fs-writeback.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 Andrew Morton
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/sched.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. #include <linux/kthread.h>
  22. #include <linux/freezer.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/buffer_head.h>
  27. #include "internal.h"
  28. #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
  29. /*
  30. * We don't actually have pdflush, but this one is exported though /proc...
  31. */
  32. int nr_pdflush_threads;
  33. /*
  34. * Passed into wb_writeback(), essentially a subset of writeback_control
  35. */
  36. struct wb_writeback_args {
  37. long nr_pages;
  38. struct super_block *sb;
  39. enum writeback_sync_modes sync_mode;
  40. int for_kupdate:1;
  41. int range_cyclic:1;
  42. int for_background:1;
  43. };
  44. /*
  45. * Work items for the bdi_writeback threads
  46. */
  47. struct bdi_work {
  48. struct list_head list; /* pending work list */
  49. struct rcu_head rcu_head; /* for RCU free/clear of work */
  50. unsigned long seen; /* threads that have seen this work */
  51. atomic_t pending; /* number of threads still to do work */
  52. struct wb_writeback_args args; /* writeback arguments */
  53. unsigned long state; /* flag bits, see WS_* */
  54. };
  55. enum {
  56. WS_USED_B = 0,
  57. WS_ONSTACK_B,
  58. };
  59. #define WS_USED (1 << WS_USED_B)
  60. #define WS_ONSTACK (1 << WS_ONSTACK_B)
  61. static inline bool bdi_work_on_stack(struct bdi_work *work)
  62. {
  63. return test_bit(WS_ONSTACK_B, &work->state);
  64. }
  65. static inline void bdi_work_init(struct bdi_work *work,
  66. struct wb_writeback_args *args)
  67. {
  68. INIT_RCU_HEAD(&work->rcu_head);
  69. work->args = *args;
  70. work->state = WS_USED;
  71. }
  72. /**
  73. * writeback_in_progress - determine whether there is writeback in progress
  74. * @bdi: the device's backing_dev_info structure.
  75. *
  76. * Determine whether there is writeback waiting to be handled against a
  77. * backing device.
  78. */
  79. int writeback_in_progress(struct backing_dev_info *bdi)
  80. {
  81. return !list_empty(&bdi->work_list);
  82. }
  83. static void bdi_work_clear(struct bdi_work *work)
  84. {
  85. clear_bit(WS_USED_B, &work->state);
  86. smp_mb__after_clear_bit();
  87. /*
  88. * work can have disappeared at this point. bit waitq functions
  89. * should be able to tolerate this, provided bdi_sched_wait does
  90. * not dereference it's pointer argument.
  91. */
  92. wake_up_bit(&work->state, WS_USED_B);
  93. }
  94. static void bdi_work_free(struct rcu_head *head)
  95. {
  96. struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
  97. if (!bdi_work_on_stack(work))
  98. kfree(work);
  99. else
  100. bdi_work_clear(work);
  101. }
  102. static void wb_work_complete(struct bdi_work *work)
  103. {
  104. const enum writeback_sync_modes sync_mode = work->args.sync_mode;
  105. int onstack = bdi_work_on_stack(work);
  106. /*
  107. * For allocated work, we can clear the done/seen bit right here.
  108. * For on-stack work, we need to postpone both the clear and free
  109. * to after the RCU grace period, since the stack could be invalidated
  110. * as soon as bdi_work_clear() has done the wakeup.
  111. */
  112. if (!onstack)
  113. bdi_work_clear(work);
  114. if (sync_mode == WB_SYNC_NONE || onstack)
  115. call_rcu(&work->rcu_head, bdi_work_free);
  116. }
  117. static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
  118. {
  119. /*
  120. * The caller has retrieved the work arguments from this work,
  121. * drop our reference. If this is the last ref, delete and free it
  122. */
  123. if (atomic_dec_and_test(&work->pending)) {
  124. struct backing_dev_info *bdi = wb->bdi;
  125. spin_lock(&bdi->wb_lock);
  126. list_del_rcu(&work->list);
  127. spin_unlock(&bdi->wb_lock);
  128. wb_work_complete(work);
  129. }
  130. }
  131. static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
  132. {
  133. work->seen = bdi->wb_mask;
  134. BUG_ON(!work->seen);
  135. atomic_set(&work->pending, bdi->wb_cnt);
  136. BUG_ON(!bdi->wb_cnt);
  137. /*
  138. * list_add_tail_rcu() contains the necessary barriers to
  139. * make sure the above stores are seen before the item is
  140. * noticed on the list
  141. */
  142. spin_lock(&bdi->wb_lock);
  143. list_add_tail_rcu(&work->list, &bdi->work_list);
  144. spin_unlock(&bdi->wb_lock);
  145. /*
  146. * If the default thread isn't there, make sure we add it. When
  147. * it gets created and wakes up, we'll run this work.
  148. */
  149. if (unlikely(list_empty_careful(&bdi->wb_list)))
  150. wake_up_process(default_backing_dev_info.wb.task);
  151. else {
  152. struct bdi_writeback *wb = &bdi->wb;
  153. if (wb->task)
  154. wake_up_process(wb->task);
  155. }
  156. }
  157. /*
  158. * Used for on-stack allocated work items. The caller needs to wait until
  159. * the wb threads have acked the work before it's safe to continue.
  160. */
  161. static void bdi_wait_on_work_clear(struct bdi_work *work)
  162. {
  163. wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
  164. TASK_UNINTERRUPTIBLE);
  165. }
  166. static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
  167. struct wb_writeback_args *args)
  168. {
  169. struct bdi_work *work;
  170. /*
  171. * This is WB_SYNC_NONE writeback, so if allocation fails just
  172. * wakeup the thread for old dirty data writeback
  173. */
  174. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  175. if (work) {
  176. bdi_work_init(work, args);
  177. bdi_queue_work(bdi, work);
  178. } else {
  179. struct bdi_writeback *wb = &bdi->wb;
  180. if (wb->task)
  181. wake_up_process(wb->task);
  182. }
  183. }
  184. /**
  185. * bdi_sync_writeback - start and wait for writeback
  186. * @bdi: the backing device to write from
  187. * @sb: write inodes from this super_block
  188. *
  189. * Description:
  190. * This does WB_SYNC_ALL data integrity writeback and waits for the
  191. * IO to complete. Callers must hold the sb s_umount semaphore for
  192. * reading, to avoid having the super disappear before we are done.
  193. */
  194. static void bdi_sync_writeback(struct backing_dev_info *bdi,
  195. struct super_block *sb)
  196. {
  197. struct wb_writeback_args args = {
  198. .sb = sb,
  199. .sync_mode = WB_SYNC_ALL,
  200. .nr_pages = LONG_MAX,
  201. .range_cyclic = 0,
  202. };
  203. struct bdi_work work;
  204. bdi_work_init(&work, &args);
  205. work.state |= WS_ONSTACK;
  206. bdi_queue_work(bdi, &work);
  207. bdi_wait_on_work_clear(&work);
  208. }
  209. /**
  210. * bdi_start_writeback - start writeback
  211. * @bdi: the backing device to write from
  212. * @nr_pages: the number of pages to write
  213. *
  214. * Description:
  215. * This does WB_SYNC_NONE opportunistic writeback. The IO is only
  216. * started when this function returns, we make no guarentees on
  217. * completion. Caller need not hold sb s_umount semaphore.
  218. *
  219. */
  220. void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
  221. {
  222. struct wb_writeback_args args = {
  223. .sync_mode = WB_SYNC_NONE,
  224. .nr_pages = nr_pages,
  225. .range_cyclic = 1,
  226. };
  227. /*
  228. * We treat @nr_pages=0 as the special case to do background writeback,
  229. * ie. to sync pages until the background dirty threshold is reached.
  230. */
  231. if (!nr_pages) {
  232. args.nr_pages = LONG_MAX;
  233. args.for_background = 1;
  234. }
  235. bdi_alloc_queue_work(bdi, &args);
  236. }
  237. /*
  238. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  239. * furthest end of its superblock's dirty-inode list.
  240. *
  241. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  242. * already the most-recently-dirtied inode on the b_dirty list. If that is
  243. * the case then the inode must have been redirtied while it was being written
  244. * out and we don't reset its dirtied_when.
  245. */
  246. static void redirty_tail(struct inode *inode)
  247. {
  248. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  249. if (!list_empty(&wb->b_dirty)) {
  250. struct inode *tail;
  251. tail = list_entry(wb->b_dirty.next, struct inode, i_list);
  252. if (time_before(inode->dirtied_when, tail->dirtied_when))
  253. inode->dirtied_when = jiffies;
  254. }
  255. list_move(&inode->i_list, &wb->b_dirty);
  256. }
  257. /*
  258. * requeue inode for re-scanning after bdi->b_io list is exhausted.
  259. */
  260. static void requeue_io(struct inode *inode)
  261. {
  262. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  263. list_move(&inode->i_list, &wb->b_more_io);
  264. }
  265. static void inode_sync_complete(struct inode *inode)
  266. {
  267. /*
  268. * Prevent speculative execution through spin_unlock(&inode_lock);
  269. */
  270. smp_mb();
  271. wake_up_bit(&inode->i_state, __I_SYNC);
  272. }
  273. static bool inode_dirtied_after(struct inode *inode, unsigned long t)
  274. {
  275. bool ret = time_after(inode->dirtied_when, t);
  276. #ifndef CONFIG_64BIT
  277. /*
  278. * For inodes being constantly redirtied, dirtied_when can get stuck.
  279. * It _appears_ to be in the future, but is actually in distant past.
  280. * This test is necessary to prevent such wrapped-around relative times
  281. * from permanently stopping the whole bdi writeback.
  282. */
  283. ret = ret && time_before_eq(inode->dirtied_when, jiffies);
  284. #endif
  285. return ret;
  286. }
  287. /*
  288. * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
  289. */
  290. static void move_expired_inodes(struct list_head *delaying_queue,
  291. struct list_head *dispatch_queue,
  292. unsigned long *older_than_this)
  293. {
  294. while (!list_empty(delaying_queue)) {
  295. struct inode *inode = list_entry(delaying_queue->prev,
  296. struct inode, i_list);
  297. if (older_than_this &&
  298. inode_dirtied_after(inode, *older_than_this))
  299. break;
  300. list_move(&inode->i_list, dispatch_queue);
  301. }
  302. }
  303. /*
  304. * Queue all expired dirty inodes for io, eldest first.
  305. */
  306. static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
  307. {
  308. list_splice_init(&wb->b_more_io, wb->b_io.prev);
  309. move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
  310. }
  311. static int write_inode(struct inode *inode, int sync)
  312. {
  313. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
  314. return inode->i_sb->s_op->write_inode(inode, sync);
  315. return 0;
  316. }
  317. /*
  318. * Wait for writeback on an inode to complete.
  319. */
  320. static void inode_wait_for_writeback(struct inode *inode)
  321. {
  322. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
  323. wait_queue_head_t *wqh;
  324. wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  325. do {
  326. spin_unlock(&inode_lock);
  327. __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
  328. spin_lock(&inode_lock);
  329. } while (inode->i_state & I_SYNC);
  330. }
  331. /*
  332. * Write out an inode's dirty pages. Called under inode_lock. Either the
  333. * caller has ref on the inode (either via __iget or via syscall against an fd)
  334. * or the inode has I_WILL_FREE set (via generic_forget_inode)
  335. *
  336. * If `wait' is set, wait on the writeout.
  337. *
  338. * The whole writeout design is quite complex and fragile. We want to avoid
  339. * starvation of particular inodes when others are being redirtied, prevent
  340. * livelocks, etc.
  341. *
  342. * Called under inode_lock.
  343. */
  344. static int
  345. writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  346. {
  347. struct address_space *mapping = inode->i_mapping;
  348. int wait = wbc->sync_mode == WB_SYNC_ALL;
  349. unsigned dirty;
  350. int ret;
  351. if (!atomic_read(&inode->i_count))
  352. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  353. else
  354. WARN_ON(inode->i_state & I_WILL_FREE);
  355. if (inode->i_state & I_SYNC) {
  356. /*
  357. * If this inode is locked for writeback and we are not doing
  358. * writeback-for-data-integrity, move it to b_more_io so that
  359. * writeback can proceed with the other inodes on s_io.
  360. *
  361. * We'll have another go at writing back this inode when we
  362. * completed a full scan of b_io.
  363. */
  364. if (!wait) {
  365. requeue_io(inode);
  366. return 0;
  367. }
  368. /*
  369. * It's a data-integrity sync. We must wait.
  370. */
  371. inode_wait_for_writeback(inode);
  372. }
  373. BUG_ON(inode->i_state & I_SYNC);
  374. /* Set I_SYNC, reset I_DIRTY */
  375. dirty = inode->i_state & I_DIRTY;
  376. inode->i_state |= I_SYNC;
  377. inode->i_state &= ~I_DIRTY;
  378. spin_unlock(&inode_lock);
  379. ret = do_writepages(mapping, wbc);
  380. /* Don't write the inode if only I_DIRTY_PAGES was set */
  381. if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  382. int err = write_inode(inode, wait);
  383. if (ret == 0)
  384. ret = err;
  385. }
  386. if (wait) {
  387. int err = filemap_fdatawait(mapping);
  388. if (ret == 0)
  389. ret = err;
  390. }
  391. spin_lock(&inode_lock);
  392. inode->i_state &= ~I_SYNC;
  393. if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
  394. if (inode->i_state & I_DIRTY) {
  395. /*
  396. * Someone redirtied the inode while were writing back
  397. * the pages.
  398. */
  399. redirty_tail(inode);
  400. } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  401. /*
  402. * We didn't write back all the pages. nfs_writepages()
  403. * sometimes bales out without doing anything. Redirty
  404. * the inode; Move it from b_io onto b_more_io/b_dirty.
  405. */
  406. /*
  407. * akpm: if the caller was the kupdate function we put
  408. * this inode at the head of b_dirty so it gets first
  409. * consideration. Otherwise, move it to the tail, for
  410. * the reasons described there. I'm not really sure
  411. * how much sense this makes. Presumably I had a good
  412. * reasons for doing it this way, and I'd rather not
  413. * muck with it at present.
  414. */
  415. if (wbc->for_kupdate) {
  416. /*
  417. * For the kupdate function we move the inode
  418. * to b_more_io so it will get more writeout as
  419. * soon as the queue becomes uncongested.
  420. */
  421. inode->i_state |= I_DIRTY_PAGES;
  422. if (wbc->nr_to_write <= 0) {
  423. /*
  424. * slice used up: queue for next turn
  425. */
  426. requeue_io(inode);
  427. } else {
  428. /*
  429. * somehow blocked: retry later
  430. */
  431. redirty_tail(inode);
  432. }
  433. } else {
  434. /*
  435. * Otherwise fully redirty the inode so that
  436. * other inodes on this superblock will get some
  437. * writeout. Otherwise heavy writing to one
  438. * file would indefinitely suspend writeout of
  439. * all the other files.
  440. */
  441. inode->i_state |= I_DIRTY_PAGES;
  442. redirty_tail(inode);
  443. }
  444. } else if (atomic_read(&inode->i_count)) {
  445. /*
  446. * The inode is clean, inuse
  447. */
  448. list_move(&inode->i_list, &inode_in_use);
  449. } else {
  450. /*
  451. * The inode is clean, unused
  452. */
  453. list_move(&inode->i_list, &inode_unused);
  454. }
  455. }
  456. inode_sync_complete(inode);
  457. return ret;
  458. }
  459. /*
  460. * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
  461. * before calling writeback. So make sure that we do pin it, so it doesn't
  462. * go away while we are writing inodes from it.
  463. *
  464. * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
  465. * 1 if we failed.
  466. */
  467. static int pin_sb_for_writeback(struct writeback_control *wbc,
  468. struct inode *inode)
  469. {
  470. struct super_block *sb = inode->i_sb;
  471. /*
  472. * Caller must already hold the ref for this
  473. */
  474. if (wbc->sync_mode == WB_SYNC_ALL) {
  475. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  476. return 0;
  477. }
  478. spin_lock(&sb_lock);
  479. sb->s_count++;
  480. if (down_read_trylock(&sb->s_umount)) {
  481. if (sb->s_root) {
  482. spin_unlock(&sb_lock);
  483. return 0;
  484. }
  485. /*
  486. * umounted, drop rwsem again and fall through to failure
  487. */
  488. up_read(&sb->s_umount);
  489. }
  490. sb->s_count--;
  491. spin_unlock(&sb_lock);
  492. return 1;
  493. }
  494. static void unpin_sb_for_writeback(struct writeback_control *wbc,
  495. struct inode *inode)
  496. {
  497. struct super_block *sb = inode->i_sb;
  498. if (wbc->sync_mode == WB_SYNC_ALL)
  499. return;
  500. up_read(&sb->s_umount);
  501. put_super(sb);
  502. }
  503. static void writeback_inodes_wb(struct bdi_writeback *wb,
  504. struct writeback_control *wbc)
  505. {
  506. struct super_block *sb = wbc->sb;
  507. const int is_blkdev_sb = sb_is_blkdev_sb(sb);
  508. const unsigned long start = jiffies; /* livelock avoidance */
  509. spin_lock(&inode_lock);
  510. if (!wbc->for_kupdate || list_empty(&wb->b_io))
  511. queue_io(wb, wbc->older_than_this);
  512. while (!list_empty(&wb->b_io)) {
  513. struct inode *inode = list_entry(wb->b_io.prev,
  514. struct inode, i_list);
  515. long pages_skipped;
  516. /*
  517. * super block given and doesn't match, skip this inode
  518. */
  519. if (sb && sb != inode->i_sb) {
  520. redirty_tail(inode);
  521. continue;
  522. }
  523. if (!bdi_cap_writeback_dirty(wb->bdi)) {
  524. redirty_tail(inode);
  525. if (is_blkdev_sb) {
  526. /*
  527. * Dirty memory-backed blockdev: the ramdisk
  528. * driver does this. Skip just this inode
  529. */
  530. continue;
  531. }
  532. /*
  533. * Dirty memory-backed inode against a filesystem other
  534. * than the kernel-internal bdev filesystem. Skip the
  535. * entire superblock.
  536. */
  537. break;
  538. }
  539. if (inode->i_state & (I_NEW | I_WILL_FREE)) {
  540. requeue_io(inode);
  541. continue;
  542. }
  543. if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
  544. wbc->encountered_congestion = 1;
  545. if (!is_blkdev_sb)
  546. break; /* Skip a congested fs */
  547. requeue_io(inode);
  548. continue; /* Skip a congested blockdev */
  549. }
  550. /*
  551. * Was this inode dirtied after sync_sb_inodes was called?
  552. * This keeps sync from extra jobs and livelock.
  553. */
  554. if (inode_dirtied_after(inode, start))
  555. break;
  556. if (pin_sb_for_writeback(wbc, inode)) {
  557. requeue_io(inode);
  558. continue;
  559. }
  560. BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
  561. __iget(inode);
  562. pages_skipped = wbc->pages_skipped;
  563. writeback_single_inode(inode, wbc);
  564. unpin_sb_for_writeback(wbc, inode);
  565. if (wbc->pages_skipped != pages_skipped) {
  566. /*
  567. * writeback is not making progress due to locked
  568. * buffers. Skip this inode for now.
  569. */
  570. redirty_tail(inode);
  571. }
  572. spin_unlock(&inode_lock);
  573. iput(inode);
  574. cond_resched();
  575. spin_lock(&inode_lock);
  576. if (wbc->nr_to_write <= 0) {
  577. wbc->more_io = 1;
  578. break;
  579. }
  580. if (!list_empty(&wb->b_more_io))
  581. wbc->more_io = 1;
  582. }
  583. spin_unlock(&inode_lock);
  584. /* Leave any unwritten inodes on b_io */
  585. }
  586. void writeback_inodes_wbc(struct writeback_control *wbc)
  587. {
  588. struct backing_dev_info *bdi = wbc->bdi;
  589. writeback_inodes_wb(&bdi->wb, wbc);
  590. }
  591. /*
  592. * The maximum number of pages to writeout in a single bdi flush/kupdate
  593. * operation. We do this so we don't hold I_SYNC against an inode for
  594. * enormous amounts of time, which would block a userspace task which has
  595. * been forced to throttle against that inode. Also, the code reevaluates
  596. * the dirty each time it has written this many pages.
  597. */
  598. #define MAX_WRITEBACK_PAGES 1024
  599. static inline bool over_bground_thresh(void)
  600. {
  601. unsigned long background_thresh, dirty_thresh;
  602. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  603. return (global_page_state(NR_FILE_DIRTY) +
  604. global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
  605. }
  606. /*
  607. * Explicit flushing or periodic writeback of "old" data.
  608. *
  609. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  610. * dirtying-time in the inode's address_space. So this periodic writeback code
  611. * just walks the superblock inode list, writing back any inodes which are
  612. * older than a specific point in time.
  613. *
  614. * Try to run once per dirty_writeback_interval. But if a writeback event
  615. * takes longer than a dirty_writeback_interval interval, then leave a
  616. * one-second gap.
  617. *
  618. * older_than_this takes precedence over nr_to_write. So we'll only write back
  619. * all dirty pages if they are all attached to "old" mappings.
  620. */
  621. static long wb_writeback(struct bdi_writeback *wb,
  622. struct wb_writeback_args *args)
  623. {
  624. struct writeback_control wbc = {
  625. .bdi = wb->bdi,
  626. .sb = args->sb,
  627. .sync_mode = args->sync_mode,
  628. .older_than_this = NULL,
  629. .for_kupdate = args->for_kupdate,
  630. .range_cyclic = args->range_cyclic,
  631. };
  632. unsigned long oldest_jif;
  633. long wrote = 0;
  634. struct inode *inode;
  635. if (wbc.for_kupdate) {
  636. wbc.older_than_this = &oldest_jif;
  637. oldest_jif = jiffies -
  638. msecs_to_jiffies(dirty_expire_interval * 10);
  639. }
  640. if (!wbc.range_cyclic) {
  641. wbc.range_start = 0;
  642. wbc.range_end = LLONG_MAX;
  643. }
  644. for (;;) {
  645. /*
  646. * Stop writeback when nr_pages has been consumed
  647. */
  648. if (args->nr_pages <= 0)
  649. break;
  650. /*
  651. * For background writeout, stop when we are below the
  652. * background dirty threshold
  653. */
  654. if (args->for_background && !over_bground_thresh())
  655. break;
  656. wbc.more_io = 0;
  657. wbc.encountered_congestion = 0;
  658. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  659. wbc.pages_skipped = 0;
  660. writeback_inodes_wb(wb, &wbc);
  661. args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  662. wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  663. /*
  664. * If we consumed everything, see if we have more
  665. */
  666. if (wbc.nr_to_write <= 0)
  667. continue;
  668. /*
  669. * Didn't write everything and we don't have more IO, bail
  670. */
  671. if (!wbc.more_io)
  672. break;
  673. /*
  674. * Did we write something? Try for more
  675. */
  676. if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
  677. continue;
  678. /*
  679. * Nothing written. Wait for some inode to
  680. * become available for writeback. Otherwise
  681. * we'll just busyloop.
  682. */
  683. spin_lock(&inode_lock);
  684. if (!list_empty(&wb->b_more_io)) {
  685. inode = list_entry(wb->b_more_io.prev,
  686. struct inode, i_list);
  687. inode_wait_for_writeback(inode);
  688. }
  689. spin_unlock(&inode_lock);
  690. }
  691. return wrote;
  692. }
  693. /*
  694. * Return the next bdi_work struct that hasn't been processed by this
  695. * wb thread yet. ->seen is initially set for each thread that exists
  696. * for this device, when a thread first notices a piece of work it
  697. * clears its bit. Depending on writeback type, the thread will notify
  698. * completion on either receiving the work (WB_SYNC_NONE) or after
  699. * it is done (WB_SYNC_ALL).
  700. */
  701. static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
  702. struct bdi_writeback *wb)
  703. {
  704. struct bdi_work *work, *ret = NULL;
  705. rcu_read_lock();
  706. list_for_each_entry_rcu(work, &bdi->work_list, list) {
  707. if (!test_bit(wb->nr, &work->seen))
  708. continue;
  709. clear_bit(wb->nr, &work->seen);
  710. ret = work;
  711. break;
  712. }
  713. rcu_read_unlock();
  714. return ret;
  715. }
  716. static long wb_check_old_data_flush(struct bdi_writeback *wb)
  717. {
  718. unsigned long expired;
  719. long nr_pages;
  720. expired = wb->last_old_flush +
  721. msecs_to_jiffies(dirty_writeback_interval * 10);
  722. if (time_before(jiffies, expired))
  723. return 0;
  724. wb->last_old_flush = jiffies;
  725. nr_pages = global_page_state(NR_FILE_DIRTY) +
  726. global_page_state(NR_UNSTABLE_NFS) +
  727. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  728. if (nr_pages) {
  729. struct wb_writeback_args args = {
  730. .nr_pages = nr_pages,
  731. .sync_mode = WB_SYNC_NONE,
  732. .for_kupdate = 1,
  733. .range_cyclic = 1,
  734. };
  735. return wb_writeback(wb, &args);
  736. }
  737. return 0;
  738. }
  739. /*
  740. * Retrieve work items and do the writeback they describe
  741. */
  742. long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
  743. {
  744. struct backing_dev_info *bdi = wb->bdi;
  745. struct bdi_work *work;
  746. long wrote = 0;
  747. while ((work = get_next_work_item(bdi, wb)) != NULL) {
  748. struct wb_writeback_args args = work->args;
  749. /*
  750. * Override sync mode, in case we must wait for completion
  751. */
  752. if (force_wait)
  753. work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
  754. /*
  755. * If this isn't a data integrity operation, just notify
  756. * that we have seen this work and we are now starting it.
  757. */
  758. if (args.sync_mode == WB_SYNC_NONE)
  759. wb_clear_pending(wb, work);
  760. wrote += wb_writeback(wb, &args);
  761. /*
  762. * This is a data integrity writeback, so only do the
  763. * notification when we have completed the work.
  764. */
  765. if (args.sync_mode == WB_SYNC_ALL)
  766. wb_clear_pending(wb, work);
  767. }
  768. /*
  769. * Check for periodic writeback, kupdated() style
  770. */
  771. wrote += wb_check_old_data_flush(wb);
  772. return wrote;
  773. }
  774. /*
  775. * Handle writeback of dirty data for the device backed by this bdi. Also
  776. * wakes up periodically and does kupdated style flushing.
  777. */
  778. int bdi_writeback_task(struct bdi_writeback *wb)
  779. {
  780. unsigned long last_active = jiffies;
  781. unsigned long wait_jiffies = -1UL;
  782. long pages_written;
  783. while (!kthread_should_stop()) {
  784. pages_written = wb_do_writeback(wb, 0);
  785. if (pages_written)
  786. last_active = jiffies;
  787. else if (wait_jiffies != -1UL) {
  788. unsigned long max_idle;
  789. /*
  790. * Longest period of inactivity that we tolerate. If we
  791. * see dirty data again later, the task will get
  792. * recreated automatically.
  793. */
  794. max_idle = max(5UL * 60 * HZ, wait_jiffies);
  795. if (time_after(jiffies, max_idle + last_active))
  796. break;
  797. }
  798. wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
  799. schedule_timeout_interruptible(wait_jiffies);
  800. try_to_freeze();
  801. }
  802. return 0;
  803. }
  804. /*
  805. * Schedule writeback for all backing devices. This does WB_SYNC_NONE
  806. * writeback, for integrity writeback see bdi_sync_writeback().
  807. */
  808. static void bdi_writeback_all(struct super_block *sb, long nr_pages)
  809. {
  810. struct wb_writeback_args args = {
  811. .sb = sb,
  812. .nr_pages = nr_pages,
  813. .sync_mode = WB_SYNC_NONE,
  814. };
  815. struct backing_dev_info *bdi;
  816. rcu_read_lock();
  817. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
  818. if (!bdi_has_dirty_io(bdi))
  819. continue;
  820. bdi_alloc_queue_work(bdi, &args);
  821. }
  822. rcu_read_unlock();
  823. }
  824. /*
  825. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  826. * the whole world.
  827. */
  828. void wakeup_flusher_threads(long nr_pages)
  829. {
  830. if (nr_pages == 0)
  831. nr_pages = global_page_state(NR_FILE_DIRTY) +
  832. global_page_state(NR_UNSTABLE_NFS);
  833. bdi_writeback_all(NULL, nr_pages);
  834. }
  835. static noinline void block_dump___mark_inode_dirty(struct inode *inode)
  836. {
  837. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
  838. struct dentry *dentry;
  839. const char *name = "?";
  840. dentry = d_find_alias(inode);
  841. if (dentry) {
  842. spin_lock(&dentry->d_lock);
  843. name = (const char *) dentry->d_name.name;
  844. }
  845. printk(KERN_DEBUG
  846. "%s(%d): dirtied inode %lu (%s) on %s\n",
  847. current->comm, task_pid_nr(current), inode->i_ino,
  848. name, inode->i_sb->s_id);
  849. if (dentry) {
  850. spin_unlock(&dentry->d_lock);
  851. dput(dentry);
  852. }
  853. }
  854. }
  855. /**
  856. * __mark_inode_dirty - internal function
  857. * @inode: inode to mark
  858. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  859. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  860. * mark_inode_dirty_sync.
  861. *
  862. * Put the inode on the super block's dirty list.
  863. *
  864. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  865. * dirty list only if it is hashed or if it refers to a blockdev.
  866. * If it was not hashed, it will never be added to the dirty list
  867. * even if it is later hashed, as it will have been marked dirty already.
  868. *
  869. * In short, make sure you hash any inodes _before_ you start marking
  870. * them dirty.
  871. *
  872. * This function *must* be atomic for the I_DIRTY_PAGES case -
  873. * set_page_dirty() is called under spinlock in several places.
  874. *
  875. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  876. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  877. * the kernel-internal blockdev inode represents the dirtying time of the
  878. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  879. * page->mapping->host, so the page-dirtying time is recorded in the internal
  880. * blockdev inode.
  881. */
  882. void __mark_inode_dirty(struct inode *inode, int flags)
  883. {
  884. struct super_block *sb = inode->i_sb;
  885. /*
  886. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  887. * dirty the inode itself
  888. */
  889. if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  890. if (sb->s_op->dirty_inode)
  891. sb->s_op->dirty_inode(inode);
  892. }
  893. /*
  894. * make sure that changes are seen by all cpus before we test i_state
  895. * -- mikulas
  896. */
  897. smp_mb();
  898. /* avoid the locking if we can */
  899. if ((inode->i_state & flags) == flags)
  900. return;
  901. if (unlikely(block_dump))
  902. block_dump___mark_inode_dirty(inode);
  903. spin_lock(&inode_lock);
  904. if ((inode->i_state & flags) != flags) {
  905. const int was_dirty = inode->i_state & I_DIRTY;
  906. inode->i_state |= flags;
  907. /*
  908. * If the inode is being synced, just update its dirty state.
  909. * The unlocker will place the inode on the appropriate
  910. * superblock list, based upon its state.
  911. */
  912. if (inode->i_state & I_SYNC)
  913. goto out;
  914. /*
  915. * Only add valid (hashed) inodes to the superblock's
  916. * dirty list. Add blockdev inodes as well.
  917. */
  918. if (!S_ISBLK(inode->i_mode)) {
  919. if (hlist_unhashed(&inode->i_hash))
  920. goto out;
  921. }
  922. if (inode->i_state & (I_FREEING|I_CLEAR))
  923. goto out;
  924. /*
  925. * If the inode was already on b_dirty/b_io/b_more_io, don't
  926. * reposition it (that would break b_dirty time-ordering).
  927. */
  928. if (!was_dirty) {
  929. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  930. struct backing_dev_info *bdi = wb->bdi;
  931. if (bdi_cap_writeback_dirty(bdi) &&
  932. !test_bit(BDI_registered, &bdi->state)) {
  933. WARN_ON(1);
  934. printk(KERN_ERR "bdi-%s not registered\n",
  935. bdi->name);
  936. }
  937. inode->dirtied_when = jiffies;
  938. list_move(&inode->i_list, &wb->b_dirty);
  939. }
  940. }
  941. out:
  942. spin_unlock(&inode_lock);
  943. }
  944. EXPORT_SYMBOL(__mark_inode_dirty);
  945. /*
  946. * Write out a superblock's list of dirty inodes. A wait will be performed
  947. * upon no inodes, all inodes or the final one, depending upon sync_mode.
  948. *
  949. * If older_than_this is non-NULL, then only write out inodes which
  950. * had their first dirtying at a time earlier than *older_than_this.
  951. *
  952. * If `bdi' is non-zero then we're being asked to writeback a specific queue.
  953. * This function assumes that the blockdev superblock's inodes are backed by
  954. * a variety of queues, so all inodes are searched. For other superblocks,
  955. * assume that all inodes are backed by the same queue.
  956. *
  957. * The inodes to be written are parked on bdi->b_io. They are moved back onto
  958. * bdi->b_dirty as they are selected for writing. This way, none can be missed
  959. * on the writer throttling path, and we get decent balancing between many
  960. * throttled threads: we don't want them all piling up on inode_sync_wait.
  961. */
  962. static void wait_sb_inodes(struct super_block *sb)
  963. {
  964. struct inode *inode, *old_inode = NULL;
  965. /*
  966. * We need to be protected against the filesystem going from
  967. * r/o to r/w or vice versa.
  968. */
  969. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  970. spin_lock(&inode_lock);
  971. /*
  972. * Data integrity sync. Must wait for all pages under writeback,
  973. * because there may have been pages dirtied before our sync
  974. * call, but which had writeout started before we write it out.
  975. * In which case, the inode may not be on the dirty list, but
  976. * we still have to wait for that writeout.
  977. */
  978. list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
  979. struct address_space *mapping;
  980. if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
  981. continue;
  982. mapping = inode->i_mapping;
  983. if (mapping->nrpages == 0)
  984. continue;
  985. __iget(inode);
  986. spin_unlock(&inode_lock);
  987. /*
  988. * We hold a reference to 'inode' so it couldn't have
  989. * been removed from s_inodes list while we dropped the
  990. * inode_lock. We cannot iput the inode now as we can
  991. * be holding the last reference and we cannot iput it
  992. * under inode_lock. So we keep the reference and iput
  993. * it later.
  994. */
  995. iput(old_inode);
  996. old_inode = inode;
  997. filemap_fdatawait(mapping);
  998. cond_resched();
  999. spin_lock(&inode_lock);
  1000. }
  1001. spin_unlock(&inode_lock);
  1002. iput(old_inode);
  1003. }
  1004. /**
  1005. * writeback_inodes_sb - writeback dirty inodes from given super_block
  1006. * @sb: the superblock
  1007. *
  1008. * Start writeback on some inodes on this super_block. No guarantees are made
  1009. * on how many (if any) will be written, and this function does not wait
  1010. * for IO completion of submitted IO. The number of pages submitted is
  1011. * returned.
  1012. */
  1013. void writeback_inodes_sb(struct super_block *sb)
  1014. {
  1015. unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
  1016. unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
  1017. long nr_to_write;
  1018. nr_to_write = nr_dirty + nr_unstable +
  1019. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  1020. bdi_writeback_all(sb, nr_to_write);
  1021. }
  1022. EXPORT_SYMBOL(writeback_inodes_sb);
  1023. /**
  1024. * sync_inodes_sb - sync sb inode pages
  1025. * @sb: the superblock
  1026. *
  1027. * This function writes and waits on any dirty inode belonging to this
  1028. * super_block. The number of pages synced is returned.
  1029. */
  1030. void sync_inodes_sb(struct super_block *sb)
  1031. {
  1032. bdi_sync_writeback(sb->s_bdi, sb);
  1033. wait_sb_inodes(sb);
  1034. }
  1035. EXPORT_SYMBOL(sync_inodes_sb);
  1036. /**
  1037. * write_inode_now - write an inode to disk
  1038. * @inode: inode to write to disk
  1039. * @sync: whether the write should be synchronous or not
  1040. *
  1041. * This function commits an inode to disk immediately if it is dirty. This is
  1042. * primarily needed by knfsd.
  1043. *
  1044. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  1045. */
  1046. int write_inode_now(struct inode *inode, int sync)
  1047. {
  1048. int ret;
  1049. struct writeback_control wbc = {
  1050. .nr_to_write = LONG_MAX,
  1051. .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
  1052. .range_start = 0,
  1053. .range_end = LLONG_MAX,
  1054. };
  1055. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  1056. wbc.nr_to_write = 0;
  1057. might_sleep();
  1058. spin_lock(&inode_lock);
  1059. ret = writeback_single_inode(inode, &wbc);
  1060. spin_unlock(&inode_lock);
  1061. if (sync)
  1062. inode_sync_wait(inode);
  1063. return ret;
  1064. }
  1065. EXPORT_SYMBOL(write_inode_now);
  1066. /**
  1067. * sync_inode - write an inode and its pages to disk.
  1068. * @inode: the inode to sync
  1069. * @wbc: controls the writeback mode
  1070. *
  1071. * sync_inode() will write an inode and its pages to disk. It will also
  1072. * correctly update the inode on its superblock's dirty inode lists and will
  1073. * update inode->i_state.
  1074. *
  1075. * The caller must have a ref on the inode.
  1076. */
  1077. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  1078. {
  1079. int ret;
  1080. spin_lock(&inode_lock);
  1081. ret = writeback_single_inode(inode, wbc);
  1082. spin_unlock(&inode_lock);
  1083. return ret;
  1084. }
  1085. EXPORT_SYMBOL(sync_inode);