cookie_t dma_cookie;
  512. };
  513. #endif
  514. #ifdef CONFIG_NETWORK_SECMARK
  515. __u32 secmark;
  516. #endif
  517. union {
  518. __u32 mark;
  519. __u32 dropcount;
  520. __u32 reserved_tailroom;
  521. };
  522. __be16 inner_protocol;
  523. __u16 inner_transport_header;
  524. __u16 inner_network_header;
  525. __u16 inner_mac_header;
  526. __u16 transport_header;
  527. __u16 network_header;
  528. __u16 mac_header;
  529. /* These elements must be at the end, see alloc_skb() for details. */
  530. sk_buff_data_t tail;
  531. sk_buff_data_t end;
  532. unsigned char *head,
  533. *data;
  534. unsigned int truesize;
  535. atomic_t users;
  536. };
  537. #ifdef __KERNEL__
  538. /*
  539. * Handling routines are only of interest to the kernel
  540. */
  541. #include <linux/slab.h>
  542. #define SKB_ALLOC_FCLONE 0x01
  543. #define SKB_ALLOC_RX 0x02
  544. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  545. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  546. {
  547. return unlikely(skb->pfmemalloc);
  548. }
  549. /*
  550. * skb might have a dst pointer attached, refcounted or not.
  551. * _skb_refdst low order bit is set if refcount was _not_ taken
  552. */
  553. #define SKB_DST_NOREF 1UL
  554. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  555. /**
  556. * skb_dst - returns skb dst_entry
  557. * @skb: buffer
  558. *
  559. * Returns skb dst_entry, regardless of reference taken or not.
  560. */
  561. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  562. {
  563. /* If refdst was not refcounted, check we still are in a
  564. * rcu_read_lock section
  565. */
  566. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  567. !rcu_read_lock_held() &&
  568. !rcu_read_lock_bh_held());
  569. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  570. }
  571. /**
  572. * skb_dst_set - sets skb dst
  573. * @skb: buffer
  574. * @dst: dst entry
  575. *
  576. * Sets skb dst, assuming a reference was taken on dst and should
  577. * be released by skb_dst_drop()
  578. */
  579. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  580. {
  581. skb->_skb_refdst = (unsigned long)dst;
  582. }
  583. void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
  584. bool force);
  585. /**
  586. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  587. * @skb: buffer
  588. * @dst: dst entry
  589. *
  590. * Sets skb dst, assuming a reference was not taken on dst.
  591. * If dst entry is cached, we do not take reference and dst_release
  592. * will be avoided by refdst_drop. If dst entry is not cached, we take
  593. * reference, so that last dst_release can destroy the dst immediately.
  594. */
  595. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  596. {
  597. __skb_dst_set_noref(skb, dst, false);
  598. }
  599. /**
  600. * skb_dst_set_noref_force - sets skb dst, without taking reference
  601. * @skb: buffer
  602. * @dst: dst entry
  603. *
  604. * Sets skb dst, assuming a reference was not taken on dst.
  605. * No reference is taken and no dst_release will be called. While for
  606. * cached dsts deferred reclaim is a basic feature, for entries that are
  607. * not cached it is caller's job to guarantee that last dst_release for
  608. * provided dst happens when nobody uses it, eg. after a RCU grace period.
  609. */
  610. static inline void skb_dst_set_noref_force(struct sk_buff *skb,
  611. struct dst_entry *dst)
  612. {
  613. __skb_dst_set_noref(skb, dst, true);
  614. }
  615. /**
  616. * skb_dst_is_noref - Test if skb dst isn't refcounted
  617. * @skb: buffer
  618. */
  619. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  620. {
  621. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  622. }
  623. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  624. {
  625. return (struct rtable *)skb_dst(skb);
  626. }
  627. void kfree_skb(struct sk_buff *skb);
  628. void kfree_skb_list(struct sk_buff *segs);
  629. void skb_tx_error(struct sk_buff *skb);
  630. void consume_skb(struct sk_buff *skb);
  631. void __kfree_skb(struct sk_buff *skb);
  632. extern struct kmem_cache *skbuff_head_cache;
  633. void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  634. bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  635. bool *fragstolen, int *delta_truesize);
  636. struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
  637. int node);
  638. struct sk_buff *build_skb(void *data, unsigned int frag_size);
  639. static inline struct sk_buff *alloc_skb(unsigned int size,
  640. gfp_t priority)
  641. {
  642. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  643. }
  644. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  645. gfp_t priority)
  646. {
  647. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  648. }
  649. struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
  650. static inline struct sk_buff *alloc_skb_head(gfp_t priority)
  651. {
  652. return __alloc_skb_head(priority, -1);
  653. }
  654. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  655. int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  656. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
  657. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
  658. struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
  659. gfp_t gfp_mask, bool fclone);
  660. static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
  661. gfp_t gfp_mask)
  662. {
  663. return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
  664. }
  665. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
  666. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  667. unsigned int headroom);
  668. struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
  669. int newtailroom, gfp_t priority);
  670. int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
  671. int offset, int len);
  672. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
  673. int len);
  674. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
  675. int skb_pad(struct sk_buff *skb, int pad);
  676. #define dev_kfree_skb(a) consume_skb(a)
  677. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  678. int getfrag(void *from, char *to, int offset,
  679. int len, int odd, struct sk_buff *skb),
  680. void *from, int length);
  681. struct skb_seq_state {
  682. __u32 lower_offset;
  683. __u32 upper_offset;
  684. __u32 frag_idx;
  685. __u32 stepped_offset;
  686. struct sk_buff *root_skb;
  687. struct sk_buff *cur_skb;
  688. __u8 *frag_data;
  689. };
  690. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  691. unsigned int to, struct skb_seq_state *st);
  692. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  693. struct skb_seq_state *st);
  694. void skb_abort_seq_read(struct skb_seq_state *st);
  695. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  696. unsigned int to, struct ts_config *config,
  697. struct ts_state *state);
  698. /*
  699. * Packet hash types specify the type of hash in skb_set_hash.
  700. *
  701. * Hash types refer to the protocol layer addresses which are used to
  702. * construct a packet's hash. The hashes are used to differentiate or identify
  703. * flows of the protocol layer for the hash type. Hash types are either
  704. * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
  705. *
  706. * Properties of hashes:
  707. *
  708. * 1) Two packets in different flows have different hash values
  709. * 2) Two packets in the same flow should have the same hash value
  710. *
  711. * A hash at a higher layer is considered to be more specific. A driver should
  712. * set the most specific hash possible.
  713. *
  714. * A driver cannot indicate a more specific hash than the layer at which a hash
  715. * was computed. For instance an L3 hash cannot be set as an L4 hash.
  716. *
  717. * A driver may indicate a hash level which is less specific than the
  718. * actual layer the hash was computed on. For instance, a hash computed
  719. * at L4 may be considered an L3 hash. This should only be done if the
  720. * driver can't unambiguously determine that the HW computed the hash at
  721. * the higher layer. Note that the "should" in the second property above
  722. * permits this.
  723. */
  724. enum pkt_hash_types {
  725. PKT_HASH_TYPE_NONE, /* Undefined type */
  726. PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
  727. PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
  728. PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
  729. };
  730. static inline void
  731. skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
  732. {
  733. skb->l4_hash = (type == PKT_HASH_TYPE_L4);
  734. skb->hash = hash;
  735. }
  736. void __skb_get_hash(struct sk_buff *skb);
  737. static inline __u32 skb_get_hash(struct sk_buff *skb)
  738. {
  739. if (!skb->l4_hash)
  740. __skb_get_hash(skb);
  741. return skb->hash;
  742. }
  743. static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
  744. {
  745. return skb->hash;
  746. }
  747. static inline void skb_clear_hash(struct sk_buff *skb)
  748. {
  749. skb->hash = 0;
  750. skb->l4_hash = 0;
  751. }
  752. static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
  753. {
  754. if (!skb->l4_hash)
  755. skb_clear_hash(skb);
  756. }
  757. static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
  758. {
  759. to->hash = from->hash;
  760. to->l4_hash = from->l4_hash;
  761. };
  762. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  763. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  764. {
  765. return skb->head + skb->end;
  766. }
  767. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  768. {
  769. return skb->end;
  770. }
  771. #else
  772. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  773. {
  774. return skb->end;
  775. }
  776. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  777. {
  778. return skb->end - skb->head;
  779. }
  780. #endif
  781. /* Internal */
  782. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  783. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  784. {
  785. return &skb_shinfo(skb)->hwtstamps;
  786. }
  787. /**
  788. * skb_queue_empty - check if a queue is empty
  789. * @list: queue head
  790. *
  791. * Returns true if the queue is empty, false otherwise.
  792. */
  793. static inline int skb_queue_empty(const struct sk_buff_head *list)
  794. {
  795. return list->next == (const struct sk_buff *) list;
  796. }
  797. /**
  798. * skb_queue_is_last - check if skb is the last entry in the queue
  799. * @list: queue head
  800. * @skb: buffer
  801. *
  802. * Returns true if @skb is the last buffer on the list.
  803. */
  804. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  805. const struct sk_buff *skb)
  806. {
  807. return skb->next == (const struct sk_buff *) list;
  808. }
  809. /**
  810. * skb_queue_is_first - check if skb is the first entry in the queue
  811. * @list: queue head
  812. * @skb: buffer
  813. *
  814. * Returns true if @skb is the first buffer on the list.
  815. */
  816. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  817. const struct sk_buff *skb)
  818. {
  819. return skb->prev == (const struct sk_buff *) list;
  820. }
  821. /**
  822. * skb_queue_next - return the next packet in the queue
  823. * @list: queue head
  824. * @skb: current buffer
  825. *
  826. * Return the next packet in @list after @skb. It is only valid to
  827. * call this if skb_queue_is_last() evaluates to false.
  828. */
  829. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  830. const struct sk_buff *skb)
  831. {
  832. /* This BUG_ON may seem severe, but if we just return then we
  833. * are going to dereference garbage.
  834. */
  835. BUG_ON(skb_queue_is_last(list, skb));
  836. return skb->next;
  837. }
  838. /**
  839. * skb_queue_prev - return the prev packet in the queue
  840. * @list: queue head
  841. * @skb: current buffer
  842. *
  843. * Return the prev packet in @list before @skb. It is only valid to
  844. * call this if skb_queue_is_first() evaluates to false.
  845. */
  846. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  847. const struct sk_buff *skb)
  848. {
  849. /* This BUG_ON may seem severe, but if we just return then we
  850. * are going to dereference garbage.
  851. */
  852. BUG_ON(skb_queue_is_first(list, skb));
  853. return skb->prev;
  854. }
  855. /**
  856. * skb_get - reference buffer
  857. * @skb: buffer to reference
  858. *
  859. * Makes another reference to a socket buffer and returns a pointer
  860. * to the buffer.
  861. */
  862. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  863. {
  864. atomic_inc(&skb->users);
  865. return skb;
  866. }
  867. /*
  868. * If users == 1, we are the only owner and are can avoid redundant
  869. * atomic change.
  870. */
  871. /**
  872. * skb_cloned - is the buffer a clone
  873. * @skb: buffer to check
  874. *
  875. * Returns true if the buffer was generated with skb_clone() and is
  876. * one of multiple shared copies of the buffer. Cloned buffers are
  877. * shared data so must not be written to under normal circumstances.
  878. */
  879. static inline int skb_cloned(const struct sk_buff *skb)
  880. {
  881. return skb->cloned &&
  882. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  883. }
  884. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  885. {
  886. might_sleep_if(pri & __GFP_WAIT);
  887. if (skb_cloned(skb))
  888. return pskb_expand_head(skb, 0, 0, pri);
  889. return 0;
  890. }
  891. /**
  892. * skb_header_cloned - is the header a clone
  893. * @skb: buffer to check
  894. *
  895. * Returns true if modifying the header part of the buffer requires
  896. * the data to be copied.
  897. */
  898. static inline int skb_header_cloned(const struct sk_buff *skb)
  899. {
  900. int dataref;
  901. if (!skb->cloned)
  902. return 0;
  903. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  904. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  905. return dataref != 1;
  906. }
  907. /**
  908. * skb_header_release - release reference to header
  909. * @skb: buffer to operate on
  910. *
  911. * Drop a reference to the header part of the buffer. This is done
  912. * by acquiring a payload reference. You must not read from the header
  913. * part of skb->data after this.
  914. */
  915. static inline void skb_header_release(struct sk_buff *skb)
  916. {
  917. BUG_ON(skb->nohdr);
  918. skb->nohdr = 1;
  919. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  920. }
  921. /**
  922. * skb_shared - is the buffer shared
  923. * @skb: buffer to check
  924. *
  925. * Returns true if more than one person has a reference to this
  926. * buffer.
  927. */
  928. static inline int skb_shared(const struct sk_buff *skb)
  929. {
  930. return atomic_read(&skb->users) != 1;
  931. }
  932. /**
  933. * skb_share_check - check if buffer is shared and if so clone it
  934. * @skb: buffer to check
  935. * @pri: priority for memory allocation
  936. *
  937. * If the buffer is shared the buffer is cloned and the old copy
  938. * drops a reference. A new clone with a single reference is returned.
  939. * If the buffer is not shared the original buffer is returned. When
  940. * being called from interrupt status or with spinlocks held pri must
  941. * be GFP_ATOMIC.
  942. *
  943. * NULL is returned on a memory allocation failure.
  944. */
  945. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  946. {
  947. might_sleep_if(pri & __GFP_WAIT);
  948. if (skb_shared(skb)) {
  949. struct sk_buff *nskb = skb_clone(skb, pri);
  950. if (likely(nskb))
  951. consume_skb(skb);
  952. else
  953. kfree_skb(skb);
  954. skb = nskb;
  955. }
  956. return skb;
  957. }
  958. /*
  959. * Copy shared buffers into a new sk_buff. We effectively do COW on
  960. * packets to handle cases where we have a local reader and forward
  961. * and a couple of other messy ones. The normal one is tcpdumping
  962. * a packet thats being forwarded.
  963. */
  964. /**
  965. * skb_unshare - make a copy of a shared buffer
  966. * @skb: buffer to check
  967. * @pri: priority for memory allocation
  968. *
  969. * If the socket buffer is a clone then this function creates a new
  970. * copy of the data, drops a reference count on the old copy and returns
  971. * the new copy with the reference count at 1. If the buffer is not a clone
  972. * the original buffer is returned. When called with a spinlock held or
  973. * from interrupt state @pri must be %GFP_ATOMIC
  974. *
  975. * %NULL is returned on a memory allocation failure.
  976. */
  977. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  978. gfp_t pri)
  979. {
  980. might_sleep_if(pri & __GFP_WAIT);
  981. if (skb_cloned(skb)) {
  982. struct sk_buff *nskb = skb_copy(skb, pri);
  983. kfree_skb(skb); /* Free our shared copy */
  984. skb = nskb;
  985. }
  986. return skb;
  987. }
  988. /**
  989. * skb_peek - peek at the head of an &sk_buff_head
  990. * @list_: list to peek at
  991. *
  992. * Peek an &sk_buff. Unlike most other operations you _MUST_
  993. * be careful with this one. A peek leaves the buffer on the
  994. * list and someone else may run off with it. You must hold
  995. * the appropriate locks or have a private queue to do this.
  996. *
  997. * Returns %NULL for an empty list or a pointer to the head element.
  998. * The reference count is not incremented and the reference is therefore
  999. * volatile. Use with caution.
  1000. */
  1001. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  1002. {
  1003. struct sk_buff *skb = list_->next;
  1004. if (skb == (struct sk_buff *)list_)
  1005. skb = NULL;
  1006. return skb;
  1007. }
  1008. /**
  1009. * skb_peek_next - peek skb following the given one from a queue
  1010. * @skb: skb to start from
  1011. * @list_: list to peek at
  1012. *
  1013. * Returns %NULL when the end of the list is met or a pointer to the
  1014. * next element. The reference count is not incremented and the
  1015. * reference is therefore volatile. Use with caution.
  1016. */
  1017. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  1018. const struct sk_buff_head *list_)
  1019. {
  1020. struct sk_buff *next = skb->next;
  1021. if (next == (struct sk_buff *)list_)
  1022. next = NULL;
  1023. return next;
  1024. }
  1025. /**
  1026. * skb_peek_tail - peek at the tail of an &sk_buff_head
  1027. * @list_: list to peek at
  1028. *
  1029. * Peek an &sk_buff. Unlike most other operations you _MUST_
  1030. * be careful with this one. A peek leaves the buffer on the
  1031. * list and someone else may run off with it. You must hold
  1032. * the appropriate locks or have a private queue to do this.
  1033. *
  1034. * Returns %NULL for an empty list or a pointer to the tail element.
  1035. * The reference count is not incremented and the reference is therefore
  1036. * volatile. Use with caution.
  1037. */
  1038. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  1039. {
  1040. struct sk_buff *skb = list_->prev;
  1041. if (skb == (struct sk_buff *)list_)
  1042. skb = NULL;
  1043. return skb;
  1044. }
  1045. /**
  1046. * skb_queue_len - get queue length
  1047. * @list_: list to measure
  1048. *
  1049. * Return the length of an &sk_buff queue.
  1050. */
  1051. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  1052. {
  1053. return list_->qlen;
  1054. }
  1055. /**
  1056. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  1057. * @list: queue to initialize
  1058. *
  1059. * This initializes only the list and queue length aspects of
  1060. * an sk_buff_head object. This allows to initialize the list
  1061. * aspects of an sk_buff_head without reinitializing things like
  1062. * the spinlock. It can also be used for on-stack sk_buff_head
  1063. * objects where the spinlock is known to not be used.
  1064. */
  1065. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  1066. {
  1067. list->prev = list->next = (struct sk_buff *)list;
  1068. list->qlen = 0;
  1069. }
  1070. /*
  1071. * This function creates a split out lock class for each invocation;
  1072. * this is needed for now since a whole lot of users of the skb-queue
  1073. * infrastructure in drivers have different locking usage (in hardirq)
  1074. * than the networking core (in softirq only). In the long run either the
  1075. * network layer or drivers should need annotation to consolidate the
  1076. * main types of usage into 3 classes.
  1077. */
  1078. static inline void skb_queue_head_init(struct sk_buff_head *list)
  1079. {
  1080. spin_lock_init(&list->lock);
  1081. __skb_queue_head_init(list);
  1082. }
  1083. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  1084. struct lock_class_key *class)
  1085. {
  1086. skb_queue_head_init(list);
  1087. lockdep_set_class(&list->lock, class);
  1088. }
  1089. /*
  1090. * Insert an sk_buff on a list.
  1091. *
  1092. * The "__skb_xxxx()" functions are the non-atomic ones that
  1093. * can only be called with interrupts disabled.
  1094. */
  1095. void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
  1096. struct sk_buff_head *list);
  1097. static inline void __skb_insert(struct sk_buff *newsk,
  1098. struct sk_buff *prev, struct sk_buff *next,
  1099. struct sk_buff_head *list)
  1100. {
  1101. newsk->next = next;
  1102. newsk->prev = prev;
  1103. next->prev = prev->next = newsk;
  1104. list->qlen++;
  1105. }
  1106. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  1107. struct sk_buff *prev,
  1108. struct sk_buff *next)
  1109. {
  1110. struct sk_buff *first = list->next;
  1111. struct sk_buff *last = list->prev;
  1112. first->prev = prev;
  1113. prev->next = first;
  1114. last->next = next;
  1115. next->prev = last;
  1116. }
  1117. /**
  1118. * skb_queue_splice - join two skb lists, this is designed for stacks
  1119. * @list: the new list to add
  1120. * @head: the place to add it in the first list
  1121. */
  1122. static inline void skb_queue_splice(const struct sk_buff_head *list,
  1123. struct sk_buff_head *head)
  1124. {
  1125. if (!skb_queue_empty(list)) {
  1126. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1127. head->qlen += list->qlen;
  1128. }
  1129. }
  1130. /**
  1131. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1132. * @list: the new list to add
  1133. * @head: the place to add it in the first list
  1134. *
  1135. * The list at @list is reinitialised
  1136. */
  1137. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1138. struct sk_buff_head *head)
  1139. {
  1140. if (!skb_queue_empty(list)) {
  1141. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1142. head->qlen += list->qlen;
  1143. __skb_queue_head_init(list);
  1144. }
  1145. }
  1146. /**
  1147. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1148. * @list: the new list to add
  1149. * @head: the place to add it in the first list
  1150. */
  1151. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1152. struct sk_buff_head *head)
  1153. {
  1154. if (!skb_queue_empty(list)) {
  1155. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1156. head->qlen += list->qlen;
  1157. }
  1158. }
  1159. /**
  1160. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1161. * @list: the new list to add
  1162. * @head: the place to add it in the first list
  1163. *
  1164. * Each of the lists is a queue.
  1165. * The list at @list is reinitialised
  1166. */
  1167. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1168. struct sk_buff_head *head)
  1169. {
  1170. if (!skb_queue_empty(list)) {
  1171. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1172. head->qlen += list->qlen;
  1173. __skb_queue_head_init(list);
  1174. }
  1175. }
  1176. /**
  1177. * __skb_queue_after - queue a buffer at the list head
  1178. * @list: list to use
  1179. * @prev: place after this buffer
  1180. * @newsk: buffer to queue
  1181. *
  1182. * Queue a buffer int the middle of a list. This function takes no locks
  1183. * and you must therefore hold required locks before calling it.
  1184. *
  1185. * A buffer cannot be placed on two lists at the same time.
  1186. */
  1187. static inline void __skb_queue_after(struct sk_buff_head *list,
  1188. struct sk_buff *prev,
  1189. struct sk_buff *newsk)
  1190. {
  1191. __skb_insert(newsk, prev, prev->next, list);
  1192. }
  1193. void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1194. struct sk_buff_head *list);
  1195. static inline void __skb_queue_before(struct sk_buff_head *list,
  1196. struct sk_buff *next,
  1197. struct sk_buff *newsk)
  1198. {
  1199. __skb_insert(newsk, next->prev, next, list);
  1200. }
  1201. /**
  1202. * __skb_queue_head - queue a buffer at the list head
  1203. * @list: list to use
  1204. * @newsk: buffer to queue
  1205. *
  1206. * Queue a buffer at the start of a list. This function takes no locks
  1207. * and you must therefore hold required locks before calling it.
  1208. *
  1209. * A buffer cannot be placed on two lists at the same time.
  1210. */
  1211. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1212. static inline void __skb_queue_head(struct sk_buff_head *list,
  1213. struct sk_buff *newsk)
  1214. {
  1215. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1216. }
  1217. /**
  1218. * __skb_queue_tail - queue a buffer at the list tail
  1219. * @list: list to use
  1220. * @newsk: buffer to queue
  1221. *
  1222. * Queue a buffer at the end of a list. This function takes no locks
  1223. * and you must therefore hold required locks before calling it.
  1224. *
  1225. * A buffer cannot be placed on two lists at the same time.
  1226. */
  1227. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1228. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1229. struct sk_buff *newsk)
  1230. {
  1231. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1232. }
  1233. /*
  1234. * remove sk_buff from list. _Must_ be called atomically, and with
  1235. * the list known..
  1236. */
  1237. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1238. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1239. {
  1240. struct sk_buff *next, *prev;
  1241. list->qlen--;
  1242. next = skb->next;
  1243. prev = skb->prev;
  1244. skb->next = skb->prev = NULL;
  1245. next->prev = prev;
  1246. prev->next = next;
  1247. }
  1248. /**
  1249. * __skb_dequeue - remove from the head of the queue
  1250. * @list: list to dequeue from
  1251. *
  1252. * Remove the head of the list. This function does not take any locks
  1253. * so must be used with appropriate locks held only. The head item is
  1254. * returned or %NULL if the list is empty.
  1255. */
  1256. struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1257. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1258. {
  1259. struct sk_buff *skb = skb_peek(list);
  1260. if (skb)
  1261. __skb_unlink(skb, list);
  1262. return skb;
  1263. }
  1264. /**
  1265. * __skb_dequeue_tail - remove from the tail of the queue
  1266. * @list: list to dequeue from
  1267. *
  1268. * Remove the tail of the list. This function does not take any locks
  1269. * so must be used with appropriate locks held only. The tail item is
  1270. * returned or %NULL if the list is empty.
  1271. */
  1272. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1273. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1274. {
  1275. struct sk_buff *skb = skb_peek_tail(list);
  1276. if (skb)
  1277. __skb_unlink(skb, list);
  1278. return skb;
  1279. }
  1280. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1281. {
  1282. return skb->data_len;
  1283. }
  1284. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1285. {
  1286. return skb->len - skb->data_len;
  1287. }
  1288. static inline int skb_pagelen(const struct sk_buff *skb)
  1289. {
  1290. int i, len = 0;
  1291. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1292. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1293. return len + skb_headlen(skb);
  1294. }
  1295. /**
  1296. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1297. * @skb: buffer containing fragment to be initialised
  1298. * @i: paged fragment index to initialise
  1299. * @page: the page to use for this fragment
  1300. * @off: the offset to the data with @page
  1301. * @size: the length of the data
  1302. *
  1303. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1304. * offset @off within @page.
  1305. *
  1306. * Does not take any additional reference on the fragment.
  1307. */
  1308. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1309. struct page *page, int off, int size)
  1310. {
  1311. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1312. /*
  1313. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1314. * that not all callers have unique ownership of the page. If
  1315. * pfmemalloc is set, we check the mapping as a mapping implies
  1316. * page->index is set (index and pfmemalloc share space).
  1317. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1318. * do not lose pfmemalloc information as the pages would not be
  1319. * allocated using __GFP_MEMALLOC.
  1320. */
  1321. frag->page.p = page;
  1322. frag->page_offset = off;
  1323. skb_frag_size_set(frag, size);
  1324. page = compound_head(page);
  1325. if (page->pfmemalloc && !page->mapping)
  1326. skb->pfmemalloc = true;
  1327. }
  1328. /**
  1329. * skb_fill_page_desc - initialise a paged fragment in an skb
  1330. * @skb: buffer containing fragment to be initialised
  1331. * @i: paged fragment index to initialise
  1332. * @page: the page to use for this fragment
  1333. * @off: the offset to the data with @page
  1334. * @size: the length of the data
  1335. *
  1336. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1337. * @skb to point to @size bytes at offset @off within @page. In
  1338. * addition updates @skb such that @i is the last fragment.
  1339. *
  1340. * Does not take any additional reference on the fragment.
  1341. */
  1342. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1343. struct page *page, int off, int size)
  1344. {
  1345. __skb_fill_page_desc(skb, i, page, off, size);
  1346. skb_shinfo(skb)->nr_frags = i + 1;
  1347. }
  1348. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  1349. int size, unsigned int truesize);
  1350. void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
  1351. unsigned int truesize);
  1352. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1353. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1354. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1355. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1356. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1357. {
  1358. return skb->head + skb->tail;
  1359. }
  1360. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1361. {
  1362. skb->tail = skb->data - skb->head;
  1363. }
  1364. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1365. {
  1366. skb_reset_tail_pointer(skb);
  1367. skb->tail += offset;
  1368. }
  1369. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1370. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1371. {
  1372. return skb->tail;
  1373. }
  1374. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1375. {
  1376. skb->tail = skb->data;
  1377. }
  1378. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1379. {
  1380. skb->tail = skb->data + offset;
  1381. }
  1382. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1383. /*
  1384. * Add data to an sk_buff
  1385. */
  1386. unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
  1387. unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1388. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1389. {
  1390. unsigned char *tmp = skb_tail_pointer(skb);
  1391. SKB_LINEAR_ASSERT(skb);
  1392. skb->tail += len;
  1393. skb->len += len;
  1394. return tmp;
  1395. }
  1396. unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1397. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1398. {
  1399. skb->data -= len;
  1400. skb->len += len;
  1401. return skb->data;
  1402. }
  1403. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1404. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1405. {
  1406. skb->len -= len;
  1407. BUG_ON(skb->len < skb->data_len);
  1408. return skb->data += len;
  1409. }
  1410. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1411. {
  1412. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1413. }
  1414. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1415. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1416. {
  1417. if (len > skb_headlen(skb) &&
  1418. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1419. return NULL;
  1420. skb->len -= len;
  1421. return skb->data += len;
  1422. }
  1423. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1424. {
  1425. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1426. }
  1427. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1428. {
  1429. if (likely(len <= skb_headlen(skb)))
  1430. return 1;
  1431. if (unlikely(len > skb->len))
  1432. return 0;
  1433. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1434. }
  1435. /**
  1436. * skb_headroom - bytes at buffer head
  1437. * @skb: buffer to check
  1438. *
  1439. * Return the number of bytes of free space at the head of an &sk_buff.
  1440. */
  1441. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1442. {
  1443. return skb->data - skb->head;
  1444. }
  1445. /**
  1446. * skb_tailroom - bytes at buffer end
  1447. * @skb: buffer to check
  1448. *
  1449. * Return the number of bytes of free space at the tail of an sk_buff
  1450. */
  1451. static inline int skb_tailroom(const struct sk_buff *skb)
  1452. {
  1453. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1454. }
  1455. /**
  1456. * skb_availroom - bytes at buffer end
  1457. * @skb: buffer to check
  1458. *
  1459. * Return the number of bytes of free space at the tail of an sk_buff
  1460. * allocated by sk_stream_alloc()
  1461. */
  1462. static inline int skb_availroom(const struct sk_buff *skb)
  1463. {
  1464. if (skb_is_nonlinear(skb))
  1465. return 0;
  1466. return skb->end - skb->tail - skb->reserved_tailroom;
  1467. }
  1468. /**
  1469. * skb_reserve - adjust headroom
  1470. * @skb: buffer to alter
  1471. * @len: bytes to move
  1472. *
  1473. * Increase the headroom of an empty &sk_buff by reducing the tail
  1474. * room. This is only allowed for an empty buffer.
  1475. */
  1476. static inline void skb_reserve(struct sk_buff *skb, int len)
  1477. {
  1478. skb->data += len;
  1479. skb->tail += len;
  1480. }
  1481. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1482. {
  1483. skb->inner_mac_header = skb->mac_header;
  1484. skb->inner_network_header = skb->network_header;
  1485. skb->inner_transport_header = skb->transport_header;
  1486. }
  1487. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1488. {
  1489. skb->mac_len = skb->network_header - skb->mac_header;
  1490. }
  1491. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1492. *skb)
  1493. {
  1494. return skb->head + skb->inner_transport_header;
  1495. }
  1496. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1497. {
  1498. skb->inner_transport_header = skb->data - skb->head;
  1499. }
  1500. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1501. const int offset)
  1502. {
  1503. skb_reset_inner_transport_header(skb);
  1504. skb->inner_transport_header += offset;
  1505. }
  1506. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1507. {
  1508. return skb->head + skb->inner_network_header;
  1509. }
  1510. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1511. {
  1512. skb->inner_network_header = skb->data - skb->head;
  1513. }
  1514. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1515. const int offset)
  1516. {
  1517. skb_reset_inner_network_header(skb);
  1518. skb->inner_network_header += offset;
  1519. }
  1520. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1521. {
  1522. return skb->head + skb->inner_mac_header;
  1523. }
  1524. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1525. {
  1526. skb->inner_mac_header = skb->data - skb->head;
  1527. }
  1528. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1529. const int offset)
  1530. {
  1531. skb_reset_inner_mac_header(skb);
  1532. skb->inner_mac_header += offset;
  1533. }
  1534. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1535. {
  1536. return skb->transport_header != (typeof(skb->transport_header))~0U;
  1537. }
  1538. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1539. {
  1540. return skb->head + skb->transport_header;
  1541. }
  1542. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1543. {
  1544. skb->transport_header = skb->data - skb->head;
  1545. }
  1546. static inline void skb_set_transport_header(struct sk_buff *skb,
  1547. const int offset)
  1548. {
  1549. skb_reset_transport_header(skb);
  1550. skb->transport_header += offset;
  1551. }
  1552. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1553. {
  1554. return skb->head + skb->network_header;
  1555. }
  1556. static inline void skb_reset_network_header(struct sk_buff *skb)
  1557. {
  1558. skb->network_header = skb->data - skb->head;
  1559. }
  1560. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1561. {
  1562. skb_reset_network_header(skb);
  1563. skb->network_header += offset;
  1564. }
  1565. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1566. {
  1567. return skb->head + skb->mac_header;
  1568. }
  1569. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1570. {
  1571. return skb->mac_header != (typeof(skb->mac_header))~0U;
  1572. }
  1573. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1574. {
  1575. skb->mac_header = skb->data - skb->head;
  1576. }
  1577. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1578. {
  1579. skb_reset_mac_header(skb);
  1580. skb->mac_header += offset;
  1581. }
  1582. static inline void skb_pop_mac_header(struct sk_buff *skb)
  1583. {
  1584. skb->mac_header = skb->network_header;
  1585. }
  1586. static inline void skb_probe_transport_header(struct sk_buff *skb,
  1587. const int offset_hint)
  1588. {
  1589. struct flow_keys keys;
  1590. if (skb_transport_header_was_set(skb))
  1591. return;
  1592. else if (skb_flow_dissect(skb, &keys))
  1593. skb_set_transport_header(skb, keys.thoff);
  1594. else
  1595. skb_set_transport_header(skb, offset_hint);
  1596. }
  1597. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1598. {
  1599. if (skb_mac_header_was_set(skb)) {
  1600. const unsigned char *old_mac = skb_mac_header(skb);
  1601. skb_set_mac_header(skb, -skb->mac_len);
  1602. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1603. }
  1604. }
  1605. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1606. {
  1607. return skb->csum_start - skb_headroom(skb);
  1608. }
  1609. static inline int skb_transport_offset(const struct sk_buff *skb)
  1610. {
  1611. return skb_transport_header(skb) - skb->data;
  1612. }
  1613. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1614. {
  1615. return skb->transport_header - skb->network_header;
  1616. }
  1617. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1618. {
  1619. return skb->inner_transport_header - skb->inner_network_header;
  1620. }
  1621. static inline int skb_network_offset(const struct sk_buff *skb)
  1622. {
  1623. return skb_network_header(skb) - skb->data;
  1624. }
  1625. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1626. {
  1627. return skb_inner_network_header(skb) - skb->data;
  1628. }
  1629. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1630. {
  1631. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1632. }
  1633. /*
  1634. * CPUs often take a performance hit when accessing unaligned memory
  1635. * locations. The actual performance hit varies, it can be small if the
  1636. * hardware handles it or large if we have to take an exception and fix it
  1637. * in software.
  1638. *
  1639. * Since an ethernet header is 14 bytes network drivers often end up with
  1640. * the IP header at an unaligned offset. The IP header can be aligned by
  1641. * shifting the start of the packet by 2 bytes. Drivers should do this
  1642. * with:
  1643. *
  1644. * skb_reserve(skb, NET_IP_ALIGN);
  1645. *
  1646. * The downside to this alignment of the IP header is that the DMA is now
  1647. * unaligned. On some architectures the cost of an unaligned DMA is high
  1648. * and this cost outweighs the gains made by aligning the IP header.
  1649. *
  1650. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1651. * to be overridden.
  1652. */
  1653. #ifndef NET_IP_ALIGN
  1654. #define NET_IP_ALIGN 2
  1655. #endif
  1656. /*
  1657. * The networking layer reserves some headroom in skb data (via
  1658. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1659. * the header has to grow. In the default case, if the header has to grow
  1660. * 32 bytes or less we avoid the reallocation.
  1661. *
  1662. * Unfortunately this headroom changes the DMA alignment of the resulting
  1663. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1664. * on some architectures. An architecture can override this value,
  1665. * perhaps setting it to a cacheline in size (since that will maintain
  1666. * cacheline alignment of the DMA). It must be a power of 2.
  1667. *
  1668. * Various parts of the networking layer expect at least 32 bytes of
  1669. * headroom, you should not reduce this.
  1670. *
  1671. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1672. * to reduce average number of cache lines per packet.
  1673. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1674. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1675. */
  1676. #ifndef NET_SKB_PAD
  1677. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1678. #endif
  1679. int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1680. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1681. {
  1682. if (unlikely(skb_is_nonlinear(skb))) {
  1683. WARN_ON(1);
  1684. return;
  1685. }
  1686. skb->len = len;
  1687. skb_set_tail_pointer(skb, len);
  1688. }
  1689. void skb_trim(struct sk_buff *skb, unsigned int len);
  1690. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1691. {
  1692. if (skb->data_len)
  1693. return ___pskb_trim(skb, len);
  1694. __skb_trim(skb, len);
  1695. return 0;
  1696. }
  1697. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1698. {
  1699. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1700. }
  1701. /**
  1702. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1703. * @skb: buffer to alter
  1704. * @len: new length
  1705. *
  1706. * This is identical to pskb_trim except that the caller knows that
  1707. * the skb is not cloned so we should never get an error due to out-
  1708. * of-memory.
  1709. */
  1710. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1711. {
  1712. int err = pskb_trim(skb, len);
  1713. BUG_ON(err);
  1714. }
  1715. /**
  1716. * skb_orphan - orphan a buffer
  1717. * @skb: buffer to orphan
  1718. *
  1719. * If a buffer currently has an owner then we call the owner's
  1720. * destructor function and make the @skb unowned. The buffer continues
  1721. * to exist but is no longer charged to its former owner.
  1722. */
  1723. static inline void skb_orphan(struct sk_buff *skb)
  1724. {
  1725. if (skb->destructor) {
  1726. skb->destructor(skb);
  1727. skb->destructor = NULL;
  1728. skb->sk = NULL;
  1729. } else {
  1730. BUG_ON(skb->sk);
  1731. }
  1732. }
  1733. /**
  1734. * skb_orphan_frags - orphan the frags contained in a buffer
  1735. * @skb: buffer to orphan frags from
  1736. * @gfp_mask: allocation mask for replacement pages
  1737. *
  1738. * For each frag in the SKB which needs a destructor (i.e. has an
  1739. * owner) create a copy of that frag and release the original
  1740. * page by calling the destructor.
  1741. */
  1742. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1743. {
  1744. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1745. return 0;
  1746. return skb_copy_ubufs(skb, gfp_mask);
  1747. }
  1748. /**
  1749. * __skb_queue_purge - empty a list
  1750. * @list: list to empty
  1751. *
  1752. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1753. * the list and one reference dropped. This function does not take the
  1754. * list lock and the caller must hold the relevant locks to use it.
  1755. */
  1756. void skb_queue_purge(struct sk_buff_head *list);
  1757. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1758. {
  1759. struct sk_buff *skb;
  1760. while ((skb = __skb_dequeue(list)) != NULL)
  1761. kfree_skb(skb);
  1762. }
  1763. #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
  1764. #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
  1765. #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
  1766. void *netdev_alloc_frag(unsigned int fragsz);
  1767. struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
  1768. gfp_t gfp_mask);
  1769. /**
  1770. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1771. * @dev: network device to receive on
  1772. * @length: length to allocate
  1773. *
  1774. * Allocate a new &sk_buff and assign it a usage count of one. The
  1775. * buffer has unspecified headroom built in. Users should allocate
  1776. * the headroom they think they need without accounting for the
  1777. * built in space. The built in space is used for optimisations.
  1778. *
  1779. * %NULL is returned if there is no free memory. Although this function
  1780. * allocates memory it can be called from an interrupt.
  1781. */
  1782. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1783. unsigned int length)
  1784. {
  1785. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1786. }
  1787. /* legacy helper around __netdev_alloc_skb() */
  1788. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1789. gfp_t gfp_mask)
  1790. {
  1791. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1792. }
  1793. /* legacy helper around netdev_alloc_skb() */
  1794. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1795. {
  1796. return netdev_alloc_skb(NULL, length);
  1797. }
  1798. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1799. unsigned int length, gfp_t gfp)
  1800. {
  1801. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1802. if (NET_IP_ALIGN && skb)
  1803. skb_reserve(skb, NET_IP_ALIGN);
  1804. return skb;
  1805. }
  1806. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1807. unsigned int length)
  1808. {
  1809. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1810. }
  1811. /**
  1812. * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
  1813. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1814. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1815. * @order: size of the allocation
  1816. *
  1817. * Allocate a new page.
  1818. *
  1819. * %NULL is returned if there is no free memory.
  1820. */
  1821. static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
  1822. struct sk_buff *skb,
  1823. unsigned int order)
  1824. {
  1825. struct page *page;
  1826. gfp_mask |= __GFP_COLD;
  1827. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1828. gfp_mask |= __GFP_MEMALLOC;
  1829. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  1830. if (skb && page && page->pfmemalloc)
  1831. skb->pfmemalloc = true;
  1832. return page;
  1833. }
  1834. /**
  1835. * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
  1836. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1837. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1838. *
  1839. * Allocate a new page.
  1840. *
  1841. * %NULL is returned if there is no free memory.
  1842. */
  1843. static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
  1844. struct sk_buff *skb)
  1845. {
  1846. return __skb_alloc_pages(gfp_mask, skb, 0);
  1847. }
  1848. /**
  1849. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  1850. * @page: The page that was allocated from skb_alloc_page
  1851. * @skb: The skb that may need pfmemalloc set
  1852. */
  1853. static inline void skb_propagate_pfmemalloc(struct page *page,
  1854. struct sk_buff *skb)
  1855. {
  1856. if (page && page->pfmemalloc)
  1857. skb->pfmemalloc = true;
  1858. }
  1859. /**
  1860. * skb_frag_page - retrieve the page referred to by a paged fragment
  1861. * @frag: the paged fragment
  1862. *
  1863. * Returns the &struct page associated with @frag.
  1864. */
  1865. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1866. {
  1867. return frag->page.p;
  1868. }
  1869. /**
  1870. * __skb_frag_ref - take an addition reference on a paged fragment.
  1871. * @frag: the paged fragment
  1872. *
  1873. * Takes an additional reference on the paged fragment @frag.
  1874. */
  1875. static inline void __skb_frag_ref(skb_frag_t *frag)
  1876. {
  1877. get_page(skb_frag_page(frag));
  1878. }
  1879. /**
  1880. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1881. * @skb: the buffer
  1882. * @f: the fragment offset.
  1883. *
  1884. * Takes an additional reference on the @f'th paged fragment of @skb.
  1885. */
  1886. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1887. {
  1888. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1889. }
  1890. /**
  1891. * __skb_frag_unref - release a reference on a paged fragment.
  1892. * @frag: the paged fragment
  1893. *
  1894. * Releases a reference on the paged fragment @frag.
  1895. */
  1896. static inline void __skb_frag_unref(skb_frag_t *frag)
  1897. {
  1898. put_page(skb_frag_page(frag));
  1899. }
  1900. /**
  1901. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1902. * @skb: the buffer
  1903. * @f: the fragment offset
  1904. *
  1905. * Releases a reference on the @f'th paged fragment of @skb.
  1906. */
  1907. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1908. {
  1909. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1910. }
  1911. /**
  1912. * skb_frag_address - gets the address of the data contained in a paged fragment
  1913. * @frag: the paged fragment buffer
  1914. *
  1915. * Returns the address of the data within @frag. The page must already
  1916. * be mapped.
  1917. */
  1918. static inline void *skb_frag_address(const skb_frag_t *frag)
  1919. {
  1920. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1921. }
  1922. /**
  1923. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1924. * @frag: the paged fragment buffer
  1925. *
  1926. * Returns the address of the data within @frag. Checks that the page
  1927. * is mapped and returns %NULL otherwise.
  1928. */
  1929. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1930. {
  1931. void *ptr = page_address(skb_frag_page(frag));
  1932. if (unlikely(!ptr))
  1933. return NULL;
  1934. return ptr + frag->page_offset;
  1935. }
  1936. /**
  1937. * __skb_frag_set_page - sets the page contained in a paged fragment
  1938. * @frag: the paged fragment
  1939. * @page: the page to set
  1940. *
  1941. * Sets the fragment @frag to contain @page.
  1942. */
  1943. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1944. {
  1945. frag->page.p = page;
  1946. }
  1947. /**
  1948. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1949. * @skb: the buffer
  1950. * @f: the fragment offset
  1951. * @page: the page to set
  1952. *
  1953. * Sets the @f'th fragment of @skb to contain @page.
  1954. */
  1955. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1956. struct page *page)
  1957. {
  1958. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1959. }
  1960. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
  1961. /**
  1962. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1963. * @dev: the device to map the fragment to
  1964. * @frag: the paged fragment to map
  1965. * @offset: the offset within the fragment (starting at the
  1966. * fragment's own offset)
  1967. * @size: the number of bytes to map
  1968. * @dir: the direction of the mapping (%PCI_DMA_*)
  1969. *
  1970. * Maps the page associated with @frag to @device.
  1971. */
  1972. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1973. const skb_frag_t *frag,
  1974. size_t offset, size_t size,
  1975. enum dma_data_direction dir)
  1976. {
  1977. return dma_map_page(dev, skb_frag_page(frag),
  1978. frag->page_offset + offset, size, dir);
  1979. }
  1980. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1981. gfp_t gfp_mask)
  1982. {
  1983. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1984. }
  1985. static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
  1986. gfp_t gfp_mask)
  1987. {
  1988. return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
  1989. }
  1990. /**
  1991. * skb_clone_writable - is the header of a clone writable
  1992. * @skb: buffer to check
  1993. * @len: length up to which to write
  1994. *
  1995. * Returns true if modifying the header part of the cloned buffer
  1996. * does not requires the data to be copied.
  1997. */
  1998. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1999. {
  2000. return !skb_header_cloned(skb) &&
  2001. skb_headroom(skb) + len <= skb->hdr_len;
  2002. }
  2003. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  2004. int cloned)
  2005. {
  2006. int delta = 0;
  2007. if (headroom > skb_headroom(skb))
  2008. delta = headroom - skb_headroom(skb);
  2009. if (delta || cloned)
  2010. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  2011. GFP_ATOMIC);
  2012. return 0;
  2013. }
  2014. /**
  2015. * skb_cow - copy header of skb when it is required
  2016. * @skb: buffer to cow
  2017. * @headroom: needed headroom
  2018. *
  2019. * If the skb passed lacks sufficient headroom or its data part
  2020. * is shared, data is reallocated. If reallocation fails, an error
  2021. * is returned and original skb is not changed.
  2022. *
  2023. * The result is skb with writable area skb->head...skb->tail
  2024. * and at least @headroom of space at head.
  2025. */
  2026. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  2027. {
  2028. return __skb_cow(skb, headroom, skb_cloned(skb));
  2029. }
  2030. /**
  2031. * skb_cow_head - skb_cow but only making the head writable
  2032. * @skb: buffer to cow
  2033. * @headroom: needed headroom
  2034. *
  2035. * This function is identical to skb_cow except that we replace the
  2036. * skb_cloned check by skb_header_cloned. It should be used when
  2037. * you only need to push on some header and do not need to modify
  2038. * the data.
  2039. */
  2040. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  2041. {
  2042. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  2043. }
  2044. /**
  2045. * skb_padto - pad an skbuff up to a minimal size
  2046. * @skb: buffer to pad
  2047. * @len: minimal length
  2048. *
  2049. * Pads up a buffer to ensure the trailing bytes exist and are
  2050. * blanked. If the buffer already contains sufficient data it
  2051. * is untouched. Otherwise it is extended. Returns zero on
  2052. * success. The skb is freed on error.
  2053. */
  2054. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  2055. {
  2056. unsigned int size = skb->len;
  2057. if (likely(size >= len))
  2058. return 0;
  2059. return skb_pad(skb, len - size);
  2060. }
  2061. static inline int skb_add_data(struct sk_buff *skb,
  2062. char __user *from, int copy)
  2063. {
  2064. const int off = skb->len;
  2065. if (skb->ip_summed == CHECKSUM_NONE) {
  2066. int err = 0;
  2067. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  2068. copy, 0, &err);
  2069. if (!err) {
  2070. skb->csum = csum_block_add(skb->csum, csum, off);
  2071. return 0;
  2072. }
  2073. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  2074. return 0;
  2075. __skb_trim(skb, off);
  2076. return -EFAULT;
  2077. }
  2078. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  2079. const struct page *page, int off)
  2080. {
  2081. if (i) {
  2082. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  2083. return page == skb_frag_page(frag) &&
  2084. off == frag->page_offset + skb_frag_size(frag);
  2085. }
  2086. return false;
  2087. }
  2088. static inline int __skb_linearize(struct sk_buff *skb)
  2089. {
  2090. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  2091. }
  2092. /**
  2093. * skb_linearize - convert paged skb to linear one
  2094. * @skb: buffer to linarize
  2095. *
  2096. * If there is no free memory -ENOMEM is returned, otherwise zero
  2097. * is returned and the old skb data released.
  2098. */
  2099. static inline int skb_linearize(struct sk_buff *skb)
  2100. {
  2101. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  2102. }
  2103. /**
  2104. * skb_has_shared_frag - can any frag be overwritten
  2105. * @skb: buffer to test
  2106. *
  2107. * Return true if the skb has at least one frag that might be modified
  2108. * by an external entity (as in vmsplice()/sendfile())
  2109. */
  2110. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  2111. {
  2112. return skb_is_nonlinear(skb) &&
  2113. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  2114. }
  2115. /**
  2116. * skb_linearize_cow - make sure skb is linear and writable
  2117. * @skb: buffer to process
  2118. *
  2119. * If there is no free memory -ENOMEM is returned, otherwise zero
  2120. * is returned and the old skb data released.
  2121. */
  2122. static inline int skb_linearize_cow(struct sk_buff *skb)
  2123. {
  2124. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  2125. __skb_linearize(skb) : 0;
  2126. }
  2127. /**
  2128. * skb_postpull_rcsum - update checksum for received skb after pull
  2129. * @skb: buffer to update
  2130. * @start: start of data before pull
  2131. * @len: length of data pulled
  2132. *
  2133. * After doing a pull on a received packet, you need to call this to
  2134. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  2135. * CHECKSUM_NONE so that it can be recomputed from scratch.
  2136. */
  2137. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  2138. const void *start, unsigned int len)
  2139. {
  2140. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2141. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  2142. }
  2143. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2144. /**
  2145. * pskb_trim_rcsum - trim received skb and update checksum
  2146. * @skb: buffer to trim
  2147. * @len: new length
  2148. *
  2149. * This is exactly the same as pskb_trim except that it ensures the
  2150. * checksum of received packets are still valid after the operation.
  2151. */
  2152. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2153. {
  2154. if (likely(len >= skb->len))
  2155. return 0;
  2156. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2157. skb->ip_summed = CHECKSUM_NONE;
  2158. return __pskb_trim(skb, len);
  2159. }
  2160. #define skb_queue_walk(queue, skb) \
  2161. for (skb = (queue)->next; \
  2162. skb != (struct sk_buff *)(queue); \
  2163. skb = skb->next)
  2164. #define skb_queue_walk_safe(queue, skb, tmp) \
  2165. for (skb = (queue)->next, tmp = skb->next; \
  2166. skb != (struct sk_buff *)(queue); \
  2167. skb = tmp, tmp = skb->next)
  2168. #define skb_queue_walk_from(queue, skb) \
  2169. for (; skb != (struct sk_buff *)(queue); \
  2170. skb = skb->next)
  2171. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2172. for (tmp = skb->next; \
  2173. skb != (struct sk_buff *)(queue); \
  2174. skb = tmp, tmp = skb->next)
  2175. #define skb_queue_reverse_walk(queue, skb) \
  2176. for (skb = (queue)->prev; \
  2177. skb != (struct sk_buff *)(queue); \
  2178. skb = skb->prev)
  2179. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2180. for (skb = (queue)->prev, tmp = skb->prev; \
  2181. skb != (struct sk_buff *)(queue); \
  2182. skb = tmp, tmp = skb->prev)
  2183. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2184. for (tmp = skb->prev; \
  2185. skb != (struct sk_buff *)(queue); \
  2186. skb = tmp, tmp = skb->prev)
  2187. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2188. {
  2189. return skb_shinfo(skb)->frag_list != NULL;
  2190. }
  2191. static inline void skb_frag_list_init(struct sk_buff *skb)
  2192. {
  2193. skb_shinfo(skb)->frag_list = NULL;
  2194. }
  2195. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  2196. {
  2197. frag->next = skb_shinfo(skb)->frag_list;
  2198. skb_shinfo(skb)->frag_list = frag;
  2199. }
  2200. #define skb_walk_frags(skb, iter) \
  2201. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2202. struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2203. int *peeked, int *off, int *err);
  2204. struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
  2205. int *err);
  2206. unsigned int datagram_poll(struct file *file, struct socket *sock,
  2207. struct poll_table_struct *wait);
  2208. int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
  2209. struct iovec *to, int size);
  2210. int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
  2211. struct iovec *iov);
  2212. int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
  2213. const struct iovec *from, int from_offset,
  2214. int len);
  2215. int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
  2216. int offset, size_t count);
  2217. int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
  2218. const struct iovec *to, int to_offset,
  2219. int size);
  2220. void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2221. void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
  2222. int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
  2223. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
  2224. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
  2225. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
  2226. int len, __wsum csum);
  2227. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  2228. struct pipe_inode_info *pipe, unsigned int len,
  2229. unsigned int flags);
  2230. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2231. unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
  2232. int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
  2233. int len, int hlen);
  2234. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
  2235. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
  2236. void skb_scrub_packet(struct sk_buff *skb, bool xnet);
  2237. unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
  2238. struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
  2239. struct skb_checksum_ops {
  2240. __wsum (*update)(const void *mem, int len, __wsum wsum);
  2241. __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
  2242. };
  2243. __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
  2244. __wsum csum, const struct skb_checksum_ops *ops);
  2245. __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
  2246. __wsum csum);
  2247. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  2248. int len, void *buffer)
  2249. {
  2250. int hlen = skb_headlen(skb);
  2251. if (hlen - offset >= len)
  2252. return skb->data + offset;
  2253. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  2254. return NULL;
  2255. return buffer;
  2256. }
  2257. /**
  2258. * skb_needs_linearize - check if we need to linearize a given skb
  2259. * depending on the given device features.
  2260. * @skb: socket buffer to check
  2261. * @features: net device features
  2262. *
  2263. * Returns true if either:
  2264. * 1. skb has frag_list and the device doesn't support FRAGLIST, or
  2265. * 2. skb is fragmented and the device does not support SG.
  2266. */
  2267. static inline bool skb_needs_linearize(struct sk_buff *skb,
  2268. netdev_features_t features)
  2269. {
  2270. return skb_is_nonlinear(skb) &&
  2271. ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
  2272. (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
  2273. }
  2274. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2275. void *to,
  2276. const unsigned int len)
  2277. {
  2278. memcpy(to, skb->data, len);
  2279. }
  2280. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2281. const int offset, void *to,
  2282. const unsigned int len)
  2283. {
  2284. memcpy(to, skb->data + offset, len);
  2285. }
  2286. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2287. const void *from,
  2288. const unsigned int len)
  2289. {
  2290. memcpy(skb->data, from, len);
  2291. }
  2292. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2293. const int offset,
  2294. const void *from,
  2295. const unsigned int len)
  2296. {
  2297. memcpy(skb->data + offset, from, len);
  2298. }
  2299. void skb_init(void);
  2300. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2301. {
  2302. return skb->tstamp;
  2303. }
  2304. /**
  2305. * skb_get_timestamp - get timestamp from a skb
  2306. * @skb: skb to get stamp from
  2307. * @stamp: pointer to struct timeval to store stamp in
  2308. *
  2309. * Timestamps are stored in the skb as offsets to a base timestamp.
  2310. * This function converts the offset back to a struct timeval and stores
  2311. * it in stamp.
  2312. */
  2313. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2314. struct timeval *stamp)
  2315. {
  2316. *stamp = ktime_to_timeval(skb->tstamp);
  2317. }
  2318. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2319. struct timespec *stamp)
  2320. {
  2321. *stamp = ktime_to_timespec(skb->tstamp);
  2322. }
  2323. static inline void __net_timestamp(struct sk_buff *skb)
  2324. {
  2325. skb->tstamp = ktime_get_real();
  2326. }
  2327. static inline ktime_t net_timedelta(ktime_t t)
  2328. {
  2329. return ktime_sub(ktime_get_real(), t);
  2330. }
  2331. static inline ktime_t net_invalid_timestamp(void)
  2332. {
  2333. return ktime_set(0, 0);
  2334. }
  2335. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2336. void skb_clone_tx_timestamp(struct sk_buff *skb);
  2337. bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2338. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2339. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2340. {
  2341. }
  2342. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2343. {
  2344. return false;
  2345. }
  2346. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2347. /**
  2348. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2349. *
  2350. * PHY drivers may accept clones of transmitted packets for
  2351. * timestamping via their phy_driver.txtstamp method. These drivers
  2352. * must call this function to return the skb back to the stack, with
  2353. * or without a timestamp.
  2354. *
  2355. * @skb: clone of the the original outgoing packet
  2356. * @hwtstamps: hardware time stamps, may be NULL if not available
  2357. *
  2358. */
  2359. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2360. struct skb_shared_hwtstamps *hwtstamps);
  2361. /**
  2362. * skb_tstamp_tx - queue clone of skb with send time stamps
  2363. * @orig_skb: the original outgoing packet
  2364. * @hwtstamps: hardware time stamps, may be NULL if not available
  2365. *
  2366. * If the skb has a socket associated, then this function clones the
  2367. * skb (thus sharing the actual data and optional structures), stores
  2368. * the optional hardware time stamping information (if non NULL) or
  2369. * generates a software time stamp (otherwise), then queues the clone
  2370. * to the error queue of the socket. Errors are silently ignored.
  2371. */
  2372. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2373. struct skb_shared_hwtstamps *hwtstamps);
  2374. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2375. {
  2376. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2377. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2378. skb_tstamp_tx(skb, NULL);
  2379. }
  2380. /**
  2381. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2382. *
  2383. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2384. * function immediately before giving the sk_buff to the MAC hardware.
  2385. *
  2386. * Specifically, one should make absolutely sure that this function is
  2387. * called before TX completion of this packet can trigger. Otherwise
  2388. * the packet could potentially already be freed.
  2389. *
  2390. * @skb: A socket buffer.
  2391. */
  2392. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2393. {
  2394. skb_clone_tx_timestamp(skb);
  2395. sw_tx_timestamp(skb);
  2396. }
  2397. /**
  2398. * skb_complete_wifi_ack - deliver skb with wifi status
  2399. *
  2400. * @skb: the original outgoing packet
  2401. * @acked: ack status
  2402. *
  2403. */
  2404. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2405. __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2406. __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2407. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2408. {
  2409. return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
  2410. }
  2411. /**
  2412. * skb_checksum_complete - Calculate checksum of an entire packet
  2413. * @skb: packet to process
  2414. *
  2415. * This function calculates the checksum over the entire packet plus
  2416. * the value of skb->csum. The latter can be used to supply the
  2417. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2418. * checksum.
  2419. *
  2420. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2421. * this function can be used to verify that checksum on received
  2422. * packets. In that case the function should return zero if the
  2423. * checksum is correct. In particular, this function will return zero
  2424. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2425. * hardware has already verified the correctness of the checksum.
  2426. */
  2427. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2428. {
  2429. return skb_csum_unnecessary(skb) ?
  2430. 0 : __skb_checksum_complete(skb);
  2431. }
  2432. /* Check if we need to perform checksum complete validation.
  2433. *
  2434. * Returns true if checksum complete is needed, false otherwise
  2435. * (either checksum is unnecessary or zero checksum is allowed).
  2436. */
  2437. static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
  2438. bool zero_okay,
  2439. __sum16 check)
  2440. {
  2441. if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
  2442. skb->csum_valid = 1;
  2443. return false;
  2444. }
  2445. return true;
  2446. }
  2447. /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
  2448. * in checksum_init.
  2449. */
  2450. #define CHECKSUM_BREAK 76
  2451. /* Validate (init) checksum based on checksum complete.
  2452. *
  2453. * Return values:
  2454. * 0: checksum is validated or try to in skb_checksum_complete. In the latter
  2455. * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
  2456. * checksum is stored in skb->csum for use in __skb_checksum_complete
  2457. * non-zero: value of invalid checksum
  2458. *
  2459. */
  2460. static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
  2461. bool complete,
  2462. __wsum psum)
  2463. {
  2464. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  2465. if (!csum_fold(csum_add(psum, skb->csum))) {
  2466. skb->csum_valid = 1;
  2467. return 0;
  2468. }
  2469. }
  2470. skb->csum = psum;
  2471. if (complete || skb->len <= CHECKSUM_BREAK) {
  2472. __sum16 csum;
  2473. csum = __skb_checksum_complete(skb);
  2474. skb->csum_valid = !csum;
  2475. return csum;
  2476. }
  2477. return 0;
  2478. }
  2479. static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
  2480. {
  2481. return 0;
  2482. }
  2483. /* Perform checksum validate (init). Note that this is a macro since we only
  2484. * want to calculate the pseudo header which is an input function if necessary.
  2485. * First we try to validate without any computation (checksum unnecessary) and
  2486. * then calculate based on checksum complete calling the function to compute
  2487. * pseudo header.
  2488. *
  2489. * Return values:
  2490. * 0: checksum is validated or try to in skb_checksum_complete
  2491. * non-zero: value of invalid checksum
  2492. */
  2493. #define __skb_checksum_validate(skb, proto, complete, \
  2494. zero_okay, check, compute_pseudo) \
  2495. ({ \
  2496. __sum16 __ret = 0; \
  2497. skb->csum_valid = 0; \
  2498. if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
  2499. __ret = __skb_checksum_validate_complete(skb, \
  2500. complete, compute_pseudo(skb, proto)); \
  2501. __ret; \
  2502. })
  2503. #define skb_checksum_init(skb, proto, compute_pseudo) \
  2504. __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
  2505. #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
  2506. __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
  2507. #define skb_checksum_validate(skb, proto, compute_pseudo) \
  2508. __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
  2509. #define skb_checksum_validate_zero_check(skb, proto, check, \
  2510. compute_pseudo) \
  2511. __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
  2512. #define skb_checksum_simple_validate(skb) \
  2513. __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
  2514. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2515. void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2516. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2517. {
  2518. if (nfct && atomic_dec_and_test(&nfct->use))
  2519. nf_conntrack_destroy(nfct);
  2520. }
  2521. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2522. {
  2523. if (nfct)
  2524. atomic_inc(&nfct->use);
  2525. }
  2526. #endif
  2527. #ifdef CONFIG_BRIDGE_NETFILTER
  2528. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2529. {
  2530. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2531. kfree(nf_bridge);
  2532. }
  2533. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2534. {
  2535. if (nf_bridge)
  2536. atomic_inc(&nf_bridge->use);
  2537. }
  2538. #endif /* CONFIG_BRIDGE_NETFILTER */
  2539. static inline void nf_reset(struct sk_buff *skb)
  2540. {
  2541. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2542. nf_conntrack_put(skb->nfct);
  2543. skb->nfct = NULL;
  2544. #endif
  2545. #ifdef CONFIG_BRIDGE_NETFILTER
  2546. nf_bridge_put(skb->nf_bridge);
  2547. skb->nf_bridge = NULL;
  2548. #endif
  2549. }
  2550. static inline void nf_reset_trace(struct sk_buff *skb)
  2551. {
  2552. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2553. skb->nf_trace = 0;
  2554. #endif
  2555. }
  2556. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2557. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2558. {
  2559. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2560. dst->nfct = src->nfct;
  2561. nf_conntrack_get(src->nfct);
  2562. dst->nfctinfo = src->nfctinfo;
  2563. #endif
  2564. #ifdef CONFIG_BRIDGE_NETFILTER
  2565. dst->nf_bridge = src->nf_bridge;
  2566. nf_bridge_get(src->nf_bridge);
  2567. #endif
  2568. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  2569. dst->nf_trace = src->nf_trace;
  2570. #endif
  2571. }
  2572. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2573. {
  2574. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2575. nf_conntrack_put(dst->nfct);
  2576. #endif
  2577. #ifdef CONFIG_BRIDGE_NETFILTER
  2578. nf_bridge_put(dst->nf_bridge);
  2579. #endif
  2580. __nf_copy(dst, src);
  2581. }
  2582. #ifdef CONFIG_NETWORK_SECMARK
  2583. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2584. {
  2585. to->secmark = from->secmark;
  2586. }
  2587. static inline void skb_init_secmark(struct sk_buff *skb)
  2588. {
  2589. skb->secmark = 0;
  2590. }
  2591. #else
  2592. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2593. { }
  2594. static inline void skb_init_secmark(struct sk_buff *skb)
  2595. { }
  2596. #endif
  2597. static inline bool skb_irq_freeable(const struct sk_buff *skb)
  2598. {
  2599. return !skb->destructor &&
  2600. #if IS_ENABLED(CONFIG_XFRM)
  2601. !skb->sp &&
  2602. #endif
  2603. #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  2604. !skb->nfct &&
  2605. #endif
  2606. !skb->_skb_refdst &&
  2607. !skb_has_frag_list(skb);
  2608. }
  2609. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2610. {
  2611. skb->queue_mapping = queue_mapping;
  2612. }
  2613. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2614. {
  2615. return skb->queue_mapping;
  2616. }
  2617. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2618. {
  2619. to->queue_mapping = from->queue_mapping;
  2620. }
  2621. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2622. {
  2623. skb->queue_mapping = rx_queue + 1;
  2624. }
  2625. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2626. {
  2627. return skb->queue_mapping - 1;
  2628. }
  2629. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2630. {
  2631. return skb->queue_mapping != 0;
  2632. }
  2633. u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
  2634. unsigned int num_tx_queues);
  2635. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2636. {
  2637. #ifdef CONFIG_XFRM
  2638. return skb->sp;
  2639. #else
  2640. return NULL;
  2641. #endif
  2642. }
  2643. /* Keeps track of mac header offset relative to skb->head.
  2644. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  2645. * For non-tunnel skb it points to skb_mac_header() and for
  2646. * tunnel skb it points to outer mac header.
  2647. * Keeps track of level of encapsulation of network headers.
  2648. */
  2649. struct skb_gso_cb {
  2650. int mac_offset;
  2651. int encap_level;
  2652. __u16 csum_start;
  2653. };
  2654. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
  2655. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  2656. {
  2657. return (skb_mac_header(inner_skb) - inner_skb->head) -
  2658. SKB_GSO_CB(inner_skb)->mac_offset;
  2659. }
  2660. static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
  2661. {
  2662. int new_headroom, headroom;
  2663. int ret;
  2664. headroom = skb_headroom(skb);
  2665. ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
  2666. if (ret)
  2667. return ret;
  2668. new_headroom = skb_headroom(skb);
  2669. SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
  2670. return 0;
  2671. }
  2672. /* Compute the checksum for a gso segment. First compute the checksum value
  2673. * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
  2674. * then add in skb->csum (checksum from csum_start to end of packet).
  2675. * skb->csum and csum_start are then updated to reflect the checksum of the
  2676. * resultant packet starting from the transport header-- the resultant checksum
  2677. * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
  2678. * header.
  2679. */
  2680. static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
  2681. {
  2682. int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
  2683. skb_transport_offset(skb);
  2684. __u16 csum;
  2685. csum = csum_fold(csum_partial(skb_transport_header(skb),
  2686. plen, skb->csum));
  2687. skb->csum = res;
  2688. SKB_GSO_CB(skb)->csum_start -= plen;
  2689. return csum;
  2690. }
  2691. static inline bool skb_is_gso(const struct sk_buff *skb)
  2692. {
  2693. return skb_shinfo(skb)->gso_size;
  2694. }
  2695. /* Note: Should be called only if skb_is_gso(skb) is true */
  2696. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2697. {
  2698. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2699. }
  2700. void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2701. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2702. {
  2703. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2704. * wanted then gso_type will be set. */
  2705. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2706. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2707. unlikely(shinfo->gso_type == 0)) {
  2708. __skb_warn_lro_forwarding(skb);
  2709. return true;
  2710. }
  2711. return false;
  2712. }
  2713. static inline void skb_forward_csum(struct sk_buff *skb)
  2714. {
  2715. /* Unfortunately we don't support this one. Any brave souls? */
  2716. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2717. skb->ip_summed = CHECKSUM_NONE;
  2718. }
  2719. /**
  2720. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2721. * @skb: skb to check
  2722. *
  2723. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2724. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2725. * use this helper, to document places where we make this assertion.
  2726. */
  2727. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2728. {
  2729. #ifdef DEBUG
  2730. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2731. #endif
  2732. }
  2733. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2734. int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
  2735. u32 __skb_get_poff(const struct sk_buff *skb);
  2736. /**
  2737. * skb_head_is_locked - Determine if the skb->head is locked down
  2738. * @skb: skb to check
  2739. *
  2740. * The head on skbs build around a head frag can be removed if they are
  2741. * not cloned. This function returns true if the skb head is locked down
  2742. * due to either being allocated via kmalloc, or by being a clone with
  2743. * multiple references to the head.
  2744. */
  2745. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2746. {
  2747. return !skb->head_frag || skb_cloned(skb);
  2748. }
  2749. /**
  2750. * skb_gso_network_seglen - Return length of individual segments of a gso packet
  2751. *
  2752. * @skb: GSO skb
  2753. *
  2754. * skb_gso_network_seglen is used to determine the real size of the
  2755. * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
  2756. *
  2757. * The MAC/L2 header is not accounted for.
  2758. */
  2759. static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
  2760. {
  2761. unsigned int hdr_len = skb_transport_header(skb) -
  2762. skb_network_header(skb);
  2763. return hdr_len + skb_gso_transport_seglen(skb);
  2764. }
  2765. #endif /* __KERNEL__ */
  2766. #endif /* _LINUX_SKBUFF_H */