ieee80211_crypt_tkip.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774
  1. /*
  2. * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
  3. *
  4. * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation. See README and COPYING for
  9. * more details.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/slab.h>
  14. #include <linux/random.h>
  15. #include <linux/skbuff.h>
  16. #include <linux/netdevice.h>
  17. #include <linux/if_ether.h>
  18. #include <linux/if_arp.h>
  19. #include <asm/string.h>
  20. #include <net/ieee80211.h>
  21. #include <linux/crypto.h>
  22. #include <asm/scatterlist.h>
  23. #include <linux/crc32.h>
  24. MODULE_AUTHOR("Jouni Malinen");
  25. MODULE_DESCRIPTION("Host AP crypt: TKIP");
  26. MODULE_LICENSE("GPL");
  27. struct ieee80211_tkip_data {
  28. #define TKIP_KEY_LEN 32
  29. u8 key[TKIP_KEY_LEN];
  30. int key_set;
  31. u32 tx_iv32;
  32. u16 tx_iv16;
  33. u16 tx_ttak[5];
  34. int tx_phase1_done;
  35. u32 rx_iv32;
  36. u16 rx_iv16;
  37. u16 rx_ttak[5];
  38. int rx_phase1_done;
  39. u32 rx_iv32_new;
  40. u16 rx_iv16_new;
  41. u32 dot11RSNAStatsTKIPReplays;
  42. u32 dot11RSNAStatsTKIPICVErrors;
  43. u32 dot11RSNAStatsTKIPLocalMICFailures;
  44. int key_idx;
  45. struct crypto_tfm *tx_tfm_arc4;
  46. struct crypto_tfm *tx_tfm_michael;
  47. struct crypto_tfm *rx_tfm_arc4;
  48. struct crypto_tfm *rx_tfm_michael;
  49. /* scratch buffers for virt_to_page() (crypto API) */
  50. u8 rx_hdr[16], tx_hdr[16];
  51. unsigned long flags;
  52. };
  53. static unsigned long ieee80211_tkip_set_flags(unsigned long flags, void *priv)
  54. {
  55. struct ieee80211_tkip_data *_priv = priv;
  56. unsigned long old_flags = _priv->flags;
  57. _priv->flags = flags;
  58. return old_flags;
  59. }
  60. static unsigned long ieee80211_tkip_get_flags(void *priv)
  61. {
  62. struct ieee80211_tkip_data *_priv = priv;
  63. return _priv->flags;
  64. }
  65. static void *ieee80211_tkip_init(int key_idx)
  66. {
  67. struct ieee80211_tkip_data *priv;
  68. priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
  69. if (priv == NULL)
  70. goto fail;
  71. priv->key_idx = key_idx;
  72. priv->tx_tfm_arc4 = crypto_alloc_tfm("arc4", 0);
  73. if (priv->tx_tfm_arc4 == NULL) {
  74. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  75. "crypto API arc4\n");
  76. goto fail;
  77. }
  78. priv->tx_tfm_michael = crypto_alloc_tfm("michael_mic", 0);
  79. if (priv->tx_tfm_michael == NULL) {
  80. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  81. "crypto API michael_mic\n");
  82. goto fail;
  83. }
  84. priv->rx_tfm_arc4 = crypto_alloc_tfm("arc4", 0);
  85. if (priv->rx_tfm_arc4 == NULL) {
  86. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  87. "crypto API arc4\n");
  88. goto fail;
  89. }
  90. priv->rx_tfm_michael = crypto_alloc_tfm("michael_mic", 0);
  91. if (priv->rx_tfm_michael == NULL) {
  92. printk(KERN_DEBUG "ieee80211_crypt_tkip: could not allocate "
  93. "crypto API michael_mic\n");
  94. goto fail;
  95. }
  96. return priv;
  97. fail:
  98. if (priv) {
  99. if (priv->tx_tfm_michael)
  100. crypto_free_tfm(priv->tx_tfm_michael);
  101. if (priv->tx_tfm_arc4)
  102. crypto_free_tfm(priv->tx_tfm_arc4);
  103. if (priv->rx_tfm_michael)
  104. crypto_free_tfm(priv->rx_tfm_michael);
  105. if (priv->rx_tfm_arc4)
  106. crypto_free_tfm(priv->rx_tfm_arc4);
  107. kfree(priv);
  108. }
  109. return NULL;
  110. }
  111. static void ieee80211_tkip_deinit(void *priv)
  112. {
  113. struct ieee80211_tkip_data *_priv = priv;
  114. if (_priv) {
  115. if (_priv->tx_tfm_michael)
  116. crypto_free_tfm(_priv->tx_tfm_michael);
  117. if (_priv->tx_tfm_arc4)
  118. crypto_free_tfm(_priv->tx_tfm_arc4);
  119. if (_priv->rx_tfm_michael)
  120. crypto_free_tfm(_priv->rx_tfm_michael);
  121. if (_priv->rx_tfm_arc4)
  122. crypto_free_tfm(_priv->rx_tfm_arc4);
  123. }
  124. kfree(priv);
  125. }
  126. static inline u16 RotR1(u16 val)
  127. {
  128. return (val >> 1) | (val << 15);
  129. }
  130. static inline u8 Lo8(u16 val)
  131. {
  132. return val & 0xff;
  133. }
  134. static inline u8 Hi8(u16 val)
  135. {
  136. return val >> 8;
  137. }
  138. static inline u16 Lo16(u32 val)
  139. {
  140. return val & 0xffff;
  141. }
  142. static inline u16 Hi16(u32 val)
  143. {
  144. return val >> 16;
  145. }
  146. static inline u16 Mk16(u8 hi, u8 lo)
  147. {
  148. return lo | (((u16) hi) << 8);
  149. }
  150. static inline u16 Mk16_le(u16 * v)
  151. {
  152. return le16_to_cpu(*v);
  153. }
  154. static const u16 Sbox[256] = {
  155. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  156. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  157. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  158. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  159. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  160. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  161. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  162. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  163. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  164. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  165. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  166. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  167. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  168. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  169. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  170. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  171. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  172. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  173. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  174. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  175. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  176. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  177. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  178. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  179. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  180. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  181. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  182. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  183. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  184. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  185. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  186. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  187. };
  188. static inline u16 _S_(u16 v)
  189. {
  190. u16 t = Sbox[Hi8(v)];
  191. return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
  192. }
  193. #define PHASE1_LOOP_COUNT 8
  194. static void tkip_mixing_phase1(u16 * TTAK, const u8 * TK, const u8 * TA,
  195. u32 IV32)
  196. {
  197. int i, j;
  198. /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
  199. TTAK[0] = Lo16(IV32);
  200. TTAK[1] = Hi16(IV32);
  201. TTAK[2] = Mk16(TA[1], TA[0]);
  202. TTAK[3] = Mk16(TA[3], TA[2]);
  203. TTAK[4] = Mk16(TA[5], TA[4]);
  204. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  205. j = 2 * (i & 1);
  206. TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
  207. TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
  208. TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
  209. TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
  210. TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
  211. }
  212. }
  213. static void tkip_mixing_phase2(u8 * WEPSeed, const u8 * TK, const u16 * TTAK,
  214. u16 IV16)
  215. {
  216. /* Make temporary area overlap WEP seed so that the final copy can be
  217. * avoided on little endian hosts. */
  218. u16 *PPK = (u16 *) & WEPSeed[4];
  219. /* Step 1 - make copy of TTAK and bring in TSC */
  220. PPK[0] = TTAK[0];
  221. PPK[1] = TTAK[1];
  222. PPK[2] = TTAK[2];
  223. PPK[3] = TTAK[3];
  224. PPK[4] = TTAK[4];
  225. PPK[5] = TTAK[4] + IV16;
  226. /* Step 2 - 96-bit bijective mixing using S-box */
  227. PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) & TK[0]));
  228. PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) & TK[2]));
  229. PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) & TK[4]));
  230. PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) & TK[6]));
  231. PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) & TK[8]));
  232. PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) & TK[10]));
  233. PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) & TK[12]));
  234. PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) & TK[14]));
  235. PPK[2] += RotR1(PPK[1]);
  236. PPK[3] += RotR1(PPK[2]);
  237. PPK[4] += RotR1(PPK[3]);
  238. PPK[5] += RotR1(PPK[4]);
  239. /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
  240. * WEPSeed[0..2] is transmitted as WEP IV */
  241. WEPSeed[0] = Hi8(IV16);
  242. WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
  243. WEPSeed[2] = Lo8(IV16);
  244. WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) & TK[0])) >> 1);
  245. #ifdef __BIG_ENDIAN
  246. {
  247. int i;
  248. for (i = 0; i < 6; i++)
  249. PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
  250. }
  251. #endif
  252. }
  253. static int ieee80211_tkip_hdr(struct sk_buff *skb, int hdr_len,
  254. u8 * rc4key, int keylen, void *priv)
  255. {
  256. struct ieee80211_tkip_data *tkey = priv;
  257. int len;
  258. u8 *pos;
  259. struct ieee80211_hdr_4addr *hdr;
  260. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  261. if (skb_headroom(skb) < 8 || skb->len < hdr_len)
  262. return -1;
  263. if (rc4key == NULL || keylen < 16)
  264. return -1;
  265. if (!tkey->tx_phase1_done) {
  266. tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2,
  267. tkey->tx_iv32);
  268. tkey->tx_phase1_done = 1;
  269. }
  270. tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak, tkey->tx_iv16);
  271. len = skb->len - hdr_len;
  272. pos = skb_push(skb, 8);
  273. memmove(pos, pos + 8, hdr_len);
  274. pos += hdr_len;
  275. *pos++ = *rc4key;
  276. *pos++ = *(rc4key + 1);
  277. *pos++ = *(rc4key + 2);
  278. *pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */ ;
  279. *pos++ = tkey->tx_iv32 & 0xff;
  280. *pos++ = (tkey->tx_iv32 >> 8) & 0xff;
  281. *pos++ = (tkey->tx_iv32 >> 16) & 0xff;
  282. *pos++ = (tkey->tx_iv32 >> 24) & 0xff;
  283. tkey->tx_iv16++;
  284. if (tkey->tx_iv16 == 0) {
  285. tkey->tx_phase1_done = 0;
  286. tkey->tx_iv32++;
  287. }
  288. return 8;
  289. }
  290. static int ieee80211_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
  291. {
  292. struct ieee80211_tkip_data *tkey = priv;
  293. int len;
  294. u8 rc4key[16], *pos, *icv;
  295. u32 crc;
  296. struct scatterlist sg;
  297. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  298. if (net_ratelimit()) {
  299. struct ieee80211_hdr_4addr *hdr =
  300. (struct ieee80211_hdr_4addr *)skb->data;
  301. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  302. "TX packet to " MAC_FMT "\n",
  303. MAC_ARG(hdr->addr1));
  304. }
  305. return -1;
  306. }
  307. if (skb_tailroom(skb) < 4 || skb->len < hdr_len)
  308. return -1;
  309. len = skb->len - hdr_len;
  310. pos = skb->data + hdr_len;
  311. if ((ieee80211_tkip_hdr(skb, hdr_len, rc4key, 16, priv)) < 0)
  312. return -1;
  313. icv = skb_put(skb, 4);
  314. crc = ~crc32_le(~0, pos, len);
  315. icv[0] = crc;
  316. icv[1] = crc >> 8;
  317. icv[2] = crc >> 16;
  318. icv[3] = crc >> 24;
  319. crypto_cipher_setkey(tkey->tx_tfm_arc4, rc4key, 16);
  320. sg.page = virt_to_page(pos);
  321. sg.offset = offset_in_page(pos);
  322. sg.length = len + 4;
  323. crypto_cipher_encrypt(tkey->tx_tfm_arc4, &sg, &sg, len + 4);
  324. return 0;
  325. }
  326. /*
  327. * deal with seq counter wrapping correctly.
  328. * refer to timer_after() for jiffies wrapping handling
  329. */
  330. static inline int tkip_replay_check(u32 iv32_n, u16 iv16_n,
  331. u32 iv32_o, u16 iv16_o)
  332. {
  333. if ((s32)iv32_n - (s32)iv32_o < 0 ||
  334. (iv32_n == iv32_o && iv16_n <= iv16_o))
  335. return 1;
  336. return 0;
  337. }
  338. static int ieee80211_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
  339. {
  340. struct ieee80211_tkip_data *tkey = priv;
  341. u8 rc4key[16];
  342. u8 keyidx, *pos;
  343. u32 iv32;
  344. u16 iv16;
  345. struct ieee80211_hdr_4addr *hdr;
  346. u8 icv[4];
  347. u32 crc;
  348. struct scatterlist sg;
  349. int plen;
  350. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  351. if (tkey->flags & IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) {
  352. if (net_ratelimit()) {
  353. printk(KERN_DEBUG ": TKIP countermeasures: dropped "
  354. "received packet from " MAC_FMT "\n",
  355. MAC_ARG(hdr->addr2));
  356. }
  357. return -1;
  358. }
  359. if (skb->len < hdr_len + 8 + 4)
  360. return -1;
  361. pos = skb->data + hdr_len;
  362. keyidx = pos[3];
  363. if (!(keyidx & (1 << 5))) {
  364. if (net_ratelimit()) {
  365. printk(KERN_DEBUG "TKIP: received packet without ExtIV"
  366. " flag from " MAC_FMT "\n", MAC_ARG(hdr->addr2));
  367. }
  368. return -2;
  369. }
  370. keyidx >>= 6;
  371. if (tkey->key_idx != keyidx) {
  372. printk(KERN_DEBUG "TKIP: RX tkey->key_idx=%d frame "
  373. "keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv);
  374. return -6;
  375. }
  376. if (!tkey->key_set) {
  377. if (net_ratelimit()) {
  378. printk(KERN_DEBUG "TKIP: received packet from " MAC_FMT
  379. " with keyid=%d that does not have a configured"
  380. " key\n", MAC_ARG(hdr->addr2), keyidx);
  381. }
  382. return -3;
  383. }
  384. iv16 = (pos[0] << 8) | pos[2];
  385. iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
  386. pos += 8;
  387. if (tkip_replay_check(iv32, iv16, tkey->rx_iv32, tkey->rx_iv16)) {
  388. if (net_ratelimit()) {
  389. printk(KERN_DEBUG "TKIP: replay detected: STA=" MAC_FMT
  390. " previous TSC %08x%04x received TSC "
  391. "%08x%04x\n", MAC_ARG(hdr->addr2),
  392. tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
  393. }
  394. tkey->dot11RSNAStatsTKIPReplays++;
  395. return -4;
  396. }
  397. if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
  398. tkip_mixing_phase1(tkey->rx_ttak, tkey->key, hdr->addr2, iv32);
  399. tkey->rx_phase1_done = 1;
  400. }
  401. tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);
  402. plen = skb->len - hdr_len - 12;
  403. crypto_cipher_setkey(tkey->rx_tfm_arc4, rc4key, 16);
  404. sg.page = virt_to_page(pos);
  405. sg.offset = offset_in_page(pos);
  406. sg.length = plen + 4;
  407. crypto_cipher_decrypt(tkey->rx_tfm_arc4, &sg, &sg, plen + 4);
  408. crc = ~crc32_le(~0, pos, plen);
  409. icv[0] = crc;
  410. icv[1] = crc >> 8;
  411. icv[2] = crc >> 16;
  412. icv[3] = crc >> 24;
  413. if (memcmp(icv, pos + plen, 4) != 0) {
  414. if (iv32 != tkey->rx_iv32) {
  415. /* Previously cached Phase1 result was already lost, so
  416. * it needs to be recalculated for the next packet. */
  417. tkey->rx_phase1_done = 0;
  418. }
  419. if (net_ratelimit()) {
  420. printk(KERN_DEBUG "TKIP: ICV error detected: STA="
  421. MAC_FMT "\n", MAC_ARG(hdr->addr2));
  422. }
  423. tkey->dot11RSNAStatsTKIPICVErrors++;
  424. return -5;
  425. }
  426. /* Update real counters only after Michael MIC verification has
  427. * completed */
  428. tkey->rx_iv32_new = iv32;
  429. tkey->rx_iv16_new = iv16;
  430. /* Remove IV and ICV */
  431. memmove(skb->data + 8, skb->data, hdr_len);
  432. skb_pull(skb, 8);
  433. skb_trim(skb, skb->len - 4);
  434. return keyidx;
  435. }
  436. static int michael_mic(struct crypto_tfm *tfm_michael, u8 * key, u8 * hdr,
  437. u8 * data, size_t data_len, u8 * mic)
  438. {
  439. struct scatterlist sg[2];
  440. if (tfm_michael == NULL) {
  441. printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
  442. return -1;
  443. }
  444. sg[0].page = virt_to_page(hdr);
  445. sg[0].offset = offset_in_page(hdr);
  446. sg[0].length = 16;
  447. sg[1].page = virt_to_page(data);
  448. sg[1].offset = offset_in_page(data);
  449. sg[1].length = data_len;
  450. crypto_digest_init(tfm_michael);
  451. crypto_digest_setkey(tfm_michael, key, 8);
  452. crypto_digest_update(tfm_michael, sg, 2);
  453. crypto_digest_final(tfm_michael, mic);
  454. return 0;
  455. }
  456. static void michael_mic_hdr(struct sk_buff *skb, u8 * hdr)
  457. {
  458. struct ieee80211_hdr_4addr *hdr11;
  459. u16 stype;
  460. hdr11 = (struct ieee80211_hdr_4addr *)skb->data;
  461. stype = WLAN_FC_GET_STYPE(le16_to_cpu(hdr11->frame_ctl));
  462. switch (le16_to_cpu(hdr11->frame_ctl) &
  463. (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
  464. case IEEE80211_FCTL_TODS:
  465. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  466. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  467. break;
  468. case IEEE80211_FCTL_FROMDS:
  469. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  470. memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
  471. break;
  472. case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
  473. memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  474. memcpy(hdr + ETH_ALEN, hdr11->addr4, ETH_ALEN); /* SA */
  475. break;
  476. case 0:
  477. memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  478. memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  479. break;
  480. }
  481. if (stype & IEEE80211_STYPE_QOS_DATA) {
  482. const struct ieee80211_hdr_3addrqos *qoshdr =
  483. (struct ieee80211_hdr_3addrqos *)skb->data;
  484. hdr[12] = qoshdr->qos_ctl & cpu_to_le16(IEEE80211_QCTL_TID);
  485. } else
  486. hdr[12] = 0; /* priority */
  487. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  488. }
  489. static int ieee80211_michael_mic_add(struct sk_buff *skb, int hdr_len,
  490. void *priv)
  491. {
  492. struct ieee80211_tkip_data *tkey = priv;
  493. u8 *pos;
  494. if (skb_tailroom(skb) < 8 || skb->len < hdr_len) {
  495. printk(KERN_DEBUG "Invalid packet for Michael MIC add "
  496. "(tailroom=%d hdr_len=%d skb->len=%d)\n",
  497. skb_tailroom(skb), hdr_len, skb->len);
  498. return -1;
  499. }
  500. michael_mic_hdr(skb, tkey->tx_hdr);
  501. pos = skb_put(skb, 8);
  502. if (michael_mic(tkey->tx_tfm_michael, &tkey->key[16], tkey->tx_hdr,
  503. skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
  504. return -1;
  505. return 0;
  506. }
  507. static void ieee80211_michael_mic_failure(struct net_device *dev,
  508. struct ieee80211_hdr_4addr *hdr,
  509. int keyidx)
  510. {
  511. union iwreq_data wrqu;
  512. struct iw_michaelmicfailure ev;
  513. /* TODO: needed parameters: count, keyid, key type, TSC */
  514. memset(&ev, 0, sizeof(ev));
  515. ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
  516. if (hdr->addr1[0] & 0x01)
  517. ev.flags |= IW_MICFAILURE_GROUP;
  518. else
  519. ev.flags |= IW_MICFAILURE_PAIRWISE;
  520. ev.src_addr.sa_family = ARPHRD_ETHER;
  521. memcpy(ev.src_addr.sa_data, hdr->addr2, ETH_ALEN);
  522. memset(&wrqu, 0, sizeof(wrqu));
  523. wrqu.data.length = sizeof(ev);
  524. wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
  525. }
  526. static int ieee80211_michael_mic_verify(struct sk_buff *skb, int keyidx,
  527. int hdr_len, void *priv)
  528. {
  529. struct ieee80211_tkip_data *tkey = priv;
  530. u8 mic[8];
  531. if (!tkey->key_set)
  532. return -1;
  533. michael_mic_hdr(skb, tkey->rx_hdr);
  534. if (michael_mic(tkey->rx_tfm_michael, &tkey->key[24], tkey->rx_hdr,
  535. skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
  536. return -1;
  537. if (memcmp(mic, skb->data + skb->len - 8, 8) != 0) {
  538. struct ieee80211_hdr_4addr *hdr;
  539. hdr = (struct ieee80211_hdr_4addr *)skb->data;
  540. printk(KERN_DEBUG "%s: Michael MIC verification failed for "
  541. "MSDU from " MAC_FMT " keyidx=%d\n",
  542. skb->dev ? skb->dev->name : "N/A", MAC_ARG(hdr->addr2),
  543. keyidx);
  544. if (skb->dev)
  545. ieee80211_michael_mic_failure(skb->dev, hdr, keyidx);
  546. tkey->dot11RSNAStatsTKIPLocalMICFailures++;
  547. return -1;
  548. }
  549. /* Update TSC counters for RX now that the packet verification has
  550. * completed. */
  551. tkey->rx_iv32 = tkey->rx_iv32_new;
  552. tkey->rx_iv16 = tkey->rx_iv16_new;
  553. skb_trim(skb, skb->len - 8);
  554. return 0;
  555. }
  556. static int ieee80211_tkip_set_key(void *key, int len, u8 * seq, void *priv)
  557. {
  558. struct ieee80211_tkip_data *tkey = priv;
  559. int keyidx;
  560. struct crypto_tfm *tfm = tkey->tx_tfm_michael;
  561. struct crypto_tfm *tfm2 = tkey->tx_tfm_arc4;
  562. struct crypto_tfm *tfm3 = tkey->rx_tfm_michael;
  563. struct crypto_tfm *tfm4 = tkey->rx_tfm_arc4;
  564. keyidx = tkey->key_idx;
  565. memset(tkey, 0, sizeof(*tkey));
  566. tkey->key_idx = keyidx;
  567. tkey->tx_tfm_michael = tfm;
  568. tkey->tx_tfm_arc4 = tfm2;
  569. tkey->rx_tfm_michael = tfm3;
  570. tkey->rx_tfm_arc4 = tfm4;
  571. if (len == TKIP_KEY_LEN) {
  572. memcpy(tkey->key, key, TKIP_KEY_LEN);
  573. tkey->key_set = 1;
  574. tkey->tx_iv16 = 1; /* TSC is initialized to 1 */
  575. if (seq) {
  576. tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) |
  577. (seq[3] << 8) | seq[2];
  578. tkey->rx_iv16 = (seq[1] << 8) | seq[0];
  579. }
  580. } else if (len == 0)
  581. tkey->key_set = 0;
  582. else
  583. return -1;
  584. return 0;
  585. }
  586. static int ieee80211_tkip_get_key(void *key, int len, u8 * seq, void *priv)
  587. {
  588. struct ieee80211_tkip_data *tkey = priv;
  589. if (len < TKIP_KEY_LEN)
  590. return -1;
  591. if (!tkey->key_set)
  592. return 0;
  593. memcpy(key, tkey->key, TKIP_KEY_LEN);
  594. if (seq) {
  595. /* Return the sequence number of the last transmitted frame. */
  596. u16 iv16 = tkey->tx_iv16;
  597. u32 iv32 = tkey->tx_iv32;
  598. if (iv16 == 0)
  599. iv32--;
  600. iv16--;
  601. seq[0] = tkey->tx_iv16;
  602. seq[1] = tkey->tx_iv16 >> 8;
  603. seq[2] = tkey->tx_iv32;
  604. seq[3] = tkey->tx_iv32 >> 8;
  605. seq[4] = tkey->tx_iv32 >> 16;
  606. seq[5] = tkey->tx_iv32 >> 24;
  607. }
  608. return TKIP_KEY_LEN;
  609. }
  610. static char *ieee80211_tkip_print_stats(char *p, void *priv)
  611. {
  612. struct ieee80211_tkip_data *tkip = priv;
  613. p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
  614. "tx_pn=%02x%02x%02x%02x%02x%02x "
  615. "rx_pn=%02x%02x%02x%02x%02x%02x "
  616. "replays=%d icv_errors=%d local_mic_failures=%d\n",
  617. tkip->key_idx, tkip->key_set,
  618. (tkip->tx_iv32 >> 24) & 0xff,
  619. (tkip->tx_iv32 >> 16) & 0xff,
  620. (tkip->tx_iv32 >> 8) & 0xff,
  621. tkip->tx_iv32 & 0xff,
  622. (tkip->tx_iv16 >> 8) & 0xff,
  623. tkip->tx_iv16 & 0xff,
  624. (tkip->rx_iv32 >> 24) & 0xff,
  625. (tkip->rx_iv32 >> 16) & 0xff,
  626. (tkip->rx_iv32 >> 8) & 0xff,
  627. tkip->rx_iv32 & 0xff,
  628. (tkip->rx_iv16 >> 8) & 0xff,
  629. tkip->rx_iv16 & 0xff,
  630. tkip->dot11RSNAStatsTKIPReplays,
  631. tkip->dot11RSNAStatsTKIPICVErrors,
  632. tkip->dot11RSNAStatsTKIPLocalMICFailures);
  633. return p;
  634. }
  635. static struct ieee80211_crypto_ops ieee80211_crypt_tkip = {
  636. .name = "TKIP",
  637. .init = ieee80211_tkip_init,
  638. .deinit = ieee80211_tkip_deinit,
  639. .build_iv = ieee80211_tkip_hdr,
  640. .encrypt_mpdu = ieee80211_tkip_encrypt,
  641. .decrypt_mpdu = ieee80211_tkip_decrypt,
  642. .encrypt_msdu = ieee80211_michael_mic_add,
  643. .decrypt_msdu = ieee80211_michael_mic_verify,
  644. .set_key = ieee80211_tkip_set_key,
  645. .get_key = ieee80211_tkip_get_key,
  646. .print_stats = ieee80211_tkip_print_stats,
  647. .extra_mpdu_prefix_len = 4 + 4, /* IV + ExtIV */
  648. .extra_mpdu_postfix_len = 4, /* ICV */
  649. .extra_msdu_postfix_len = 8, /* MIC */
  650. .get_flags = ieee80211_tkip_get_flags,
  651. .set_flags = ieee80211_tkip_set_flags,
  652. .owner = THIS_MODULE,
  653. };
  654. static int __init ieee80211_crypto_tkip_init(void)
  655. {
  656. return ieee80211_register_crypto_ops(&ieee80211_crypt_tkip);
  657. }
  658. static void __exit ieee80211_crypto_tkip_exit(void)
  659. {
  660. ieee80211_unregister_crypto_ops(&ieee80211_crypt_tkip);
  661. }
  662. module_init(ieee80211_crypto_tkip_init);
  663. module_exit(ieee80211_crypto_tkip_exit);