tsc.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/sched/clock.h>
  5. #include <linux/init.h>
  6. #include <linux/export.h>
  7. #include <linux/timer.h>
  8. #include <linux/acpi_pmtmr.h>
  9. #include <linux/cpufreq.h>
  10. #include <linux/delay.h>
  11. #include <linux/clocksource.h>
  12. #include <linux/percpu.h>
  13. #include <linux/timex.h>
  14. #include <linux/static_key.h>
  15. #include <asm/hpet.h>
  16. #include <asm/timer.h>
  17. #include <asm/vgtod.h>
  18. #include <asm/time.h>
  19. #include <asm/delay.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/nmi.h>
  22. #include <asm/x86_init.h>
  23. #include <asm/geode.h>
  24. #include <asm/apic.h>
  25. #include <asm/intel-family.h>
  26. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  27. EXPORT_SYMBOL(cpu_khz);
  28. unsigned int __read_mostly tsc_khz;
  29. EXPORT_SYMBOL(tsc_khz);
  30. /*
  31. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  32. */
  33. static int __read_mostly tsc_unstable;
  34. /* native_sched_clock() is called before tsc_init(), so
  35. we must start with the TSC soft disabled to prevent
  36. erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  37. static int __read_mostly tsc_disabled = -1;
  38. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  39. int tsc_clocksource_reliable;
  40. static u32 art_to_tsc_numerator;
  41. static u32 art_to_tsc_denominator;
  42. static u64 art_to_tsc_offset;
  43. struct clocksource *art_related_clocksource;
  44. struct cyc2ns {
  45. struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
  46. seqcount_t seq; /* 32 + 4 = 36 */
  47. }; /* fits one cacheline */
  48. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  49. void cyc2ns_read_begin(struct cyc2ns_data *data)
  50. {
  51. int seq, idx;
  52. preempt_disable_notrace();
  53. do {
  54. seq = this_cpu_read(cyc2ns.seq.sequence);
  55. idx = seq & 1;
  56. data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  57. data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  58. data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  59. } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
  60. }
  61. void cyc2ns_read_end(void)
  62. {
  63. preempt_enable_notrace();
  64. }
  65. /*
  66. * Accelerators for sched_clock()
  67. * convert from cycles(64bits) => nanoseconds (64bits)
  68. * basic equation:
  69. * ns = cycles / (freq / ns_per_sec)
  70. * ns = cycles * (ns_per_sec / freq)
  71. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  72. * ns = cycles * (10^6 / cpu_khz)
  73. *
  74. * Then we use scaling math (suggested by george@mvista.com) to get:
  75. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  76. * ns = cycles * cyc2ns_scale / SC
  77. *
  78. * And since SC is a constant power of two, we can convert the div
  79. * into a shift. The larger SC is, the more accurate the conversion, but
  80. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  81. * (64-bit result) can be used.
  82. *
  83. * We can use khz divisor instead of mhz to keep a better precision.
  84. * (mathieu.desnoyers@polymtl.ca)
  85. *
  86. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  87. */
  88. static void cyc2ns_data_init(struct cyc2ns_data *data)
  89. {
  90. data->cyc2ns_mul = 0;
  91. data->cyc2ns_shift = 0;
  92. data->cyc2ns_offset = 0;
  93. }
  94. static void cyc2ns_init(int cpu)
  95. {
  96. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  97. cyc2ns_data_init(&c2n->data[0]);
  98. cyc2ns_data_init(&c2n->data[1]);
  99. seqcount_init(&c2n->seq);
  100. }
  101. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  102. {
  103. struct cyc2ns_data data;
  104. unsigned long long ns;
  105. cyc2ns_read_begin(&data);
  106. ns = data.cyc2ns_offset;
  107. ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
  108. cyc2ns_read_end();
  109. return ns;
  110. }
  111. static void set_cyc2ns_scale(unsigned long khz, int cpu)
  112. {
  113. unsigned long long tsc_now, ns_now;
  114. struct cyc2ns_data data;
  115. struct cyc2ns *c2n;
  116. unsigned long flags;
  117. local_irq_save(flags);
  118. sched_clock_idle_sleep_event();
  119. if (!khz)
  120. goto done;
  121. tsc_now = rdtsc();
  122. ns_now = cycles_2_ns(tsc_now);
  123. /*
  124. * Compute a new multiplier as per the above comment and ensure our
  125. * time function is continuous; see the comment near struct
  126. * cyc2ns_data.
  127. */
  128. clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
  129. NSEC_PER_MSEC, 0);
  130. /*
  131. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  132. * not expected to be greater than 31 due to the original published
  133. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  134. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  135. */
  136. if (data.cyc2ns_shift == 32) {
  137. data.cyc2ns_shift = 31;
  138. data.cyc2ns_mul >>= 1;
  139. }
  140. data.cyc2ns_offset = ns_now -
  141. mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
  142. c2n = per_cpu_ptr(&cyc2ns, cpu);
  143. raw_write_seqcount_latch(&c2n->seq);
  144. c2n->data[0] = data;
  145. raw_write_seqcount_latch(&c2n->seq);
  146. c2n->data[1] = data;
  147. done:
  148. sched_clock_idle_wakeup_event(0);
  149. local_irq_restore(flags);
  150. }
  151. /*
  152. * Scheduler clock - returns current time in nanosec units.
  153. */
  154. u64 native_sched_clock(void)
  155. {
  156. if (static_branch_likely(&__use_tsc)) {
  157. u64 tsc_now = rdtsc();
  158. /* return the value in ns */
  159. return cycles_2_ns(tsc_now);
  160. }
  161. /*
  162. * Fall back to jiffies if there's no TSC available:
  163. * ( But note that we still use it if the TSC is marked
  164. * unstable. We do this because unlike Time Of Day,
  165. * the scheduler clock tolerates small errors and it's
  166. * very important for it to be as fast as the platform
  167. * can achieve it. )
  168. */
  169. /* No locking but a rare wrong value is not a big deal: */
  170. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  171. }
  172. /*
  173. * Generate a sched_clock if you already have a TSC value.
  174. */
  175. u64 native_sched_clock_from_tsc(u64 tsc)
  176. {
  177. return cycles_2_ns(tsc);
  178. }
  179. /* We need to define a real function for sched_clock, to override the
  180. weak default version */
  181. #ifdef CONFIG_PARAVIRT
  182. unsigned long long sched_clock(void)
  183. {
  184. return paravirt_sched_clock();
  185. }
  186. bool using_native_sched_clock(void)
  187. {
  188. return pv_time_ops.sched_clock == native_sched_clock;
  189. }
  190. #else
  191. unsigned long long
  192. sched_clock(void) __attribute__((alias("native_sched_clock")));
  193. bool using_native_sched_clock(void) { return true; }
  194. #endif
  195. int check_tsc_unstable(void)
  196. {
  197. return tsc_unstable;
  198. }
  199. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  200. #ifdef CONFIG_X86_TSC
  201. int __init notsc_setup(char *str)
  202. {
  203. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  204. tsc_disabled = 1;
  205. return 1;
  206. }
  207. #else
  208. /*
  209. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  210. * in cpu/common.c
  211. */
  212. int __init notsc_setup(char *str)
  213. {
  214. setup_clear_cpu_cap(X86_FEATURE_TSC);
  215. return 1;
  216. }
  217. #endif
  218. __setup("notsc", notsc_setup);
  219. static int no_sched_irq_time;
  220. static int __init tsc_setup(char *str)
  221. {
  222. if (!strcmp(str, "reliable"))
  223. tsc_clocksource_reliable = 1;
  224. if (!strncmp(str, "noirqtime", 9))
  225. no_sched_irq_time = 1;
  226. if (!strcmp(str, "unstable"))
  227. mark_tsc_unstable("boot parameter");
  228. return 1;
  229. }
  230. __setup("tsc=", tsc_setup);
  231. #define MAX_RETRIES 5
  232. #define SMI_TRESHOLD 50000
  233. /*
  234. * Read TSC and the reference counters. Take care of SMI disturbance
  235. */
  236. static u64 tsc_read_refs(u64 *p, int hpet)
  237. {
  238. u64 t1, t2;
  239. int i;
  240. for (i = 0; i < MAX_RETRIES; i++) {
  241. t1 = get_cycles();
  242. if (hpet)
  243. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  244. else
  245. *p = acpi_pm_read_early();
  246. t2 = get_cycles();
  247. if ((t2 - t1) < SMI_TRESHOLD)
  248. return t2;
  249. }
  250. return ULLONG_MAX;
  251. }
  252. /*
  253. * Calculate the TSC frequency from HPET reference
  254. */
  255. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  256. {
  257. u64 tmp;
  258. if (hpet2 < hpet1)
  259. hpet2 += 0x100000000ULL;
  260. hpet2 -= hpet1;
  261. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  262. do_div(tmp, 1000000);
  263. do_div(deltatsc, tmp);
  264. return (unsigned long) deltatsc;
  265. }
  266. /*
  267. * Calculate the TSC frequency from PMTimer reference
  268. */
  269. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  270. {
  271. u64 tmp;
  272. if (!pm1 && !pm2)
  273. return ULONG_MAX;
  274. if (pm2 < pm1)
  275. pm2 += (u64)ACPI_PM_OVRRUN;
  276. pm2 -= pm1;
  277. tmp = pm2 * 1000000000LL;
  278. do_div(tmp, PMTMR_TICKS_PER_SEC);
  279. do_div(deltatsc, tmp);
  280. return (unsigned long) deltatsc;
  281. }
  282. #define CAL_MS 10
  283. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  284. #define CAL_PIT_LOOPS 1000
  285. #define CAL2_MS 50
  286. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  287. #define CAL2_PIT_LOOPS 5000
  288. /*
  289. * Try to calibrate the TSC against the Programmable
  290. * Interrupt Timer and return the frequency of the TSC
  291. * in kHz.
  292. *
  293. * Return ULONG_MAX on failure to calibrate.
  294. */
  295. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  296. {
  297. u64 tsc, t1, t2, delta;
  298. unsigned long tscmin, tscmax;
  299. int pitcnt;
  300. /* Set the Gate high, disable speaker */
  301. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  302. /*
  303. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  304. * count mode), binary count. Set the latch register to 50ms
  305. * (LSB then MSB) to begin countdown.
  306. */
  307. outb(0xb0, 0x43);
  308. outb(latch & 0xff, 0x42);
  309. outb(latch >> 8, 0x42);
  310. tsc = t1 = t2 = get_cycles();
  311. pitcnt = 0;
  312. tscmax = 0;
  313. tscmin = ULONG_MAX;
  314. while ((inb(0x61) & 0x20) == 0) {
  315. t2 = get_cycles();
  316. delta = t2 - tsc;
  317. tsc = t2;
  318. if ((unsigned long) delta < tscmin)
  319. tscmin = (unsigned int) delta;
  320. if ((unsigned long) delta > tscmax)
  321. tscmax = (unsigned int) delta;
  322. pitcnt++;
  323. }
  324. /*
  325. * Sanity checks:
  326. *
  327. * If we were not able to read the PIT more than loopmin
  328. * times, then we have been hit by a massive SMI
  329. *
  330. * If the maximum is 10 times larger than the minimum,
  331. * then we got hit by an SMI as well.
  332. */
  333. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  334. return ULONG_MAX;
  335. /* Calculate the PIT value */
  336. delta = t2 - t1;
  337. do_div(delta, ms);
  338. return delta;
  339. }
  340. /*
  341. * This reads the current MSB of the PIT counter, and
  342. * checks if we are running on sufficiently fast and
  343. * non-virtualized hardware.
  344. *
  345. * Our expectations are:
  346. *
  347. * - the PIT is running at roughly 1.19MHz
  348. *
  349. * - each IO is going to take about 1us on real hardware,
  350. * but we allow it to be much faster (by a factor of 10) or
  351. * _slightly_ slower (ie we allow up to a 2us read+counter
  352. * update - anything else implies a unacceptably slow CPU
  353. * or PIT for the fast calibration to work.
  354. *
  355. * - with 256 PIT ticks to read the value, we have 214us to
  356. * see the same MSB (and overhead like doing a single TSC
  357. * read per MSB value etc).
  358. *
  359. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  360. * them each to take about a microsecond on real hardware.
  361. * So we expect a count value of around 100. But we'll be
  362. * generous, and accept anything over 50.
  363. *
  364. * - if the PIT is stuck, and we see *many* more reads, we
  365. * return early (and the next caller of pit_expect_msb()
  366. * then consider it a failure when they don't see the
  367. * next expected value).
  368. *
  369. * These expectations mean that we know that we have seen the
  370. * transition from one expected value to another with a fairly
  371. * high accuracy, and we didn't miss any events. We can thus
  372. * use the TSC value at the transitions to calculate a pretty
  373. * good value for the TSC frequencty.
  374. */
  375. static inline int pit_verify_msb(unsigned char val)
  376. {
  377. /* Ignore LSB */
  378. inb(0x42);
  379. return inb(0x42) == val;
  380. }
  381. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  382. {
  383. int count;
  384. u64 tsc = 0, prev_tsc = 0;
  385. for (count = 0; count < 50000; count++) {
  386. if (!pit_verify_msb(val))
  387. break;
  388. prev_tsc = tsc;
  389. tsc = get_cycles();
  390. }
  391. *deltap = get_cycles() - prev_tsc;
  392. *tscp = tsc;
  393. /*
  394. * We require _some_ success, but the quality control
  395. * will be based on the error terms on the TSC values.
  396. */
  397. return count > 5;
  398. }
  399. /*
  400. * How many MSB values do we want to see? We aim for
  401. * a maximum error rate of 500ppm (in practice the
  402. * real error is much smaller), but refuse to spend
  403. * more than 50ms on it.
  404. */
  405. #define MAX_QUICK_PIT_MS 50
  406. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  407. static unsigned long quick_pit_calibrate(void)
  408. {
  409. int i;
  410. u64 tsc, delta;
  411. unsigned long d1, d2;
  412. /* Set the Gate high, disable speaker */
  413. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  414. /*
  415. * Counter 2, mode 0 (one-shot), binary count
  416. *
  417. * NOTE! Mode 2 decrements by two (and then the
  418. * output is flipped each time, giving the same
  419. * final output frequency as a decrement-by-one),
  420. * so mode 0 is much better when looking at the
  421. * individual counts.
  422. */
  423. outb(0xb0, 0x43);
  424. /* Start at 0xffff */
  425. outb(0xff, 0x42);
  426. outb(0xff, 0x42);
  427. /*
  428. * The PIT starts counting at the next edge, so we
  429. * need to delay for a microsecond. The easiest way
  430. * to do that is to just read back the 16-bit counter
  431. * once from the PIT.
  432. */
  433. pit_verify_msb(0);
  434. if (pit_expect_msb(0xff, &tsc, &d1)) {
  435. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  436. if (!pit_expect_msb(0xff-i, &delta, &d2))
  437. break;
  438. delta -= tsc;
  439. /*
  440. * Extrapolate the error and fail fast if the error will
  441. * never be below 500 ppm.
  442. */
  443. if (i == 1 &&
  444. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  445. return 0;
  446. /*
  447. * Iterate until the error is less than 500 ppm
  448. */
  449. if (d1+d2 >= delta >> 11)
  450. continue;
  451. /*
  452. * Check the PIT one more time to verify that
  453. * all TSC reads were stable wrt the PIT.
  454. *
  455. * This also guarantees serialization of the
  456. * last cycle read ('d2') in pit_expect_msb.
  457. */
  458. if (!pit_verify_msb(0xfe - i))
  459. break;
  460. goto success;
  461. }
  462. }
  463. pr_info("Fast TSC calibration failed\n");
  464. return 0;
  465. success:
  466. /*
  467. * Ok, if we get here, then we've seen the
  468. * MSB of the PIT decrement 'i' times, and the
  469. * error has shrunk to less than 500 ppm.
  470. *
  471. * As a result, we can depend on there not being
  472. * any odd delays anywhere, and the TSC reads are
  473. * reliable (within the error).
  474. *
  475. * kHz = ticks / time-in-seconds / 1000;
  476. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  477. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  478. */
  479. delta *= PIT_TICK_RATE;
  480. do_div(delta, i*256*1000);
  481. pr_info("Fast TSC calibration using PIT\n");
  482. return delta;
  483. }
  484. /**
  485. * native_calibrate_tsc
  486. * Determine TSC frequency via CPUID, else return 0.
  487. */
  488. unsigned long native_calibrate_tsc(void)
  489. {
  490. unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
  491. unsigned int crystal_khz;
  492. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  493. return 0;
  494. if (boot_cpu_data.cpuid_level < 0x15)
  495. return 0;
  496. eax_denominator = ebx_numerator = ecx_hz = edx = 0;
  497. /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
  498. cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
  499. if (ebx_numerator == 0 || eax_denominator == 0)
  500. return 0;
  501. crystal_khz = ecx_hz / 1000;
  502. if (crystal_khz == 0) {
  503. switch (boot_cpu_data.x86_model) {
  504. case INTEL_FAM6_SKYLAKE_MOBILE:
  505. case INTEL_FAM6_SKYLAKE_DESKTOP:
  506. case INTEL_FAM6_KABYLAKE_MOBILE:
  507. case INTEL_FAM6_KABYLAKE_DESKTOP:
  508. crystal_khz = 24000; /* 24.0 MHz */
  509. break;
  510. case INTEL_FAM6_SKYLAKE_X:
  511. case INTEL_FAM6_ATOM_DENVERTON:
  512. crystal_khz = 25000; /* 25.0 MHz */
  513. break;
  514. case INTEL_FAM6_ATOM_GOLDMONT:
  515. crystal_khz = 19200; /* 19.2 MHz */
  516. break;
  517. }
  518. }
  519. /*
  520. * TSC frequency determined by CPUID is a "hardware reported"
  521. * frequency and is the most accurate one so far we have. This
  522. * is considered a known frequency.
  523. */
  524. setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
  525. /*
  526. * For Atom SoCs TSC is the only reliable clocksource.
  527. * Mark TSC reliable so no watchdog on it.
  528. */
  529. if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
  530. setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
  531. return crystal_khz * ebx_numerator / eax_denominator;
  532. }
  533. static unsigned long cpu_khz_from_cpuid(void)
  534. {
  535. unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
  536. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  537. return 0;
  538. if (boot_cpu_data.cpuid_level < 0x16)
  539. return 0;
  540. eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
  541. cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
  542. return eax_base_mhz * 1000;
  543. }
  544. /**
  545. * native_calibrate_cpu - calibrate the cpu on boot
  546. */
  547. unsigned long native_calibrate_cpu(void)
  548. {
  549. u64 tsc1, tsc2, delta, ref1, ref2;
  550. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  551. unsigned long flags, latch, ms, fast_calibrate;
  552. int hpet = is_hpet_enabled(), i, loopmin;
  553. fast_calibrate = cpu_khz_from_cpuid();
  554. if (fast_calibrate)
  555. return fast_calibrate;
  556. fast_calibrate = cpu_khz_from_msr();
  557. if (fast_calibrate)
  558. return fast_calibrate;
  559. local_irq_save(flags);
  560. fast_calibrate = quick_pit_calibrate();
  561. local_irq_restore(flags);
  562. if (fast_calibrate)
  563. return fast_calibrate;
  564. /*
  565. * Run 5 calibration loops to get the lowest frequency value
  566. * (the best estimate). We use two different calibration modes
  567. * here:
  568. *
  569. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  570. * load a timeout of 50ms. We read the time right after we
  571. * started the timer and wait until the PIT count down reaches
  572. * zero. In each wait loop iteration we read the TSC and check
  573. * the delta to the previous read. We keep track of the min
  574. * and max values of that delta. The delta is mostly defined
  575. * by the IO time of the PIT access, so we can detect when a
  576. * SMI/SMM disturbance happened between the two reads. If the
  577. * maximum time is significantly larger than the minimum time,
  578. * then we discard the result and have another try.
  579. *
  580. * 2) Reference counter. If available we use the HPET or the
  581. * PMTIMER as a reference to check the sanity of that value.
  582. * We use separate TSC readouts and check inside of the
  583. * reference read for a SMI/SMM disturbance. We dicard
  584. * disturbed values here as well. We do that around the PIT
  585. * calibration delay loop as we have to wait for a certain
  586. * amount of time anyway.
  587. */
  588. /* Preset PIT loop values */
  589. latch = CAL_LATCH;
  590. ms = CAL_MS;
  591. loopmin = CAL_PIT_LOOPS;
  592. for (i = 0; i < 3; i++) {
  593. unsigned long tsc_pit_khz;
  594. /*
  595. * Read the start value and the reference count of
  596. * hpet/pmtimer when available. Then do the PIT
  597. * calibration, which will take at least 50ms, and
  598. * read the end value.
  599. */
  600. local_irq_save(flags);
  601. tsc1 = tsc_read_refs(&ref1, hpet);
  602. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  603. tsc2 = tsc_read_refs(&ref2, hpet);
  604. local_irq_restore(flags);
  605. /* Pick the lowest PIT TSC calibration so far */
  606. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  607. /* hpet or pmtimer available ? */
  608. if (ref1 == ref2)
  609. continue;
  610. /* Check, whether the sampling was disturbed by an SMI */
  611. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  612. continue;
  613. tsc2 = (tsc2 - tsc1) * 1000000LL;
  614. if (hpet)
  615. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  616. else
  617. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  618. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  619. /* Check the reference deviation */
  620. delta = ((u64) tsc_pit_min) * 100;
  621. do_div(delta, tsc_ref_min);
  622. /*
  623. * If both calibration results are inside a 10% window
  624. * then we can be sure, that the calibration
  625. * succeeded. We break out of the loop right away. We
  626. * use the reference value, as it is more precise.
  627. */
  628. if (delta >= 90 && delta <= 110) {
  629. pr_info("PIT calibration matches %s. %d loops\n",
  630. hpet ? "HPET" : "PMTIMER", i + 1);
  631. return tsc_ref_min;
  632. }
  633. /*
  634. * Check whether PIT failed more than once. This
  635. * happens in virtualized environments. We need to
  636. * give the virtual PC a slightly longer timeframe for
  637. * the HPET/PMTIMER to make the result precise.
  638. */
  639. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  640. latch = CAL2_LATCH;
  641. ms = CAL2_MS;
  642. loopmin = CAL2_PIT_LOOPS;
  643. }
  644. }
  645. /*
  646. * Now check the results.
  647. */
  648. if (tsc_pit_min == ULONG_MAX) {
  649. /* PIT gave no useful value */
  650. pr_warn("Unable to calibrate against PIT\n");
  651. /* We don't have an alternative source, disable TSC */
  652. if (!hpet && !ref1 && !ref2) {
  653. pr_notice("No reference (HPET/PMTIMER) available\n");
  654. return 0;
  655. }
  656. /* The alternative source failed as well, disable TSC */
  657. if (tsc_ref_min == ULONG_MAX) {
  658. pr_warn("HPET/PMTIMER calibration failed\n");
  659. return 0;
  660. }
  661. /* Use the alternative source */
  662. pr_info("using %s reference calibration\n",
  663. hpet ? "HPET" : "PMTIMER");
  664. return tsc_ref_min;
  665. }
  666. /* We don't have an alternative source, use the PIT calibration value */
  667. if (!hpet && !ref1 && !ref2) {
  668. pr_info("Using PIT calibration value\n");
  669. return tsc_pit_min;
  670. }
  671. /* The alternative source failed, use the PIT calibration value */
  672. if (tsc_ref_min == ULONG_MAX) {
  673. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  674. return tsc_pit_min;
  675. }
  676. /*
  677. * The calibration values differ too much. In doubt, we use
  678. * the PIT value as we know that there are PMTIMERs around
  679. * running at double speed. At least we let the user know:
  680. */
  681. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  682. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  683. pr_info("Using PIT calibration value\n");
  684. return tsc_pit_min;
  685. }
  686. int recalibrate_cpu_khz(void)
  687. {
  688. #ifndef CONFIG_SMP
  689. unsigned long cpu_khz_old = cpu_khz;
  690. if (!boot_cpu_has(X86_FEATURE_TSC))
  691. return -ENODEV;
  692. cpu_khz = x86_platform.calibrate_cpu();
  693. tsc_khz = x86_platform.calibrate_tsc();
  694. if (tsc_khz == 0)
  695. tsc_khz = cpu_khz;
  696. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  697. cpu_khz = tsc_khz;
  698. cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
  699. cpu_khz_old, cpu_khz);
  700. return 0;
  701. #else
  702. return -ENODEV;
  703. #endif
  704. }
  705. EXPORT_SYMBOL(recalibrate_cpu_khz);
  706. static unsigned long long cyc2ns_suspend;
  707. void tsc_save_sched_clock_state(void)
  708. {
  709. if (!sched_clock_stable())
  710. return;
  711. cyc2ns_suspend = sched_clock();
  712. }
  713. /*
  714. * Even on processors with invariant TSC, TSC gets reset in some the
  715. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  716. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  717. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  718. * that sched_clock() continues from the point where it was left off during
  719. * suspend.
  720. */
  721. void tsc_restore_sched_clock_state(void)
  722. {
  723. unsigned long long offset;
  724. unsigned long flags;
  725. int cpu;
  726. if (!sched_clock_stable())
  727. return;
  728. local_irq_save(flags);
  729. /*
  730. * We're coming out of suspend, there's no concurrency yet; don't
  731. * bother being nice about the RCU stuff, just write to both
  732. * data fields.
  733. */
  734. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  735. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  736. offset = cyc2ns_suspend - sched_clock();
  737. for_each_possible_cpu(cpu) {
  738. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  739. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  740. }
  741. local_irq_restore(flags);
  742. }
  743. #ifdef CONFIG_CPU_FREQ
  744. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  745. * changes.
  746. *
  747. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  748. * not that important because current Opteron setups do not support
  749. * scaling on SMP anyroads.
  750. *
  751. * Should fix up last_tsc too. Currently gettimeofday in the
  752. * first tick after the change will be slightly wrong.
  753. */
  754. static unsigned int ref_freq;
  755. static unsigned long loops_per_jiffy_ref;
  756. static unsigned long tsc_khz_ref;
  757. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  758. void *data)
  759. {
  760. struct cpufreq_freqs *freq = data;
  761. unsigned long *lpj;
  762. lpj = &boot_cpu_data.loops_per_jiffy;
  763. #ifdef CONFIG_SMP
  764. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  765. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  766. #endif
  767. if (!ref_freq) {
  768. ref_freq = freq->old;
  769. loops_per_jiffy_ref = *lpj;
  770. tsc_khz_ref = tsc_khz;
  771. }
  772. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  773. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  774. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  775. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  776. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  777. mark_tsc_unstable("cpufreq changes");
  778. set_cyc2ns_scale(tsc_khz, freq->cpu);
  779. }
  780. return 0;
  781. }
  782. static struct notifier_block time_cpufreq_notifier_block = {
  783. .notifier_call = time_cpufreq_notifier
  784. };
  785. static int __init cpufreq_register_tsc_scaling(void)
  786. {
  787. if (!boot_cpu_has(X86_FEATURE_TSC))
  788. return 0;
  789. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  790. return 0;
  791. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  792. CPUFREQ_TRANSITION_NOTIFIER);
  793. return 0;
  794. }
  795. core_initcall(cpufreq_register_tsc_scaling);
  796. #endif /* CONFIG_CPU_FREQ */
  797. #define ART_CPUID_LEAF (0x15)
  798. #define ART_MIN_DENOMINATOR (1)
  799. /*
  800. * If ART is present detect the numerator:denominator to convert to TSC
  801. */
  802. static void detect_art(void)
  803. {
  804. unsigned int unused[2];
  805. if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
  806. return;
  807. /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
  808. if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
  809. !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
  810. !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
  811. return;
  812. cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
  813. &art_to_tsc_numerator, unused, unused+1);
  814. if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
  815. return;
  816. rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
  817. /* Make this sticky over multiple CPU init calls */
  818. setup_force_cpu_cap(X86_FEATURE_ART);
  819. }
  820. /* clocksource code */
  821. static struct clocksource clocksource_tsc;
  822. static void tsc_resume(struct clocksource *cs)
  823. {
  824. tsc_verify_tsc_adjust(true);
  825. }
  826. /*
  827. * We used to compare the TSC to the cycle_last value in the clocksource
  828. * structure to avoid a nasty time-warp. This can be observed in a
  829. * very small window right after one CPU updated cycle_last under
  830. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  831. * is smaller than the cycle_last reference value due to a TSC which
  832. * is slighty behind. This delta is nowhere else observable, but in
  833. * that case it results in a forward time jump in the range of hours
  834. * due to the unsigned delta calculation of the time keeping core
  835. * code, which is necessary to support wrapping clocksources like pm
  836. * timer.
  837. *
  838. * This sanity check is now done in the core timekeeping code.
  839. * checking the result of read_tsc() - cycle_last for being negative.
  840. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  841. */
  842. static u64 read_tsc(struct clocksource *cs)
  843. {
  844. return (u64)rdtsc_ordered();
  845. }
  846. static void tsc_cs_mark_unstable(struct clocksource *cs)
  847. {
  848. if (tsc_unstable)
  849. return;
  850. tsc_unstable = 1;
  851. if (using_native_sched_clock())
  852. clear_sched_clock_stable();
  853. disable_sched_clock_irqtime();
  854. pr_info("Marking TSC unstable due to clocksource watchdog\n");
  855. }
  856. /*
  857. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  858. */
  859. static struct clocksource clocksource_tsc = {
  860. .name = "tsc",
  861. .rating = 300,
  862. .read = read_tsc,
  863. .mask = CLOCKSOURCE_MASK(64),
  864. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  865. CLOCK_SOURCE_MUST_VERIFY,
  866. .archdata = { .vclock_mode = VCLOCK_TSC },
  867. .resume = tsc_resume,
  868. .mark_unstable = tsc_cs_mark_unstable,
  869. };
  870. void mark_tsc_unstable(char *reason)
  871. {
  872. if (tsc_unstable)
  873. return;
  874. tsc_unstable = 1;
  875. if (using_native_sched_clock())
  876. clear_sched_clock_stable();
  877. disable_sched_clock_irqtime();
  878. pr_info("Marking TSC unstable due to %s\n", reason);
  879. /* Change only the rating, when not registered */
  880. if (clocksource_tsc.mult) {
  881. clocksource_mark_unstable(&clocksource_tsc);
  882. } else {
  883. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  884. clocksource_tsc.rating = 0;
  885. }
  886. }
  887. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  888. static void __init check_system_tsc_reliable(void)
  889. {
  890. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  891. if (is_geode_lx()) {
  892. /* RTSC counts during suspend */
  893. #define RTSC_SUSP 0x100
  894. unsigned long res_low, res_high;
  895. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  896. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  897. if (res_low & RTSC_SUSP)
  898. tsc_clocksource_reliable = 1;
  899. }
  900. #endif
  901. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  902. tsc_clocksource_reliable = 1;
  903. }
  904. /*
  905. * Make an educated guess if the TSC is trustworthy and synchronized
  906. * over all CPUs.
  907. */
  908. int unsynchronized_tsc(void)
  909. {
  910. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
  911. return 1;
  912. #ifdef CONFIG_SMP
  913. if (apic_is_clustered_box())
  914. return 1;
  915. #endif
  916. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  917. return 0;
  918. if (tsc_clocksource_reliable)
  919. return 0;
  920. /*
  921. * Intel systems are normally all synchronized.
  922. * Exceptions must mark TSC as unstable:
  923. */
  924. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  925. /* assume multi socket systems are not synchronized: */
  926. if (num_possible_cpus() > 1)
  927. return 1;
  928. }
  929. return 0;
  930. }
  931. /*
  932. * Convert ART to TSC given numerator/denominator found in detect_art()
  933. */
  934. struct system_counterval_t convert_art_to_tsc(u64 art)
  935. {
  936. u64 tmp, res, rem;
  937. rem = do_div(art, art_to_tsc_denominator);
  938. res = art * art_to_tsc_numerator;
  939. tmp = rem * art_to_tsc_numerator;
  940. do_div(tmp, art_to_tsc_denominator);
  941. res += tmp + art_to_tsc_offset;
  942. return (struct system_counterval_t) {.cs = art_related_clocksource,
  943. .cycles = res};
  944. }
  945. EXPORT_SYMBOL(convert_art_to_tsc);
  946. static void tsc_refine_calibration_work(struct work_struct *work);
  947. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  948. /**
  949. * tsc_refine_calibration_work - Further refine tsc freq calibration
  950. * @work - ignored.
  951. *
  952. * This functions uses delayed work over a period of a
  953. * second to further refine the TSC freq value. Since this is
  954. * timer based, instead of loop based, we don't block the boot
  955. * process while this longer calibration is done.
  956. *
  957. * If there are any calibration anomalies (too many SMIs, etc),
  958. * or the refined calibration is off by 1% of the fast early
  959. * calibration, we throw out the new calibration and use the
  960. * early calibration.
  961. */
  962. static void tsc_refine_calibration_work(struct work_struct *work)
  963. {
  964. static u64 tsc_start = -1, ref_start;
  965. static int hpet;
  966. u64 tsc_stop, ref_stop, delta;
  967. unsigned long freq;
  968. /* Don't bother refining TSC on unstable systems */
  969. if (check_tsc_unstable())
  970. goto out;
  971. /*
  972. * Since the work is started early in boot, we may be
  973. * delayed the first time we expire. So set the workqueue
  974. * again once we know timers are working.
  975. */
  976. if (tsc_start == -1) {
  977. /*
  978. * Only set hpet once, to avoid mixing hardware
  979. * if the hpet becomes enabled later.
  980. */
  981. hpet = is_hpet_enabled();
  982. schedule_delayed_work(&tsc_irqwork, HZ);
  983. tsc_start = tsc_read_refs(&ref_start, hpet);
  984. return;
  985. }
  986. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  987. /* hpet or pmtimer available ? */
  988. if (ref_start == ref_stop)
  989. goto out;
  990. /* Check, whether the sampling was disturbed by an SMI */
  991. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  992. goto out;
  993. delta = tsc_stop - tsc_start;
  994. delta *= 1000000LL;
  995. if (hpet)
  996. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  997. else
  998. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  999. /* Make sure we're within 1% */
  1000. if (abs(tsc_khz - freq) > tsc_khz/100)
  1001. goto out;
  1002. tsc_khz = freq;
  1003. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  1004. (unsigned long)tsc_khz / 1000,
  1005. (unsigned long)tsc_khz % 1000);
  1006. /* Inform the TSC deadline clockevent devices about the recalibration */
  1007. lapic_update_tsc_freq();
  1008. out:
  1009. if (boot_cpu_has(X86_FEATURE_ART))
  1010. art_related_clocksource = &clocksource_tsc;
  1011. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1012. }
  1013. static int __init init_tsc_clocksource(void)
  1014. {
  1015. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
  1016. return 0;
  1017. if (tsc_clocksource_reliable)
  1018. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  1019. /* lower the rating if we already know its unstable: */
  1020. if (check_tsc_unstable()) {
  1021. clocksource_tsc.rating = 0;
  1022. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  1023. }
  1024. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  1025. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  1026. /*
  1027. * When TSC frequency is known (retrieved via MSR or CPUID), we skip
  1028. * the refined calibration and directly register it as a clocksource.
  1029. */
  1030. if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
  1031. if (boot_cpu_has(X86_FEATURE_ART))
  1032. art_related_clocksource = &clocksource_tsc;
  1033. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1034. return 0;
  1035. }
  1036. schedule_delayed_work(&tsc_irqwork, 0);
  1037. return 0;
  1038. }
  1039. /*
  1040. * We use device_initcall here, to ensure we run after the hpet
  1041. * is fully initialized, which may occur at fs_initcall time.
  1042. */
  1043. device_initcall(init_tsc_clocksource);
  1044. void __init tsc_init(void)
  1045. {
  1046. u64 lpj;
  1047. int cpu;
  1048. if (!boot_cpu_has(X86_FEATURE_TSC)) {
  1049. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1050. return;
  1051. }
  1052. cpu_khz = x86_platform.calibrate_cpu();
  1053. tsc_khz = x86_platform.calibrate_tsc();
  1054. /*
  1055. * Trust non-zero tsc_khz as authorative,
  1056. * and use it to sanity check cpu_khz,
  1057. * which will be off if system timer is off.
  1058. */
  1059. if (tsc_khz == 0)
  1060. tsc_khz = cpu_khz;
  1061. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  1062. cpu_khz = tsc_khz;
  1063. if (!tsc_khz) {
  1064. mark_tsc_unstable("could not calculate TSC khz");
  1065. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1066. return;
  1067. }
  1068. pr_info("Detected %lu.%03lu MHz processor\n",
  1069. (unsigned long)cpu_khz / 1000,
  1070. (unsigned long)cpu_khz % 1000);
  1071. /* Sanitize TSC ADJUST before cyc2ns gets initialized */
  1072. tsc_store_and_check_tsc_adjust(true);
  1073. /*
  1074. * Secondary CPUs do not run through tsc_init(), so set up
  1075. * all the scale factors for all CPUs, assuming the same
  1076. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1077. * up if their speed diverges)
  1078. */
  1079. for_each_possible_cpu(cpu) {
  1080. cyc2ns_init(cpu);
  1081. set_cyc2ns_scale(tsc_khz, cpu);
  1082. }
  1083. if (tsc_disabled > 0)
  1084. return;
  1085. /* now allow native_sched_clock() to use rdtsc */
  1086. tsc_disabled = 0;
  1087. static_branch_enable(&__use_tsc);
  1088. if (!no_sched_irq_time)
  1089. enable_sched_clock_irqtime();
  1090. lpj = ((u64)tsc_khz * 1000);
  1091. do_div(lpj, HZ);
  1092. lpj_fine = lpj;
  1093. use_tsc_delay();
  1094. if (unsynchronized_tsc())
  1095. mark_tsc_unstable("TSCs unsynchronized");
  1096. check_system_tsc_reliable();
  1097. detect_art();
  1098. }
  1099. #ifdef CONFIG_SMP
  1100. /*
  1101. * If we have a constant TSC and are using the TSC for the delay loop,
  1102. * we can skip clock calibration if another cpu in the same socket has already
  1103. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1104. * cpus in the socket - this should be a safe assumption.
  1105. */
  1106. unsigned long calibrate_delay_is_known(void)
  1107. {
  1108. int sibling, cpu = smp_processor_id();
  1109. struct cpumask *mask = topology_core_cpumask(cpu);
  1110. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1111. return 0;
  1112. if (!mask)
  1113. return 0;
  1114. sibling = cpumask_any_but(mask, cpu);
  1115. if (sibling < nr_cpu_ids)
  1116. return cpu_data(sibling).loops_per_jiffy;
  1117. return 0;
  1118. }
  1119. #endif