file.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static int f2fs_filemap_fault(struct vm_fault *vmf)
  35. {
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. int err;
  38. down_read(&F2FS_I(inode)->i_mmap_sem);
  39. err = filemap_fault(vmf);
  40. up_read(&F2FS_I(inode)->i_mmap_sem);
  41. return err;
  42. }
  43. static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  44. {
  45. struct page *page = vmf->page;
  46. struct inode *inode = file_inode(vmf->vma->vm_file);
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct dnode_of_data dn;
  49. int err;
  50. sb_start_pagefault(inode->i_sb);
  51. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  52. /* block allocation */
  53. f2fs_lock_op(sbi);
  54. set_new_dnode(&dn, inode, NULL, NULL, 0);
  55. err = f2fs_reserve_block(&dn, page->index);
  56. if (err) {
  57. f2fs_unlock_op(sbi);
  58. goto out;
  59. }
  60. f2fs_put_dnode(&dn);
  61. f2fs_unlock_op(sbi);
  62. f2fs_balance_fs(sbi, dn.node_changed);
  63. file_update_time(vmf->vma->vm_file);
  64. down_read(&F2FS_I(inode)->i_mmap_sem);
  65. lock_page(page);
  66. if (unlikely(page->mapping != inode->i_mapping ||
  67. page_offset(page) > i_size_read(inode) ||
  68. !PageUptodate(page))) {
  69. unlock_page(page);
  70. err = -EFAULT;
  71. goto out_sem;
  72. }
  73. /*
  74. * check to see if the page is mapped already (no holes)
  75. */
  76. if (PageMappedToDisk(page))
  77. goto mapped;
  78. /* page is wholly or partially inside EOF */
  79. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  80. i_size_read(inode)) {
  81. unsigned offset;
  82. offset = i_size_read(inode) & ~PAGE_MASK;
  83. zero_user_segment(page, offset, PAGE_SIZE);
  84. }
  85. set_page_dirty(page);
  86. if (!PageUptodate(page))
  87. SetPageUptodate(page);
  88. trace_f2fs_vm_page_mkwrite(page, DATA);
  89. mapped:
  90. /* fill the page */
  91. f2fs_wait_on_page_writeback(page, DATA, false);
  92. /* wait for GCed encrypted page writeback */
  93. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  94. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  95. out_sem:
  96. up_read(&F2FS_I(inode)->i_mmap_sem);
  97. out:
  98. sb_end_pagefault(inode->i_sb);
  99. f2fs_update_time(sbi, REQ_TIME);
  100. return block_page_mkwrite_return(err);
  101. }
  102. static const struct vm_operations_struct f2fs_file_vm_ops = {
  103. .fault = f2fs_filemap_fault,
  104. .map_pages = filemap_map_pages,
  105. .page_mkwrite = f2fs_vm_page_mkwrite,
  106. };
  107. static int get_parent_ino(struct inode *inode, nid_t *pino)
  108. {
  109. struct dentry *dentry;
  110. inode = igrab(inode);
  111. dentry = d_find_any_alias(inode);
  112. iput(inode);
  113. if (!dentry)
  114. return 0;
  115. *pino = parent_ino(dentry);
  116. dput(dentry);
  117. return 1;
  118. }
  119. static inline bool need_do_checkpoint(struct inode *inode)
  120. {
  121. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  122. bool need_cp = false;
  123. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  124. need_cp = true;
  125. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  126. need_cp = true;
  127. else if (file_wrong_pino(inode))
  128. need_cp = true;
  129. else if (!space_for_roll_forward(sbi))
  130. need_cp = true;
  131. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  132. need_cp = true;
  133. else if (test_opt(sbi, FASTBOOT))
  134. need_cp = true;
  135. else if (sbi->active_logs == 2)
  136. need_cp = true;
  137. return need_cp;
  138. }
  139. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  140. {
  141. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  142. bool ret = false;
  143. /* But we need to avoid that there are some inode updates */
  144. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  145. ret = true;
  146. f2fs_put_page(i, 0);
  147. return ret;
  148. }
  149. static void try_to_fix_pino(struct inode *inode)
  150. {
  151. struct f2fs_inode_info *fi = F2FS_I(inode);
  152. nid_t pino;
  153. down_write(&fi->i_sem);
  154. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  155. get_parent_ino(inode, &pino)) {
  156. f2fs_i_pino_write(inode, pino);
  157. file_got_pino(inode);
  158. }
  159. up_write(&fi->i_sem);
  160. }
  161. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  162. int datasync, bool atomic)
  163. {
  164. struct inode *inode = file->f_mapping->host;
  165. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  166. nid_t ino = inode->i_ino;
  167. int ret = 0;
  168. bool need_cp = false;
  169. struct writeback_control wbc = {
  170. .sync_mode = WB_SYNC_ALL,
  171. .nr_to_write = LONG_MAX,
  172. .for_reclaim = 0,
  173. };
  174. if (unlikely(f2fs_readonly(inode->i_sb)))
  175. return 0;
  176. trace_f2fs_sync_file_enter(inode);
  177. /* if fdatasync is triggered, let's do in-place-update */
  178. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  179. set_inode_flag(inode, FI_NEED_IPU);
  180. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  181. clear_inode_flag(inode, FI_NEED_IPU);
  182. if (ret) {
  183. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  184. return ret;
  185. }
  186. /* if the inode is dirty, let's recover all the time */
  187. if (!f2fs_skip_inode_update(inode, datasync)) {
  188. f2fs_write_inode(inode, NULL);
  189. goto go_write;
  190. }
  191. /*
  192. * if there is no written data, don't waste time to write recovery info.
  193. */
  194. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  195. !exist_written_data(sbi, ino, APPEND_INO)) {
  196. /* it may call write_inode just prior to fsync */
  197. if (need_inode_page_update(sbi, ino))
  198. goto go_write;
  199. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  200. exist_written_data(sbi, ino, UPDATE_INO))
  201. goto flush_out;
  202. goto out;
  203. }
  204. go_write:
  205. /*
  206. * Both of fdatasync() and fsync() are able to be recovered from
  207. * sudden-power-off.
  208. */
  209. down_read(&F2FS_I(inode)->i_sem);
  210. need_cp = need_do_checkpoint(inode);
  211. up_read(&F2FS_I(inode)->i_sem);
  212. if (need_cp) {
  213. /* all the dirty node pages should be flushed for POR */
  214. ret = f2fs_sync_fs(inode->i_sb, 1);
  215. /*
  216. * We've secured consistency through sync_fs. Following pino
  217. * will be used only for fsynced inodes after checkpoint.
  218. */
  219. try_to_fix_pino(inode);
  220. clear_inode_flag(inode, FI_APPEND_WRITE);
  221. clear_inode_flag(inode, FI_UPDATE_WRITE);
  222. goto out;
  223. }
  224. sync_nodes:
  225. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  226. if (ret)
  227. goto out;
  228. /* if cp_error was enabled, we should avoid infinite loop */
  229. if (unlikely(f2fs_cp_error(sbi))) {
  230. ret = -EIO;
  231. goto out;
  232. }
  233. if (need_inode_block_update(sbi, ino)) {
  234. f2fs_mark_inode_dirty_sync(inode, true);
  235. f2fs_write_inode(inode, NULL);
  236. goto sync_nodes;
  237. }
  238. ret = wait_on_node_pages_writeback(sbi, ino);
  239. if (ret)
  240. goto out;
  241. /* once recovery info is written, don't need to tack this */
  242. remove_ino_entry(sbi, ino, APPEND_INO);
  243. clear_inode_flag(inode, FI_APPEND_WRITE);
  244. flush_out:
  245. remove_ino_entry(sbi, ino, UPDATE_INO);
  246. clear_inode_flag(inode, FI_UPDATE_WRITE);
  247. if (!atomic)
  248. ret = f2fs_issue_flush(sbi);
  249. f2fs_update_time(sbi, REQ_TIME);
  250. out:
  251. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  252. f2fs_trace_ios(NULL, 1);
  253. return ret;
  254. }
  255. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  256. {
  257. return f2fs_do_sync_file(file, start, end, datasync, false);
  258. }
  259. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  260. pgoff_t pgofs, int whence)
  261. {
  262. struct pagevec pvec;
  263. int nr_pages;
  264. if (whence != SEEK_DATA)
  265. return 0;
  266. /* find first dirty page index */
  267. pagevec_init(&pvec, 0);
  268. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  269. PAGECACHE_TAG_DIRTY, 1);
  270. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  271. pagevec_release(&pvec);
  272. return pgofs;
  273. }
  274. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  275. int whence)
  276. {
  277. switch (whence) {
  278. case SEEK_DATA:
  279. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  280. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  281. return true;
  282. break;
  283. case SEEK_HOLE:
  284. if (blkaddr == NULL_ADDR)
  285. return true;
  286. break;
  287. }
  288. return false;
  289. }
  290. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  291. {
  292. struct inode *inode = file->f_mapping->host;
  293. loff_t maxbytes = inode->i_sb->s_maxbytes;
  294. struct dnode_of_data dn;
  295. pgoff_t pgofs, end_offset, dirty;
  296. loff_t data_ofs = offset;
  297. loff_t isize;
  298. int err = 0;
  299. inode_lock(inode);
  300. isize = i_size_read(inode);
  301. if (offset >= isize)
  302. goto fail;
  303. /* handle inline data case */
  304. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  305. if (whence == SEEK_HOLE)
  306. data_ofs = isize;
  307. goto found;
  308. }
  309. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  310. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  311. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  312. set_new_dnode(&dn, inode, NULL, NULL, 0);
  313. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  314. if (err && err != -ENOENT) {
  315. goto fail;
  316. } else if (err == -ENOENT) {
  317. /* direct node does not exists */
  318. if (whence == SEEK_DATA) {
  319. pgofs = get_next_page_offset(&dn, pgofs);
  320. continue;
  321. } else {
  322. goto found;
  323. }
  324. }
  325. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  326. /* find data/hole in dnode block */
  327. for (; dn.ofs_in_node < end_offset;
  328. dn.ofs_in_node++, pgofs++,
  329. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  330. block_t blkaddr;
  331. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  332. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  333. f2fs_put_dnode(&dn);
  334. goto found;
  335. }
  336. }
  337. f2fs_put_dnode(&dn);
  338. }
  339. if (whence == SEEK_DATA)
  340. goto fail;
  341. found:
  342. if (whence == SEEK_HOLE && data_ofs > isize)
  343. data_ofs = isize;
  344. inode_unlock(inode);
  345. return vfs_setpos(file, data_ofs, maxbytes);
  346. fail:
  347. inode_unlock(inode);
  348. return -ENXIO;
  349. }
  350. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  351. {
  352. struct inode *inode = file->f_mapping->host;
  353. loff_t maxbytes = inode->i_sb->s_maxbytes;
  354. switch (whence) {
  355. case SEEK_SET:
  356. case SEEK_CUR:
  357. case SEEK_END:
  358. return generic_file_llseek_size(file, offset, whence,
  359. maxbytes, i_size_read(inode));
  360. case SEEK_DATA:
  361. case SEEK_HOLE:
  362. if (offset < 0)
  363. return -ENXIO;
  364. return f2fs_seek_block(file, offset, whence);
  365. }
  366. return -EINVAL;
  367. }
  368. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  369. {
  370. struct inode *inode = file_inode(file);
  371. int err;
  372. /* we don't need to use inline_data strictly */
  373. err = f2fs_convert_inline_inode(inode);
  374. if (err)
  375. return err;
  376. file_accessed(file);
  377. vma->vm_ops = &f2fs_file_vm_ops;
  378. return 0;
  379. }
  380. static int f2fs_file_open(struct inode *inode, struct file *filp)
  381. {
  382. int ret = generic_file_open(inode, filp);
  383. struct dentry *dir;
  384. if (!ret && f2fs_encrypted_inode(inode)) {
  385. ret = fscrypt_get_encryption_info(inode);
  386. if (ret)
  387. return -EACCES;
  388. if (!fscrypt_has_encryption_key(inode))
  389. return -ENOKEY;
  390. }
  391. dir = dget_parent(file_dentry(filp));
  392. if (f2fs_encrypted_inode(d_inode(dir)) &&
  393. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  394. dput(dir);
  395. return -EPERM;
  396. }
  397. dput(dir);
  398. return ret;
  399. }
  400. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  401. {
  402. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  403. struct f2fs_node *raw_node;
  404. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  405. __le32 *addr;
  406. raw_node = F2FS_NODE(dn->node_page);
  407. addr = blkaddr_in_node(raw_node) + ofs;
  408. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  409. block_t blkaddr = le32_to_cpu(*addr);
  410. if (blkaddr == NULL_ADDR)
  411. continue;
  412. dn->data_blkaddr = NULL_ADDR;
  413. set_data_blkaddr(dn);
  414. invalidate_blocks(sbi, blkaddr);
  415. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  416. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  417. nr_free++;
  418. }
  419. if (nr_free) {
  420. pgoff_t fofs;
  421. /*
  422. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  423. * we will invalidate all blkaddr in the whole range.
  424. */
  425. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  426. dn->inode) + ofs;
  427. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  428. dec_valid_block_count(sbi, dn->inode, nr_free);
  429. }
  430. dn->ofs_in_node = ofs;
  431. f2fs_update_time(sbi, REQ_TIME);
  432. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  433. dn->ofs_in_node, nr_free);
  434. return nr_free;
  435. }
  436. void truncate_data_blocks(struct dnode_of_data *dn)
  437. {
  438. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  439. }
  440. static int truncate_partial_data_page(struct inode *inode, u64 from,
  441. bool cache_only)
  442. {
  443. unsigned offset = from & (PAGE_SIZE - 1);
  444. pgoff_t index = from >> PAGE_SHIFT;
  445. struct address_space *mapping = inode->i_mapping;
  446. struct page *page;
  447. if (!offset && !cache_only)
  448. return 0;
  449. if (cache_only) {
  450. page = find_lock_page(mapping, index);
  451. if (page && PageUptodate(page))
  452. goto truncate_out;
  453. f2fs_put_page(page, 1);
  454. return 0;
  455. }
  456. page = get_lock_data_page(inode, index, true);
  457. if (IS_ERR(page))
  458. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  459. truncate_out:
  460. f2fs_wait_on_page_writeback(page, DATA, true);
  461. zero_user(page, offset, PAGE_SIZE - offset);
  462. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  463. !S_ISREG(inode->i_mode))
  464. set_page_dirty(page);
  465. f2fs_put_page(page, 1);
  466. return 0;
  467. }
  468. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  469. {
  470. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  471. unsigned int blocksize = inode->i_sb->s_blocksize;
  472. struct dnode_of_data dn;
  473. pgoff_t free_from;
  474. int count = 0, err = 0;
  475. struct page *ipage;
  476. bool truncate_page = false;
  477. trace_f2fs_truncate_blocks_enter(inode, from);
  478. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  479. if (free_from >= sbi->max_file_blocks)
  480. goto free_partial;
  481. if (lock)
  482. f2fs_lock_op(sbi);
  483. ipage = get_node_page(sbi, inode->i_ino);
  484. if (IS_ERR(ipage)) {
  485. err = PTR_ERR(ipage);
  486. goto out;
  487. }
  488. if (f2fs_has_inline_data(inode)) {
  489. truncate_inline_inode(inode, ipage, from);
  490. f2fs_put_page(ipage, 1);
  491. truncate_page = true;
  492. goto out;
  493. }
  494. set_new_dnode(&dn, inode, ipage, NULL, 0);
  495. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  496. if (err) {
  497. if (err == -ENOENT)
  498. goto free_next;
  499. goto out;
  500. }
  501. count = ADDRS_PER_PAGE(dn.node_page, inode);
  502. count -= dn.ofs_in_node;
  503. f2fs_bug_on(sbi, count < 0);
  504. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  505. truncate_data_blocks_range(&dn, count);
  506. free_from += count;
  507. }
  508. f2fs_put_dnode(&dn);
  509. free_next:
  510. err = truncate_inode_blocks(inode, free_from);
  511. out:
  512. if (lock)
  513. f2fs_unlock_op(sbi);
  514. free_partial:
  515. /* lastly zero out the first data page */
  516. if (!err)
  517. err = truncate_partial_data_page(inode, from, truncate_page);
  518. trace_f2fs_truncate_blocks_exit(inode, err);
  519. return err;
  520. }
  521. int f2fs_truncate(struct inode *inode)
  522. {
  523. int err;
  524. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  525. S_ISLNK(inode->i_mode)))
  526. return 0;
  527. trace_f2fs_truncate(inode);
  528. #ifdef CONFIG_F2FS_FAULT_INJECTION
  529. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  530. f2fs_show_injection_info(FAULT_TRUNCATE);
  531. return -EIO;
  532. }
  533. #endif
  534. /* we should check inline_data size */
  535. if (!f2fs_may_inline_data(inode)) {
  536. err = f2fs_convert_inline_inode(inode);
  537. if (err)
  538. return err;
  539. }
  540. err = truncate_blocks(inode, i_size_read(inode), true);
  541. if (err)
  542. return err;
  543. inode->i_mtime = inode->i_ctime = current_time(inode);
  544. f2fs_mark_inode_dirty_sync(inode, false);
  545. return 0;
  546. }
  547. int f2fs_getattr(const struct path *path, struct kstat *stat,
  548. u32 request_mask, unsigned int query_flags)
  549. {
  550. struct inode *inode = d_inode(path->dentry);
  551. struct f2fs_inode_info *fi = F2FS_I(inode);
  552. unsigned int flags;
  553. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  554. if (flags & FS_APPEND_FL)
  555. stat->attributes |= STATX_ATTR_APPEND;
  556. if (flags & FS_COMPR_FL)
  557. stat->attributes |= STATX_ATTR_COMPRESSED;
  558. if (f2fs_encrypted_inode(inode))
  559. stat->attributes |= STATX_ATTR_ENCRYPTED;
  560. if (flags & FS_IMMUTABLE_FL)
  561. stat->attributes |= STATX_ATTR_IMMUTABLE;
  562. if (flags & FS_NODUMP_FL)
  563. stat->attributes |= STATX_ATTR_NODUMP;
  564. stat->attributes_mask |= (STATX_ATTR_APPEND |
  565. STATX_ATTR_COMPRESSED |
  566. STATX_ATTR_ENCRYPTED |
  567. STATX_ATTR_IMMUTABLE |
  568. STATX_ATTR_NODUMP);
  569. generic_fillattr(inode, stat);
  570. stat->blocks <<= 3;
  571. return 0;
  572. }
  573. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  574. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  575. {
  576. unsigned int ia_valid = attr->ia_valid;
  577. if (ia_valid & ATTR_UID)
  578. inode->i_uid = attr->ia_uid;
  579. if (ia_valid & ATTR_GID)
  580. inode->i_gid = attr->ia_gid;
  581. if (ia_valid & ATTR_ATIME)
  582. inode->i_atime = timespec_trunc(attr->ia_atime,
  583. inode->i_sb->s_time_gran);
  584. if (ia_valid & ATTR_MTIME)
  585. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  586. inode->i_sb->s_time_gran);
  587. if (ia_valid & ATTR_CTIME)
  588. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  589. inode->i_sb->s_time_gran);
  590. if (ia_valid & ATTR_MODE) {
  591. umode_t mode = attr->ia_mode;
  592. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  593. mode &= ~S_ISGID;
  594. set_acl_inode(inode, mode);
  595. }
  596. }
  597. #else
  598. #define __setattr_copy setattr_copy
  599. #endif
  600. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  601. {
  602. struct inode *inode = d_inode(dentry);
  603. int err;
  604. bool size_changed = false;
  605. err = setattr_prepare(dentry, attr);
  606. if (err)
  607. return err;
  608. if (attr->ia_valid & ATTR_SIZE) {
  609. if (f2fs_encrypted_inode(inode) &&
  610. fscrypt_get_encryption_info(inode))
  611. return -EACCES;
  612. if (attr->ia_size <= i_size_read(inode)) {
  613. down_write(&F2FS_I(inode)->i_mmap_sem);
  614. truncate_setsize(inode, attr->ia_size);
  615. err = f2fs_truncate(inode);
  616. up_write(&F2FS_I(inode)->i_mmap_sem);
  617. if (err)
  618. return err;
  619. } else {
  620. /*
  621. * do not trim all blocks after i_size if target size is
  622. * larger than i_size.
  623. */
  624. down_write(&F2FS_I(inode)->i_mmap_sem);
  625. truncate_setsize(inode, attr->ia_size);
  626. up_write(&F2FS_I(inode)->i_mmap_sem);
  627. /* should convert inline inode here */
  628. if (!f2fs_may_inline_data(inode)) {
  629. err = f2fs_convert_inline_inode(inode);
  630. if (err)
  631. return err;
  632. }
  633. inode->i_mtime = inode->i_ctime = current_time(inode);
  634. }
  635. size_changed = true;
  636. }
  637. __setattr_copy(inode, attr);
  638. if (attr->ia_valid & ATTR_MODE) {
  639. err = posix_acl_chmod(inode, get_inode_mode(inode));
  640. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  641. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  642. clear_inode_flag(inode, FI_ACL_MODE);
  643. }
  644. }
  645. /* file size may changed here */
  646. f2fs_mark_inode_dirty_sync(inode, size_changed);
  647. /* inode change will produce dirty node pages flushed by checkpoint */
  648. f2fs_balance_fs(F2FS_I_SB(inode), true);
  649. return err;
  650. }
  651. const struct inode_operations f2fs_file_inode_operations = {
  652. .getattr = f2fs_getattr,
  653. .setattr = f2fs_setattr,
  654. .get_acl = f2fs_get_acl,
  655. .set_acl = f2fs_set_acl,
  656. #ifdef CONFIG_F2FS_FS_XATTR
  657. .listxattr = f2fs_listxattr,
  658. #endif
  659. .fiemap = f2fs_fiemap,
  660. };
  661. static int fill_zero(struct inode *inode, pgoff_t index,
  662. loff_t start, loff_t len)
  663. {
  664. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  665. struct page *page;
  666. if (!len)
  667. return 0;
  668. f2fs_balance_fs(sbi, true);
  669. f2fs_lock_op(sbi);
  670. page = get_new_data_page(inode, NULL, index, false);
  671. f2fs_unlock_op(sbi);
  672. if (IS_ERR(page))
  673. return PTR_ERR(page);
  674. f2fs_wait_on_page_writeback(page, DATA, true);
  675. zero_user(page, start, len);
  676. set_page_dirty(page);
  677. f2fs_put_page(page, 1);
  678. return 0;
  679. }
  680. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  681. {
  682. int err;
  683. while (pg_start < pg_end) {
  684. struct dnode_of_data dn;
  685. pgoff_t end_offset, count;
  686. set_new_dnode(&dn, inode, NULL, NULL, 0);
  687. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  688. if (err) {
  689. if (err == -ENOENT) {
  690. pg_start++;
  691. continue;
  692. }
  693. return err;
  694. }
  695. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  696. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  697. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  698. truncate_data_blocks_range(&dn, count);
  699. f2fs_put_dnode(&dn);
  700. pg_start += count;
  701. }
  702. return 0;
  703. }
  704. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  705. {
  706. pgoff_t pg_start, pg_end;
  707. loff_t off_start, off_end;
  708. int ret;
  709. ret = f2fs_convert_inline_inode(inode);
  710. if (ret)
  711. return ret;
  712. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  713. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  714. off_start = offset & (PAGE_SIZE - 1);
  715. off_end = (offset + len) & (PAGE_SIZE - 1);
  716. if (pg_start == pg_end) {
  717. ret = fill_zero(inode, pg_start, off_start,
  718. off_end - off_start);
  719. if (ret)
  720. return ret;
  721. } else {
  722. if (off_start) {
  723. ret = fill_zero(inode, pg_start++, off_start,
  724. PAGE_SIZE - off_start);
  725. if (ret)
  726. return ret;
  727. }
  728. if (off_end) {
  729. ret = fill_zero(inode, pg_end, 0, off_end);
  730. if (ret)
  731. return ret;
  732. }
  733. if (pg_start < pg_end) {
  734. struct address_space *mapping = inode->i_mapping;
  735. loff_t blk_start, blk_end;
  736. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  737. f2fs_balance_fs(sbi, true);
  738. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  739. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  740. down_write(&F2FS_I(inode)->i_mmap_sem);
  741. truncate_inode_pages_range(mapping, blk_start,
  742. blk_end - 1);
  743. f2fs_lock_op(sbi);
  744. ret = truncate_hole(inode, pg_start, pg_end);
  745. f2fs_unlock_op(sbi);
  746. up_write(&F2FS_I(inode)->i_mmap_sem);
  747. }
  748. }
  749. return ret;
  750. }
  751. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  752. int *do_replace, pgoff_t off, pgoff_t len)
  753. {
  754. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  755. struct dnode_of_data dn;
  756. int ret, done, i;
  757. next_dnode:
  758. set_new_dnode(&dn, inode, NULL, NULL, 0);
  759. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  760. if (ret && ret != -ENOENT) {
  761. return ret;
  762. } else if (ret == -ENOENT) {
  763. if (dn.max_level == 0)
  764. return -ENOENT;
  765. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  766. blkaddr += done;
  767. do_replace += done;
  768. goto next;
  769. }
  770. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  771. dn.ofs_in_node, len);
  772. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  773. *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  774. if (!is_checkpointed_data(sbi, *blkaddr)) {
  775. if (test_opt(sbi, LFS)) {
  776. f2fs_put_dnode(&dn);
  777. return -ENOTSUPP;
  778. }
  779. /* do not invalidate this block address */
  780. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  781. *do_replace = 1;
  782. }
  783. }
  784. f2fs_put_dnode(&dn);
  785. next:
  786. len -= done;
  787. off += done;
  788. if (len)
  789. goto next_dnode;
  790. return 0;
  791. }
  792. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  793. int *do_replace, pgoff_t off, int len)
  794. {
  795. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  796. struct dnode_of_data dn;
  797. int ret, i;
  798. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  799. if (*do_replace == 0)
  800. continue;
  801. set_new_dnode(&dn, inode, NULL, NULL, 0);
  802. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  803. if (ret) {
  804. dec_valid_block_count(sbi, inode, 1);
  805. invalidate_blocks(sbi, *blkaddr);
  806. } else {
  807. f2fs_update_data_blkaddr(&dn, *blkaddr);
  808. }
  809. f2fs_put_dnode(&dn);
  810. }
  811. return 0;
  812. }
  813. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  814. block_t *blkaddr, int *do_replace,
  815. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  816. {
  817. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  818. pgoff_t i = 0;
  819. int ret;
  820. while (i < len) {
  821. if (blkaddr[i] == NULL_ADDR && !full) {
  822. i++;
  823. continue;
  824. }
  825. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  826. struct dnode_of_data dn;
  827. struct node_info ni;
  828. size_t new_size;
  829. pgoff_t ilen;
  830. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  831. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  832. if (ret)
  833. return ret;
  834. get_node_info(sbi, dn.nid, &ni);
  835. ilen = min((pgoff_t)
  836. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  837. dn.ofs_in_node, len - i);
  838. do {
  839. dn.data_blkaddr = datablock_addr(dn.node_page,
  840. dn.ofs_in_node);
  841. truncate_data_blocks_range(&dn, 1);
  842. if (do_replace[i]) {
  843. f2fs_i_blocks_write(src_inode,
  844. 1, false);
  845. f2fs_i_blocks_write(dst_inode,
  846. 1, true);
  847. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  848. blkaddr[i], ni.version, true, false);
  849. do_replace[i] = 0;
  850. }
  851. dn.ofs_in_node++;
  852. i++;
  853. new_size = (dst + i) << PAGE_SHIFT;
  854. if (dst_inode->i_size < new_size)
  855. f2fs_i_size_write(dst_inode, new_size);
  856. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  857. f2fs_put_dnode(&dn);
  858. } else {
  859. struct page *psrc, *pdst;
  860. psrc = get_lock_data_page(src_inode, src + i, true);
  861. if (IS_ERR(psrc))
  862. return PTR_ERR(psrc);
  863. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  864. true);
  865. if (IS_ERR(pdst)) {
  866. f2fs_put_page(psrc, 1);
  867. return PTR_ERR(pdst);
  868. }
  869. f2fs_copy_page(psrc, pdst);
  870. set_page_dirty(pdst);
  871. f2fs_put_page(pdst, 1);
  872. f2fs_put_page(psrc, 1);
  873. ret = truncate_hole(src_inode, src + i, src + i + 1);
  874. if (ret)
  875. return ret;
  876. i++;
  877. }
  878. }
  879. return 0;
  880. }
  881. static int __exchange_data_block(struct inode *src_inode,
  882. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  883. pgoff_t len, bool full)
  884. {
  885. block_t *src_blkaddr;
  886. int *do_replace;
  887. pgoff_t olen;
  888. int ret;
  889. while (len) {
  890. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  891. src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  892. if (!src_blkaddr)
  893. return -ENOMEM;
  894. do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  895. if (!do_replace) {
  896. kvfree(src_blkaddr);
  897. return -ENOMEM;
  898. }
  899. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  900. do_replace, src, olen);
  901. if (ret)
  902. goto roll_back;
  903. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  904. do_replace, src, dst, olen, full);
  905. if (ret)
  906. goto roll_back;
  907. src += olen;
  908. dst += olen;
  909. len -= olen;
  910. kvfree(src_blkaddr);
  911. kvfree(do_replace);
  912. }
  913. return 0;
  914. roll_back:
  915. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  916. kvfree(src_blkaddr);
  917. kvfree(do_replace);
  918. return ret;
  919. }
  920. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  921. {
  922. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  923. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  924. int ret;
  925. f2fs_balance_fs(sbi, true);
  926. f2fs_lock_op(sbi);
  927. f2fs_drop_extent_tree(inode);
  928. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  929. f2fs_unlock_op(sbi);
  930. return ret;
  931. }
  932. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  933. {
  934. pgoff_t pg_start, pg_end;
  935. loff_t new_size;
  936. int ret;
  937. if (offset + len >= i_size_read(inode))
  938. return -EINVAL;
  939. /* collapse range should be aligned to block size of f2fs. */
  940. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  941. return -EINVAL;
  942. ret = f2fs_convert_inline_inode(inode);
  943. if (ret)
  944. return ret;
  945. pg_start = offset >> PAGE_SHIFT;
  946. pg_end = (offset + len) >> PAGE_SHIFT;
  947. down_write(&F2FS_I(inode)->i_mmap_sem);
  948. /* write out all dirty pages from offset */
  949. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  950. if (ret)
  951. goto out;
  952. truncate_pagecache(inode, offset);
  953. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  954. if (ret)
  955. goto out;
  956. /* write out all moved pages, if possible */
  957. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  958. truncate_pagecache(inode, offset);
  959. new_size = i_size_read(inode) - len;
  960. truncate_pagecache(inode, new_size);
  961. ret = truncate_blocks(inode, new_size, true);
  962. if (!ret)
  963. f2fs_i_size_write(inode, new_size);
  964. out:
  965. up_write(&F2FS_I(inode)->i_mmap_sem);
  966. return ret;
  967. }
  968. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  969. pgoff_t end)
  970. {
  971. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  972. pgoff_t index = start;
  973. unsigned int ofs_in_node = dn->ofs_in_node;
  974. blkcnt_t count = 0;
  975. int ret;
  976. for (; index < end; index++, dn->ofs_in_node++) {
  977. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  978. count++;
  979. }
  980. dn->ofs_in_node = ofs_in_node;
  981. ret = reserve_new_blocks(dn, count);
  982. if (ret)
  983. return ret;
  984. dn->ofs_in_node = ofs_in_node;
  985. for (index = start; index < end; index++, dn->ofs_in_node++) {
  986. dn->data_blkaddr =
  987. datablock_addr(dn->node_page, dn->ofs_in_node);
  988. /*
  989. * reserve_new_blocks will not guarantee entire block
  990. * allocation.
  991. */
  992. if (dn->data_blkaddr == NULL_ADDR) {
  993. ret = -ENOSPC;
  994. break;
  995. }
  996. if (dn->data_blkaddr != NEW_ADDR) {
  997. invalidate_blocks(sbi, dn->data_blkaddr);
  998. dn->data_blkaddr = NEW_ADDR;
  999. set_data_blkaddr(dn);
  1000. }
  1001. }
  1002. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1003. return ret;
  1004. }
  1005. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1006. int mode)
  1007. {
  1008. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1009. struct address_space *mapping = inode->i_mapping;
  1010. pgoff_t index, pg_start, pg_end;
  1011. loff_t new_size = i_size_read(inode);
  1012. loff_t off_start, off_end;
  1013. int ret = 0;
  1014. ret = inode_newsize_ok(inode, (len + offset));
  1015. if (ret)
  1016. return ret;
  1017. ret = f2fs_convert_inline_inode(inode);
  1018. if (ret)
  1019. return ret;
  1020. down_write(&F2FS_I(inode)->i_mmap_sem);
  1021. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1022. if (ret)
  1023. goto out_sem;
  1024. truncate_pagecache_range(inode, offset, offset + len - 1);
  1025. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1026. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1027. off_start = offset & (PAGE_SIZE - 1);
  1028. off_end = (offset + len) & (PAGE_SIZE - 1);
  1029. if (pg_start == pg_end) {
  1030. ret = fill_zero(inode, pg_start, off_start,
  1031. off_end - off_start);
  1032. if (ret)
  1033. goto out_sem;
  1034. new_size = max_t(loff_t, new_size, offset + len);
  1035. } else {
  1036. if (off_start) {
  1037. ret = fill_zero(inode, pg_start++, off_start,
  1038. PAGE_SIZE - off_start);
  1039. if (ret)
  1040. goto out_sem;
  1041. new_size = max_t(loff_t, new_size,
  1042. (loff_t)pg_start << PAGE_SHIFT);
  1043. }
  1044. for (index = pg_start; index < pg_end;) {
  1045. struct dnode_of_data dn;
  1046. unsigned int end_offset;
  1047. pgoff_t end;
  1048. f2fs_lock_op(sbi);
  1049. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1050. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1051. if (ret) {
  1052. f2fs_unlock_op(sbi);
  1053. goto out;
  1054. }
  1055. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1056. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1057. ret = f2fs_do_zero_range(&dn, index, end);
  1058. f2fs_put_dnode(&dn);
  1059. f2fs_unlock_op(sbi);
  1060. f2fs_balance_fs(sbi, dn.node_changed);
  1061. if (ret)
  1062. goto out;
  1063. index = end;
  1064. new_size = max_t(loff_t, new_size,
  1065. (loff_t)index << PAGE_SHIFT);
  1066. }
  1067. if (off_end) {
  1068. ret = fill_zero(inode, pg_end, 0, off_end);
  1069. if (ret)
  1070. goto out;
  1071. new_size = max_t(loff_t, new_size, offset + len);
  1072. }
  1073. }
  1074. out:
  1075. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1076. f2fs_i_size_write(inode, new_size);
  1077. out_sem:
  1078. up_write(&F2FS_I(inode)->i_mmap_sem);
  1079. return ret;
  1080. }
  1081. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1082. {
  1083. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1084. pgoff_t nr, pg_start, pg_end, delta, idx;
  1085. loff_t new_size;
  1086. int ret = 0;
  1087. new_size = i_size_read(inode) + len;
  1088. ret = inode_newsize_ok(inode, new_size);
  1089. if (ret)
  1090. return ret;
  1091. if (offset >= i_size_read(inode))
  1092. return -EINVAL;
  1093. /* insert range should be aligned to block size of f2fs. */
  1094. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1095. return -EINVAL;
  1096. ret = f2fs_convert_inline_inode(inode);
  1097. if (ret)
  1098. return ret;
  1099. f2fs_balance_fs(sbi, true);
  1100. down_write(&F2FS_I(inode)->i_mmap_sem);
  1101. ret = truncate_blocks(inode, i_size_read(inode), true);
  1102. if (ret)
  1103. goto out;
  1104. /* write out all dirty pages from offset */
  1105. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1106. if (ret)
  1107. goto out;
  1108. truncate_pagecache(inode, offset);
  1109. pg_start = offset >> PAGE_SHIFT;
  1110. pg_end = (offset + len) >> PAGE_SHIFT;
  1111. delta = pg_end - pg_start;
  1112. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1113. while (!ret && idx > pg_start) {
  1114. nr = idx - pg_start;
  1115. if (nr > delta)
  1116. nr = delta;
  1117. idx -= nr;
  1118. f2fs_lock_op(sbi);
  1119. f2fs_drop_extent_tree(inode);
  1120. ret = __exchange_data_block(inode, inode, idx,
  1121. idx + delta, nr, false);
  1122. f2fs_unlock_op(sbi);
  1123. }
  1124. /* write out all moved pages, if possible */
  1125. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1126. truncate_pagecache(inode, offset);
  1127. if (!ret)
  1128. f2fs_i_size_write(inode, new_size);
  1129. out:
  1130. up_write(&F2FS_I(inode)->i_mmap_sem);
  1131. return ret;
  1132. }
  1133. static int expand_inode_data(struct inode *inode, loff_t offset,
  1134. loff_t len, int mode)
  1135. {
  1136. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1137. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1138. pgoff_t pg_end;
  1139. loff_t new_size = i_size_read(inode);
  1140. loff_t off_end;
  1141. int err;
  1142. err = inode_newsize_ok(inode, (len + offset));
  1143. if (err)
  1144. return err;
  1145. err = f2fs_convert_inline_inode(inode);
  1146. if (err)
  1147. return err;
  1148. f2fs_balance_fs(sbi, true);
  1149. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1150. off_end = (offset + len) & (PAGE_SIZE - 1);
  1151. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1152. map.m_len = pg_end - map.m_lblk;
  1153. if (off_end)
  1154. map.m_len++;
  1155. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1156. if (err) {
  1157. pgoff_t last_off;
  1158. if (!map.m_len)
  1159. return err;
  1160. last_off = map.m_lblk + map.m_len - 1;
  1161. /* update new size to the failed position */
  1162. new_size = (last_off == pg_end) ? offset + len:
  1163. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1164. } else {
  1165. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1166. }
  1167. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1168. f2fs_i_size_write(inode, new_size);
  1169. return err;
  1170. }
  1171. static long f2fs_fallocate(struct file *file, int mode,
  1172. loff_t offset, loff_t len)
  1173. {
  1174. struct inode *inode = file_inode(file);
  1175. long ret = 0;
  1176. /* f2fs only support ->fallocate for regular file */
  1177. if (!S_ISREG(inode->i_mode))
  1178. return -EINVAL;
  1179. if (f2fs_encrypted_inode(inode) &&
  1180. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1181. return -EOPNOTSUPP;
  1182. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1183. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1184. FALLOC_FL_INSERT_RANGE))
  1185. return -EOPNOTSUPP;
  1186. inode_lock(inode);
  1187. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1188. if (offset >= inode->i_size)
  1189. goto out;
  1190. ret = punch_hole(inode, offset, len);
  1191. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1192. ret = f2fs_collapse_range(inode, offset, len);
  1193. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1194. ret = f2fs_zero_range(inode, offset, len, mode);
  1195. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1196. ret = f2fs_insert_range(inode, offset, len);
  1197. } else {
  1198. ret = expand_inode_data(inode, offset, len, mode);
  1199. }
  1200. if (!ret) {
  1201. inode->i_mtime = inode->i_ctime = current_time(inode);
  1202. f2fs_mark_inode_dirty_sync(inode, false);
  1203. if (mode & FALLOC_FL_KEEP_SIZE)
  1204. file_set_keep_isize(inode);
  1205. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1206. }
  1207. out:
  1208. inode_unlock(inode);
  1209. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1210. return ret;
  1211. }
  1212. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1213. {
  1214. /*
  1215. * f2fs_relase_file is called at every close calls. So we should
  1216. * not drop any inmemory pages by close called by other process.
  1217. */
  1218. if (!(filp->f_mode & FMODE_WRITE) ||
  1219. atomic_read(&inode->i_writecount) != 1)
  1220. return 0;
  1221. /* some remained atomic pages should discarded */
  1222. if (f2fs_is_atomic_file(inode))
  1223. drop_inmem_pages(inode);
  1224. if (f2fs_is_volatile_file(inode)) {
  1225. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1226. stat_dec_volatile_write(inode);
  1227. set_inode_flag(inode, FI_DROP_CACHE);
  1228. filemap_fdatawrite(inode->i_mapping);
  1229. clear_inode_flag(inode, FI_DROP_CACHE);
  1230. }
  1231. return 0;
  1232. }
  1233. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1234. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1235. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1236. {
  1237. if (S_ISDIR(mode))
  1238. return flags;
  1239. else if (S_ISREG(mode))
  1240. return flags & F2FS_REG_FLMASK;
  1241. else
  1242. return flags & F2FS_OTHER_FLMASK;
  1243. }
  1244. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1245. {
  1246. struct inode *inode = file_inode(filp);
  1247. struct f2fs_inode_info *fi = F2FS_I(inode);
  1248. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1249. return put_user(flags, (int __user *)arg);
  1250. }
  1251. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1252. {
  1253. struct inode *inode = file_inode(filp);
  1254. struct f2fs_inode_info *fi = F2FS_I(inode);
  1255. unsigned int flags;
  1256. unsigned int oldflags;
  1257. int ret;
  1258. if (!inode_owner_or_capable(inode))
  1259. return -EACCES;
  1260. if (get_user(flags, (int __user *)arg))
  1261. return -EFAULT;
  1262. ret = mnt_want_write_file(filp);
  1263. if (ret)
  1264. return ret;
  1265. inode_lock(inode);
  1266. flags = f2fs_mask_flags(inode->i_mode, flags);
  1267. oldflags = fi->i_flags;
  1268. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1269. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1270. inode_unlock(inode);
  1271. ret = -EPERM;
  1272. goto out;
  1273. }
  1274. }
  1275. flags = flags & FS_FL_USER_MODIFIABLE;
  1276. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1277. fi->i_flags = flags;
  1278. inode->i_ctime = current_time(inode);
  1279. f2fs_set_inode_flags(inode);
  1280. f2fs_mark_inode_dirty_sync(inode, false);
  1281. inode_unlock(inode);
  1282. out:
  1283. mnt_drop_write_file(filp);
  1284. return ret;
  1285. }
  1286. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1287. {
  1288. struct inode *inode = file_inode(filp);
  1289. return put_user(inode->i_generation, (int __user *)arg);
  1290. }
  1291. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1292. {
  1293. struct inode *inode = file_inode(filp);
  1294. int ret;
  1295. if (!inode_owner_or_capable(inode))
  1296. return -EACCES;
  1297. if (!S_ISREG(inode->i_mode))
  1298. return -EINVAL;
  1299. ret = mnt_want_write_file(filp);
  1300. if (ret)
  1301. return ret;
  1302. inode_lock(inode);
  1303. if (f2fs_is_atomic_file(inode))
  1304. goto out;
  1305. ret = f2fs_convert_inline_inode(inode);
  1306. if (ret)
  1307. goto out;
  1308. set_inode_flag(inode, FI_ATOMIC_FILE);
  1309. set_inode_flag(inode, FI_HOT_DATA);
  1310. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1311. if (!get_dirty_pages(inode))
  1312. goto inc_stat;
  1313. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1314. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1315. inode->i_ino, get_dirty_pages(inode));
  1316. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1317. if (ret) {
  1318. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1319. goto out;
  1320. }
  1321. inc_stat:
  1322. stat_inc_atomic_write(inode);
  1323. stat_update_max_atomic_write(inode);
  1324. out:
  1325. inode_unlock(inode);
  1326. mnt_drop_write_file(filp);
  1327. return ret;
  1328. }
  1329. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1330. {
  1331. struct inode *inode = file_inode(filp);
  1332. int ret;
  1333. if (!inode_owner_or_capable(inode))
  1334. return -EACCES;
  1335. ret = mnt_want_write_file(filp);
  1336. if (ret)
  1337. return ret;
  1338. inode_lock(inode);
  1339. if (f2fs_is_volatile_file(inode))
  1340. goto err_out;
  1341. if (f2fs_is_atomic_file(inode)) {
  1342. ret = commit_inmem_pages(inode);
  1343. if (ret)
  1344. goto err_out;
  1345. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1346. if (!ret) {
  1347. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1348. stat_dec_atomic_write(inode);
  1349. }
  1350. } else {
  1351. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1352. }
  1353. err_out:
  1354. inode_unlock(inode);
  1355. mnt_drop_write_file(filp);
  1356. return ret;
  1357. }
  1358. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1359. {
  1360. struct inode *inode = file_inode(filp);
  1361. int ret;
  1362. if (!inode_owner_or_capable(inode))
  1363. return -EACCES;
  1364. if (!S_ISREG(inode->i_mode))
  1365. return -EINVAL;
  1366. ret = mnt_want_write_file(filp);
  1367. if (ret)
  1368. return ret;
  1369. inode_lock(inode);
  1370. if (f2fs_is_volatile_file(inode))
  1371. goto out;
  1372. ret = f2fs_convert_inline_inode(inode);
  1373. if (ret)
  1374. goto out;
  1375. stat_inc_volatile_write(inode);
  1376. stat_update_max_volatile_write(inode);
  1377. set_inode_flag(inode, FI_VOLATILE_FILE);
  1378. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1379. out:
  1380. inode_unlock(inode);
  1381. mnt_drop_write_file(filp);
  1382. return ret;
  1383. }
  1384. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1385. {
  1386. struct inode *inode = file_inode(filp);
  1387. int ret;
  1388. if (!inode_owner_or_capable(inode))
  1389. return -EACCES;
  1390. ret = mnt_want_write_file(filp);
  1391. if (ret)
  1392. return ret;
  1393. inode_lock(inode);
  1394. if (!f2fs_is_volatile_file(inode))
  1395. goto out;
  1396. if (!f2fs_is_first_block_written(inode)) {
  1397. ret = truncate_partial_data_page(inode, 0, true);
  1398. goto out;
  1399. }
  1400. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1401. out:
  1402. inode_unlock(inode);
  1403. mnt_drop_write_file(filp);
  1404. return ret;
  1405. }
  1406. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1407. {
  1408. struct inode *inode = file_inode(filp);
  1409. int ret;
  1410. if (!inode_owner_or_capable(inode))
  1411. return -EACCES;
  1412. ret = mnt_want_write_file(filp);
  1413. if (ret)
  1414. return ret;
  1415. inode_lock(inode);
  1416. if (f2fs_is_atomic_file(inode))
  1417. drop_inmem_pages(inode);
  1418. if (f2fs_is_volatile_file(inode)) {
  1419. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1420. stat_dec_volatile_write(inode);
  1421. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1422. }
  1423. inode_unlock(inode);
  1424. mnt_drop_write_file(filp);
  1425. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1426. return ret;
  1427. }
  1428. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1429. {
  1430. struct inode *inode = file_inode(filp);
  1431. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1432. struct super_block *sb = sbi->sb;
  1433. __u32 in;
  1434. int ret;
  1435. if (!capable(CAP_SYS_ADMIN))
  1436. return -EPERM;
  1437. if (get_user(in, (__u32 __user *)arg))
  1438. return -EFAULT;
  1439. ret = mnt_want_write_file(filp);
  1440. if (ret)
  1441. return ret;
  1442. switch (in) {
  1443. case F2FS_GOING_DOWN_FULLSYNC:
  1444. sb = freeze_bdev(sb->s_bdev);
  1445. if (sb && !IS_ERR(sb)) {
  1446. f2fs_stop_checkpoint(sbi, false);
  1447. thaw_bdev(sb->s_bdev, sb);
  1448. }
  1449. break;
  1450. case F2FS_GOING_DOWN_METASYNC:
  1451. /* do checkpoint only */
  1452. f2fs_sync_fs(sb, 1);
  1453. f2fs_stop_checkpoint(sbi, false);
  1454. break;
  1455. case F2FS_GOING_DOWN_NOSYNC:
  1456. f2fs_stop_checkpoint(sbi, false);
  1457. break;
  1458. case F2FS_GOING_DOWN_METAFLUSH:
  1459. sync_meta_pages(sbi, META, LONG_MAX);
  1460. f2fs_stop_checkpoint(sbi, false);
  1461. break;
  1462. default:
  1463. ret = -EINVAL;
  1464. goto out;
  1465. }
  1466. f2fs_update_time(sbi, REQ_TIME);
  1467. out:
  1468. mnt_drop_write_file(filp);
  1469. return ret;
  1470. }
  1471. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1472. {
  1473. struct inode *inode = file_inode(filp);
  1474. struct super_block *sb = inode->i_sb;
  1475. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1476. struct fstrim_range range;
  1477. int ret;
  1478. if (!capable(CAP_SYS_ADMIN))
  1479. return -EPERM;
  1480. if (!blk_queue_discard(q))
  1481. return -EOPNOTSUPP;
  1482. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1483. sizeof(range)))
  1484. return -EFAULT;
  1485. ret = mnt_want_write_file(filp);
  1486. if (ret)
  1487. return ret;
  1488. range.minlen = max((unsigned int)range.minlen,
  1489. q->limits.discard_granularity);
  1490. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1491. mnt_drop_write_file(filp);
  1492. if (ret < 0)
  1493. return ret;
  1494. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1495. sizeof(range)))
  1496. return -EFAULT;
  1497. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1498. return 0;
  1499. }
  1500. static bool uuid_is_nonzero(__u8 u[16])
  1501. {
  1502. int i;
  1503. for (i = 0; i < 16; i++)
  1504. if (u[i])
  1505. return true;
  1506. return false;
  1507. }
  1508. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1509. {
  1510. struct inode *inode = file_inode(filp);
  1511. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1512. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1513. }
  1514. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1515. {
  1516. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1517. }
  1518. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1519. {
  1520. struct inode *inode = file_inode(filp);
  1521. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1522. int err;
  1523. if (!f2fs_sb_has_crypto(inode->i_sb))
  1524. return -EOPNOTSUPP;
  1525. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1526. goto got_it;
  1527. err = mnt_want_write_file(filp);
  1528. if (err)
  1529. return err;
  1530. /* update superblock with uuid */
  1531. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1532. err = f2fs_commit_super(sbi, false);
  1533. if (err) {
  1534. /* undo new data */
  1535. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1536. mnt_drop_write_file(filp);
  1537. return err;
  1538. }
  1539. mnt_drop_write_file(filp);
  1540. got_it:
  1541. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1542. 16))
  1543. return -EFAULT;
  1544. return 0;
  1545. }
  1546. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1547. {
  1548. struct inode *inode = file_inode(filp);
  1549. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1550. __u32 sync;
  1551. int ret;
  1552. if (!capable(CAP_SYS_ADMIN))
  1553. return -EPERM;
  1554. if (get_user(sync, (__u32 __user *)arg))
  1555. return -EFAULT;
  1556. if (f2fs_readonly(sbi->sb))
  1557. return -EROFS;
  1558. ret = mnt_want_write_file(filp);
  1559. if (ret)
  1560. return ret;
  1561. if (!sync) {
  1562. if (!mutex_trylock(&sbi->gc_mutex)) {
  1563. ret = -EBUSY;
  1564. goto out;
  1565. }
  1566. } else {
  1567. mutex_lock(&sbi->gc_mutex);
  1568. }
  1569. ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
  1570. out:
  1571. mnt_drop_write_file(filp);
  1572. return ret;
  1573. }
  1574. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1575. {
  1576. struct inode *inode = file_inode(filp);
  1577. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1578. int ret;
  1579. if (!capable(CAP_SYS_ADMIN))
  1580. return -EPERM;
  1581. if (f2fs_readonly(sbi->sb))
  1582. return -EROFS;
  1583. ret = mnt_want_write_file(filp);
  1584. if (ret)
  1585. return ret;
  1586. ret = f2fs_sync_fs(sbi->sb, 1);
  1587. mnt_drop_write_file(filp);
  1588. return ret;
  1589. }
  1590. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1591. struct file *filp,
  1592. struct f2fs_defragment *range)
  1593. {
  1594. struct inode *inode = file_inode(filp);
  1595. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1596. struct extent_info ei = {0,0,0};
  1597. pgoff_t pg_start, pg_end;
  1598. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1599. unsigned int total = 0, sec_num;
  1600. block_t blk_end = 0;
  1601. bool fragmented = false;
  1602. int err;
  1603. /* if in-place-update policy is enabled, don't waste time here */
  1604. if (need_inplace_update_policy(inode, NULL))
  1605. return -EINVAL;
  1606. pg_start = range->start >> PAGE_SHIFT;
  1607. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1608. f2fs_balance_fs(sbi, true);
  1609. inode_lock(inode);
  1610. /* writeback all dirty pages in the range */
  1611. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1612. range->start + range->len - 1);
  1613. if (err)
  1614. goto out;
  1615. /*
  1616. * lookup mapping info in extent cache, skip defragmenting if physical
  1617. * block addresses are continuous.
  1618. */
  1619. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1620. if (ei.fofs + ei.len >= pg_end)
  1621. goto out;
  1622. }
  1623. map.m_lblk = pg_start;
  1624. /*
  1625. * lookup mapping info in dnode page cache, skip defragmenting if all
  1626. * physical block addresses are continuous even if there are hole(s)
  1627. * in logical blocks.
  1628. */
  1629. while (map.m_lblk < pg_end) {
  1630. map.m_len = pg_end - map.m_lblk;
  1631. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1632. if (err)
  1633. goto out;
  1634. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1635. map.m_lblk++;
  1636. continue;
  1637. }
  1638. if (blk_end && blk_end != map.m_pblk) {
  1639. fragmented = true;
  1640. break;
  1641. }
  1642. blk_end = map.m_pblk + map.m_len;
  1643. map.m_lblk += map.m_len;
  1644. }
  1645. if (!fragmented)
  1646. goto out;
  1647. map.m_lblk = pg_start;
  1648. map.m_len = pg_end - pg_start;
  1649. sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
  1650. /*
  1651. * make sure there are enough free section for LFS allocation, this can
  1652. * avoid defragment running in SSR mode when free section are allocated
  1653. * intensively
  1654. */
  1655. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1656. err = -EAGAIN;
  1657. goto out;
  1658. }
  1659. while (map.m_lblk < pg_end) {
  1660. pgoff_t idx;
  1661. int cnt = 0;
  1662. do_map:
  1663. map.m_len = pg_end - map.m_lblk;
  1664. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1665. if (err)
  1666. goto clear_out;
  1667. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1668. map.m_lblk++;
  1669. continue;
  1670. }
  1671. set_inode_flag(inode, FI_DO_DEFRAG);
  1672. idx = map.m_lblk;
  1673. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1674. struct page *page;
  1675. page = get_lock_data_page(inode, idx, true);
  1676. if (IS_ERR(page)) {
  1677. err = PTR_ERR(page);
  1678. goto clear_out;
  1679. }
  1680. set_page_dirty(page);
  1681. f2fs_put_page(page, 1);
  1682. idx++;
  1683. cnt++;
  1684. total++;
  1685. }
  1686. map.m_lblk = idx;
  1687. if (idx < pg_end && cnt < blk_per_seg)
  1688. goto do_map;
  1689. clear_inode_flag(inode, FI_DO_DEFRAG);
  1690. err = filemap_fdatawrite(inode->i_mapping);
  1691. if (err)
  1692. goto out;
  1693. }
  1694. clear_out:
  1695. clear_inode_flag(inode, FI_DO_DEFRAG);
  1696. out:
  1697. inode_unlock(inode);
  1698. if (!err)
  1699. range->len = (u64)total << PAGE_SHIFT;
  1700. return err;
  1701. }
  1702. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1703. {
  1704. struct inode *inode = file_inode(filp);
  1705. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1706. struct f2fs_defragment range;
  1707. int err;
  1708. if (!capable(CAP_SYS_ADMIN))
  1709. return -EPERM;
  1710. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  1711. return -EINVAL;
  1712. if (f2fs_readonly(sbi->sb))
  1713. return -EROFS;
  1714. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1715. sizeof(range)))
  1716. return -EFAULT;
  1717. /* verify alignment of offset & size */
  1718. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1719. return -EINVAL;
  1720. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1721. sbi->max_file_blocks))
  1722. return -EINVAL;
  1723. err = mnt_want_write_file(filp);
  1724. if (err)
  1725. return err;
  1726. err = f2fs_defragment_range(sbi, filp, &range);
  1727. mnt_drop_write_file(filp);
  1728. f2fs_update_time(sbi, REQ_TIME);
  1729. if (err < 0)
  1730. return err;
  1731. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1732. sizeof(range)))
  1733. return -EFAULT;
  1734. return 0;
  1735. }
  1736. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1737. struct file *file_out, loff_t pos_out, size_t len)
  1738. {
  1739. struct inode *src = file_inode(file_in);
  1740. struct inode *dst = file_inode(file_out);
  1741. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1742. size_t olen = len, dst_max_i_size = 0;
  1743. size_t dst_osize;
  1744. int ret;
  1745. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1746. src->i_sb != dst->i_sb)
  1747. return -EXDEV;
  1748. if (unlikely(f2fs_readonly(src->i_sb)))
  1749. return -EROFS;
  1750. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1751. return -EINVAL;
  1752. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1753. return -EOPNOTSUPP;
  1754. if (src == dst) {
  1755. if (pos_in == pos_out)
  1756. return 0;
  1757. if (pos_out > pos_in && pos_out < pos_in + len)
  1758. return -EINVAL;
  1759. }
  1760. inode_lock(src);
  1761. if (src != dst) {
  1762. if (!inode_trylock(dst)) {
  1763. ret = -EBUSY;
  1764. goto out;
  1765. }
  1766. }
  1767. ret = -EINVAL;
  1768. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1769. goto out_unlock;
  1770. if (len == 0)
  1771. olen = len = src->i_size - pos_in;
  1772. if (pos_in + len == src->i_size)
  1773. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1774. if (len == 0) {
  1775. ret = 0;
  1776. goto out_unlock;
  1777. }
  1778. dst_osize = dst->i_size;
  1779. if (pos_out + olen > dst->i_size)
  1780. dst_max_i_size = pos_out + olen;
  1781. /* verify the end result is block aligned */
  1782. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1783. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1784. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1785. goto out_unlock;
  1786. ret = f2fs_convert_inline_inode(src);
  1787. if (ret)
  1788. goto out_unlock;
  1789. ret = f2fs_convert_inline_inode(dst);
  1790. if (ret)
  1791. goto out_unlock;
  1792. /* write out all dirty pages from offset */
  1793. ret = filemap_write_and_wait_range(src->i_mapping,
  1794. pos_in, pos_in + len);
  1795. if (ret)
  1796. goto out_unlock;
  1797. ret = filemap_write_and_wait_range(dst->i_mapping,
  1798. pos_out, pos_out + len);
  1799. if (ret)
  1800. goto out_unlock;
  1801. f2fs_balance_fs(sbi, true);
  1802. f2fs_lock_op(sbi);
  1803. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1804. pos_out >> F2FS_BLKSIZE_BITS,
  1805. len >> F2FS_BLKSIZE_BITS, false);
  1806. if (!ret) {
  1807. if (dst_max_i_size)
  1808. f2fs_i_size_write(dst, dst_max_i_size);
  1809. else if (dst_osize != dst->i_size)
  1810. f2fs_i_size_write(dst, dst_osize);
  1811. }
  1812. f2fs_unlock_op(sbi);
  1813. out_unlock:
  1814. if (src != dst)
  1815. inode_unlock(dst);
  1816. out:
  1817. inode_unlock(src);
  1818. return ret;
  1819. }
  1820. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1821. {
  1822. struct f2fs_move_range range;
  1823. struct fd dst;
  1824. int err;
  1825. if (!(filp->f_mode & FMODE_READ) ||
  1826. !(filp->f_mode & FMODE_WRITE))
  1827. return -EBADF;
  1828. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1829. sizeof(range)))
  1830. return -EFAULT;
  1831. dst = fdget(range.dst_fd);
  1832. if (!dst.file)
  1833. return -EBADF;
  1834. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1835. err = -EBADF;
  1836. goto err_out;
  1837. }
  1838. err = mnt_want_write_file(filp);
  1839. if (err)
  1840. goto err_out;
  1841. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1842. range.pos_out, range.len);
  1843. mnt_drop_write_file(filp);
  1844. if (err)
  1845. goto err_out;
  1846. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1847. &range, sizeof(range)))
  1848. err = -EFAULT;
  1849. err_out:
  1850. fdput(dst);
  1851. return err;
  1852. }
  1853. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  1854. {
  1855. struct inode *inode = file_inode(filp);
  1856. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1857. struct sit_info *sm = SIT_I(sbi);
  1858. unsigned int start_segno = 0, end_segno = 0;
  1859. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  1860. struct f2fs_flush_device range;
  1861. int ret;
  1862. if (!capable(CAP_SYS_ADMIN))
  1863. return -EPERM;
  1864. if (f2fs_readonly(sbi->sb))
  1865. return -EROFS;
  1866. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  1867. sizeof(range)))
  1868. return -EFAULT;
  1869. if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
  1870. sbi->segs_per_sec != 1) {
  1871. f2fs_msg(sbi->sb, KERN_WARNING,
  1872. "Can't flush %u in %d for segs_per_sec %u != 1\n",
  1873. range.dev_num, sbi->s_ndevs,
  1874. sbi->segs_per_sec);
  1875. return -EINVAL;
  1876. }
  1877. ret = mnt_want_write_file(filp);
  1878. if (ret)
  1879. return ret;
  1880. if (range.dev_num != 0)
  1881. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  1882. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  1883. start_segno = sm->last_victim[FLUSH_DEVICE];
  1884. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  1885. start_segno = dev_start_segno;
  1886. end_segno = min(start_segno + range.segments, dev_end_segno);
  1887. while (start_segno < end_segno) {
  1888. if (!mutex_trylock(&sbi->gc_mutex)) {
  1889. ret = -EBUSY;
  1890. goto out;
  1891. }
  1892. sm->last_victim[GC_CB] = end_segno + 1;
  1893. sm->last_victim[GC_GREEDY] = end_segno + 1;
  1894. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  1895. ret = f2fs_gc(sbi, true, true, start_segno);
  1896. if (ret == -EAGAIN)
  1897. ret = 0;
  1898. else if (ret < 0)
  1899. break;
  1900. start_segno++;
  1901. }
  1902. out:
  1903. mnt_drop_write_file(filp);
  1904. return ret;
  1905. }
  1906. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1907. {
  1908. switch (cmd) {
  1909. case F2FS_IOC_GETFLAGS:
  1910. return f2fs_ioc_getflags(filp, arg);
  1911. case F2FS_IOC_SETFLAGS:
  1912. return f2fs_ioc_setflags(filp, arg);
  1913. case F2FS_IOC_GETVERSION:
  1914. return f2fs_ioc_getversion(filp, arg);
  1915. case F2FS_IOC_START_ATOMIC_WRITE:
  1916. return f2fs_ioc_start_atomic_write(filp);
  1917. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1918. return f2fs_ioc_commit_atomic_write(filp);
  1919. case F2FS_IOC_START_VOLATILE_WRITE:
  1920. return f2fs_ioc_start_volatile_write(filp);
  1921. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1922. return f2fs_ioc_release_volatile_write(filp);
  1923. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1924. return f2fs_ioc_abort_volatile_write(filp);
  1925. case F2FS_IOC_SHUTDOWN:
  1926. return f2fs_ioc_shutdown(filp, arg);
  1927. case FITRIM:
  1928. return f2fs_ioc_fitrim(filp, arg);
  1929. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1930. return f2fs_ioc_set_encryption_policy(filp, arg);
  1931. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1932. return f2fs_ioc_get_encryption_policy(filp, arg);
  1933. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1934. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1935. case F2FS_IOC_GARBAGE_COLLECT:
  1936. return f2fs_ioc_gc(filp, arg);
  1937. case F2FS_IOC_WRITE_CHECKPOINT:
  1938. return f2fs_ioc_write_checkpoint(filp, arg);
  1939. case F2FS_IOC_DEFRAGMENT:
  1940. return f2fs_ioc_defragment(filp, arg);
  1941. case F2FS_IOC_MOVE_RANGE:
  1942. return f2fs_ioc_move_range(filp, arg);
  1943. case F2FS_IOC_FLUSH_DEVICE:
  1944. return f2fs_ioc_flush_device(filp, arg);
  1945. default:
  1946. return -ENOTTY;
  1947. }
  1948. }
  1949. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1950. {
  1951. struct file *file = iocb->ki_filp;
  1952. struct inode *inode = file_inode(file);
  1953. struct blk_plug plug;
  1954. ssize_t ret;
  1955. inode_lock(inode);
  1956. ret = generic_write_checks(iocb, from);
  1957. if (ret > 0) {
  1958. int err;
  1959. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  1960. set_inode_flag(inode, FI_NO_PREALLOC);
  1961. err = f2fs_preallocate_blocks(iocb, from);
  1962. if (err) {
  1963. inode_unlock(inode);
  1964. return err;
  1965. }
  1966. blk_start_plug(&plug);
  1967. ret = __generic_file_write_iter(iocb, from);
  1968. blk_finish_plug(&plug);
  1969. clear_inode_flag(inode, FI_NO_PREALLOC);
  1970. }
  1971. inode_unlock(inode);
  1972. if (ret > 0)
  1973. ret = generic_write_sync(iocb, ret);
  1974. return ret;
  1975. }
  1976. #ifdef CONFIG_COMPAT
  1977. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1978. {
  1979. switch (cmd) {
  1980. case F2FS_IOC32_GETFLAGS:
  1981. cmd = F2FS_IOC_GETFLAGS;
  1982. break;
  1983. case F2FS_IOC32_SETFLAGS:
  1984. cmd = F2FS_IOC_SETFLAGS;
  1985. break;
  1986. case F2FS_IOC32_GETVERSION:
  1987. cmd = F2FS_IOC_GETVERSION;
  1988. break;
  1989. case F2FS_IOC_START_ATOMIC_WRITE:
  1990. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1991. case F2FS_IOC_START_VOLATILE_WRITE:
  1992. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1993. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1994. case F2FS_IOC_SHUTDOWN:
  1995. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1996. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1997. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1998. case F2FS_IOC_GARBAGE_COLLECT:
  1999. case F2FS_IOC_WRITE_CHECKPOINT:
  2000. case F2FS_IOC_DEFRAGMENT:
  2001. case F2FS_IOC_MOVE_RANGE:
  2002. case F2FS_IOC_FLUSH_DEVICE:
  2003. break;
  2004. default:
  2005. return -ENOIOCTLCMD;
  2006. }
  2007. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  2008. }
  2009. #endif
  2010. const struct file_operations f2fs_file_operations = {
  2011. .llseek = f2fs_llseek,
  2012. .read_iter = generic_file_read_iter,
  2013. .write_iter = f2fs_file_write_iter,
  2014. .open = f2fs_file_open,
  2015. .release = f2fs_release_file,
  2016. .mmap = f2fs_file_mmap,
  2017. .fsync = f2fs_sync_file,
  2018. .fallocate = f2fs_fallocate,
  2019. .unlocked_ioctl = f2fs_ioctl,
  2020. #ifdef CONFIG_COMPAT
  2021. .compat_ioctl = f2fs_compat_ioctl,
  2022. #endif
  2023. .splice_read = generic_file_splice_read,
  2024. .splice_write = iter_file_splice_write,
  2025. };