tree_plugin.h 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/sched/debug.h>
  30. #include <linux/smpboot.h>
  31. #include <uapi/linux/sched/types.h>
  32. #include "../time/tick-internal.h"
  33. #ifdef CONFIG_RCU_BOOST
  34. #include "../locking/rtmutex_common.h"
  35. /*
  36. * Control variables for per-CPU and per-rcu_node kthreads. These
  37. * handle all flavors of RCU.
  38. */
  39. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  40. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  41. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  42. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  43. #else /* #ifdef CONFIG_RCU_BOOST */
  44. /*
  45. * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  46. * all uses are in dead code. Provide a definition to keep the compiler
  47. * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  48. * This probably needs to be excluded from -rt builds.
  49. */
  50. #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  51. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  52. #ifdef CONFIG_RCU_NOCB_CPU
  53. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  54. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  55. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  56. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  57. /*
  58. * Check the RCU kernel configuration parameters and print informative
  59. * messages about anything out of the ordinary.
  60. */
  61. static void __init rcu_bootup_announce_oddness(void)
  62. {
  63. if (IS_ENABLED(CONFIG_RCU_TRACE))
  64. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  65. if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  66. (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  67. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  68. RCU_FANOUT);
  69. if (rcu_fanout_exact)
  70. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  71. if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  72. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  73. if (IS_ENABLED(CONFIG_PROVE_RCU))
  74. pr_info("\tRCU lockdep checking is enabled.\n");
  75. if (RCU_NUM_LVLS >= 4)
  76. pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  77. if (RCU_FANOUT_LEAF != 16)
  78. pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  79. RCU_FANOUT_LEAF);
  80. if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  81. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  82. if (nr_cpu_ids != NR_CPUS)
  83. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  84. if (IS_ENABLED(CONFIG_RCU_BOOST))
  85. pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  86. }
  87. #ifdef CONFIG_PREEMPT_RCU
  88. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  89. static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
  90. static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
  91. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  92. bool wake);
  93. /*
  94. * Tell them what RCU they are running.
  95. */
  96. static void __init rcu_bootup_announce(void)
  97. {
  98. pr_info("Preemptible hierarchical RCU implementation.\n");
  99. rcu_bootup_announce_oddness();
  100. }
  101. /* Flags for rcu_preempt_ctxt_queue() decision table. */
  102. #define RCU_GP_TASKS 0x8
  103. #define RCU_EXP_TASKS 0x4
  104. #define RCU_GP_BLKD 0x2
  105. #define RCU_EXP_BLKD 0x1
  106. /*
  107. * Queues a task preempted within an RCU-preempt read-side critical
  108. * section into the appropriate location within the ->blkd_tasks list,
  109. * depending on the states of any ongoing normal and expedited grace
  110. * periods. The ->gp_tasks pointer indicates which element the normal
  111. * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
  112. * indicates which element the expedited grace period is waiting on (again,
  113. * NULL if none). If a grace period is waiting on a given element in the
  114. * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
  115. * adding a task to the tail of the list blocks any grace period that is
  116. * already waiting on one of the elements. In contrast, adding a task
  117. * to the head of the list won't block any grace period that is already
  118. * waiting on one of the elements.
  119. *
  120. * This queuing is imprecise, and can sometimes make an ongoing grace
  121. * period wait for a task that is not strictly speaking blocking it.
  122. * Given the choice, we needlessly block a normal grace period rather than
  123. * blocking an expedited grace period.
  124. *
  125. * Note that an endless sequence of expedited grace periods still cannot
  126. * indefinitely postpone a normal grace period. Eventually, all of the
  127. * fixed number of preempted tasks blocking the normal grace period that are
  128. * not also blocking the expedited grace period will resume and complete
  129. * their RCU read-side critical sections. At that point, the ->gp_tasks
  130. * pointer will equal the ->exp_tasks pointer, at which point the end of
  131. * the corresponding expedited grace period will also be the end of the
  132. * normal grace period.
  133. */
  134. static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
  135. __releases(rnp->lock) /* But leaves rrupts disabled. */
  136. {
  137. int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
  138. (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
  139. (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
  140. (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
  141. struct task_struct *t = current;
  142. /*
  143. * Decide where to queue the newly blocked task. In theory,
  144. * this could be an if-statement. In practice, when I tried
  145. * that, it was quite messy.
  146. */
  147. switch (blkd_state) {
  148. case 0:
  149. case RCU_EXP_TASKS:
  150. case RCU_EXP_TASKS + RCU_GP_BLKD:
  151. case RCU_GP_TASKS:
  152. case RCU_GP_TASKS + RCU_EXP_TASKS:
  153. /*
  154. * Blocking neither GP, or first task blocking the normal
  155. * GP but not blocking the already-waiting expedited GP.
  156. * Queue at the head of the list to avoid unnecessarily
  157. * blocking the already-waiting GPs.
  158. */
  159. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  160. break;
  161. case RCU_EXP_BLKD:
  162. case RCU_GP_BLKD:
  163. case RCU_GP_BLKD + RCU_EXP_BLKD:
  164. case RCU_GP_TASKS + RCU_EXP_BLKD:
  165. case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  166. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  167. /*
  168. * First task arriving that blocks either GP, or first task
  169. * arriving that blocks the expedited GP (with the normal
  170. * GP already waiting), or a task arriving that blocks
  171. * both GPs with both GPs already waiting. Queue at the
  172. * tail of the list to avoid any GP waiting on any of the
  173. * already queued tasks that are not blocking it.
  174. */
  175. list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
  176. break;
  177. case RCU_EXP_TASKS + RCU_EXP_BLKD:
  178. case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
  179. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
  180. /*
  181. * Second or subsequent task blocking the expedited GP.
  182. * The task either does not block the normal GP, or is the
  183. * first task blocking the normal GP. Queue just after
  184. * the first task blocking the expedited GP.
  185. */
  186. list_add(&t->rcu_node_entry, rnp->exp_tasks);
  187. break;
  188. case RCU_GP_TASKS + RCU_GP_BLKD:
  189. case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
  190. /*
  191. * Second or subsequent task blocking the normal GP.
  192. * The task does not block the expedited GP. Queue just
  193. * after the first task blocking the normal GP.
  194. */
  195. list_add(&t->rcu_node_entry, rnp->gp_tasks);
  196. break;
  197. default:
  198. /* Yet another exercise in excessive paranoia. */
  199. WARN_ON_ONCE(1);
  200. break;
  201. }
  202. /*
  203. * We have now queued the task. If it was the first one to
  204. * block either grace period, update the ->gp_tasks and/or
  205. * ->exp_tasks pointers, respectively, to reference the newly
  206. * blocked tasks.
  207. */
  208. if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
  209. rnp->gp_tasks = &t->rcu_node_entry;
  210. if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
  211. rnp->exp_tasks = &t->rcu_node_entry;
  212. raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
  213. /*
  214. * Report the quiescent state for the expedited GP. This expedited
  215. * GP should not be able to end until we report, so there should be
  216. * no need to check for a subsequent expedited GP. (Though we are
  217. * still in a quiescent state in any case.)
  218. */
  219. if (blkd_state & RCU_EXP_BLKD &&
  220. t->rcu_read_unlock_special.b.exp_need_qs) {
  221. t->rcu_read_unlock_special.b.exp_need_qs = false;
  222. rcu_report_exp_rdp(rdp->rsp, rdp, true);
  223. } else {
  224. WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
  225. }
  226. }
  227. /*
  228. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  229. * that this just means that the task currently running on the CPU is
  230. * not in a quiescent state. There might be any number of tasks blocked
  231. * while in an RCU read-side critical section.
  232. *
  233. * As with the other rcu_*_qs() functions, callers to this function
  234. * must disable preemption.
  235. */
  236. static void rcu_preempt_qs(void)
  237. {
  238. if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
  239. trace_rcu_grace_period(TPS("rcu_preempt"),
  240. __this_cpu_read(rcu_data_p->gpnum),
  241. TPS("cpuqs"));
  242. __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
  243. barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
  244. current->rcu_read_unlock_special.b.need_qs = false;
  245. }
  246. }
  247. /*
  248. * We have entered the scheduler, and the current task might soon be
  249. * context-switched away from. If this task is in an RCU read-side
  250. * critical section, we will no longer be able to rely on the CPU to
  251. * record that fact, so we enqueue the task on the blkd_tasks list.
  252. * The task will dequeue itself when it exits the outermost enclosing
  253. * RCU read-side critical section. Therefore, the current grace period
  254. * cannot be permitted to complete until the blkd_tasks list entries
  255. * predating the current grace period drain, in other words, until
  256. * rnp->gp_tasks becomes NULL.
  257. *
  258. * Caller must disable interrupts.
  259. */
  260. static void rcu_preempt_note_context_switch(bool preempt)
  261. {
  262. struct task_struct *t = current;
  263. struct rcu_data *rdp;
  264. struct rcu_node *rnp;
  265. WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
  266. if (t->rcu_read_lock_nesting > 0 &&
  267. !t->rcu_read_unlock_special.b.blocked) {
  268. /* Possibly blocking in an RCU read-side critical section. */
  269. rdp = this_cpu_ptr(rcu_state_p->rda);
  270. rnp = rdp->mynode;
  271. raw_spin_lock_rcu_node(rnp);
  272. t->rcu_read_unlock_special.b.blocked = true;
  273. t->rcu_blocked_node = rnp;
  274. /*
  275. * Verify the CPU's sanity, trace the preemption, and
  276. * then queue the task as required based on the states
  277. * of any ongoing and expedited grace periods.
  278. */
  279. WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
  280. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  281. trace_rcu_preempt_task(rdp->rsp->name,
  282. t->pid,
  283. (rnp->qsmask & rdp->grpmask)
  284. ? rnp->gpnum
  285. : rnp->gpnum + 1);
  286. rcu_preempt_ctxt_queue(rnp, rdp);
  287. } else if (t->rcu_read_lock_nesting < 0 &&
  288. t->rcu_read_unlock_special.s) {
  289. /*
  290. * Complete exit from RCU read-side critical section on
  291. * behalf of preempted instance of __rcu_read_unlock().
  292. */
  293. rcu_read_unlock_special(t);
  294. }
  295. /*
  296. * Either we were not in an RCU read-side critical section to
  297. * begin with, or we have now recorded that critical section
  298. * globally. Either way, we can now note a quiescent state
  299. * for this CPU. Again, if we were in an RCU read-side critical
  300. * section, and if that critical section was blocking the current
  301. * grace period, then the fact that the task has been enqueued
  302. * means that we continue to block the current grace period.
  303. */
  304. rcu_preempt_qs();
  305. }
  306. /*
  307. * Check for preempted RCU readers blocking the current grace period
  308. * for the specified rcu_node structure. If the caller needs a reliable
  309. * answer, it must hold the rcu_node's ->lock.
  310. */
  311. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  312. {
  313. return rnp->gp_tasks != NULL;
  314. }
  315. /*
  316. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  317. * returning NULL if at the end of the list.
  318. */
  319. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  320. struct rcu_node *rnp)
  321. {
  322. struct list_head *np;
  323. np = t->rcu_node_entry.next;
  324. if (np == &rnp->blkd_tasks)
  325. np = NULL;
  326. return np;
  327. }
  328. /*
  329. * Return true if the specified rcu_node structure has tasks that were
  330. * preempted within an RCU read-side critical section.
  331. */
  332. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  333. {
  334. return !list_empty(&rnp->blkd_tasks);
  335. }
  336. /*
  337. * Handle special cases during rcu_read_unlock(), such as needing to
  338. * notify RCU core processing or task having blocked during the RCU
  339. * read-side critical section.
  340. */
  341. void rcu_read_unlock_special(struct task_struct *t)
  342. {
  343. bool empty_exp;
  344. bool empty_norm;
  345. bool empty_exp_now;
  346. unsigned long flags;
  347. struct list_head *np;
  348. bool drop_boost_mutex = false;
  349. struct rcu_data *rdp;
  350. struct rcu_node *rnp;
  351. union rcu_special special;
  352. /* NMI handlers cannot block and cannot safely manipulate state. */
  353. if (in_nmi())
  354. return;
  355. local_irq_save(flags);
  356. /*
  357. * If RCU core is waiting for this CPU to exit its critical section,
  358. * report the fact that it has exited. Because irqs are disabled,
  359. * t->rcu_read_unlock_special cannot change.
  360. */
  361. special = t->rcu_read_unlock_special;
  362. if (special.b.need_qs) {
  363. rcu_preempt_qs();
  364. t->rcu_read_unlock_special.b.need_qs = false;
  365. if (!t->rcu_read_unlock_special.s) {
  366. local_irq_restore(flags);
  367. return;
  368. }
  369. }
  370. /*
  371. * Respond to a request for an expedited grace period, but only if
  372. * we were not preempted, meaning that we were running on the same
  373. * CPU throughout. If we were preempted, the exp_need_qs flag
  374. * would have been cleared at the time of the first preemption,
  375. * and the quiescent state would be reported when we were dequeued.
  376. */
  377. if (special.b.exp_need_qs) {
  378. WARN_ON_ONCE(special.b.blocked);
  379. t->rcu_read_unlock_special.b.exp_need_qs = false;
  380. rdp = this_cpu_ptr(rcu_state_p->rda);
  381. rcu_report_exp_rdp(rcu_state_p, rdp, true);
  382. if (!t->rcu_read_unlock_special.s) {
  383. local_irq_restore(flags);
  384. return;
  385. }
  386. }
  387. /* Hardware IRQ handlers cannot block, complain if they get here. */
  388. if (in_irq() || in_serving_softirq()) {
  389. lockdep_rcu_suspicious(__FILE__, __LINE__,
  390. "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
  391. pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
  392. t->rcu_read_unlock_special.s,
  393. t->rcu_read_unlock_special.b.blocked,
  394. t->rcu_read_unlock_special.b.exp_need_qs,
  395. t->rcu_read_unlock_special.b.need_qs);
  396. local_irq_restore(flags);
  397. return;
  398. }
  399. /* Clean up if blocked during RCU read-side critical section. */
  400. if (special.b.blocked) {
  401. t->rcu_read_unlock_special.b.blocked = false;
  402. /*
  403. * Remove this task from the list it blocked on. The task
  404. * now remains queued on the rcu_node corresponding to the
  405. * CPU it first blocked on, so there is no longer any need
  406. * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
  407. */
  408. rnp = t->rcu_blocked_node;
  409. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  410. WARN_ON_ONCE(rnp != t->rcu_blocked_node);
  411. empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
  412. empty_exp = sync_rcu_preempt_exp_done(rnp);
  413. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  414. np = rcu_next_node_entry(t, rnp);
  415. list_del_init(&t->rcu_node_entry);
  416. t->rcu_blocked_node = NULL;
  417. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  418. rnp->gpnum, t->pid);
  419. if (&t->rcu_node_entry == rnp->gp_tasks)
  420. rnp->gp_tasks = np;
  421. if (&t->rcu_node_entry == rnp->exp_tasks)
  422. rnp->exp_tasks = np;
  423. if (IS_ENABLED(CONFIG_RCU_BOOST)) {
  424. if (&t->rcu_node_entry == rnp->boost_tasks)
  425. rnp->boost_tasks = np;
  426. /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
  427. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  428. }
  429. /*
  430. * If this was the last task on the current list, and if
  431. * we aren't waiting on any CPUs, report the quiescent state.
  432. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  433. * so we must take a snapshot of the expedited state.
  434. */
  435. empty_exp_now = sync_rcu_preempt_exp_done(rnp);
  436. if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
  437. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  438. rnp->gpnum,
  439. 0, rnp->qsmask,
  440. rnp->level,
  441. rnp->grplo,
  442. rnp->grphi,
  443. !!rnp->gp_tasks);
  444. rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
  445. } else {
  446. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  447. }
  448. /* Unboost if we were boosted. */
  449. if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
  450. rt_mutex_unlock(&rnp->boost_mtx);
  451. /*
  452. * If this was the last task on the expedited lists,
  453. * then we need to report up the rcu_node hierarchy.
  454. */
  455. if (!empty_exp && empty_exp_now)
  456. rcu_report_exp_rnp(rcu_state_p, rnp, true);
  457. } else {
  458. local_irq_restore(flags);
  459. }
  460. }
  461. /*
  462. * Dump detailed information for all tasks blocking the current RCU
  463. * grace period on the specified rcu_node structure.
  464. */
  465. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  466. {
  467. unsigned long flags;
  468. struct task_struct *t;
  469. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  470. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  471. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  472. return;
  473. }
  474. t = list_entry(rnp->gp_tasks->prev,
  475. struct task_struct, rcu_node_entry);
  476. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  477. sched_show_task(t);
  478. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  479. }
  480. /*
  481. * Dump detailed information for all tasks blocking the current RCU
  482. * grace period.
  483. */
  484. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  485. {
  486. struct rcu_node *rnp = rcu_get_root(rsp);
  487. rcu_print_detail_task_stall_rnp(rnp);
  488. rcu_for_each_leaf_node(rsp, rnp)
  489. rcu_print_detail_task_stall_rnp(rnp);
  490. }
  491. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  492. {
  493. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  494. rnp->level, rnp->grplo, rnp->grphi);
  495. }
  496. static void rcu_print_task_stall_end(void)
  497. {
  498. pr_cont("\n");
  499. }
  500. /*
  501. * Scan the current list of tasks blocked within RCU read-side critical
  502. * sections, printing out the tid of each.
  503. */
  504. static int rcu_print_task_stall(struct rcu_node *rnp)
  505. {
  506. struct task_struct *t;
  507. int ndetected = 0;
  508. if (!rcu_preempt_blocked_readers_cgp(rnp))
  509. return 0;
  510. rcu_print_task_stall_begin(rnp);
  511. t = list_entry(rnp->gp_tasks->prev,
  512. struct task_struct, rcu_node_entry);
  513. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  514. pr_cont(" P%d", t->pid);
  515. ndetected++;
  516. }
  517. rcu_print_task_stall_end();
  518. return ndetected;
  519. }
  520. /*
  521. * Scan the current list of tasks blocked within RCU read-side critical
  522. * sections, printing out the tid of each that is blocking the current
  523. * expedited grace period.
  524. */
  525. static int rcu_print_task_exp_stall(struct rcu_node *rnp)
  526. {
  527. struct task_struct *t;
  528. int ndetected = 0;
  529. if (!rnp->exp_tasks)
  530. return 0;
  531. t = list_entry(rnp->exp_tasks->prev,
  532. struct task_struct, rcu_node_entry);
  533. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  534. pr_cont(" P%d", t->pid);
  535. ndetected++;
  536. }
  537. return ndetected;
  538. }
  539. /*
  540. * Check that the list of blocked tasks for the newly completed grace
  541. * period is in fact empty. It is a serious bug to complete a grace
  542. * period that still has RCU readers blocked! This function must be
  543. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  544. * must be held by the caller.
  545. *
  546. * Also, if there are blocked tasks on the list, they automatically
  547. * block the newly created grace period, so set up ->gp_tasks accordingly.
  548. */
  549. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  550. {
  551. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  552. if (rcu_preempt_has_tasks(rnp))
  553. rnp->gp_tasks = rnp->blkd_tasks.next;
  554. WARN_ON_ONCE(rnp->qsmask);
  555. }
  556. /*
  557. * Check for a quiescent state from the current CPU. When a task blocks,
  558. * the task is recorded in the corresponding CPU's rcu_node structure,
  559. * which is checked elsewhere.
  560. *
  561. * Caller must disable hard irqs.
  562. */
  563. static void rcu_preempt_check_callbacks(void)
  564. {
  565. struct task_struct *t = current;
  566. if (t->rcu_read_lock_nesting == 0) {
  567. rcu_preempt_qs();
  568. return;
  569. }
  570. if (t->rcu_read_lock_nesting > 0 &&
  571. __this_cpu_read(rcu_data_p->core_needs_qs) &&
  572. __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
  573. t->rcu_read_unlock_special.b.need_qs = true;
  574. }
  575. #ifdef CONFIG_RCU_BOOST
  576. static void rcu_preempt_do_callbacks(void)
  577. {
  578. rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
  579. }
  580. #endif /* #ifdef CONFIG_RCU_BOOST */
  581. /*
  582. * Queue a preemptible-RCU callback for invocation after a grace period.
  583. */
  584. void call_rcu(struct rcu_head *head, rcu_callback_t func)
  585. {
  586. __call_rcu(head, func, rcu_state_p, -1, 0);
  587. }
  588. EXPORT_SYMBOL_GPL(call_rcu);
  589. /**
  590. * synchronize_rcu - wait until a grace period has elapsed.
  591. *
  592. * Control will return to the caller some time after a full grace
  593. * period has elapsed, in other words after all currently executing RCU
  594. * read-side critical sections have completed. Note, however, that
  595. * upon return from synchronize_rcu(), the caller might well be executing
  596. * concurrently with new RCU read-side critical sections that began while
  597. * synchronize_rcu() was waiting. RCU read-side critical sections are
  598. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  599. *
  600. * See the description of synchronize_sched() for more detailed information
  601. * on memory ordering guarantees.
  602. */
  603. void synchronize_rcu(void)
  604. {
  605. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  606. lock_is_held(&rcu_lock_map) ||
  607. lock_is_held(&rcu_sched_lock_map),
  608. "Illegal synchronize_rcu() in RCU read-side critical section");
  609. if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
  610. return;
  611. if (rcu_gp_is_expedited())
  612. synchronize_rcu_expedited();
  613. else
  614. wait_rcu_gp(call_rcu);
  615. }
  616. EXPORT_SYMBOL_GPL(synchronize_rcu);
  617. /**
  618. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  619. *
  620. * Note that this primitive does not necessarily wait for an RCU grace period
  621. * to complete. For example, if there are no RCU callbacks queued anywhere
  622. * in the system, then rcu_barrier() is within its rights to return
  623. * immediately, without waiting for anything, much less an RCU grace period.
  624. */
  625. void rcu_barrier(void)
  626. {
  627. _rcu_barrier(rcu_state_p);
  628. }
  629. EXPORT_SYMBOL_GPL(rcu_barrier);
  630. /*
  631. * Initialize preemptible RCU's state structures.
  632. */
  633. static void __init __rcu_init_preempt(void)
  634. {
  635. rcu_init_one(rcu_state_p);
  636. }
  637. /*
  638. * Check for a task exiting while in a preemptible-RCU read-side
  639. * critical section, clean up if so. No need to issue warnings,
  640. * as debug_check_no_locks_held() already does this if lockdep
  641. * is enabled.
  642. */
  643. void exit_rcu(void)
  644. {
  645. struct task_struct *t = current;
  646. if (likely(list_empty(&current->rcu_node_entry)))
  647. return;
  648. t->rcu_read_lock_nesting = 1;
  649. barrier();
  650. t->rcu_read_unlock_special.b.blocked = true;
  651. __rcu_read_unlock();
  652. }
  653. #else /* #ifdef CONFIG_PREEMPT_RCU */
  654. static struct rcu_state *const rcu_state_p = &rcu_sched_state;
  655. /*
  656. * Tell them what RCU they are running.
  657. */
  658. static void __init rcu_bootup_announce(void)
  659. {
  660. pr_info("Hierarchical RCU implementation.\n");
  661. rcu_bootup_announce_oddness();
  662. }
  663. /*
  664. * Because preemptible RCU does not exist, we never have to check for
  665. * CPUs being in quiescent states.
  666. */
  667. static void rcu_preempt_note_context_switch(bool preempt)
  668. {
  669. }
  670. /*
  671. * Because preemptible RCU does not exist, there are never any preempted
  672. * RCU readers.
  673. */
  674. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  675. {
  676. return 0;
  677. }
  678. /*
  679. * Because there is no preemptible RCU, there can be no readers blocked.
  680. */
  681. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  682. {
  683. return false;
  684. }
  685. /*
  686. * Because preemptible RCU does not exist, we never have to check for
  687. * tasks blocked within RCU read-side critical sections.
  688. */
  689. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  690. {
  691. }
  692. /*
  693. * Because preemptible RCU does not exist, we never have to check for
  694. * tasks blocked within RCU read-side critical sections.
  695. */
  696. static int rcu_print_task_stall(struct rcu_node *rnp)
  697. {
  698. return 0;
  699. }
  700. /*
  701. * Because preemptible RCU does not exist, we never have to check for
  702. * tasks blocked within RCU read-side critical sections that are
  703. * blocking the current expedited grace period.
  704. */
  705. static int rcu_print_task_exp_stall(struct rcu_node *rnp)
  706. {
  707. return 0;
  708. }
  709. /*
  710. * Because there is no preemptible RCU, there can be no readers blocked,
  711. * so there is no need to check for blocked tasks. So check only for
  712. * bogus qsmask values.
  713. */
  714. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  715. {
  716. WARN_ON_ONCE(rnp->qsmask);
  717. }
  718. /*
  719. * Because preemptible RCU does not exist, it never has any callbacks
  720. * to check.
  721. */
  722. static void rcu_preempt_check_callbacks(void)
  723. {
  724. }
  725. /*
  726. * Because preemptible RCU does not exist, rcu_barrier() is just
  727. * another name for rcu_barrier_sched().
  728. */
  729. void rcu_barrier(void)
  730. {
  731. rcu_barrier_sched();
  732. }
  733. EXPORT_SYMBOL_GPL(rcu_barrier);
  734. /*
  735. * Because preemptible RCU does not exist, it need not be initialized.
  736. */
  737. static void __init __rcu_init_preempt(void)
  738. {
  739. }
  740. /*
  741. * Because preemptible RCU does not exist, tasks cannot possibly exit
  742. * while in preemptible RCU read-side critical sections.
  743. */
  744. void exit_rcu(void)
  745. {
  746. }
  747. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  748. #ifdef CONFIG_RCU_BOOST
  749. #include "../locking/rtmutex_common.h"
  750. #ifdef CONFIG_RCU_TRACE
  751. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  752. {
  753. if (!rcu_preempt_has_tasks(rnp))
  754. rnp->n_balk_blkd_tasks++;
  755. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  756. rnp->n_balk_exp_gp_tasks++;
  757. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  758. rnp->n_balk_boost_tasks++;
  759. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  760. rnp->n_balk_notblocked++;
  761. else if (rnp->gp_tasks != NULL &&
  762. ULONG_CMP_LT(jiffies, rnp->boost_time))
  763. rnp->n_balk_notyet++;
  764. else
  765. rnp->n_balk_nos++;
  766. }
  767. #else /* #ifdef CONFIG_RCU_TRACE */
  768. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  769. {
  770. }
  771. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  772. static void rcu_wake_cond(struct task_struct *t, int status)
  773. {
  774. /*
  775. * If the thread is yielding, only wake it when this
  776. * is invoked from idle
  777. */
  778. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  779. wake_up_process(t);
  780. }
  781. /*
  782. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  783. * or ->boost_tasks, advancing the pointer to the next task in the
  784. * ->blkd_tasks list.
  785. *
  786. * Note that irqs must be enabled: boosting the task can block.
  787. * Returns 1 if there are more tasks needing to be boosted.
  788. */
  789. static int rcu_boost(struct rcu_node *rnp)
  790. {
  791. unsigned long flags;
  792. struct task_struct *t;
  793. struct list_head *tb;
  794. if (READ_ONCE(rnp->exp_tasks) == NULL &&
  795. READ_ONCE(rnp->boost_tasks) == NULL)
  796. return 0; /* Nothing left to boost. */
  797. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  798. /*
  799. * Recheck under the lock: all tasks in need of boosting
  800. * might exit their RCU read-side critical sections on their own.
  801. */
  802. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  803. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  804. return 0;
  805. }
  806. /*
  807. * Preferentially boost tasks blocking expedited grace periods.
  808. * This cannot starve the normal grace periods because a second
  809. * expedited grace period must boost all blocked tasks, including
  810. * those blocking the pre-existing normal grace period.
  811. */
  812. if (rnp->exp_tasks != NULL) {
  813. tb = rnp->exp_tasks;
  814. rnp->n_exp_boosts++;
  815. } else {
  816. tb = rnp->boost_tasks;
  817. rnp->n_normal_boosts++;
  818. }
  819. rnp->n_tasks_boosted++;
  820. /*
  821. * We boost task t by manufacturing an rt_mutex that appears to
  822. * be held by task t. We leave a pointer to that rt_mutex where
  823. * task t can find it, and task t will release the mutex when it
  824. * exits its outermost RCU read-side critical section. Then
  825. * simply acquiring this artificial rt_mutex will boost task
  826. * t's priority. (Thanks to tglx for suggesting this approach!)
  827. *
  828. * Note that task t must acquire rnp->lock to remove itself from
  829. * the ->blkd_tasks list, which it will do from exit() if from
  830. * nowhere else. We therefore are guaranteed that task t will
  831. * stay around at least until we drop rnp->lock. Note that
  832. * rnp->lock also resolves races between our priority boosting
  833. * and task t's exiting its outermost RCU read-side critical
  834. * section.
  835. */
  836. t = container_of(tb, struct task_struct, rcu_node_entry);
  837. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  838. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  839. /* Lock only for side effect: boosts task t's priority. */
  840. rt_mutex_lock(&rnp->boost_mtx);
  841. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  842. return READ_ONCE(rnp->exp_tasks) != NULL ||
  843. READ_ONCE(rnp->boost_tasks) != NULL;
  844. }
  845. /*
  846. * Priority-boosting kthread, one per leaf rcu_node.
  847. */
  848. static int rcu_boost_kthread(void *arg)
  849. {
  850. struct rcu_node *rnp = (struct rcu_node *)arg;
  851. int spincnt = 0;
  852. int more2boost;
  853. trace_rcu_utilization(TPS("Start boost kthread@init"));
  854. for (;;) {
  855. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  856. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  857. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  858. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  859. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  860. more2boost = rcu_boost(rnp);
  861. if (more2boost)
  862. spincnt++;
  863. else
  864. spincnt = 0;
  865. if (spincnt > 10) {
  866. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  867. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  868. schedule_timeout_interruptible(2);
  869. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  870. spincnt = 0;
  871. }
  872. }
  873. /* NOTREACHED */
  874. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  875. return 0;
  876. }
  877. /*
  878. * Check to see if it is time to start boosting RCU readers that are
  879. * blocking the current grace period, and, if so, tell the per-rcu_node
  880. * kthread to start boosting them. If there is an expedited grace
  881. * period in progress, it is always time to boost.
  882. *
  883. * The caller must hold rnp->lock, which this function releases.
  884. * The ->boost_kthread_task is immortal, so we don't need to worry
  885. * about it going away.
  886. */
  887. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  888. __releases(rnp->lock)
  889. {
  890. struct task_struct *t;
  891. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  892. rnp->n_balk_exp_gp_tasks++;
  893. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  894. return;
  895. }
  896. if (rnp->exp_tasks != NULL ||
  897. (rnp->gp_tasks != NULL &&
  898. rnp->boost_tasks == NULL &&
  899. rnp->qsmask == 0 &&
  900. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  901. if (rnp->exp_tasks == NULL)
  902. rnp->boost_tasks = rnp->gp_tasks;
  903. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  904. t = rnp->boost_kthread_task;
  905. if (t)
  906. rcu_wake_cond(t, rnp->boost_kthread_status);
  907. } else {
  908. rcu_initiate_boost_trace(rnp);
  909. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  910. }
  911. }
  912. /*
  913. * Wake up the per-CPU kthread to invoke RCU callbacks.
  914. */
  915. static void invoke_rcu_callbacks_kthread(void)
  916. {
  917. unsigned long flags;
  918. local_irq_save(flags);
  919. __this_cpu_write(rcu_cpu_has_work, 1);
  920. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  921. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  922. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  923. __this_cpu_read(rcu_cpu_kthread_status));
  924. }
  925. local_irq_restore(flags);
  926. }
  927. /*
  928. * Is the current CPU running the RCU-callbacks kthread?
  929. * Caller must have preemption disabled.
  930. */
  931. static bool rcu_is_callbacks_kthread(void)
  932. {
  933. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  934. }
  935. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  936. /*
  937. * Do priority-boost accounting for the start of a new grace period.
  938. */
  939. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  940. {
  941. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  942. }
  943. /*
  944. * Create an RCU-boost kthread for the specified node if one does not
  945. * already exist. We only create this kthread for preemptible RCU.
  946. * Returns zero if all is well, a negated errno otherwise.
  947. */
  948. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  949. struct rcu_node *rnp)
  950. {
  951. int rnp_index = rnp - &rsp->node[0];
  952. unsigned long flags;
  953. struct sched_param sp;
  954. struct task_struct *t;
  955. if (rcu_state_p != rsp)
  956. return 0;
  957. if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
  958. return 0;
  959. rsp->boost = 1;
  960. if (rnp->boost_kthread_task != NULL)
  961. return 0;
  962. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  963. "rcub/%d", rnp_index);
  964. if (IS_ERR(t))
  965. return PTR_ERR(t);
  966. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  967. rnp->boost_kthread_task = t;
  968. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  969. sp.sched_priority = kthread_prio;
  970. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  971. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  972. return 0;
  973. }
  974. static void rcu_kthread_do_work(void)
  975. {
  976. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  977. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  978. rcu_preempt_do_callbacks();
  979. }
  980. static void rcu_cpu_kthread_setup(unsigned int cpu)
  981. {
  982. struct sched_param sp;
  983. sp.sched_priority = kthread_prio;
  984. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  985. }
  986. static void rcu_cpu_kthread_park(unsigned int cpu)
  987. {
  988. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  989. }
  990. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  991. {
  992. return __this_cpu_read(rcu_cpu_has_work);
  993. }
  994. /*
  995. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  996. * RCU softirq used in flavors and configurations of RCU that do not
  997. * support RCU priority boosting.
  998. */
  999. static void rcu_cpu_kthread(unsigned int cpu)
  1000. {
  1001. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1002. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1003. int spincnt;
  1004. for (spincnt = 0; spincnt < 10; spincnt++) {
  1005. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1006. local_bh_disable();
  1007. *statusp = RCU_KTHREAD_RUNNING;
  1008. this_cpu_inc(rcu_cpu_kthread_loops);
  1009. local_irq_disable();
  1010. work = *workp;
  1011. *workp = 0;
  1012. local_irq_enable();
  1013. if (work)
  1014. rcu_kthread_do_work();
  1015. local_bh_enable();
  1016. if (*workp == 0) {
  1017. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1018. *statusp = RCU_KTHREAD_WAITING;
  1019. return;
  1020. }
  1021. }
  1022. *statusp = RCU_KTHREAD_YIELDING;
  1023. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1024. schedule_timeout_interruptible(2);
  1025. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1026. *statusp = RCU_KTHREAD_WAITING;
  1027. }
  1028. /*
  1029. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1030. * served by the rcu_node in question. The CPU hotplug lock is still
  1031. * held, so the value of rnp->qsmaskinit will be stable.
  1032. *
  1033. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1034. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1035. * this function allows the kthread to execute on any CPU.
  1036. */
  1037. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1038. {
  1039. struct task_struct *t = rnp->boost_kthread_task;
  1040. unsigned long mask = rcu_rnp_online_cpus(rnp);
  1041. cpumask_var_t cm;
  1042. int cpu;
  1043. if (!t)
  1044. return;
  1045. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1046. return;
  1047. for_each_leaf_node_possible_cpu(rnp, cpu)
  1048. if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
  1049. cpu != outgoingcpu)
  1050. cpumask_set_cpu(cpu, cm);
  1051. if (cpumask_weight(cm) == 0)
  1052. cpumask_setall(cm);
  1053. set_cpus_allowed_ptr(t, cm);
  1054. free_cpumask_var(cm);
  1055. }
  1056. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1057. .store = &rcu_cpu_kthread_task,
  1058. .thread_should_run = rcu_cpu_kthread_should_run,
  1059. .thread_fn = rcu_cpu_kthread,
  1060. .thread_comm = "rcuc/%u",
  1061. .setup = rcu_cpu_kthread_setup,
  1062. .park = rcu_cpu_kthread_park,
  1063. };
  1064. /*
  1065. * Spawn boost kthreads -- called as soon as the scheduler is running.
  1066. */
  1067. static void __init rcu_spawn_boost_kthreads(void)
  1068. {
  1069. struct rcu_node *rnp;
  1070. int cpu;
  1071. for_each_possible_cpu(cpu)
  1072. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1073. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1074. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1075. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1076. }
  1077. static void rcu_prepare_kthreads(int cpu)
  1078. {
  1079. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1080. struct rcu_node *rnp = rdp->mynode;
  1081. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1082. if (rcu_scheduler_fully_active)
  1083. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1084. }
  1085. #else /* #ifdef CONFIG_RCU_BOOST */
  1086. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1087. __releases(rnp->lock)
  1088. {
  1089. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1090. }
  1091. static void invoke_rcu_callbacks_kthread(void)
  1092. {
  1093. WARN_ON_ONCE(1);
  1094. }
  1095. static bool rcu_is_callbacks_kthread(void)
  1096. {
  1097. return false;
  1098. }
  1099. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1100. {
  1101. }
  1102. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1103. {
  1104. }
  1105. static void __init rcu_spawn_boost_kthreads(void)
  1106. {
  1107. }
  1108. static void rcu_prepare_kthreads(int cpu)
  1109. {
  1110. }
  1111. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1112. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1113. /*
  1114. * Check to see if any future RCU-related work will need to be done
  1115. * by the current CPU, even if none need be done immediately, returning
  1116. * 1 if so. This function is part of the RCU implementation; it is -not-
  1117. * an exported member of the RCU API.
  1118. *
  1119. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1120. * any flavor of RCU.
  1121. */
  1122. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1123. {
  1124. *nextevt = KTIME_MAX;
  1125. return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
  1126. ? 0 : rcu_cpu_has_callbacks(NULL);
  1127. }
  1128. /*
  1129. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1130. * after it.
  1131. */
  1132. static void rcu_cleanup_after_idle(void)
  1133. {
  1134. }
  1135. /*
  1136. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1137. * is nothing.
  1138. */
  1139. static void rcu_prepare_for_idle(void)
  1140. {
  1141. }
  1142. /*
  1143. * Don't bother keeping a running count of the number of RCU callbacks
  1144. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1145. */
  1146. static void rcu_idle_count_callbacks_posted(void)
  1147. {
  1148. }
  1149. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1150. /*
  1151. * This code is invoked when a CPU goes idle, at which point we want
  1152. * to have the CPU do everything required for RCU so that it can enter
  1153. * the energy-efficient dyntick-idle mode. This is handled by a
  1154. * state machine implemented by rcu_prepare_for_idle() below.
  1155. *
  1156. * The following three proprocessor symbols control this state machine:
  1157. *
  1158. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1159. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1160. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1161. * benchmarkers who might otherwise be tempted to set this to a large
  1162. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1163. * system. And if you are -that- concerned about energy efficiency,
  1164. * just power the system down and be done with it!
  1165. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1166. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1167. * callbacks pending. Setting this too high can OOM your system.
  1168. *
  1169. * The values below work well in practice. If future workloads require
  1170. * adjustment, they can be converted into kernel config parameters, though
  1171. * making the state machine smarter might be a better option.
  1172. */
  1173. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1174. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1175. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1176. module_param(rcu_idle_gp_delay, int, 0644);
  1177. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1178. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1179. /*
  1180. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1181. * only if it has been awhile since the last time we did so. Afterwards,
  1182. * if there are any callbacks ready for immediate invocation, return true.
  1183. */
  1184. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1185. {
  1186. bool cbs_ready = false;
  1187. struct rcu_data *rdp;
  1188. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1189. struct rcu_node *rnp;
  1190. struct rcu_state *rsp;
  1191. /* Exit early if we advanced recently. */
  1192. if (jiffies == rdtp->last_advance_all)
  1193. return false;
  1194. rdtp->last_advance_all = jiffies;
  1195. for_each_rcu_flavor(rsp) {
  1196. rdp = this_cpu_ptr(rsp->rda);
  1197. rnp = rdp->mynode;
  1198. /*
  1199. * Don't bother checking unless a grace period has
  1200. * completed since we last checked and there are
  1201. * callbacks not yet ready to invoke.
  1202. */
  1203. if ((rdp->completed != rnp->completed ||
  1204. unlikely(READ_ONCE(rdp->gpwrap))) &&
  1205. rcu_segcblist_pend_cbs(&rdp->cblist))
  1206. note_gp_changes(rsp, rdp);
  1207. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  1208. cbs_ready = true;
  1209. }
  1210. return cbs_ready;
  1211. }
  1212. /*
  1213. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1214. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1215. * caller to set the timeout based on whether or not there are non-lazy
  1216. * callbacks.
  1217. *
  1218. * The caller must have disabled interrupts.
  1219. */
  1220. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1221. {
  1222. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1223. unsigned long dj;
  1224. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
  1225. *nextevt = KTIME_MAX;
  1226. return 0;
  1227. }
  1228. /* Snapshot to detect later posting of non-lazy callback. */
  1229. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1230. /* If no callbacks, RCU doesn't need the CPU. */
  1231. if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
  1232. *nextevt = KTIME_MAX;
  1233. return 0;
  1234. }
  1235. /* Attempt to advance callbacks. */
  1236. if (rcu_try_advance_all_cbs()) {
  1237. /* Some ready to invoke, so initiate later invocation. */
  1238. invoke_rcu_core();
  1239. return 1;
  1240. }
  1241. rdtp->last_accelerate = jiffies;
  1242. /* Request timer delay depending on laziness, and round. */
  1243. if (!rdtp->all_lazy) {
  1244. dj = round_up(rcu_idle_gp_delay + jiffies,
  1245. rcu_idle_gp_delay) - jiffies;
  1246. } else {
  1247. dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1248. }
  1249. *nextevt = basemono + dj * TICK_NSEC;
  1250. return 0;
  1251. }
  1252. /*
  1253. * Prepare a CPU for idle from an RCU perspective. The first major task
  1254. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1255. * The second major task is to check to see if a non-lazy callback has
  1256. * arrived at a CPU that previously had only lazy callbacks. The third
  1257. * major task is to accelerate (that is, assign grace-period numbers to)
  1258. * any recently arrived callbacks.
  1259. *
  1260. * The caller must have disabled interrupts.
  1261. */
  1262. static void rcu_prepare_for_idle(void)
  1263. {
  1264. bool needwake;
  1265. struct rcu_data *rdp;
  1266. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1267. struct rcu_node *rnp;
  1268. struct rcu_state *rsp;
  1269. int tne;
  1270. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
  1271. rcu_is_nocb_cpu(smp_processor_id()))
  1272. return;
  1273. /* Handle nohz enablement switches conservatively. */
  1274. tne = READ_ONCE(tick_nohz_active);
  1275. if (tne != rdtp->tick_nohz_enabled_snap) {
  1276. if (rcu_cpu_has_callbacks(NULL))
  1277. invoke_rcu_core(); /* force nohz to see update. */
  1278. rdtp->tick_nohz_enabled_snap = tne;
  1279. return;
  1280. }
  1281. if (!tne)
  1282. return;
  1283. /*
  1284. * If a non-lazy callback arrived at a CPU having only lazy
  1285. * callbacks, invoke RCU core for the side-effect of recalculating
  1286. * idle duration on re-entry to idle.
  1287. */
  1288. if (rdtp->all_lazy &&
  1289. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1290. rdtp->all_lazy = false;
  1291. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1292. invoke_rcu_core();
  1293. return;
  1294. }
  1295. /*
  1296. * If we have not yet accelerated this jiffy, accelerate all
  1297. * callbacks on this CPU.
  1298. */
  1299. if (rdtp->last_accelerate == jiffies)
  1300. return;
  1301. rdtp->last_accelerate = jiffies;
  1302. for_each_rcu_flavor(rsp) {
  1303. rdp = this_cpu_ptr(rsp->rda);
  1304. if (rcu_segcblist_pend_cbs(&rdp->cblist))
  1305. continue;
  1306. rnp = rdp->mynode;
  1307. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  1308. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1309. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  1310. if (needwake)
  1311. rcu_gp_kthread_wake(rsp);
  1312. }
  1313. }
  1314. /*
  1315. * Clean up for exit from idle. Attempt to advance callbacks based on
  1316. * any grace periods that elapsed while the CPU was idle, and if any
  1317. * callbacks are now ready to invoke, initiate invocation.
  1318. */
  1319. static void rcu_cleanup_after_idle(void)
  1320. {
  1321. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
  1322. rcu_is_nocb_cpu(smp_processor_id()))
  1323. return;
  1324. if (rcu_try_advance_all_cbs())
  1325. invoke_rcu_core();
  1326. }
  1327. /*
  1328. * Keep a running count of the number of non-lazy callbacks posted
  1329. * on this CPU. This running counter (which is never decremented) allows
  1330. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1331. * posts a callback, even if an equal number of callbacks are invoked.
  1332. * Of course, callbacks should only be posted from within a trace event
  1333. * designed to be called from idle or from within RCU_NONIDLE().
  1334. */
  1335. static void rcu_idle_count_callbacks_posted(void)
  1336. {
  1337. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1338. }
  1339. /*
  1340. * Data for flushing lazy RCU callbacks at OOM time.
  1341. */
  1342. static atomic_t oom_callback_count;
  1343. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1344. /*
  1345. * RCU OOM callback -- decrement the outstanding count and deliver the
  1346. * wake-up if we are the last one.
  1347. */
  1348. static void rcu_oom_callback(struct rcu_head *rhp)
  1349. {
  1350. if (atomic_dec_and_test(&oom_callback_count))
  1351. wake_up(&oom_callback_wq);
  1352. }
  1353. /*
  1354. * Post an rcu_oom_notify callback on the current CPU if it has at
  1355. * least one lazy callback. This will unnecessarily post callbacks
  1356. * to CPUs that already have a non-lazy callback at the end of their
  1357. * callback list, but this is an infrequent operation, so accept some
  1358. * extra overhead to keep things simple.
  1359. */
  1360. static void rcu_oom_notify_cpu(void *unused)
  1361. {
  1362. struct rcu_state *rsp;
  1363. struct rcu_data *rdp;
  1364. for_each_rcu_flavor(rsp) {
  1365. rdp = raw_cpu_ptr(rsp->rda);
  1366. if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
  1367. atomic_inc(&oom_callback_count);
  1368. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1369. }
  1370. }
  1371. }
  1372. /*
  1373. * If low on memory, ensure that each CPU has a non-lazy callback.
  1374. * This will wake up CPUs that have only lazy callbacks, in turn
  1375. * ensuring that they free up the corresponding memory in a timely manner.
  1376. * Because an uncertain amount of memory will be freed in some uncertain
  1377. * timeframe, we do not claim to have freed anything.
  1378. */
  1379. static int rcu_oom_notify(struct notifier_block *self,
  1380. unsigned long notused, void *nfreed)
  1381. {
  1382. int cpu;
  1383. /* Wait for callbacks from earlier instance to complete. */
  1384. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1385. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1386. /*
  1387. * Prevent premature wakeup: ensure that all increments happen
  1388. * before there is a chance of the counter reaching zero.
  1389. */
  1390. atomic_set(&oom_callback_count, 1);
  1391. for_each_online_cpu(cpu) {
  1392. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1393. cond_resched_rcu_qs();
  1394. }
  1395. /* Unconditionally decrement: no need to wake ourselves up. */
  1396. atomic_dec(&oom_callback_count);
  1397. return NOTIFY_OK;
  1398. }
  1399. static struct notifier_block rcu_oom_nb = {
  1400. .notifier_call = rcu_oom_notify
  1401. };
  1402. static int __init rcu_register_oom_notifier(void)
  1403. {
  1404. register_oom_notifier(&rcu_oom_nb);
  1405. return 0;
  1406. }
  1407. early_initcall(rcu_register_oom_notifier);
  1408. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1409. #ifdef CONFIG_RCU_FAST_NO_HZ
  1410. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1411. {
  1412. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1413. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1414. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1415. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1416. ulong2long(nlpd),
  1417. rdtp->all_lazy ? 'L' : '.',
  1418. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1419. }
  1420. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1421. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1422. {
  1423. *cp = '\0';
  1424. }
  1425. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1426. /* Initiate the stall-info list. */
  1427. static void print_cpu_stall_info_begin(void)
  1428. {
  1429. pr_cont("\n");
  1430. }
  1431. /*
  1432. * Print out diagnostic information for the specified stalled CPU.
  1433. *
  1434. * If the specified CPU is aware of the current RCU grace period
  1435. * (flavor specified by rsp), then print the number of scheduling
  1436. * clock interrupts the CPU has taken during the time that it has
  1437. * been aware. Otherwise, print the number of RCU grace periods
  1438. * that this CPU is ignorant of, for example, "1" if the CPU was
  1439. * aware of the previous grace period.
  1440. *
  1441. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1442. */
  1443. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1444. {
  1445. char fast_no_hz[72];
  1446. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1447. struct rcu_dynticks *rdtp = rdp->dynticks;
  1448. char *ticks_title;
  1449. unsigned long ticks_value;
  1450. if (rsp->gpnum == rdp->gpnum) {
  1451. ticks_title = "ticks this GP";
  1452. ticks_value = rdp->ticks_this_gp;
  1453. } else {
  1454. ticks_title = "GPs behind";
  1455. ticks_value = rsp->gpnum - rdp->gpnum;
  1456. }
  1457. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1458. pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
  1459. cpu,
  1460. "O."[!!cpu_online(cpu)],
  1461. "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
  1462. "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
  1463. ticks_value, ticks_title,
  1464. rcu_dynticks_snap(rdtp) & 0xfff,
  1465. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1466. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1467. READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
  1468. fast_no_hz);
  1469. }
  1470. /* Terminate the stall-info list. */
  1471. static void print_cpu_stall_info_end(void)
  1472. {
  1473. pr_err("\t");
  1474. }
  1475. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1476. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1477. {
  1478. rdp->ticks_this_gp = 0;
  1479. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1480. }
  1481. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1482. static void increment_cpu_stall_ticks(void)
  1483. {
  1484. struct rcu_state *rsp;
  1485. for_each_rcu_flavor(rsp)
  1486. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1487. }
  1488. #ifdef CONFIG_RCU_NOCB_CPU
  1489. /*
  1490. * Offload callback processing from the boot-time-specified set of CPUs
  1491. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1492. * kthread created that pulls the callbacks from the corresponding CPU,
  1493. * waits for a grace period to elapse, and invokes the callbacks.
  1494. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1495. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1496. * has been specified, in which case each kthread actively polls its
  1497. * CPU. (Which isn't so great for energy efficiency, but which does
  1498. * reduce RCU's overhead on that CPU.)
  1499. *
  1500. * This is intended to be used in conjunction with Frederic Weisbecker's
  1501. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1502. * running CPU-bound user-mode computations.
  1503. *
  1504. * Offloading of callback processing could also in theory be used as
  1505. * an energy-efficiency measure because CPUs with no RCU callbacks
  1506. * queued are more aggressive about entering dyntick-idle mode.
  1507. */
  1508. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1509. static int __init rcu_nocb_setup(char *str)
  1510. {
  1511. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1512. have_rcu_nocb_mask = true;
  1513. cpulist_parse(str, rcu_nocb_mask);
  1514. return 1;
  1515. }
  1516. __setup("rcu_nocbs=", rcu_nocb_setup);
  1517. static int __init parse_rcu_nocb_poll(char *arg)
  1518. {
  1519. rcu_nocb_poll = true;
  1520. return 0;
  1521. }
  1522. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1523. /*
  1524. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1525. * grace period.
  1526. */
  1527. static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
  1528. {
  1529. swake_up_all(sq);
  1530. }
  1531. /*
  1532. * Set the root rcu_node structure's ->need_future_gp field
  1533. * based on the sum of those of all rcu_node structures. This does
  1534. * double-count the root rcu_node structure's requests, but this
  1535. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1536. * having awakened during the time that the rcu_node structures
  1537. * were being updated for the end of the previous grace period.
  1538. */
  1539. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1540. {
  1541. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1542. }
  1543. static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
  1544. {
  1545. return &rnp->nocb_gp_wq[rnp->completed & 0x1];
  1546. }
  1547. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1548. {
  1549. init_swait_queue_head(&rnp->nocb_gp_wq[0]);
  1550. init_swait_queue_head(&rnp->nocb_gp_wq[1]);
  1551. }
  1552. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1553. /* Is the specified CPU a no-CBs CPU? */
  1554. bool rcu_is_nocb_cpu(int cpu)
  1555. {
  1556. if (have_rcu_nocb_mask)
  1557. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1558. return false;
  1559. }
  1560. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1561. /*
  1562. * Kick the leader kthread for this NOCB group.
  1563. */
  1564. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1565. {
  1566. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1567. if (!READ_ONCE(rdp_leader->nocb_kthread))
  1568. return;
  1569. if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1570. /* Prior smp_mb__after_atomic() orders against prior enqueue. */
  1571. WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
  1572. swake_up(&rdp_leader->nocb_wq);
  1573. }
  1574. }
  1575. /*
  1576. * Does the specified CPU need an RCU callback for the specified flavor
  1577. * of rcu_barrier()?
  1578. */
  1579. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  1580. {
  1581. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1582. unsigned long ret;
  1583. #ifdef CONFIG_PROVE_RCU
  1584. struct rcu_head *rhp;
  1585. #endif /* #ifdef CONFIG_PROVE_RCU */
  1586. /*
  1587. * Check count of all no-CBs callbacks awaiting invocation.
  1588. * There needs to be a barrier before this function is called,
  1589. * but associated with a prior determination that no more
  1590. * callbacks would be posted. In the worst case, the first
  1591. * barrier in _rcu_barrier() suffices (but the caller cannot
  1592. * necessarily rely on this, not a substitute for the caller
  1593. * getting the concurrency design right!). There must also be
  1594. * a barrier between the following load an posting of a callback
  1595. * (if a callback is in fact needed). This is associated with an
  1596. * atomic_inc() in the caller.
  1597. */
  1598. ret = atomic_long_read(&rdp->nocb_q_count);
  1599. #ifdef CONFIG_PROVE_RCU
  1600. rhp = READ_ONCE(rdp->nocb_head);
  1601. if (!rhp)
  1602. rhp = READ_ONCE(rdp->nocb_gp_head);
  1603. if (!rhp)
  1604. rhp = READ_ONCE(rdp->nocb_follower_head);
  1605. /* Having no rcuo kthread but CBs after scheduler starts is bad! */
  1606. if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
  1607. rcu_scheduler_fully_active) {
  1608. /* RCU callback enqueued before CPU first came online??? */
  1609. pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
  1610. cpu, rhp->func);
  1611. WARN_ON_ONCE(1);
  1612. }
  1613. #endif /* #ifdef CONFIG_PROVE_RCU */
  1614. return !!ret;
  1615. }
  1616. /*
  1617. * Enqueue the specified string of rcu_head structures onto the specified
  1618. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1619. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1620. * counts are supplied by rhcount and rhcount_lazy.
  1621. *
  1622. * If warranted, also wake up the kthread servicing this CPUs queues.
  1623. */
  1624. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1625. struct rcu_head *rhp,
  1626. struct rcu_head **rhtp,
  1627. int rhcount, int rhcount_lazy,
  1628. unsigned long flags)
  1629. {
  1630. int len;
  1631. struct rcu_head **old_rhpp;
  1632. struct task_struct *t;
  1633. /* Enqueue the callback on the nocb list and update counts. */
  1634. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1635. /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
  1636. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1637. WRITE_ONCE(*old_rhpp, rhp);
  1638. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1639. smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
  1640. /* If we are not being polled and there is a kthread, awaken it ... */
  1641. t = READ_ONCE(rdp->nocb_kthread);
  1642. if (rcu_nocb_poll || !t) {
  1643. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1644. TPS("WakeNotPoll"));
  1645. return;
  1646. }
  1647. len = atomic_long_read(&rdp->nocb_q_count);
  1648. if (old_rhpp == &rdp->nocb_head) {
  1649. if (!irqs_disabled_flags(flags)) {
  1650. /* ... if queue was empty ... */
  1651. wake_nocb_leader(rdp, false);
  1652. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1653. TPS("WakeEmpty"));
  1654. } else {
  1655. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE);
  1656. /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
  1657. smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
  1658. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1659. TPS("WakeEmptyIsDeferred"));
  1660. }
  1661. rdp->qlen_last_fqs_check = 0;
  1662. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1663. /* ... or if many callbacks queued. */
  1664. if (!irqs_disabled_flags(flags)) {
  1665. wake_nocb_leader(rdp, true);
  1666. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1667. TPS("WakeOvf"));
  1668. } else {
  1669. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_FORCE);
  1670. /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
  1671. smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
  1672. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1673. TPS("WakeOvfIsDeferred"));
  1674. }
  1675. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1676. } else {
  1677. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1678. }
  1679. return;
  1680. }
  1681. /*
  1682. * This is a helper for __call_rcu(), which invokes this when the normal
  1683. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1684. * function returns failure back to __call_rcu(), which can complain
  1685. * appropriately.
  1686. *
  1687. * Otherwise, this function queues the callback where the corresponding
  1688. * "rcuo" kthread can find it.
  1689. */
  1690. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1691. bool lazy, unsigned long flags)
  1692. {
  1693. if (!rcu_is_nocb_cpu(rdp->cpu))
  1694. return false;
  1695. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1696. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1697. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1698. (unsigned long)rhp->func,
  1699. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1700. -atomic_long_read(&rdp->nocb_q_count));
  1701. else
  1702. trace_rcu_callback(rdp->rsp->name, rhp,
  1703. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1704. -atomic_long_read(&rdp->nocb_q_count));
  1705. /*
  1706. * If called from an extended quiescent state with interrupts
  1707. * disabled, invoke the RCU core in order to allow the idle-entry
  1708. * deferred-wakeup check to function.
  1709. */
  1710. if (irqs_disabled_flags(flags) &&
  1711. !rcu_is_watching() &&
  1712. cpu_online(smp_processor_id()))
  1713. invoke_rcu_core();
  1714. return true;
  1715. }
  1716. /*
  1717. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1718. * not a no-CBs CPU.
  1719. */
  1720. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1721. struct rcu_data *rdp,
  1722. unsigned long flags)
  1723. {
  1724. long ql = rsp->orphan_done.len;
  1725. long qll = rsp->orphan_done.len_lazy;
  1726. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1727. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1728. return false;
  1729. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1730. if (rsp->orphan_done.head) {
  1731. __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_done),
  1732. rcu_cblist_tail(&rsp->orphan_done),
  1733. ql, qll, flags);
  1734. }
  1735. if (rsp->orphan_pend.head) {
  1736. __call_rcu_nocb_enqueue(rdp, rcu_cblist_head(&rsp->orphan_pend),
  1737. rcu_cblist_tail(&rsp->orphan_pend),
  1738. ql, qll, flags);
  1739. }
  1740. rcu_cblist_init(&rsp->orphan_done);
  1741. rcu_cblist_init(&rsp->orphan_pend);
  1742. return true;
  1743. }
  1744. /*
  1745. * If necessary, kick off a new grace period, and either way wait
  1746. * for a subsequent grace period to complete.
  1747. */
  1748. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1749. {
  1750. unsigned long c;
  1751. bool d;
  1752. unsigned long flags;
  1753. bool needwake;
  1754. struct rcu_node *rnp = rdp->mynode;
  1755. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1756. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1757. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1758. if (needwake)
  1759. rcu_gp_kthread_wake(rdp->rsp);
  1760. /*
  1761. * Wait for the grace period. Do so interruptibly to avoid messing
  1762. * up the load average.
  1763. */
  1764. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1765. for (;;) {
  1766. swait_event_interruptible(
  1767. rnp->nocb_gp_wq[c & 0x1],
  1768. (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
  1769. if (likely(d))
  1770. break;
  1771. WARN_ON(signal_pending(current));
  1772. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1773. }
  1774. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1775. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1776. }
  1777. /*
  1778. * Leaders come here to wait for additional callbacks to show up.
  1779. * This function does not return until callbacks appear.
  1780. */
  1781. static void nocb_leader_wait(struct rcu_data *my_rdp)
  1782. {
  1783. bool firsttime = true;
  1784. bool gotcbs;
  1785. struct rcu_data *rdp;
  1786. struct rcu_head **tail;
  1787. wait_again:
  1788. /* Wait for callbacks to appear. */
  1789. if (!rcu_nocb_poll) {
  1790. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  1791. swait_event_interruptible(my_rdp->nocb_wq,
  1792. !READ_ONCE(my_rdp->nocb_leader_sleep));
  1793. /* Memory barrier handled by smp_mb() calls below and repoll. */
  1794. } else if (firsttime) {
  1795. firsttime = false; /* Don't drown trace log with "Poll"! */
  1796. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  1797. }
  1798. /*
  1799. * Each pass through the following loop checks a follower for CBs.
  1800. * We are our own first follower. Any CBs found are moved to
  1801. * nocb_gp_head, where they await a grace period.
  1802. */
  1803. gotcbs = false;
  1804. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1805. rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
  1806. if (!rdp->nocb_gp_head)
  1807. continue; /* No CBs here, try next follower. */
  1808. /* Move callbacks to wait-for-GP list, which is empty. */
  1809. WRITE_ONCE(rdp->nocb_head, NULL);
  1810. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  1811. gotcbs = true;
  1812. }
  1813. /*
  1814. * If there were no callbacks, sleep a bit, rescan after a
  1815. * memory barrier, and go retry.
  1816. */
  1817. if (unlikely(!gotcbs)) {
  1818. if (!rcu_nocb_poll)
  1819. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  1820. "WokeEmpty");
  1821. WARN_ON(signal_pending(current));
  1822. schedule_timeout_interruptible(1);
  1823. /* Rescan in case we were a victim of memory ordering. */
  1824. my_rdp->nocb_leader_sleep = true;
  1825. smp_mb(); /* Ensure _sleep true before scan. */
  1826. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  1827. if (READ_ONCE(rdp->nocb_head)) {
  1828. /* Found CB, so short-circuit next wait. */
  1829. my_rdp->nocb_leader_sleep = false;
  1830. break;
  1831. }
  1832. goto wait_again;
  1833. }
  1834. /* Wait for one grace period. */
  1835. rcu_nocb_wait_gp(my_rdp);
  1836. /*
  1837. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  1838. * We set it now, but recheck for new callbacks while
  1839. * traversing our follower list.
  1840. */
  1841. my_rdp->nocb_leader_sleep = true;
  1842. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  1843. /* Each pass through the following loop wakes a follower, if needed. */
  1844. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1845. if (READ_ONCE(rdp->nocb_head))
  1846. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  1847. if (!rdp->nocb_gp_head)
  1848. continue; /* No CBs, so no need to wake follower. */
  1849. /* Append callbacks to follower's "done" list. */
  1850. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  1851. *tail = rdp->nocb_gp_head;
  1852. smp_mb__after_atomic(); /* Store *tail before wakeup. */
  1853. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  1854. /*
  1855. * List was empty, wake up the follower.
  1856. * Memory barriers supplied by atomic_long_add().
  1857. */
  1858. swake_up(&rdp->nocb_wq);
  1859. }
  1860. }
  1861. /* If we (the leader) don't have CBs, go wait some more. */
  1862. if (!my_rdp->nocb_follower_head)
  1863. goto wait_again;
  1864. }
  1865. /*
  1866. * Followers come here to wait for additional callbacks to show up.
  1867. * This function does not return until callbacks appear.
  1868. */
  1869. static void nocb_follower_wait(struct rcu_data *rdp)
  1870. {
  1871. bool firsttime = true;
  1872. for (;;) {
  1873. if (!rcu_nocb_poll) {
  1874. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1875. "FollowerSleep");
  1876. swait_event_interruptible(rdp->nocb_wq,
  1877. READ_ONCE(rdp->nocb_follower_head));
  1878. } else if (firsttime) {
  1879. /* Don't drown trace log with "Poll"! */
  1880. firsttime = false;
  1881. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  1882. }
  1883. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  1884. /* ^^^ Ensure CB invocation follows _head test. */
  1885. return;
  1886. }
  1887. if (!rcu_nocb_poll)
  1888. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1889. "WokeEmpty");
  1890. WARN_ON(signal_pending(current));
  1891. schedule_timeout_interruptible(1);
  1892. }
  1893. }
  1894. /*
  1895. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  1896. * callbacks queued by the corresponding no-CBs CPU, however, there is
  1897. * an optional leader-follower relationship so that the grace-period
  1898. * kthreads don't have to do quite so many wakeups.
  1899. */
  1900. static int rcu_nocb_kthread(void *arg)
  1901. {
  1902. int c, cl;
  1903. struct rcu_head *list;
  1904. struct rcu_head *next;
  1905. struct rcu_head **tail;
  1906. struct rcu_data *rdp = arg;
  1907. /* Each pass through this loop invokes one batch of callbacks */
  1908. for (;;) {
  1909. /* Wait for callbacks. */
  1910. if (rdp->nocb_leader == rdp)
  1911. nocb_leader_wait(rdp);
  1912. else
  1913. nocb_follower_wait(rdp);
  1914. /* Pull the ready-to-invoke callbacks onto local list. */
  1915. list = READ_ONCE(rdp->nocb_follower_head);
  1916. BUG_ON(!list);
  1917. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  1918. WRITE_ONCE(rdp->nocb_follower_head, NULL);
  1919. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  1920. /* Each pass through the following loop invokes a callback. */
  1921. trace_rcu_batch_start(rdp->rsp->name,
  1922. atomic_long_read(&rdp->nocb_q_count_lazy),
  1923. atomic_long_read(&rdp->nocb_q_count), -1);
  1924. c = cl = 0;
  1925. while (list) {
  1926. next = list->next;
  1927. /* Wait for enqueuing to complete, if needed. */
  1928. while (next == NULL && &list->next != tail) {
  1929. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1930. TPS("WaitQueue"));
  1931. schedule_timeout_interruptible(1);
  1932. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1933. TPS("WokeQueue"));
  1934. next = list->next;
  1935. }
  1936. debug_rcu_head_unqueue(list);
  1937. local_bh_disable();
  1938. if (__rcu_reclaim(rdp->rsp->name, list))
  1939. cl++;
  1940. c++;
  1941. local_bh_enable();
  1942. cond_resched_rcu_qs();
  1943. list = next;
  1944. }
  1945. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  1946. smp_mb__before_atomic(); /* _add after CB invocation. */
  1947. atomic_long_add(-c, &rdp->nocb_q_count);
  1948. atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
  1949. rdp->n_nocbs_invoked += c;
  1950. }
  1951. return 0;
  1952. }
  1953. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  1954. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  1955. {
  1956. return READ_ONCE(rdp->nocb_defer_wakeup);
  1957. }
  1958. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  1959. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  1960. {
  1961. int ndw;
  1962. if (!rcu_nocb_need_deferred_wakeup(rdp))
  1963. return;
  1964. ndw = READ_ONCE(rdp->nocb_defer_wakeup);
  1965. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
  1966. wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
  1967. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
  1968. }
  1969. void __init rcu_init_nohz(void)
  1970. {
  1971. int cpu;
  1972. bool need_rcu_nocb_mask = true;
  1973. struct rcu_state *rsp;
  1974. #ifdef CONFIG_RCU_NOCB_CPU_NONE
  1975. need_rcu_nocb_mask = false;
  1976. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  1977. #if defined(CONFIG_NO_HZ_FULL)
  1978. if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
  1979. need_rcu_nocb_mask = true;
  1980. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  1981. if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
  1982. if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
  1983. pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
  1984. return;
  1985. }
  1986. have_rcu_nocb_mask = true;
  1987. }
  1988. if (!have_rcu_nocb_mask)
  1989. return;
  1990. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  1991. pr_info("\tOffload RCU callbacks from CPU 0\n");
  1992. cpumask_set_cpu(0, rcu_nocb_mask);
  1993. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  1994. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  1995. pr_info("\tOffload RCU callbacks from all CPUs\n");
  1996. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  1997. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  1998. #if defined(CONFIG_NO_HZ_FULL)
  1999. if (tick_nohz_full_running)
  2000. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2001. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2002. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  2003. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  2004. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  2005. rcu_nocb_mask);
  2006. }
  2007. pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
  2008. cpumask_pr_args(rcu_nocb_mask));
  2009. if (rcu_nocb_poll)
  2010. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  2011. for_each_rcu_flavor(rsp) {
  2012. for_each_cpu(cpu, rcu_nocb_mask)
  2013. init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
  2014. rcu_organize_nocb_kthreads(rsp);
  2015. }
  2016. }
  2017. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2018. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2019. {
  2020. rdp->nocb_tail = &rdp->nocb_head;
  2021. init_swait_queue_head(&rdp->nocb_wq);
  2022. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2023. }
  2024. /*
  2025. * If the specified CPU is a no-CBs CPU that does not already have its
  2026. * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
  2027. * brought online out of order, this can require re-organizing the
  2028. * leader-follower relationships.
  2029. */
  2030. static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
  2031. {
  2032. struct rcu_data *rdp;
  2033. struct rcu_data *rdp_last;
  2034. struct rcu_data *rdp_old_leader;
  2035. struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
  2036. struct task_struct *t;
  2037. /*
  2038. * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
  2039. * then nothing to do.
  2040. */
  2041. if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
  2042. return;
  2043. /* If we didn't spawn the leader first, reorganize! */
  2044. rdp_old_leader = rdp_spawn->nocb_leader;
  2045. if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
  2046. rdp_last = NULL;
  2047. rdp = rdp_old_leader;
  2048. do {
  2049. rdp->nocb_leader = rdp_spawn;
  2050. if (rdp_last && rdp != rdp_spawn)
  2051. rdp_last->nocb_next_follower = rdp;
  2052. if (rdp == rdp_spawn) {
  2053. rdp = rdp->nocb_next_follower;
  2054. } else {
  2055. rdp_last = rdp;
  2056. rdp = rdp->nocb_next_follower;
  2057. rdp_last->nocb_next_follower = NULL;
  2058. }
  2059. } while (rdp);
  2060. rdp_spawn->nocb_next_follower = rdp_old_leader;
  2061. }
  2062. /* Spawn the kthread for this CPU and RCU flavor. */
  2063. t = kthread_run(rcu_nocb_kthread, rdp_spawn,
  2064. "rcuo%c/%d", rsp->abbr, cpu);
  2065. BUG_ON(IS_ERR(t));
  2066. WRITE_ONCE(rdp_spawn->nocb_kthread, t);
  2067. }
  2068. /*
  2069. * If the specified CPU is a no-CBs CPU that does not already have its
  2070. * rcuo kthreads, spawn them.
  2071. */
  2072. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2073. {
  2074. struct rcu_state *rsp;
  2075. if (rcu_scheduler_fully_active)
  2076. for_each_rcu_flavor(rsp)
  2077. rcu_spawn_one_nocb_kthread(rsp, cpu);
  2078. }
  2079. /*
  2080. * Once the scheduler is running, spawn rcuo kthreads for all online
  2081. * no-CBs CPUs. This assumes that the early_initcall()s happen before
  2082. * non-boot CPUs come online -- if this changes, we will need to add
  2083. * some mutual exclusion.
  2084. */
  2085. static void __init rcu_spawn_nocb_kthreads(void)
  2086. {
  2087. int cpu;
  2088. for_each_online_cpu(cpu)
  2089. rcu_spawn_all_nocb_kthreads(cpu);
  2090. }
  2091. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2092. static int rcu_nocb_leader_stride = -1;
  2093. module_param(rcu_nocb_leader_stride, int, 0444);
  2094. /*
  2095. * Initialize leader-follower relationships for all no-CBs CPU.
  2096. */
  2097. static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
  2098. {
  2099. int cpu;
  2100. int ls = rcu_nocb_leader_stride;
  2101. int nl = 0; /* Next leader. */
  2102. struct rcu_data *rdp;
  2103. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2104. struct rcu_data *rdp_prev = NULL;
  2105. if (!have_rcu_nocb_mask)
  2106. return;
  2107. if (ls == -1) {
  2108. ls = int_sqrt(nr_cpu_ids);
  2109. rcu_nocb_leader_stride = ls;
  2110. }
  2111. /*
  2112. * Each pass through this loop sets up one rcu_data structure.
  2113. * Should the corresponding CPU come online in the future, then
  2114. * we will spawn the needed set of rcu_nocb_kthread() kthreads.
  2115. */
  2116. for_each_cpu(cpu, rcu_nocb_mask) {
  2117. rdp = per_cpu_ptr(rsp->rda, cpu);
  2118. if (rdp->cpu >= nl) {
  2119. /* New leader, set up for followers & next leader. */
  2120. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2121. rdp->nocb_leader = rdp;
  2122. rdp_leader = rdp;
  2123. } else {
  2124. /* Another follower, link to previous leader. */
  2125. rdp->nocb_leader = rdp_leader;
  2126. rdp_prev->nocb_next_follower = rdp;
  2127. }
  2128. rdp_prev = rdp;
  2129. }
  2130. }
  2131. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2132. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2133. {
  2134. if (!rcu_is_nocb_cpu(rdp->cpu))
  2135. return false;
  2136. /* If there are early-boot callbacks, move them to nocb lists. */
  2137. if (!rcu_segcblist_empty(&rdp->cblist)) {
  2138. rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
  2139. rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
  2140. atomic_long_set(&rdp->nocb_q_count,
  2141. rcu_segcblist_n_cbs(&rdp->cblist));
  2142. atomic_long_set(&rdp->nocb_q_count_lazy,
  2143. rcu_segcblist_n_lazy_cbs(&rdp->cblist));
  2144. rcu_segcblist_init(&rdp->cblist);
  2145. }
  2146. rcu_segcblist_disable(&rdp->cblist);
  2147. return true;
  2148. }
  2149. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2150. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  2151. {
  2152. WARN_ON_ONCE(1); /* Should be dead code. */
  2153. return false;
  2154. }
  2155. static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
  2156. {
  2157. }
  2158. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2159. {
  2160. }
  2161. static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
  2162. {
  2163. return NULL;
  2164. }
  2165. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2166. {
  2167. }
  2168. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2169. bool lazy, unsigned long flags)
  2170. {
  2171. return false;
  2172. }
  2173. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2174. struct rcu_data *rdp,
  2175. unsigned long flags)
  2176. {
  2177. return false;
  2178. }
  2179. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2180. {
  2181. }
  2182. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2183. {
  2184. return false;
  2185. }
  2186. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2187. {
  2188. }
  2189. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2190. {
  2191. }
  2192. static void __init rcu_spawn_nocb_kthreads(void)
  2193. {
  2194. }
  2195. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2196. {
  2197. return false;
  2198. }
  2199. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2200. /*
  2201. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2202. * arbitrarily long period of time with the scheduling-clock tick turned
  2203. * off. RCU will be paying attention to this CPU because it is in the
  2204. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2205. * machine because the scheduling-clock tick has been disabled. Therefore,
  2206. * if an adaptive-ticks CPU is failing to respond to the current grace
  2207. * period and has not be idle from an RCU perspective, kick it.
  2208. */
  2209. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2210. {
  2211. #ifdef CONFIG_NO_HZ_FULL
  2212. if (tick_nohz_full_cpu(cpu))
  2213. smp_send_reschedule(cpu);
  2214. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2215. }
  2216. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2217. static int full_sysidle_state; /* Current system-idle state. */
  2218. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2219. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2220. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2221. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2222. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2223. /*
  2224. * Invoked to note exit from irq or task transition to idle. Note that
  2225. * usermode execution does -not- count as idle here! After all, we want
  2226. * to detect full-system idle states, not RCU quiescent states and grace
  2227. * periods. The caller must have disabled interrupts.
  2228. */
  2229. static void rcu_sysidle_enter(int irq)
  2230. {
  2231. unsigned long j;
  2232. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2233. /* If there are no nohz_full= CPUs, no need to track this. */
  2234. if (!tick_nohz_full_enabled())
  2235. return;
  2236. /* Adjust nesting, check for fully idle. */
  2237. if (irq) {
  2238. rdtp->dynticks_idle_nesting--;
  2239. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2240. if (rdtp->dynticks_idle_nesting != 0)
  2241. return; /* Still not fully idle. */
  2242. } else {
  2243. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2244. DYNTICK_TASK_NEST_VALUE) {
  2245. rdtp->dynticks_idle_nesting = 0;
  2246. } else {
  2247. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2248. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2249. return; /* Still not fully idle. */
  2250. }
  2251. }
  2252. /* Record start of fully idle period. */
  2253. j = jiffies;
  2254. WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
  2255. smp_mb__before_atomic();
  2256. atomic_inc(&rdtp->dynticks_idle);
  2257. smp_mb__after_atomic();
  2258. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2259. }
  2260. /*
  2261. * Unconditionally force exit from full system-idle state. This is
  2262. * invoked when a normal CPU exits idle, but must be called separately
  2263. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2264. * is that the timekeeping CPU is permitted to take scheduling-clock
  2265. * interrupts while the system is in system-idle state, and of course
  2266. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2267. * interrupt from any other type of interrupt.
  2268. */
  2269. void rcu_sysidle_force_exit(void)
  2270. {
  2271. int oldstate = READ_ONCE(full_sysidle_state);
  2272. int newoldstate;
  2273. /*
  2274. * Each pass through the following loop attempts to exit full
  2275. * system-idle state. If contention proves to be a problem,
  2276. * a trylock-based contention tree could be used here.
  2277. */
  2278. while (oldstate > RCU_SYSIDLE_SHORT) {
  2279. newoldstate = cmpxchg(&full_sysidle_state,
  2280. oldstate, RCU_SYSIDLE_NOT);
  2281. if (oldstate == newoldstate &&
  2282. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2283. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2284. return; /* We cleared it, done! */
  2285. }
  2286. oldstate = newoldstate;
  2287. }
  2288. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2289. }
  2290. /*
  2291. * Invoked to note entry to irq or task transition from idle. Note that
  2292. * usermode execution does -not- count as idle here! The caller must
  2293. * have disabled interrupts.
  2294. */
  2295. static void rcu_sysidle_exit(int irq)
  2296. {
  2297. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2298. /* If there are no nohz_full= CPUs, no need to track this. */
  2299. if (!tick_nohz_full_enabled())
  2300. return;
  2301. /* Adjust nesting, check for already non-idle. */
  2302. if (irq) {
  2303. rdtp->dynticks_idle_nesting++;
  2304. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2305. if (rdtp->dynticks_idle_nesting != 1)
  2306. return; /* Already non-idle. */
  2307. } else {
  2308. /*
  2309. * Allow for irq misnesting. Yes, it really is possible
  2310. * to enter an irq handler then never leave it, and maybe
  2311. * also vice versa. Handle both possibilities.
  2312. */
  2313. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2314. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2315. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2316. return; /* Already non-idle. */
  2317. } else {
  2318. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2319. }
  2320. }
  2321. /* Record end of idle period. */
  2322. smp_mb__before_atomic();
  2323. atomic_inc(&rdtp->dynticks_idle);
  2324. smp_mb__after_atomic();
  2325. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2326. /*
  2327. * If we are the timekeeping CPU, we are permitted to be non-idle
  2328. * during a system-idle state. This must be the case, because
  2329. * the timekeeping CPU has to take scheduling-clock interrupts
  2330. * during the time that the system is transitioning to full
  2331. * system-idle state. This means that the timekeeping CPU must
  2332. * invoke rcu_sysidle_force_exit() directly if it does anything
  2333. * more than take a scheduling-clock interrupt.
  2334. */
  2335. if (smp_processor_id() == tick_do_timer_cpu)
  2336. return;
  2337. /* Update system-idle state: We are clearly no longer fully idle! */
  2338. rcu_sysidle_force_exit();
  2339. }
  2340. /*
  2341. * Check to see if the current CPU is idle. Note that usermode execution
  2342. * does not count as idle. The caller must have disabled interrupts,
  2343. * and must be running on tick_do_timer_cpu.
  2344. */
  2345. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2346. unsigned long *maxj)
  2347. {
  2348. int cur;
  2349. unsigned long j;
  2350. struct rcu_dynticks *rdtp = rdp->dynticks;
  2351. /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
  2352. if (!tick_nohz_full_enabled())
  2353. return;
  2354. /*
  2355. * If some other CPU has already reported non-idle, if this is
  2356. * not the flavor of RCU that tracks sysidle state, or if this
  2357. * is an offline or the timekeeping CPU, nothing to do.
  2358. */
  2359. if (!*isidle || rdp->rsp != rcu_state_p ||
  2360. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2361. return;
  2362. /* Verify affinity of current kthread. */
  2363. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2364. /* Pick up current idle and NMI-nesting counter and check. */
  2365. cur = atomic_read(&rdtp->dynticks_idle);
  2366. if (cur & 0x1) {
  2367. *isidle = false; /* We are not idle! */
  2368. return;
  2369. }
  2370. smp_mb(); /* Read counters before timestamps. */
  2371. /* Pick up timestamps. */
  2372. j = READ_ONCE(rdtp->dynticks_idle_jiffies);
  2373. /* If this CPU entered idle more recently, update maxj timestamp. */
  2374. if (ULONG_CMP_LT(*maxj, j))
  2375. *maxj = j;
  2376. }
  2377. /*
  2378. * Is this the flavor of RCU that is handling full-system idle?
  2379. */
  2380. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2381. {
  2382. return rsp == rcu_state_p;
  2383. }
  2384. /*
  2385. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2386. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2387. * systems more time to transition to full-idle state in order to
  2388. * avoid the cache thrashing that otherwise occur on the state variable.
  2389. * Really small systems (less than a couple of tens of CPUs) should
  2390. * instead use a single global atomically incremented counter, and later
  2391. * versions of this will automatically reconfigure themselves accordingly.
  2392. */
  2393. static unsigned long rcu_sysidle_delay(void)
  2394. {
  2395. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2396. return 0;
  2397. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2398. }
  2399. /*
  2400. * Advance the full-system-idle state. This is invoked when all of
  2401. * the non-timekeeping CPUs are idle.
  2402. */
  2403. static void rcu_sysidle(unsigned long j)
  2404. {
  2405. /* Check the current state. */
  2406. switch (READ_ONCE(full_sysidle_state)) {
  2407. case RCU_SYSIDLE_NOT:
  2408. /* First time all are idle, so note a short idle period. */
  2409. WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
  2410. break;
  2411. case RCU_SYSIDLE_SHORT:
  2412. /*
  2413. * Idle for a bit, time to advance to next state?
  2414. * cmpxchg failure means race with non-idle, let them win.
  2415. */
  2416. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2417. (void)cmpxchg(&full_sysidle_state,
  2418. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2419. break;
  2420. case RCU_SYSIDLE_LONG:
  2421. /*
  2422. * Do an additional check pass before advancing to full.
  2423. * cmpxchg failure means race with non-idle, let them win.
  2424. */
  2425. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2426. (void)cmpxchg(&full_sysidle_state,
  2427. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2428. break;
  2429. default:
  2430. break;
  2431. }
  2432. }
  2433. /*
  2434. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2435. * back to the beginning.
  2436. */
  2437. static void rcu_sysidle_cancel(void)
  2438. {
  2439. smp_mb();
  2440. if (full_sysidle_state > RCU_SYSIDLE_SHORT)
  2441. WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
  2442. }
  2443. /*
  2444. * Update the sysidle state based on the results of a force-quiescent-state
  2445. * scan of the CPUs' dyntick-idle state.
  2446. */
  2447. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2448. unsigned long maxj, bool gpkt)
  2449. {
  2450. if (rsp != rcu_state_p)
  2451. return; /* Wrong flavor, ignore. */
  2452. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2453. return; /* Running state machine from timekeeping CPU. */
  2454. if (isidle)
  2455. rcu_sysidle(maxj); /* More idle! */
  2456. else
  2457. rcu_sysidle_cancel(); /* Idle is over. */
  2458. }
  2459. /*
  2460. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2461. * kthread's context.
  2462. */
  2463. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2464. unsigned long maxj)
  2465. {
  2466. /* If there are no nohz_full= CPUs, no need to track this. */
  2467. if (!tick_nohz_full_enabled())
  2468. return;
  2469. rcu_sysidle_report(rsp, isidle, maxj, true);
  2470. }
  2471. /* Callback and function for forcing an RCU grace period. */
  2472. struct rcu_sysidle_head {
  2473. struct rcu_head rh;
  2474. int inuse;
  2475. };
  2476. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2477. {
  2478. struct rcu_sysidle_head *rshp;
  2479. /*
  2480. * The following memory barrier is needed to replace the
  2481. * memory barriers that would normally be in the memory
  2482. * allocator.
  2483. */
  2484. smp_mb(); /* grace period precedes setting inuse. */
  2485. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2486. WRITE_ONCE(rshp->inuse, 0);
  2487. }
  2488. /*
  2489. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2490. * The caller must have disabled interrupts. This is not intended to be
  2491. * called unless tick_nohz_full_enabled().
  2492. */
  2493. bool rcu_sys_is_idle(void)
  2494. {
  2495. static struct rcu_sysidle_head rsh;
  2496. int rss = READ_ONCE(full_sysidle_state);
  2497. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2498. return false;
  2499. /* Handle small-system case by doing a full scan of CPUs. */
  2500. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2501. int oldrss = rss - 1;
  2502. /*
  2503. * One pass to advance to each state up to _FULL.
  2504. * Give up if any pass fails to advance the state.
  2505. */
  2506. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2507. int cpu;
  2508. bool isidle = true;
  2509. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2510. struct rcu_data *rdp;
  2511. /* Scan all the CPUs looking for nonidle CPUs. */
  2512. for_each_possible_cpu(cpu) {
  2513. rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  2514. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2515. if (!isidle)
  2516. break;
  2517. }
  2518. rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
  2519. oldrss = rss;
  2520. rss = READ_ONCE(full_sysidle_state);
  2521. }
  2522. }
  2523. /* If this is the first observation of an idle period, record it. */
  2524. if (rss == RCU_SYSIDLE_FULL) {
  2525. rss = cmpxchg(&full_sysidle_state,
  2526. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2527. return rss == RCU_SYSIDLE_FULL;
  2528. }
  2529. smp_mb(); /* ensure rss load happens before later caller actions. */
  2530. /* If already fully idle, tell the caller (in case of races). */
  2531. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2532. return true;
  2533. /*
  2534. * If we aren't there yet, and a grace period is not in flight,
  2535. * initiate a grace period. Either way, tell the caller that
  2536. * we are not there yet. We use an xchg() rather than an assignment
  2537. * to make up for the memory barriers that would otherwise be
  2538. * provided by the memory allocator.
  2539. */
  2540. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2541. !rcu_gp_in_progress(rcu_state_p) &&
  2542. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2543. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2544. return false;
  2545. }
  2546. /*
  2547. * Initialize dynticks sysidle state for CPUs coming online.
  2548. */
  2549. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2550. {
  2551. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2552. }
  2553. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2554. static void rcu_sysidle_enter(int irq)
  2555. {
  2556. }
  2557. static void rcu_sysidle_exit(int irq)
  2558. {
  2559. }
  2560. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2561. unsigned long *maxj)
  2562. {
  2563. }
  2564. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2565. {
  2566. return false;
  2567. }
  2568. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2569. unsigned long maxj)
  2570. {
  2571. }
  2572. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2573. {
  2574. }
  2575. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2576. /*
  2577. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2578. * grace-period kthread will do force_quiescent_state() processing?
  2579. * The idea is to avoid waking up RCU core processing on such a
  2580. * CPU unless the grace period has extended for too long.
  2581. *
  2582. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2583. * CONFIG_RCU_NOCB_CPU CPUs.
  2584. */
  2585. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2586. {
  2587. #ifdef CONFIG_NO_HZ_FULL
  2588. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2589. (!rcu_gp_in_progress(rsp) ||
  2590. ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
  2591. return true;
  2592. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2593. return false;
  2594. }
  2595. /*
  2596. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2597. * timekeeping CPU.
  2598. */
  2599. static void rcu_bind_gp_kthread(void)
  2600. {
  2601. int __maybe_unused cpu;
  2602. if (!tick_nohz_full_enabled())
  2603. return;
  2604. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2605. cpu = tick_do_timer_cpu;
  2606. if (cpu >= 0 && cpu < nr_cpu_ids)
  2607. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2608. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2609. housekeeping_affine(current);
  2610. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2611. }
  2612. /* Record the current task on dyntick-idle entry. */
  2613. static void rcu_dynticks_task_enter(void)
  2614. {
  2615. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2616. WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
  2617. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2618. }
  2619. /* Record no current task on dyntick-idle exit. */
  2620. static void rcu_dynticks_task_exit(void)
  2621. {
  2622. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2623. WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
  2624. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2625. }