segment.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_mode == GC_URGENT)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
  159. }
  160. void f2fs_register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. struct inmem_pages *new;
  165. f2fs_trace_pid(page);
  166. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  167. SetPagePrivate(page);
  168. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  169. /* add atomic page indices to the list */
  170. new->page = page;
  171. INIT_LIST_HEAD(&new->list);
  172. /* increase reference count with clean state */
  173. mutex_lock(&fi->inmem_lock);
  174. get_page(page);
  175. list_add_tail(&new->list, &fi->inmem_pages);
  176. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  177. if (list_empty(&fi->inmem_ilist))
  178. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  179. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  180. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  181. mutex_unlock(&fi->inmem_lock);
  182. trace_f2fs_register_inmem_page(page, INMEM);
  183. }
  184. static int __revoke_inmem_pages(struct inode *inode,
  185. struct list_head *head, bool drop, bool recover,
  186. bool trylock)
  187. {
  188. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  189. struct inmem_pages *cur, *tmp;
  190. int err = 0;
  191. list_for_each_entry_safe(cur, tmp, head, list) {
  192. struct page *page = cur->page;
  193. if (drop)
  194. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  195. if (trylock) {
  196. /*
  197. * to avoid deadlock in between page lock and
  198. * inmem_lock.
  199. */
  200. if (!trylock_page(page))
  201. continue;
  202. } else {
  203. lock_page(page);
  204. }
  205. f2fs_wait_on_page_writeback(page, DATA, true);
  206. if (recover) {
  207. struct dnode_of_data dn;
  208. struct node_info ni;
  209. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  210. retry:
  211. set_new_dnode(&dn, inode, NULL, NULL, 0);
  212. err = f2fs_get_dnode_of_data(&dn, page->index,
  213. LOOKUP_NODE);
  214. if (err) {
  215. if (err == -ENOMEM) {
  216. congestion_wait(BLK_RW_ASYNC, HZ/50);
  217. cond_resched();
  218. goto retry;
  219. }
  220. err = -EAGAIN;
  221. goto next;
  222. }
  223. err = f2fs_get_node_info(sbi, dn.nid, &ni);
  224. if (err) {
  225. f2fs_put_dnode(&dn);
  226. return err;
  227. }
  228. if (cur->old_addr == NEW_ADDR) {
  229. f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
  230. f2fs_update_data_blkaddr(&dn, NEW_ADDR);
  231. } else
  232. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  233. cur->old_addr, ni.version, true, true);
  234. f2fs_put_dnode(&dn);
  235. }
  236. next:
  237. /* we don't need to invalidate this in the sccessful status */
  238. if (drop || recover)
  239. ClearPageUptodate(page);
  240. set_page_private(page, 0);
  241. ClearPagePrivate(page);
  242. f2fs_put_page(page, 1);
  243. list_del(&cur->list);
  244. kmem_cache_free(inmem_entry_slab, cur);
  245. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  246. }
  247. return err;
  248. }
  249. void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
  250. {
  251. struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
  252. struct inode *inode;
  253. struct f2fs_inode_info *fi;
  254. next:
  255. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  256. if (list_empty(head)) {
  257. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  258. return;
  259. }
  260. fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
  261. inode = igrab(&fi->vfs_inode);
  262. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  263. if (inode) {
  264. if (gc_failure) {
  265. if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
  266. goto drop;
  267. goto skip;
  268. }
  269. drop:
  270. set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  271. f2fs_drop_inmem_pages(inode);
  272. iput(inode);
  273. }
  274. skip:
  275. congestion_wait(BLK_RW_ASYNC, HZ/50);
  276. cond_resched();
  277. goto next;
  278. }
  279. void f2fs_drop_inmem_pages(struct inode *inode)
  280. {
  281. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  282. struct f2fs_inode_info *fi = F2FS_I(inode);
  283. while (!list_empty(&fi->inmem_pages)) {
  284. mutex_lock(&fi->inmem_lock);
  285. __revoke_inmem_pages(inode, &fi->inmem_pages,
  286. true, false, true);
  287. if (list_empty(&fi->inmem_pages)) {
  288. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  289. if (!list_empty(&fi->inmem_ilist))
  290. list_del_init(&fi->inmem_ilist);
  291. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  292. }
  293. mutex_unlock(&fi->inmem_lock);
  294. }
  295. clear_inode_flag(inode, FI_ATOMIC_FILE);
  296. fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  297. stat_dec_atomic_write(inode);
  298. }
  299. void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
  300. {
  301. struct f2fs_inode_info *fi = F2FS_I(inode);
  302. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  303. struct list_head *head = &fi->inmem_pages;
  304. struct inmem_pages *cur = NULL;
  305. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  306. mutex_lock(&fi->inmem_lock);
  307. list_for_each_entry(cur, head, list) {
  308. if (cur->page == page)
  309. break;
  310. }
  311. f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
  312. list_del(&cur->list);
  313. mutex_unlock(&fi->inmem_lock);
  314. dec_page_count(sbi, F2FS_INMEM_PAGES);
  315. kmem_cache_free(inmem_entry_slab, cur);
  316. ClearPageUptodate(page);
  317. set_page_private(page, 0);
  318. ClearPagePrivate(page);
  319. f2fs_put_page(page, 0);
  320. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  321. }
  322. static int __f2fs_commit_inmem_pages(struct inode *inode)
  323. {
  324. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  325. struct f2fs_inode_info *fi = F2FS_I(inode);
  326. struct inmem_pages *cur, *tmp;
  327. struct f2fs_io_info fio = {
  328. .sbi = sbi,
  329. .ino = inode->i_ino,
  330. .type = DATA,
  331. .op = REQ_OP_WRITE,
  332. .op_flags = REQ_SYNC | REQ_PRIO,
  333. .io_type = FS_DATA_IO,
  334. };
  335. struct list_head revoke_list;
  336. pgoff_t last_idx = ULONG_MAX;
  337. int err = 0;
  338. INIT_LIST_HEAD(&revoke_list);
  339. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  340. struct page *page = cur->page;
  341. lock_page(page);
  342. if (page->mapping == inode->i_mapping) {
  343. trace_f2fs_commit_inmem_page(page, INMEM);
  344. set_page_dirty(page);
  345. f2fs_wait_on_page_writeback(page, DATA, true);
  346. if (clear_page_dirty_for_io(page)) {
  347. inode_dec_dirty_pages(inode);
  348. f2fs_remove_dirty_inode(inode);
  349. }
  350. retry:
  351. fio.page = page;
  352. fio.old_blkaddr = NULL_ADDR;
  353. fio.encrypted_page = NULL;
  354. fio.need_lock = LOCK_DONE;
  355. err = f2fs_do_write_data_page(&fio);
  356. if (err) {
  357. if (err == -ENOMEM) {
  358. congestion_wait(BLK_RW_ASYNC, HZ/50);
  359. cond_resched();
  360. goto retry;
  361. }
  362. unlock_page(page);
  363. break;
  364. }
  365. /* record old blkaddr for revoking */
  366. cur->old_addr = fio.old_blkaddr;
  367. last_idx = page->index;
  368. }
  369. unlock_page(page);
  370. list_move_tail(&cur->list, &revoke_list);
  371. }
  372. if (last_idx != ULONG_MAX)
  373. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  374. if (err) {
  375. /*
  376. * try to revoke all committed pages, but still we could fail
  377. * due to no memory or other reason, if that happened, EAGAIN
  378. * will be returned, which means in such case, transaction is
  379. * already not integrity, caller should use journal to do the
  380. * recovery or rewrite & commit last transaction. For other
  381. * error number, revoking was done by filesystem itself.
  382. */
  383. err = __revoke_inmem_pages(inode, &revoke_list,
  384. false, true, false);
  385. /* drop all uncommitted pages */
  386. __revoke_inmem_pages(inode, &fi->inmem_pages,
  387. true, false, false);
  388. } else {
  389. __revoke_inmem_pages(inode, &revoke_list,
  390. false, false, false);
  391. }
  392. return err;
  393. }
  394. int f2fs_commit_inmem_pages(struct inode *inode)
  395. {
  396. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  397. struct f2fs_inode_info *fi = F2FS_I(inode);
  398. int err;
  399. f2fs_balance_fs(sbi, true);
  400. down_write(&fi->i_gc_rwsem[WRITE]);
  401. f2fs_lock_op(sbi);
  402. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  403. mutex_lock(&fi->inmem_lock);
  404. err = __f2fs_commit_inmem_pages(inode);
  405. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  406. if (!list_empty(&fi->inmem_ilist))
  407. list_del_init(&fi->inmem_ilist);
  408. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  409. mutex_unlock(&fi->inmem_lock);
  410. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  411. f2fs_unlock_op(sbi);
  412. up_write(&fi->i_gc_rwsem[WRITE]);
  413. return err;
  414. }
  415. /*
  416. * This function balances dirty node and dentry pages.
  417. * In addition, it controls garbage collection.
  418. */
  419. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  420. {
  421. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  422. f2fs_show_injection_info(FAULT_CHECKPOINT);
  423. f2fs_stop_checkpoint(sbi, false);
  424. }
  425. /* balance_fs_bg is able to be pending */
  426. if (need && excess_cached_nats(sbi))
  427. f2fs_balance_fs_bg(sbi);
  428. /*
  429. * We should do GC or end up with checkpoint, if there are so many dirty
  430. * dir/node pages without enough free segments.
  431. */
  432. if (has_not_enough_free_secs(sbi, 0, 0)) {
  433. mutex_lock(&sbi->gc_mutex);
  434. f2fs_gc(sbi, false, false, NULL_SEGNO);
  435. }
  436. }
  437. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  438. {
  439. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  440. return;
  441. /* try to shrink extent cache when there is no enough memory */
  442. if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
  443. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  444. /* check the # of cached NAT entries */
  445. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
  446. f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  447. if (!f2fs_available_free_memory(sbi, FREE_NIDS))
  448. f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
  449. else
  450. f2fs_build_free_nids(sbi, false, false);
  451. if (!is_idle(sbi) &&
  452. (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
  453. return;
  454. /* checkpoint is the only way to shrink partial cached entries */
  455. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
  456. !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
  457. excess_prefree_segs(sbi) ||
  458. excess_dirty_nats(sbi) ||
  459. excess_dirty_nodes(sbi) ||
  460. f2fs_time_over(sbi, CP_TIME)) {
  461. if (test_opt(sbi, DATA_FLUSH)) {
  462. struct blk_plug plug;
  463. blk_start_plug(&plug);
  464. f2fs_sync_dirty_inodes(sbi, FILE_INODE);
  465. blk_finish_plug(&plug);
  466. }
  467. f2fs_sync_fs(sbi->sb, true);
  468. stat_inc_bg_cp_count(sbi->stat_info);
  469. }
  470. }
  471. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  472. struct block_device *bdev)
  473. {
  474. struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
  475. int ret;
  476. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  477. bio_set_dev(bio, bdev);
  478. ret = submit_bio_wait(bio);
  479. bio_put(bio);
  480. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  481. test_opt(sbi, FLUSH_MERGE), ret);
  482. return ret;
  483. }
  484. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  485. {
  486. int ret = 0;
  487. int i;
  488. if (!f2fs_is_multi_device(sbi))
  489. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  490. for (i = 0; i < sbi->s_ndevs; i++) {
  491. if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
  492. continue;
  493. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  494. if (ret)
  495. break;
  496. }
  497. return ret;
  498. }
  499. static int issue_flush_thread(void *data)
  500. {
  501. struct f2fs_sb_info *sbi = data;
  502. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  503. wait_queue_head_t *q = &fcc->flush_wait_queue;
  504. repeat:
  505. if (kthread_should_stop())
  506. return 0;
  507. sb_start_intwrite(sbi->sb);
  508. if (!llist_empty(&fcc->issue_list)) {
  509. struct flush_cmd *cmd, *next;
  510. int ret;
  511. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  512. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  513. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  514. ret = submit_flush_wait(sbi, cmd->ino);
  515. atomic_inc(&fcc->issued_flush);
  516. llist_for_each_entry_safe(cmd, next,
  517. fcc->dispatch_list, llnode) {
  518. cmd->ret = ret;
  519. complete(&cmd->wait);
  520. }
  521. fcc->dispatch_list = NULL;
  522. }
  523. sb_end_intwrite(sbi->sb);
  524. wait_event_interruptible(*q,
  525. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  526. goto repeat;
  527. }
  528. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  529. {
  530. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  531. struct flush_cmd cmd;
  532. int ret;
  533. if (test_opt(sbi, NOBARRIER))
  534. return 0;
  535. if (!test_opt(sbi, FLUSH_MERGE)) {
  536. ret = submit_flush_wait(sbi, ino);
  537. atomic_inc(&fcc->issued_flush);
  538. return ret;
  539. }
  540. if (atomic_inc_return(&fcc->issing_flush) == 1 ||
  541. f2fs_is_multi_device(sbi)) {
  542. ret = submit_flush_wait(sbi, ino);
  543. atomic_dec(&fcc->issing_flush);
  544. atomic_inc(&fcc->issued_flush);
  545. return ret;
  546. }
  547. cmd.ino = ino;
  548. init_completion(&cmd.wait);
  549. llist_add(&cmd.llnode, &fcc->issue_list);
  550. /* update issue_list before we wake up issue_flush thread */
  551. smp_mb();
  552. if (waitqueue_active(&fcc->flush_wait_queue))
  553. wake_up(&fcc->flush_wait_queue);
  554. if (fcc->f2fs_issue_flush) {
  555. wait_for_completion(&cmd.wait);
  556. atomic_dec(&fcc->issing_flush);
  557. } else {
  558. struct llist_node *list;
  559. list = llist_del_all(&fcc->issue_list);
  560. if (!list) {
  561. wait_for_completion(&cmd.wait);
  562. atomic_dec(&fcc->issing_flush);
  563. } else {
  564. struct flush_cmd *tmp, *next;
  565. ret = submit_flush_wait(sbi, ino);
  566. llist_for_each_entry_safe(tmp, next, list, llnode) {
  567. if (tmp == &cmd) {
  568. cmd.ret = ret;
  569. atomic_dec(&fcc->issing_flush);
  570. continue;
  571. }
  572. tmp->ret = ret;
  573. complete(&tmp->wait);
  574. }
  575. }
  576. }
  577. return cmd.ret;
  578. }
  579. int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
  580. {
  581. dev_t dev = sbi->sb->s_bdev->bd_dev;
  582. struct flush_cmd_control *fcc;
  583. int err = 0;
  584. if (SM_I(sbi)->fcc_info) {
  585. fcc = SM_I(sbi)->fcc_info;
  586. if (fcc->f2fs_issue_flush)
  587. return err;
  588. goto init_thread;
  589. }
  590. fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
  591. if (!fcc)
  592. return -ENOMEM;
  593. atomic_set(&fcc->issued_flush, 0);
  594. atomic_set(&fcc->issing_flush, 0);
  595. init_waitqueue_head(&fcc->flush_wait_queue);
  596. init_llist_head(&fcc->issue_list);
  597. SM_I(sbi)->fcc_info = fcc;
  598. if (!test_opt(sbi, FLUSH_MERGE))
  599. return err;
  600. init_thread:
  601. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  602. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  603. if (IS_ERR(fcc->f2fs_issue_flush)) {
  604. err = PTR_ERR(fcc->f2fs_issue_flush);
  605. kfree(fcc);
  606. SM_I(sbi)->fcc_info = NULL;
  607. return err;
  608. }
  609. return err;
  610. }
  611. void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  612. {
  613. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  614. if (fcc && fcc->f2fs_issue_flush) {
  615. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  616. fcc->f2fs_issue_flush = NULL;
  617. kthread_stop(flush_thread);
  618. }
  619. if (free) {
  620. kfree(fcc);
  621. SM_I(sbi)->fcc_info = NULL;
  622. }
  623. }
  624. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  625. {
  626. int ret = 0, i;
  627. if (!f2fs_is_multi_device(sbi))
  628. return 0;
  629. for (i = 1; i < sbi->s_ndevs; i++) {
  630. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  631. continue;
  632. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  633. if (ret)
  634. break;
  635. spin_lock(&sbi->dev_lock);
  636. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  637. spin_unlock(&sbi->dev_lock);
  638. }
  639. return ret;
  640. }
  641. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  642. enum dirty_type dirty_type)
  643. {
  644. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  645. /* need not be added */
  646. if (IS_CURSEG(sbi, segno))
  647. return;
  648. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  649. dirty_i->nr_dirty[dirty_type]++;
  650. if (dirty_type == DIRTY) {
  651. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  652. enum dirty_type t = sentry->type;
  653. if (unlikely(t >= DIRTY)) {
  654. f2fs_bug_on(sbi, 1);
  655. return;
  656. }
  657. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  658. dirty_i->nr_dirty[t]++;
  659. }
  660. }
  661. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  662. enum dirty_type dirty_type)
  663. {
  664. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  665. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  666. dirty_i->nr_dirty[dirty_type]--;
  667. if (dirty_type == DIRTY) {
  668. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  669. enum dirty_type t = sentry->type;
  670. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  671. dirty_i->nr_dirty[t]--;
  672. if (get_valid_blocks(sbi, segno, true) == 0)
  673. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  674. dirty_i->victim_secmap);
  675. }
  676. }
  677. /*
  678. * Should not occur error such as -ENOMEM.
  679. * Adding dirty entry into seglist is not critical operation.
  680. * If a given segment is one of current working segments, it won't be added.
  681. */
  682. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  683. {
  684. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  685. unsigned short valid_blocks;
  686. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  687. return;
  688. mutex_lock(&dirty_i->seglist_lock);
  689. valid_blocks = get_valid_blocks(sbi, segno, false);
  690. if (valid_blocks == 0) {
  691. __locate_dirty_segment(sbi, segno, PRE);
  692. __remove_dirty_segment(sbi, segno, DIRTY);
  693. } else if (valid_blocks < sbi->blocks_per_seg) {
  694. __locate_dirty_segment(sbi, segno, DIRTY);
  695. } else {
  696. /* Recovery routine with SSR needs this */
  697. __remove_dirty_segment(sbi, segno, DIRTY);
  698. }
  699. mutex_unlock(&dirty_i->seglist_lock);
  700. }
  701. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  702. struct block_device *bdev, block_t lstart,
  703. block_t start, block_t len)
  704. {
  705. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  706. struct list_head *pend_list;
  707. struct discard_cmd *dc;
  708. f2fs_bug_on(sbi, !len);
  709. pend_list = &dcc->pend_list[plist_idx(len)];
  710. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  711. INIT_LIST_HEAD(&dc->list);
  712. dc->bdev = bdev;
  713. dc->lstart = lstart;
  714. dc->start = start;
  715. dc->len = len;
  716. dc->ref = 0;
  717. dc->state = D_PREP;
  718. dc->issuing = 0;
  719. dc->error = 0;
  720. init_completion(&dc->wait);
  721. list_add_tail(&dc->list, pend_list);
  722. spin_lock_init(&dc->lock);
  723. dc->bio_ref = 0;
  724. atomic_inc(&dcc->discard_cmd_cnt);
  725. dcc->undiscard_blks += len;
  726. return dc;
  727. }
  728. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  729. struct block_device *bdev, block_t lstart,
  730. block_t start, block_t len,
  731. struct rb_node *parent, struct rb_node **p)
  732. {
  733. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  734. struct discard_cmd *dc;
  735. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  736. rb_link_node(&dc->rb_node, parent, p);
  737. rb_insert_color(&dc->rb_node, &dcc->root);
  738. return dc;
  739. }
  740. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  741. struct discard_cmd *dc)
  742. {
  743. if (dc->state == D_DONE)
  744. atomic_sub(dc->issuing, &dcc->issing_discard);
  745. list_del(&dc->list);
  746. rb_erase(&dc->rb_node, &dcc->root);
  747. dcc->undiscard_blks -= dc->len;
  748. kmem_cache_free(discard_cmd_slab, dc);
  749. atomic_dec(&dcc->discard_cmd_cnt);
  750. }
  751. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  752. struct discard_cmd *dc)
  753. {
  754. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  755. unsigned long flags;
  756. trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
  757. spin_lock_irqsave(&dc->lock, flags);
  758. if (dc->bio_ref) {
  759. spin_unlock_irqrestore(&dc->lock, flags);
  760. return;
  761. }
  762. spin_unlock_irqrestore(&dc->lock, flags);
  763. f2fs_bug_on(sbi, dc->ref);
  764. if (dc->error == -EOPNOTSUPP)
  765. dc->error = 0;
  766. if (dc->error)
  767. f2fs_msg(sbi->sb, KERN_INFO,
  768. "Issue discard(%u, %u, %u) failed, ret: %d",
  769. dc->lstart, dc->start, dc->len, dc->error);
  770. __detach_discard_cmd(dcc, dc);
  771. }
  772. static void f2fs_submit_discard_endio(struct bio *bio)
  773. {
  774. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  775. unsigned long flags;
  776. dc->error = blk_status_to_errno(bio->bi_status);
  777. spin_lock_irqsave(&dc->lock, flags);
  778. dc->bio_ref--;
  779. if (!dc->bio_ref && dc->state == D_SUBMIT) {
  780. dc->state = D_DONE;
  781. complete_all(&dc->wait);
  782. }
  783. spin_unlock_irqrestore(&dc->lock, flags);
  784. bio_put(bio);
  785. }
  786. static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  787. block_t start, block_t end)
  788. {
  789. #ifdef CONFIG_F2FS_CHECK_FS
  790. struct seg_entry *sentry;
  791. unsigned int segno;
  792. block_t blk = start;
  793. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  794. unsigned long *map;
  795. while (blk < end) {
  796. segno = GET_SEGNO(sbi, blk);
  797. sentry = get_seg_entry(sbi, segno);
  798. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  799. if (end < START_BLOCK(sbi, segno + 1))
  800. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  801. else
  802. size = max_blocks;
  803. map = (unsigned long *)(sentry->cur_valid_map);
  804. offset = __find_rev_next_bit(map, size, offset);
  805. f2fs_bug_on(sbi, offset != size);
  806. blk = START_BLOCK(sbi, segno + 1);
  807. }
  808. #endif
  809. }
  810. static void __init_discard_policy(struct f2fs_sb_info *sbi,
  811. struct discard_policy *dpolicy,
  812. int discard_type, unsigned int granularity)
  813. {
  814. /* common policy */
  815. dpolicy->type = discard_type;
  816. dpolicy->sync = true;
  817. dpolicy->ordered = false;
  818. dpolicy->granularity = granularity;
  819. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  820. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  821. if (discard_type == DPOLICY_BG) {
  822. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  823. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  824. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  825. dpolicy->io_aware = true;
  826. dpolicy->sync = false;
  827. dpolicy->ordered = true;
  828. if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
  829. dpolicy->granularity = 1;
  830. dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  831. }
  832. } else if (discard_type == DPOLICY_FORCE) {
  833. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  834. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  835. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  836. dpolicy->io_aware = false;
  837. } else if (discard_type == DPOLICY_FSTRIM) {
  838. dpolicy->io_aware = false;
  839. } else if (discard_type == DPOLICY_UMOUNT) {
  840. dpolicy->max_requests = UINT_MAX;
  841. dpolicy->io_aware = false;
  842. }
  843. }
  844. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  845. struct block_device *bdev, block_t lstart,
  846. block_t start, block_t len);
  847. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  848. static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
  849. struct discard_policy *dpolicy,
  850. struct discard_cmd *dc,
  851. unsigned int *issued)
  852. {
  853. struct block_device *bdev = dc->bdev;
  854. struct request_queue *q = bdev_get_queue(bdev);
  855. unsigned int max_discard_blocks =
  856. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  857. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  858. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  859. &(dcc->fstrim_list) : &(dcc->wait_list);
  860. int flag = dpolicy->sync ? REQ_SYNC : 0;
  861. block_t lstart, start, len, total_len;
  862. int err = 0;
  863. if (dc->state != D_PREP)
  864. return 0;
  865. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  866. return 0;
  867. trace_f2fs_issue_discard(bdev, dc->start, dc->len);
  868. lstart = dc->lstart;
  869. start = dc->start;
  870. len = dc->len;
  871. total_len = len;
  872. dc->len = 0;
  873. while (total_len && *issued < dpolicy->max_requests && !err) {
  874. struct bio *bio = NULL;
  875. unsigned long flags;
  876. bool last = true;
  877. if (len > max_discard_blocks) {
  878. len = max_discard_blocks;
  879. last = false;
  880. }
  881. (*issued)++;
  882. if (*issued == dpolicy->max_requests)
  883. last = true;
  884. dc->len += len;
  885. if (time_to_inject(sbi, FAULT_DISCARD)) {
  886. f2fs_show_injection_info(FAULT_DISCARD);
  887. err = -EIO;
  888. goto submit;
  889. }
  890. err = __blkdev_issue_discard(bdev,
  891. SECTOR_FROM_BLOCK(start),
  892. SECTOR_FROM_BLOCK(len),
  893. GFP_NOFS, 0, &bio);
  894. submit:
  895. if (err) {
  896. spin_lock_irqsave(&dc->lock, flags);
  897. if (dc->state == D_PARTIAL)
  898. dc->state = D_SUBMIT;
  899. spin_unlock_irqrestore(&dc->lock, flags);
  900. break;
  901. }
  902. f2fs_bug_on(sbi, !bio);
  903. /*
  904. * should keep before submission to avoid D_DONE
  905. * right away
  906. */
  907. spin_lock_irqsave(&dc->lock, flags);
  908. if (last)
  909. dc->state = D_SUBMIT;
  910. else
  911. dc->state = D_PARTIAL;
  912. dc->bio_ref++;
  913. spin_unlock_irqrestore(&dc->lock, flags);
  914. atomic_inc(&dcc->issing_discard);
  915. dc->issuing++;
  916. list_move_tail(&dc->list, wait_list);
  917. /* sanity check on discard range */
  918. __check_sit_bitmap(sbi, start, start + len);
  919. bio->bi_private = dc;
  920. bio->bi_end_io = f2fs_submit_discard_endio;
  921. bio->bi_opf |= flag;
  922. submit_bio(bio);
  923. atomic_inc(&dcc->issued_discard);
  924. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  925. lstart += len;
  926. start += len;
  927. total_len -= len;
  928. len = total_len;
  929. }
  930. if (!err && len)
  931. __update_discard_tree_range(sbi, bdev, lstart, start, len);
  932. return err;
  933. }
  934. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  935. struct block_device *bdev, block_t lstart,
  936. block_t start, block_t len,
  937. struct rb_node **insert_p,
  938. struct rb_node *insert_parent)
  939. {
  940. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  941. struct rb_node **p;
  942. struct rb_node *parent = NULL;
  943. struct discard_cmd *dc = NULL;
  944. if (insert_p && insert_parent) {
  945. parent = insert_parent;
  946. p = insert_p;
  947. goto do_insert;
  948. }
  949. p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  950. do_insert:
  951. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  952. if (!dc)
  953. return NULL;
  954. return dc;
  955. }
  956. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  957. struct discard_cmd *dc)
  958. {
  959. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  960. }
  961. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  962. struct discard_cmd *dc, block_t blkaddr)
  963. {
  964. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  965. struct discard_info di = dc->di;
  966. bool modified = false;
  967. if (dc->state == D_DONE || dc->len == 1) {
  968. __remove_discard_cmd(sbi, dc);
  969. return;
  970. }
  971. dcc->undiscard_blks -= di.len;
  972. if (blkaddr > di.lstart) {
  973. dc->len = blkaddr - dc->lstart;
  974. dcc->undiscard_blks += dc->len;
  975. __relocate_discard_cmd(dcc, dc);
  976. modified = true;
  977. }
  978. if (blkaddr < di.lstart + di.len - 1) {
  979. if (modified) {
  980. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  981. di.start + blkaddr + 1 - di.lstart,
  982. di.lstart + di.len - 1 - blkaddr,
  983. NULL, NULL);
  984. } else {
  985. dc->lstart++;
  986. dc->len--;
  987. dc->start++;
  988. dcc->undiscard_blks += dc->len;
  989. __relocate_discard_cmd(dcc, dc);
  990. }
  991. }
  992. }
  993. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  994. struct block_device *bdev, block_t lstart,
  995. block_t start, block_t len)
  996. {
  997. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  998. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  999. struct discard_cmd *dc;
  1000. struct discard_info di = {0};
  1001. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  1002. struct request_queue *q = bdev_get_queue(bdev);
  1003. unsigned int max_discard_blocks =
  1004. SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
  1005. block_t end = lstart + len;
  1006. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  1007. NULL, lstart,
  1008. (struct rb_entry **)&prev_dc,
  1009. (struct rb_entry **)&next_dc,
  1010. &insert_p, &insert_parent, true);
  1011. if (dc)
  1012. prev_dc = dc;
  1013. if (!prev_dc) {
  1014. di.lstart = lstart;
  1015. di.len = next_dc ? next_dc->lstart - lstart : len;
  1016. di.len = min(di.len, len);
  1017. di.start = start;
  1018. }
  1019. while (1) {
  1020. struct rb_node *node;
  1021. bool merged = false;
  1022. struct discard_cmd *tdc = NULL;
  1023. if (prev_dc) {
  1024. di.lstart = prev_dc->lstart + prev_dc->len;
  1025. if (di.lstart < lstart)
  1026. di.lstart = lstart;
  1027. if (di.lstart >= end)
  1028. break;
  1029. if (!next_dc || next_dc->lstart > end)
  1030. di.len = end - di.lstart;
  1031. else
  1032. di.len = next_dc->lstart - di.lstart;
  1033. di.start = start + di.lstart - lstart;
  1034. }
  1035. if (!di.len)
  1036. goto next;
  1037. if (prev_dc && prev_dc->state == D_PREP &&
  1038. prev_dc->bdev == bdev &&
  1039. __is_discard_back_mergeable(&di, &prev_dc->di,
  1040. max_discard_blocks)) {
  1041. prev_dc->di.len += di.len;
  1042. dcc->undiscard_blks += di.len;
  1043. __relocate_discard_cmd(dcc, prev_dc);
  1044. di = prev_dc->di;
  1045. tdc = prev_dc;
  1046. merged = true;
  1047. }
  1048. if (next_dc && next_dc->state == D_PREP &&
  1049. next_dc->bdev == bdev &&
  1050. __is_discard_front_mergeable(&di, &next_dc->di,
  1051. max_discard_blocks)) {
  1052. next_dc->di.lstart = di.lstart;
  1053. next_dc->di.len += di.len;
  1054. next_dc->di.start = di.start;
  1055. dcc->undiscard_blks += di.len;
  1056. __relocate_discard_cmd(dcc, next_dc);
  1057. if (tdc)
  1058. __remove_discard_cmd(sbi, tdc);
  1059. merged = true;
  1060. }
  1061. if (!merged) {
  1062. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  1063. di.len, NULL, NULL);
  1064. }
  1065. next:
  1066. prev_dc = next_dc;
  1067. if (!prev_dc)
  1068. break;
  1069. node = rb_next(&prev_dc->rb_node);
  1070. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1071. }
  1072. }
  1073. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  1074. struct block_device *bdev, block_t blkstart, block_t blklen)
  1075. {
  1076. block_t lblkstart = blkstart;
  1077. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  1078. if (f2fs_is_multi_device(sbi)) {
  1079. int devi = f2fs_target_device_index(sbi, blkstart);
  1080. blkstart -= FDEV(devi).start_blk;
  1081. }
  1082. mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
  1083. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  1084. mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
  1085. return 0;
  1086. }
  1087. static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
  1088. struct discard_policy *dpolicy)
  1089. {
  1090. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1091. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  1092. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  1093. struct discard_cmd *dc;
  1094. struct blk_plug plug;
  1095. unsigned int pos = dcc->next_pos;
  1096. unsigned int issued = 0;
  1097. bool io_interrupted = false;
  1098. mutex_lock(&dcc->cmd_lock);
  1099. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  1100. NULL, pos,
  1101. (struct rb_entry **)&prev_dc,
  1102. (struct rb_entry **)&next_dc,
  1103. &insert_p, &insert_parent, true);
  1104. if (!dc)
  1105. dc = next_dc;
  1106. blk_start_plug(&plug);
  1107. while (dc) {
  1108. struct rb_node *node;
  1109. int err = 0;
  1110. if (dc->state != D_PREP)
  1111. goto next;
  1112. if (dpolicy->io_aware && !is_idle(sbi)) {
  1113. io_interrupted = true;
  1114. break;
  1115. }
  1116. dcc->next_pos = dc->lstart + dc->len;
  1117. err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1118. if (issued >= dpolicy->max_requests)
  1119. break;
  1120. next:
  1121. node = rb_next(&dc->rb_node);
  1122. if (err)
  1123. __remove_discard_cmd(sbi, dc);
  1124. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  1125. }
  1126. blk_finish_plug(&plug);
  1127. if (!dc)
  1128. dcc->next_pos = 0;
  1129. mutex_unlock(&dcc->cmd_lock);
  1130. if (!issued && io_interrupted)
  1131. issued = -1;
  1132. return issued;
  1133. }
  1134. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  1135. struct discard_policy *dpolicy)
  1136. {
  1137. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1138. struct list_head *pend_list;
  1139. struct discard_cmd *dc, *tmp;
  1140. struct blk_plug plug;
  1141. int i, issued = 0;
  1142. bool io_interrupted = false;
  1143. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1144. if (i + 1 < dpolicy->granularity)
  1145. break;
  1146. if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
  1147. return __issue_discard_cmd_orderly(sbi, dpolicy);
  1148. pend_list = &dcc->pend_list[i];
  1149. mutex_lock(&dcc->cmd_lock);
  1150. if (list_empty(pend_list))
  1151. goto next;
  1152. if (unlikely(dcc->rbtree_check))
  1153. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  1154. &dcc->root));
  1155. blk_start_plug(&plug);
  1156. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1157. f2fs_bug_on(sbi, dc->state != D_PREP);
  1158. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  1159. !is_idle(sbi)) {
  1160. io_interrupted = true;
  1161. break;
  1162. }
  1163. __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  1164. if (issued >= dpolicy->max_requests)
  1165. break;
  1166. }
  1167. blk_finish_plug(&plug);
  1168. next:
  1169. mutex_unlock(&dcc->cmd_lock);
  1170. if (issued >= dpolicy->max_requests || io_interrupted)
  1171. break;
  1172. }
  1173. if (!issued && io_interrupted)
  1174. issued = -1;
  1175. return issued;
  1176. }
  1177. static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
  1178. {
  1179. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1180. struct list_head *pend_list;
  1181. struct discard_cmd *dc, *tmp;
  1182. int i;
  1183. bool dropped = false;
  1184. mutex_lock(&dcc->cmd_lock);
  1185. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1186. pend_list = &dcc->pend_list[i];
  1187. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1188. f2fs_bug_on(sbi, dc->state != D_PREP);
  1189. __remove_discard_cmd(sbi, dc);
  1190. dropped = true;
  1191. }
  1192. }
  1193. mutex_unlock(&dcc->cmd_lock);
  1194. return dropped;
  1195. }
  1196. void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
  1197. {
  1198. __drop_discard_cmd(sbi);
  1199. }
  1200. static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1201. struct discard_cmd *dc)
  1202. {
  1203. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1204. unsigned int len = 0;
  1205. wait_for_completion_io(&dc->wait);
  1206. mutex_lock(&dcc->cmd_lock);
  1207. f2fs_bug_on(sbi, dc->state != D_DONE);
  1208. dc->ref--;
  1209. if (!dc->ref) {
  1210. if (!dc->error)
  1211. len = dc->len;
  1212. __remove_discard_cmd(sbi, dc);
  1213. }
  1214. mutex_unlock(&dcc->cmd_lock);
  1215. return len;
  1216. }
  1217. static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1218. struct discard_policy *dpolicy,
  1219. block_t start, block_t end)
  1220. {
  1221. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1222. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1223. &(dcc->fstrim_list) : &(dcc->wait_list);
  1224. struct discard_cmd *dc, *tmp;
  1225. bool need_wait;
  1226. unsigned int trimmed = 0;
  1227. next:
  1228. need_wait = false;
  1229. mutex_lock(&dcc->cmd_lock);
  1230. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1231. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1232. continue;
  1233. if (dc->len < dpolicy->granularity)
  1234. continue;
  1235. if (dc->state == D_DONE && !dc->ref) {
  1236. wait_for_completion_io(&dc->wait);
  1237. if (!dc->error)
  1238. trimmed += dc->len;
  1239. __remove_discard_cmd(sbi, dc);
  1240. } else {
  1241. dc->ref++;
  1242. need_wait = true;
  1243. break;
  1244. }
  1245. }
  1246. mutex_unlock(&dcc->cmd_lock);
  1247. if (need_wait) {
  1248. trimmed += __wait_one_discard_bio(sbi, dc);
  1249. goto next;
  1250. }
  1251. return trimmed;
  1252. }
  1253. static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1254. struct discard_policy *dpolicy)
  1255. {
  1256. struct discard_policy dp;
  1257. unsigned int discard_blks;
  1258. if (dpolicy)
  1259. return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1260. /* wait all */
  1261. __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
  1262. discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1263. __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
  1264. discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1265. return discard_blks;
  1266. }
  1267. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1268. static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1269. {
  1270. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1271. struct discard_cmd *dc;
  1272. bool need_wait = false;
  1273. mutex_lock(&dcc->cmd_lock);
  1274. dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
  1275. NULL, blkaddr);
  1276. if (dc) {
  1277. if (dc->state == D_PREP) {
  1278. __punch_discard_cmd(sbi, dc, blkaddr);
  1279. } else {
  1280. dc->ref++;
  1281. need_wait = true;
  1282. }
  1283. }
  1284. mutex_unlock(&dcc->cmd_lock);
  1285. if (need_wait)
  1286. __wait_one_discard_bio(sbi, dc);
  1287. }
  1288. void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
  1289. {
  1290. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1291. if (dcc && dcc->f2fs_issue_discard) {
  1292. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1293. dcc->f2fs_issue_discard = NULL;
  1294. kthread_stop(discard_thread);
  1295. }
  1296. }
  1297. /* This comes from f2fs_put_super */
  1298. bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1299. {
  1300. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1301. struct discard_policy dpolicy;
  1302. bool dropped;
  1303. __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
  1304. dcc->discard_granularity);
  1305. __issue_discard_cmd(sbi, &dpolicy);
  1306. dropped = __drop_discard_cmd(sbi);
  1307. /* just to make sure there is no pending discard commands */
  1308. __wait_all_discard_cmd(sbi, NULL);
  1309. f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
  1310. return dropped;
  1311. }
  1312. static int issue_discard_thread(void *data)
  1313. {
  1314. struct f2fs_sb_info *sbi = data;
  1315. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1316. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1317. struct discard_policy dpolicy;
  1318. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1319. int issued;
  1320. set_freezable();
  1321. do {
  1322. __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
  1323. dcc->discard_granularity);
  1324. wait_event_interruptible_timeout(*q,
  1325. kthread_should_stop() || freezing(current) ||
  1326. dcc->discard_wake,
  1327. msecs_to_jiffies(wait_ms));
  1328. if (dcc->discard_wake)
  1329. dcc->discard_wake = 0;
  1330. if (try_to_freeze())
  1331. continue;
  1332. if (f2fs_readonly(sbi->sb))
  1333. continue;
  1334. if (kthread_should_stop())
  1335. return 0;
  1336. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1337. wait_ms = dpolicy.max_interval;
  1338. continue;
  1339. }
  1340. if (sbi->gc_mode == GC_URGENT)
  1341. __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
  1342. sb_start_intwrite(sbi->sb);
  1343. issued = __issue_discard_cmd(sbi, &dpolicy);
  1344. if (issued > 0) {
  1345. __wait_all_discard_cmd(sbi, &dpolicy);
  1346. wait_ms = dpolicy.min_interval;
  1347. } else if (issued == -1){
  1348. wait_ms = dpolicy.mid_interval;
  1349. } else {
  1350. wait_ms = dpolicy.max_interval;
  1351. }
  1352. sb_end_intwrite(sbi->sb);
  1353. } while (!kthread_should_stop());
  1354. return 0;
  1355. }
  1356. #ifdef CONFIG_BLK_DEV_ZONED
  1357. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1358. struct block_device *bdev, block_t blkstart, block_t blklen)
  1359. {
  1360. sector_t sector, nr_sects;
  1361. block_t lblkstart = blkstart;
  1362. int devi = 0;
  1363. if (f2fs_is_multi_device(sbi)) {
  1364. devi = f2fs_target_device_index(sbi, blkstart);
  1365. blkstart -= FDEV(devi).start_blk;
  1366. }
  1367. /*
  1368. * We need to know the type of the zone: for conventional zones,
  1369. * use regular discard if the drive supports it. For sequential
  1370. * zones, reset the zone write pointer.
  1371. */
  1372. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1373. case BLK_ZONE_TYPE_CONVENTIONAL:
  1374. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1375. return 0;
  1376. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1377. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1378. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1379. sector = SECTOR_FROM_BLOCK(blkstart);
  1380. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1381. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1382. nr_sects != bdev_zone_sectors(bdev)) {
  1383. f2fs_msg(sbi->sb, KERN_INFO,
  1384. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1385. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1386. blkstart, blklen);
  1387. return -EIO;
  1388. }
  1389. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1390. return blkdev_reset_zones(bdev, sector,
  1391. nr_sects, GFP_NOFS);
  1392. default:
  1393. /* Unknown zone type: broken device ? */
  1394. return -EIO;
  1395. }
  1396. }
  1397. #endif
  1398. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1399. struct block_device *bdev, block_t blkstart, block_t blklen)
  1400. {
  1401. #ifdef CONFIG_BLK_DEV_ZONED
  1402. if (f2fs_sb_has_blkzoned(sbi->sb) &&
  1403. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1404. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1405. #endif
  1406. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1407. }
  1408. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1409. block_t blkstart, block_t blklen)
  1410. {
  1411. sector_t start = blkstart, len = 0;
  1412. struct block_device *bdev;
  1413. struct seg_entry *se;
  1414. unsigned int offset;
  1415. block_t i;
  1416. int err = 0;
  1417. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1418. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1419. if (i != start) {
  1420. struct block_device *bdev2 =
  1421. f2fs_target_device(sbi, i, NULL);
  1422. if (bdev2 != bdev) {
  1423. err = __issue_discard_async(sbi, bdev,
  1424. start, len);
  1425. if (err)
  1426. return err;
  1427. bdev = bdev2;
  1428. start = i;
  1429. len = 0;
  1430. }
  1431. }
  1432. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1433. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1434. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1435. sbi->discard_blks--;
  1436. }
  1437. if (len)
  1438. err = __issue_discard_async(sbi, bdev, start, len);
  1439. return err;
  1440. }
  1441. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1442. bool check_only)
  1443. {
  1444. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1445. int max_blocks = sbi->blocks_per_seg;
  1446. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1447. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1448. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1449. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1450. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1451. unsigned int start = 0, end = -1;
  1452. bool force = (cpc->reason & CP_DISCARD);
  1453. struct discard_entry *de = NULL;
  1454. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1455. int i;
  1456. if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
  1457. return false;
  1458. if (!force) {
  1459. if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
  1460. SM_I(sbi)->dcc_info->nr_discards >=
  1461. SM_I(sbi)->dcc_info->max_discards)
  1462. return false;
  1463. }
  1464. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1465. for (i = 0; i < entries; i++)
  1466. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1467. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1468. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1469. SM_I(sbi)->dcc_info->max_discards) {
  1470. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1471. if (start >= max_blocks)
  1472. break;
  1473. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1474. if (force && start && end != max_blocks
  1475. && (end - start) < cpc->trim_minlen)
  1476. continue;
  1477. if (check_only)
  1478. return true;
  1479. if (!de) {
  1480. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1481. GFP_F2FS_ZERO);
  1482. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1483. list_add_tail(&de->list, head);
  1484. }
  1485. for (i = start; i < end; i++)
  1486. __set_bit_le(i, (void *)de->discard_map);
  1487. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1488. }
  1489. return false;
  1490. }
  1491. static void release_discard_addr(struct discard_entry *entry)
  1492. {
  1493. list_del(&entry->list);
  1494. kmem_cache_free(discard_entry_slab, entry);
  1495. }
  1496. void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
  1497. {
  1498. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1499. struct discard_entry *entry, *this;
  1500. /* drop caches */
  1501. list_for_each_entry_safe(entry, this, head, list)
  1502. release_discard_addr(entry);
  1503. }
  1504. /*
  1505. * Should call f2fs_clear_prefree_segments after checkpoint is done.
  1506. */
  1507. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1508. {
  1509. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1510. unsigned int segno;
  1511. mutex_lock(&dirty_i->seglist_lock);
  1512. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1513. __set_test_and_free(sbi, segno);
  1514. mutex_unlock(&dirty_i->seglist_lock);
  1515. }
  1516. void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
  1517. struct cp_control *cpc)
  1518. {
  1519. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1520. struct list_head *head = &dcc->entry_list;
  1521. struct discard_entry *entry, *this;
  1522. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1523. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1524. unsigned int start = 0, end = -1;
  1525. unsigned int secno, start_segno;
  1526. bool force = (cpc->reason & CP_DISCARD);
  1527. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  1528. mutex_lock(&dirty_i->seglist_lock);
  1529. while (1) {
  1530. int i;
  1531. if (need_align && end != -1)
  1532. end--;
  1533. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1534. if (start >= MAIN_SEGS(sbi))
  1535. break;
  1536. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1537. start + 1);
  1538. if (need_align) {
  1539. start = rounddown(start, sbi->segs_per_sec);
  1540. end = roundup(end, sbi->segs_per_sec);
  1541. }
  1542. for (i = start; i < end; i++) {
  1543. if (test_and_clear_bit(i, prefree_map))
  1544. dirty_i->nr_dirty[PRE]--;
  1545. }
  1546. if (!f2fs_realtime_discard_enable(sbi))
  1547. continue;
  1548. if (force && start >= cpc->trim_start &&
  1549. (end - 1) <= cpc->trim_end)
  1550. continue;
  1551. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1552. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1553. (end - start) << sbi->log_blocks_per_seg);
  1554. continue;
  1555. }
  1556. next:
  1557. secno = GET_SEC_FROM_SEG(sbi, start);
  1558. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1559. if (!IS_CURSEC(sbi, secno) &&
  1560. !get_valid_blocks(sbi, start, true))
  1561. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1562. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1563. start = start_segno + sbi->segs_per_sec;
  1564. if (start < end)
  1565. goto next;
  1566. else
  1567. end = start - 1;
  1568. }
  1569. mutex_unlock(&dirty_i->seglist_lock);
  1570. /* send small discards */
  1571. list_for_each_entry_safe(entry, this, head, list) {
  1572. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1573. bool is_valid = test_bit_le(0, entry->discard_map);
  1574. find_next:
  1575. if (is_valid) {
  1576. next_pos = find_next_zero_bit_le(entry->discard_map,
  1577. sbi->blocks_per_seg, cur_pos);
  1578. len = next_pos - cur_pos;
  1579. if (f2fs_sb_has_blkzoned(sbi->sb) ||
  1580. (force && len < cpc->trim_minlen))
  1581. goto skip;
  1582. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1583. len);
  1584. total_len += len;
  1585. } else {
  1586. next_pos = find_next_bit_le(entry->discard_map,
  1587. sbi->blocks_per_seg, cur_pos);
  1588. }
  1589. skip:
  1590. cur_pos = next_pos;
  1591. is_valid = !is_valid;
  1592. if (cur_pos < sbi->blocks_per_seg)
  1593. goto find_next;
  1594. release_discard_addr(entry);
  1595. dcc->nr_discards -= total_len;
  1596. }
  1597. wake_up_discard_thread(sbi, false);
  1598. }
  1599. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1600. {
  1601. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1602. struct discard_cmd_control *dcc;
  1603. int err = 0, i;
  1604. if (SM_I(sbi)->dcc_info) {
  1605. dcc = SM_I(sbi)->dcc_info;
  1606. goto init_thread;
  1607. }
  1608. dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
  1609. if (!dcc)
  1610. return -ENOMEM;
  1611. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1612. INIT_LIST_HEAD(&dcc->entry_list);
  1613. for (i = 0; i < MAX_PLIST_NUM; i++)
  1614. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1615. INIT_LIST_HEAD(&dcc->wait_list);
  1616. INIT_LIST_HEAD(&dcc->fstrim_list);
  1617. mutex_init(&dcc->cmd_lock);
  1618. atomic_set(&dcc->issued_discard, 0);
  1619. atomic_set(&dcc->issing_discard, 0);
  1620. atomic_set(&dcc->discard_cmd_cnt, 0);
  1621. dcc->nr_discards = 0;
  1622. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1623. dcc->undiscard_blks = 0;
  1624. dcc->next_pos = 0;
  1625. dcc->root = RB_ROOT;
  1626. dcc->rbtree_check = false;
  1627. init_waitqueue_head(&dcc->discard_wait_queue);
  1628. SM_I(sbi)->dcc_info = dcc;
  1629. init_thread:
  1630. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1631. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1632. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1633. err = PTR_ERR(dcc->f2fs_issue_discard);
  1634. kfree(dcc);
  1635. SM_I(sbi)->dcc_info = NULL;
  1636. return err;
  1637. }
  1638. return err;
  1639. }
  1640. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1641. {
  1642. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1643. if (!dcc)
  1644. return;
  1645. f2fs_stop_discard_thread(sbi);
  1646. kfree(dcc);
  1647. SM_I(sbi)->dcc_info = NULL;
  1648. }
  1649. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1650. {
  1651. struct sit_info *sit_i = SIT_I(sbi);
  1652. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1653. sit_i->dirty_sentries++;
  1654. return false;
  1655. }
  1656. return true;
  1657. }
  1658. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1659. unsigned int segno, int modified)
  1660. {
  1661. struct seg_entry *se = get_seg_entry(sbi, segno);
  1662. se->type = type;
  1663. if (modified)
  1664. __mark_sit_entry_dirty(sbi, segno);
  1665. }
  1666. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1667. {
  1668. struct seg_entry *se;
  1669. unsigned int segno, offset;
  1670. long int new_vblocks;
  1671. bool exist;
  1672. #ifdef CONFIG_F2FS_CHECK_FS
  1673. bool mir_exist;
  1674. #endif
  1675. segno = GET_SEGNO(sbi, blkaddr);
  1676. se = get_seg_entry(sbi, segno);
  1677. new_vblocks = se->valid_blocks + del;
  1678. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1679. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1680. (new_vblocks > sbi->blocks_per_seg)));
  1681. se->valid_blocks = new_vblocks;
  1682. se->mtime = get_mtime(sbi, false);
  1683. if (se->mtime > SIT_I(sbi)->max_mtime)
  1684. SIT_I(sbi)->max_mtime = se->mtime;
  1685. /* Update valid block bitmap */
  1686. if (del > 0) {
  1687. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1688. #ifdef CONFIG_F2FS_CHECK_FS
  1689. mir_exist = f2fs_test_and_set_bit(offset,
  1690. se->cur_valid_map_mir);
  1691. if (unlikely(exist != mir_exist)) {
  1692. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1693. "when setting bitmap, blk:%u, old bit:%d",
  1694. blkaddr, exist);
  1695. f2fs_bug_on(sbi, 1);
  1696. }
  1697. #endif
  1698. if (unlikely(exist)) {
  1699. f2fs_msg(sbi->sb, KERN_ERR,
  1700. "Bitmap was wrongly set, blk:%u", blkaddr);
  1701. f2fs_bug_on(sbi, 1);
  1702. se->valid_blocks--;
  1703. del = 0;
  1704. }
  1705. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1706. sbi->discard_blks--;
  1707. /* don't overwrite by SSR to keep node chain */
  1708. if (IS_NODESEG(se->type)) {
  1709. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1710. se->ckpt_valid_blocks++;
  1711. }
  1712. } else {
  1713. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1714. #ifdef CONFIG_F2FS_CHECK_FS
  1715. mir_exist = f2fs_test_and_clear_bit(offset,
  1716. se->cur_valid_map_mir);
  1717. if (unlikely(exist != mir_exist)) {
  1718. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1719. "when clearing bitmap, blk:%u, old bit:%d",
  1720. blkaddr, exist);
  1721. f2fs_bug_on(sbi, 1);
  1722. }
  1723. #endif
  1724. if (unlikely(!exist)) {
  1725. f2fs_msg(sbi->sb, KERN_ERR,
  1726. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1727. f2fs_bug_on(sbi, 1);
  1728. se->valid_blocks++;
  1729. del = 0;
  1730. }
  1731. if (f2fs_test_and_clear_bit(offset, se->discard_map))
  1732. sbi->discard_blks++;
  1733. }
  1734. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1735. se->ckpt_valid_blocks += del;
  1736. __mark_sit_entry_dirty(sbi, segno);
  1737. /* update total number of valid blocks to be written in ckpt area */
  1738. SIT_I(sbi)->written_valid_blocks += del;
  1739. if (sbi->segs_per_sec > 1)
  1740. get_sec_entry(sbi, segno)->valid_blocks += del;
  1741. }
  1742. void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1743. {
  1744. unsigned int segno = GET_SEGNO(sbi, addr);
  1745. struct sit_info *sit_i = SIT_I(sbi);
  1746. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1747. if (addr == NEW_ADDR)
  1748. return;
  1749. invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
  1750. /* add it into sit main buffer */
  1751. down_write(&sit_i->sentry_lock);
  1752. update_sit_entry(sbi, addr, -1);
  1753. /* add it into dirty seglist */
  1754. locate_dirty_segment(sbi, segno);
  1755. up_write(&sit_i->sentry_lock);
  1756. }
  1757. bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1758. {
  1759. struct sit_info *sit_i = SIT_I(sbi);
  1760. unsigned int segno, offset;
  1761. struct seg_entry *se;
  1762. bool is_cp = false;
  1763. if (!is_valid_data_blkaddr(sbi, blkaddr))
  1764. return true;
  1765. down_read(&sit_i->sentry_lock);
  1766. segno = GET_SEGNO(sbi, blkaddr);
  1767. se = get_seg_entry(sbi, segno);
  1768. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1769. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1770. is_cp = true;
  1771. up_read(&sit_i->sentry_lock);
  1772. return is_cp;
  1773. }
  1774. /*
  1775. * This function should be resided under the curseg_mutex lock
  1776. */
  1777. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1778. struct f2fs_summary *sum)
  1779. {
  1780. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1781. void *addr = curseg->sum_blk;
  1782. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1783. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1784. }
  1785. /*
  1786. * Calculate the number of current summary pages for writing
  1787. */
  1788. int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1789. {
  1790. int valid_sum_count = 0;
  1791. int i, sum_in_page;
  1792. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1793. if (sbi->ckpt->alloc_type[i] == SSR)
  1794. valid_sum_count += sbi->blocks_per_seg;
  1795. else {
  1796. if (for_ra)
  1797. valid_sum_count += le16_to_cpu(
  1798. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1799. else
  1800. valid_sum_count += curseg_blkoff(sbi, i);
  1801. }
  1802. }
  1803. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1804. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1805. if (valid_sum_count <= sum_in_page)
  1806. return 1;
  1807. else if ((valid_sum_count - sum_in_page) <=
  1808. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1809. return 2;
  1810. return 3;
  1811. }
  1812. /*
  1813. * Caller should put this summary page
  1814. */
  1815. struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1816. {
  1817. return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
  1818. }
  1819. void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
  1820. void *src, block_t blk_addr)
  1821. {
  1822. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1823. memcpy(page_address(page), src, PAGE_SIZE);
  1824. set_page_dirty(page);
  1825. f2fs_put_page(page, 1);
  1826. }
  1827. static void write_sum_page(struct f2fs_sb_info *sbi,
  1828. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1829. {
  1830. f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1831. }
  1832. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1833. int type, block_t blk_addr)
  1834. {
  1835. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1836. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1837. struct f2fs_summary_block *src = curseg->sum_blk;
  1838. struct f2fs_summary_block *dst;
  1839. dst = (struct f2fs_summary_block *)page_address(page);
  1840. memset(dst, 0, PAGE_SIZE);
  1841. mutex_lock(&curseg->curseg_mutex);
  1842. down_read(&curseg->journal_rwsem);
  1843. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1844. up_read(&curseg->journal_rwsem);
  1845. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1846. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1847. mutex_unlock(&curseg->curseg_mutex);
  1848. set_page_dirty(page);
  1849. f2fs_put_page(page, 1);
  1850. }
  1851. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1852. {
  1853. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1854. unsigned int segno = curseg->segno + 1;
  1855. struct free_segmap_info *free_i = FREE_I(sbi);
  1856. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1857. return !test_bit(segno, free_i->free_segmap);
  1858. return 0;
  1859. }
  1860. /*
  1861. * Find a new segment from the free segments bitmap to right order
  1862. * This function should be returned with success, otherwise BUG
  1863. */
  1864. static void get_new_segment(struct f2fs_sb_info *sbi,
  1865. unsigned int *newseg, bool new_sec, int dir)
  1866. {
  1867. struct free_segmap_info *free_i = FREE_I(sbi);
  1868. unsigned int segno, secno, zoneno;
  1869. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1870. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1871. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1872. unsigned int left_start = hint;
  1873. bool init = true;
  1874. int go_left = 0;
  1875. int i;
  1876. spin_lock(&free_i->segmap_lock);
  1877. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1878. segno = find_next_zero_bit(free_i->free_segmap,
  1879. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1880. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1881. goto got_it;
  1882. }
  1883. find_other_zone:
  1884. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1885. if (secno >= MAIN_SECS(sbi)) {
  1886. if (dir == ALLOC_RIGHT) {
  1887. secno = find_next_zero_bit(free_i->free_secmap,
  1888. MAIN_SECS(sbi), 0);
  1889. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1890. } else {
  1891. go_left = 1;
  1892. left_start = hint - 1;
  1893. }
  1894. }
  1895. if (go_left == 0)
  1896. goto skip_left;
  1897. while (test_bit(left_start, free_i->free_secmap)) {
  1898. if (left_start > 0) {
  1899. left_start--;
  1900. continue;
  1901. }
  1902. left_start = find_next_zero_bit(free_i->free_secmap,
  1903. MAIN_SECS(sbi), 0);
  1904. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1905. break;
  1906. }
  1907. secno = left_start;
  1908. skip_left:
  1909. segno = GET_SEG_FROM_SEC(sbi, secno);
  1910. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1911. /* give up on finding another zone */
  1912. if (!init)
  1913. goto got_it;
  1914. if (sbi->secs_per_zone == 1)
  1915. goto got_it;
  1916. if (zoneno == old_zoneno)
  1917. goto got_it;
  1918. if (dir == ALLOC_LEFT) {
  1919. if (!go_left && zoneno + 1 >= total_zones)
  1920. goto got_it;
  1921. if (go_left && zoneno == 0)
  1922. goto got_it;
  1923. }
  1924. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1925. if (CURSEG_I(sbi, i)->zone == zoneno)
  1926. break;
  1927. if (i < NR_CURSEG_TYPE) {
  1928. /* zone is in user, try another */
  1929. if (go_left)
  1930. hint = zoneno * sbi->secs_per_zone - 1;
  1931. else if (zoneno + 1 >= total_zones)
  1932. hint = 0;
  1933. else
  1934. hint = (zoneno + 1) * sbi->secs_per_zone;
  1935. init = false;
  1936. goto find_other_zone;
  1937. }
  1938. got_it:
  1939. /* set it as dirty segment in free segmap */
  1940. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1941. __set_inuse(sbi, segno);
  1942. *newseg = segno;
  1943. spin_unlock(&free_i->segmap_lock);
  1944. }
  1945. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1946. {
  1947. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1948. struct summary_footer *sum_footer;
  1949. curseg->segno = curseg->next_segno;
  1950. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1951. curseg->next_blkoff = 0;
  1952. curseg->next_segno = NULL_SEGNO;
  1953. sum_footer = &(curseg->sum_blk->footer);
  1954. memset(sum_footer, 0, sizeof(struct summary_footer));
  1955. if (IS_DATASEG(type))
  1956. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1957. if (IS_NODESEG(type))
  1958. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1959. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1960. }
  1961. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1962. {
  1963. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1964. if (sbi->segs_per_sec != 1)
  1965. return CURSEG_I(sbi, type)->segno;
  1966. if (test_opt(sbi, NOHEAP) &&
  1967. (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
  1968. return 0;
  1969. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1970. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1971. /* find segments from 0 to reuse freed segments */
  1972. if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
  1973. return 0;
  1974. return CURSEG_I(sbi, type)->segno;
  1975. }
  1976. /*
  1977. * Allocate a current working segment.
  1978. * This function always allocates a free segment in LFS manner.
  1979. */
  1980. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1981. {
  1982. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1983. unsigned int segno = curseg->segno;
  1984. int dir = ALLOC_LEFT;
  1985. write_sum_page(sbi, curseg->sum_blk,
  1986. GET_SUM_BLOCK(sbi, segno));
  1987. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1988. dir = ALLOC_RIGHT;
  1989. if (test_opt(sbi, NOHEAP))
  1990. dir = ALLOC_RIGHT;
  1991. segno = __get_next_segno(sbi, type);
  1992. get_new_segment(sbi, &segno, new_sec, dir);
  1993. curseg->next_segno = segno;
  1994. reset_curseg(sbi, type, 1);
  1995. curseg->alloc_type = LFS;
  1996. }
  1997. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1998. struct curseg_info *seg, block_t start)
  1999. {
  2000. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  2001. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  2002. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  2003. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  2004. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  2005. int i, pos;
  2006. for (i = 0; i < entries; i++)
  2007. target_map[i] = ckpt_map[i] | cur_map[i];
  2008. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  2009. seg->next_blkoff = pos;
  2010. }
  2011. /*
  2012. * If a segment is written by LFS manner, next block offset is just obtained
  2013. * by increasing the current block offset. However, if a segment is written by
  2014. * SSR manner, next block offset obtained by calling __next_free_blkoff
  2015. */
  2016. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  2017. struct curseg_info *seg)
  2018. {
  2019. if (seg->alloc_type == SSR)
  2020. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  2021. else
  2022. seg->next_blkoff++;
  2023. }
  2024. /*
  2025. * This function always allocates a used segment(from dirty seglist) by SSR
  2026. * manner, so it should recover the existing segment information of valid blocks
  2027. */
  2028. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  2029. {
  2030. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2031. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2032. unsigned int new_segno = curseg->next_segno;
  2033. struct f2fs_summary_block *sum_node;
  2034. struct page *sum_page;
  2035. write_sum_page(sbi, curseg->sum_blk,
  2036. GET_SUM_BLOCK(sbi, curseg->segno));
  2037. __set_test_and_inuse(sbi, new_segno);
  2038. mutex_lock(&dirty_i->seglist_lock);
  2039. __remove_dirty_segment(sbi, new_segno, PRE);
  2040. __remove_dirty_segment(sbi, new_segno, DIRTY);
  2041. mutex_unlock(&dirty_i->seglist_lock);
  2042. reset_curseg(sbi, type, 1);
  2043. curseg->alloc_type = SSR;
  2044. __next_free_blkoff(sbi, curseg, 0);
  2045. sum_page = f2fs_get_sum_page(sbi, new_segno);
  2046. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  2047. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  2048. f2fs_put_page(sum_page, 1);
  2049. }
  2050. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  2051. {
  2052. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2053. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  2054. unsigned segno = NULL_SEGNO;
  2055. int i, cnt;
  2056. bool reversed = false;
  2057. /* f2fs_need_SSR() already forces to do this */
  2058. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  2059. curseg->next_segno = segno;
  2060. return 1;
  2061. }
  2062. /* For node segments, let's do SSR more intensively */
  2063. if (IS_NODESEG(type)) {
  2064. if (type >= CURSEG_WARM_NODE) {
  2065. reversed = true;
  2066. i = CURSEG_COLD_NODE;
  2067. } else {
  2068. i = CURSEG_HOT_NODE;
  2069. }
  2070. cnt = NR_CURSEG_NODE_TYPE;
  2071. } else {
  2072. if (type >= CURSEG_WARM_DATA) {
  2073. reversed = true;
  2074. i = CURSEG_COLD_DATA;
  2075. } else {
  2076. i = CURSEG_HOT_DATA;
  2077. }
  2078. cnt = NR_CURSEG_DATA_TYPE;
  2079. }
  2080. for (; cnt-- > 0; reversed ? i-- : i++) {
  2081. if (i == type)
  2082. continue;
  2083. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  2084. curseg->next_segno = segno;
  2085. return 1;
  2086. }
  2087. }
  2088. return 0;
  2089. }
  2090. /*
  2091. * flush out current segment and replace it with new segment
  2092. * This function should be returned with success, otherwise BUG
  2093. */
  2094. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  2095. int type, bool force)
  2096. {
  2097. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2098. if (force)
  2099. new_curseg(sbi, type, true);
  2100. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  2101. type == CURSEG_WARM_NODE)
  2102. new_curseg(sbi, type, false);
  2103. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  2104. new_curseg(sbi, type, false);
  2105. else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
  2106. change_curseg(sbi, type);
  2107. else
  2108. new_curseg(sbi, type, false);
  2109. stat_inc_seg_type(sbi, curseg);
  2110. }
  2111. void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
  2112. {
  2113. struct curseg_info *curseg;
  2114. unsigned int old_segno;
  2115. int i;
  2116. down_write(&SIT_I(sbi)->sentry_lock);
  2117. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2118. curseg = CURSEG_I(sbi, i);
  2119. old_segno = curseg->segno;
  2120. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  2121. locate_dirty_segment(sbi, old_segno);
  2122. }
  2123. up_write(&SIT_I(sbi)->sentry_lock);
  2124. }
  2125. static const struct segment_allocation default_salloc_ops = {
  2126. .allocate_segment = allocate_segment_by_default,
  2127. };
  2128. bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
  2129. struct cp_control *cpc)
  2130. {
  2131. __u64 trim_start = cpc->trim_start;
  2132. bool has_candidate = false;
  2133. down_write(&SIT_I(sbi)->sentry_lock);
  2134. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  2135. if (add_discard_addrs(sbi, cpc, true)) {
  2136. has_candidate = true;
  2137. break;
  2138. }
  2139. }
  2140. up_write(&SIT_I(sbi)->sentry_lock);
  2141. cpc->trim_start = trim_start;
  2142. return has_candidate;
  2143. }
  2144. static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  2145. struct discard_policy *dpolicy,
  2146. unsigned int start, unsigned int end)
  2147. {
  2148. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  2149. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  2150. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  2151. struct discard_cmd *dc;
  2152. struct blk_plug plug;
  2153. int issued;
  2154. unsigned int trimmed = 0;
  2155. next:
  2156. issued = 0;
  2157. mutex_lock(&dcc->cmd_lock);
  2158. if (unlikely(dcc->rbtree_check))
  2159. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
  2160. &dcc->root));
  2161. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  2162. NULL, start,
  2163. (struct rb_entry **)&prev_dc,
  2164. (struct rb_entry **)&next_dc,
  2165. &insert_p, &insert_parent, true);
  2166. if (!dc)
  2167. dc = next_dc;
  2168. blk_start_plug(&plug);
  2169. while (dc && dc->lstart <= end) {
  2170. struct rb_node *node;
  2171. int err = 0;
  2172. if (dc->len < dpolicy->granularity)
  2173. goto skip;
  2174. if (dc->state != D_PREP) {
  2175. list_move_tail(&dc->list, &dcc->fstrim_list);
  2176. goto skip;
  2177. }
  2178. err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
  2179. if (issued >= dpolicy->max_requests) {
  2180. start = dc->lstart + dc->len;
  2181. if (err)
  2182. __remove_discard_cmd(sbi, dc);
  2183. blk_finish_plug(&plug);
  2184. mutex_unlock(&dcc->cmd_lock);
  2185. trimmed += __wait_all_discard_cmd(sbi, NULL);
  2186. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2187. goto next;
  2188. }
  2189. skip:
  2190. node = rb_next(&dc->rb_node);
  2191. if (err)
  2192. __remove_discard_cmd(sbi, dc);
  2193. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  2194. if (fatal_signal_pending(current))
  2195. break;
  2196. }
  2197. blk_finish_plug(&plug);
  2198. mutex_unlock(&dcc->cmd_lock);
  2199. return trimmed;
  2200. }
  2201. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  2202. {
  2203. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  2204. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  2205. unsigned int start_segno, end_segno;
  2206. block_t start_block, end_block;
  2207. struct cp_control cpc;
  2208. struct discard_policy dpolicy;
  2209. unsigned long long trimmed = 0;
  2210. int err = 0;
  2211. bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
  2212. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  2213. return -EINVAL;
  2214. if (end < MAIN_BLKADDR(sbi))
  2215. goto out;
  2216. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  2217. f2fs_msg(sbi->sb, KERN_WARNING,
  2218. "Found FS corruption, run fsck to fix.");
  2219. return -EFSCORRUPTED;
  2220. }
  2221. /* start/end segment number in main_area */
  2222. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  2223. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  2224. GET_SEGNO(sbi, end);
  2225. if (need_align) {
  2226. start_segno = rounddown(start_segno, sbi->segs_per_sec);
  2227. end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
  2228. }
  2229. cpc.reason = CP_DISCARD;
  2230. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  2231. cpc.trim_start = start_segno;
  2232. cpc.trim_end = end_segno;
  2233. if (sbi->discard_blks == 0)
  2234. goto out;
  2235. mutex_lock(&sbi->gc_mutex);
  2236. err = f2fs_write_checkpoint(sbi, &cpc);
  2237. mutex_unlock(&sbi->gc_mutex);
  2238. if (err)
  2239. goto out;
  2240. /*
  2241. * We filed discard candidates, but actually we don't need to wait for
  2242. * all of them, since they'll be issued in idle time along with runtime
  2243. * discard option. User configuration looks like using runtime discard
  2244. * or periodic fstrim instead of it.
  2245. */
  2246. if (f2fs_realtime_discard_enable(sbi))
  2247. goto out;
  2248. start_block = START_BLOCK(sbi, start_segno);
  2249. end_block = START_BLOCK(sbi, end_segno + 1);
  2250. __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  2251. trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
  2252. start_block, end_block);
  2253. trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
  2254. start_block, end_block);
  2255. out:
  2256. if (!err)
  2257. range->len = F2FS_BLK_TO_BYTES(trimmed);
  2258. return err;
  2259. }
  2260. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  2261. {
  2262. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2263. if (curseg->next_blkoff < sbi->blocks_per_seg)
  2264. return true;
  2265. return false;
  2266. }
  2267. int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
  2268. {
  2269. switch (hint) {
  2270. case WRITE_LIFE_SHORT:
  2271. return CURSEG_HOT_DATA;
  2272. case WRITE_LIFE_EXTREME:
  2273. return CURSEG_COLD_DATA;
  2274. default:
  2275. return CURSEG_WARM_DATA;
  2276. }
  2277. }
  2278. /* This returns write hints for each segment type. This hints will be
  2279. * passed down to block layer. There are mapping tables which depend on
  2280. * the mount option 'whint_mode'.
  2281. *
  2282. * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
  2283. *
  2284. * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
  2285. *
  2286. * User F2FS Block
  2287. * ---- ---- -----
  2288. * META WRITE_LIFE_NOT_SET
  2289. * HOT_NODE "
  2290. * WARM_NODE "
  2291. * COLD_NODE "
  2292. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2293. * extension list " "
  2294. *
  2295. * -- buffered io
  2296. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2297. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2298. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2299. * WRITE_LIFE_NONE " "
  2300. * WRITE_LIFE_MEDIUM " "
  2301. * WRITE_LIFE_LONG " "
  2302. *
  2303. * -- direct io
  2304. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2305. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2306. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2307. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2308. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2309. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2310. *
  2311. * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
  2312. *
  2313. * User F2FS Block
  2314. * ---- ---- -----
  2315. * META WRITE_LIFE_MEDIUM;
  2316. * HOT_NODE WRITE_LIFE_NOT_SET
  2317. * WARM_NODE "
  2318. * COLD_NODE WRITE_LIFE_NONE
  2319. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2320. * extension list " "
  2321. *
  2322. * -- buffered io
  2323. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2324. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2325. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
  2326. * WRITE_LIFE_NONE " "
  2327. * WRITE_LIFE_MEDIUM " "
  2328. * WRITE_LIFE_LONG " "
  2329. *
  2330. * -- direct io
  2331. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2332. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2333. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2334. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2335. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2336. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2337. */
  2338. enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
  2339. enum page_type type, enum temp_type temp)
  2340. {
  2341. if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
  2342. if (type == DATA) {
  2343. if (temp == WARM)
  2344. return WRITE_LIFE_NOT_SET;
  2345. else if (temp == HOT)
  2346. return WRITE_LIFE_SHORT;
  2347. else if (temp == COLD)
  2348. return WRITE_LIFE_EXTREME;
  2349. } else {
  2350. return WRITE_LIFE_NOT_SET;
  2351. }
  2352. } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
  2353. if (type == DATA) {
  2354. if (temp == WARM)
  2355. return WRITE_LIFE_LONG;
  2356. else if (temp == HOT)
  2357. return WRITE_LIFE_SHORT;
  2358. else if (temp == COLD)
  2359. return WRITE_LIFE_EXTREME;
  2360. } else if (type == NODE) {
  2361. if (temp == WARM || temp == HOT)
  2362. return WRITE_LIFE_NOT_SET;
  2363. else if (temp == COLD)
  2364. return WRITE_LIFE_NONE;
  2365. } else if (type == META) {
  2366. return WRITE_LIFE_MEDIUM;
  2367. }
  2368. }
  2369. return WRITE_LIFE_NOT_SET;
  2370. }
  2371. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2372. {
  2373. if (fio->type == DATA)
  2374. return CURSEG_HOT_DATA;
  2375. else
  2376. return CURSEG_HOT_NODE;
  2377. }
  2378. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2379. {
  2380. if (fio->type == DATA) {
  2381. struct inode *inode = fio->page->mapping->host;
  2382. if (S_ISDIR(inode->i_mode))
  2383. return CURSEG_HOT_DATA;
  2384. else
  2385. return CURSEG_COLD_DATA;
  2386. } else {
  2387. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2388. return CURSEG_WARM_NODE;
  2389. else
  2390. return CURSEG_COLD_NODE;
  2391. }
  2392. }
  2393. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2394. {
  2395. if (fio->type == DATA) {
  2396. struct inode *inode = fio->page->mapping->host;
  2397. if (is_cold_data(fio->page) || file_is_cold(inode))
  2398. return CURSEG_COLD_DATA;
  2399. if (file_is_hot(inode) ||
  2400. is_inode_flag_set(inode, FI_HOT_DATA) ||
  2401. f2fs_is_atomic_file(inode) ||
  2402. f2fs_is_volatile_file(inode))
  2403. return CURSEG_HOT_DATA;
  2404. return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
  2405. } else {
  2406. if (IS_DNODE(fio->page))
  2407. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2408. CURSEG_HOT_NODE;
  2409. return CURSEG_COLD_NODE;
  2410. }
  2411. }
  2412. static int __get_segment_type(struct f2fs_io_info *fio)
  2413. {
  2414. int type = 0;
  2415. switch (F2FS_OPTION(fio->sbi).active_logs) {
  2416. case 2:
  2417. type = __get_segment_type_2(fio);
  2418. break;
  2419. case 4:
  2420. type = __get_segment_type_4(fio);
  2421. break;
  2422. case 6:
  2423. type = __get_segment_type_6(fio);
  2424. break;
  2425. default:
  2426. f2fs_bug_on(fio->sbi, true);
  2427. }
  2428. if (IS_HOT(type))
  2429. fio->temp = HOT;
  2430. else if (IS_WARM(type))
  2431. fio->temp = WARM;
  2432. else
  2433. fio->temp = COLD;
  2434. return type;
  2435. }
  2436. void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2437. block_t old_blkaddr, block_t *new_blkaddr,
  2438. struct f2fs_summary *sum, int type,
  2439. struct f2fs_io_info *fio, bool add_list)
  2440. {
  2441. struct sit_info *sit_i = SIT_I(sbi);
  2442. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2443. down_read(&SM_I(sbi)->curseg_lock);
  2444. mutex_lock(&curseg->curseg_mutex);
  2445. down_write(&sit_i->sentry_lock);
  2446. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2447. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2448. /*
  2449. * __add_sum_entry should be resided under the curseg_mutex
  2450. * because, this function updates a summary entry in the
  2451. * current summary block.
  2452. */
  2453. __add_sum_entry(sbi, type, sum);
  2454. __refresh_next_blkoff(sbi, curseg);
  2455. stat_inc_block_count(sbi, curseg);
  2456. /*
  2457. * SIT information should be updated before segment allocation,
  2458. * since SSR needs latest valid block information.
  2459. */
  2460. update_sit_entry(sbi, *new_blkaddr, 1);
  2461. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2462. update_sit_entry(sbi, old_blkaddr, -1);
  2463. if (!__has_curseg_space(sbi, type))
  2464. sit_i->s_ops->allocate_segment(sbi, type, false);
  2465. /*
  2466. * segment dirty status should be updated after segment allocation,
  2467. * so we just need to update status only one time after previous
  2468. * segment being closed.
  2469. */
  2470. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2471. locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
  2472. up_write(&sit_i->sentry_lock);
  2473. if (page && IS_NODESEG(type)) {
  2474. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2475. f2fs_inode_chksum_set(sbi, page);
  2476. }
  2477. if (add_list) {
  2478. struct f2fs_bio_info *io;
  2479. INIT_LIST_HEAD(&fio->list);
  2480. fio->in_list = true;
  2481. fio->retry = false;
  2482. io = sbi->write_io[fio->type] + fio->temp;
  2483. spin_lock(&io->io_lock);
  2484. list_add_tail(&fio->list, &io->io_list);
  2485. spin_unlock(&io->io_lock);
  2486. }
  2487. mutex_unlock(&curseg->curseg_mutex);
  2488. up_read(&SM_I(sbi)->curseg_lock);
  2489. }
  2490. static void update_device_state(struct f2fs_io_info *fio)
  2491. {
  2492. struct f2fs_sb_info *sbi = fio->sbi;
  2493. unsigned int devidx;
  2494. if (!f2fs_is_multi_device(sbi))
  2495. return;
  2496. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2497. /* update device state for fsync */
  2498. f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2499. /* update device state for checkpoint */
  2500. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2501. spin_lock(&sbi->dev_lock);
  2502. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2503. spin_unlock(&sbi->dev_lock);
  2504. }
  2505. }
  2506. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2507. {
  2508. int type = __get_segment_type(fio);
  2509. bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
  2510. if (keep_order)
  2511. down_read(&fio->sbi->io_order_lock);
  2512. reallocate:
  2513. f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2514. &fio->new_blkaddr, sum, type, fio, true);
  2515. if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
  2516. invalidate_mapping_pages(META_MAPPING(fio->sbi),
  2517. fio->old_blkaddr, fio->old_blkaddr);
  2518. /* writeout dirty page into bdev */
  2519. f2fs_submit_page_write(fio);
  2520. if (fio->retry) {
  2521. fio->old_blkaddr = fio->new_blkaddr;
  2522. goto reallocate;
  2523. }
  2524. update_device_state(fio);
  2525. if (keep_order)
  2526. up_read(&fio->sbi->io_order_lock);
  2527. }
  2528. void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2529. enum iostat_type io_type)
  2530. {
  2531. struct f2fs_io_info fio = {
  2532. .sbi = sbi,
  2533. .type = META,
  2534. .temp = HOT,
  2535. .op = REQ_OP_WRITE,
  2536. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2537. .old_blkaddr = page->index,
  2538. .new_blkaddr = page->index,
  2539. .page = page,
  2540. .encrypted_page = NULL,
  2541. .in_list = false,
  2542. };
  2543. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2544. fio.op_flags &= ~REQ_META;
  2545. set_page_writeback(page);
  2546. ClearPageError(page);
  2547. f2fs_submit_page_write(&fio);
  2548. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2549. }
  2550. void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2551. {
  2552. struct f2fs_summary sum;
  2553. set_summary(&sum, nid, 0, 0);
  2554. do_write_page(&sum, fio);
  2555. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2556. }
  2557. void f2fs_outplace_write_data(struct dnode_of_data *dn,
  2558. struct f2fs_io_info *fio)
  2559. {
  2560. struct f2fs_sb_info *sbi = fio->sbi;
  2561. struct f2fs_summary sum;
  2562. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2563. set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
  2564. do_write_page(&sum, fio);
  2565. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2566. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2567. }
  2568. int f2fs_inplace_write_data(struct f2fs_io_info *fio)
  2569. {
  2570. int err;
  2571. struct f2fs_sb_info *sbi = fio->sbi;
  2572. unsigned int segno;
  2573. fio->new_blkaddr = fio->old_blkaddr;
  2574. /* i/o temperature is needed for passing down write hints */
  2575. __get_segment_type(fio);
  2576. segno = GET_SEGNO(sbi, fio->new_blkaddr);
  2577. if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
  2578. set_sbi_flag(sbi, SBI_NEED_FSCK);
  2579. return -EFSCORRUPTED;
  2580. }
  2581. stat_inc_inplace_blocks(fio->sbi);
  2582. err = f2fs_submit_page_bio(fio);
  2583. if (!err)
  2584. update_device_state(fio);
  2585. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2586. return err;
  2587. }
  2588. static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
  2589. unsigned int segno)
  2590. {
  2591. int i;
  2592. for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
  2593. if (CURSEG_I(sbi, i)->segno == segno)
  2594. break;
  2595. }
  2596. return i;
  2597. }
  2598. void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2599. block_t old_blkaddr, block_t new_blkaddr,
  2600. bool recover_curseg, bool recover_newaddr)
  2601. {
  2602. struct sit_info *sit_i = SIT_I(sbi);
  2603. struct curseg_info *curseg;
  2604. unsigned int segno, old_cursegno;
  2605. struct seg_entry *se;
  2606. int type;
  2607. unsigned short old_blkoff;
  2608. segno = GET_SEGNO(sbi, new_blkaddr);
  2609. se = get_seg_entry(sbi, segno);
  2610. type = se->type;
  2611. down_write(&SM_I(sbi)->curseg_lock);
  2612. if (!recover_curseg) {
  2613. /* for recovery flow */
  2614. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2615. if (old_blkaddr == NULL_ADDR)
  2616. type = CURSEG_COLD_DATA;
  2617. else
  2618. type = CURSEG_WARM_DATA;
  2619. }
  2620. } else {
  2621. if (IS_CURSEG(sbi, segno)) {
  2622. /* se->type is volatile as SSR allocation */
  2623. type = __f2fs_get_curseg(sbi, segno);
  2624. f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
  2625. } else {
  2626. type = CURSEG_WARM_DATA;
  2627. }
  2628. }
  2629. f2fs_bug_on(sbi, !IS_DATASEG(type));
  2630. curseg = CURSEG_I(sbi, type);
  2631. mutex_lock(&curseg->curseg_mutex);
  2632. down_write(&sit_i->sentry_lock);
  2633. old_cursegno = curseg->segno;
  2634. old_blkoff = curseg->next_blkoff;
  2635. /* change the current segment */
  2636. if (segno != curseg->segno) {
  2637. curseg->next_segno = segno;
  2638. change_curseg(sbi, type);
  2639. }
  2640. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2641. __add_sum_entry(sbi, type, sum);
  2642. if (!recover_curseg || recover_newaddr)
  2643. update_sit_entry(sbi, new_blkaddr, 1);
  2644. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
  2645. invalidate_mapping_pages(META_MAPPING(sbi),
  2646. old_blkaddr, old_blkaddr);
  2647. update_sit_entry(sbi, old_blkaddr, -1);
  2648. }
  2649. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2650. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2651. locate_dirty_segment(sbi, old_cursegno);
  2652. if (recover_curseg) {
  2653. if (old_cursegno != curseg->segno) {
  2654. curseg->next_segno = old_cursegno;
  2655. change_curseg(sbi, type);
  2656. }
  2657. curseg->next_blkoff = old_blkoff;
  2658. }
  2659. up_write(&sit_i->sentry_lock);
  2660. mutex_unlock(&curseg->curseg_mutex);
  2661. up_write(&SM_I(sbi)->curseg_lock);
  2662. }
  2663. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2664. block_t old_addr, block_t new_addr,
  2665. unsigned char version, bool recover_curseg,
  2666. bool recover_newaddr)
  2667. {
  2668. struct f2fs_summary sum;
  2669. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2670. f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
  2671. recover_curseg, recover_newaddr);
  2672. f2fs_update_data_blkaddr(dn, new_addr);
  2673. }
  2674. void f2fs_wait_on_page_writeback(struct page *page,
  2675. enum page_type type, bool ordered)
  2676. {
  2677. if (PageWriteback(page)) {
  2678. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2679. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2680. 0, page->index, type);
  2681. if (ordered)
  2682. wait_on_page_writeback(page);
  2683. else
  2684. wait_for_stable_page(page);
  2685. }
  2686. }
  2687. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2688. {
  2689. struct page *cpage;
  2690. if (!is_valid_data_blkaddr(sbi, blkaddr))
  2691. return;
  2692. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2693. if (cpage) {
  2694. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2695. f2fs_put_page(cpage, 1);
  2696. }
  2697. }
  2698. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  2699. {
  2700. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2701. struct curseg_info *seg_i;
  2702. unsigned char *kaddr;
  2703. struct page *page;
  2704. block_t start;
  2705. int i, j, offset;
  2706. start = start_sum_block(sbi);
  2707. page = f2fs_get_meta_page(sbi, start++);
  2708. if (IS_ERR(page))
  2709. return PTR_ERR(page);
  2710. kaddr = (unsigned char *)page_address(page);
  2711. /* Step 1: restore nat cache */
  2712. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2713. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2714. /* Step 2: restore sit cache */
  2715. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2716. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2717. offset = 2 * SUM_JOURNAL_SIZE;
  2718. /* Step 3: restore summary entries */
  2719. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2720. unsigned short blk_off;
  2721. unsigned int segno;
  2722. seg_i = CURSEG_I(sbi, i);
  2723. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2724. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2725. seg_i->next_segno = segno;
  2726. reset_curseg(sbi, i, 0);
  2727. seg_i->alloc_type = ckpt->alloc_type[i];
  2728. seg_i->next_blkoff = blk_off;
  2729. if (seg_i->alloc_type == SSR)
  2730. blk_off = sbi->blocks_per_seg;
  2731. for (j = 0; j < blk_off; j++) {
  2732. struct f2fs_summary *s;
  2733. s = (struct f2fs_summary *)(kaddr + offset);
  2734. seg_i->sum_blk->entries[j] = *s;
  2735. offset += SUMMARY_SIZE;
  2736. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2737. SUM_FOOTER_SIZE)
  2738. continue;
  2739. f2fs_put_page(page, 1);
  2740. page = NULL;
  2741. page = f2fs_get_meta_page(sbi, start++);
  2742. if (IS_ERR(page))
  2743. return PTR_ERR(page);
  2744. kaddr = (unsigned char *)page_address(page);
  2745. offset = 0;
  2746. }
  2747. }
  2748. f2fs_put_page(page, 1);
  2749. return 0;
  2750. }
  2751. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2752. {
  2753. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2754. struct f2fs_summary_block *sum;
  2755. struct curseg_info *curseg;
  2756. struct page *new;
  2757. unsigned short blk_off;
  2758. unsigned int segno = 0;
  2759. block_t blk_addr = 0;
  2760. int err = 0;
  2761. /* get segment number and block addr */
  2762. if (IS_DATASEG(type)) {
  2763. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2764. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2765. CURSEG_HOT_DATA]);
  2766. if (__exist_node_summaries(sbi))
  2767. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2768. else
  2769. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2770. } else {
  2771. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2772. CURSEG_HOT_NODE]);
  2773. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2774. CURSEG_HOT_NODE]);
  2775. if (__exist_node_summaries(sbi))
  2776. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2777. type - CURSEG_HOT_NODE);
  2778. else
  2779. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2780. }
  2781. new = f2fs_get_meta_page(sbi, blk_addr);
  2782. if (IS_ERR(new))
  2783. return PTR_ERR(new);
  2784. sum = (struct f2fs_summary_block *)page_address(new);
  2785. if (IS_NODESEG(type)) {
  2786. if (__exist_node_summaries(sbi)) {
  2787. struct f2fs_summary *ns = &sum->entries[0];
  2788. int i;
  2789. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2790. ns->version = 0;
  2791. ns->ofs_in_node = 0;
  2792. }
  2793. } else {
  2794. err = f2fs_restore_node_summary(sbi, segno, sum);
  2795. if (err)
  2796. goto out;
  2797. }
  2798. }
  2799. /* set uncompleted segment to curseg */
  2800. curseg = CURSEG_I(sbi, type);
  2801. mutex_lock(&curseg->curseg_mutex);
  2802. /* update journal info */
  2803. down_write(&curseg->journal_rwsem);
  2804. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2805. up_write(&curseg->journal_rwsem);
  2806. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2807. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2808. curseg->next_segno = segno;
  2809. reset_curseg(sbi, type, 0);
  2810. curseg->alloc_type = ckpt->alloc_type[type];
  2811. curseg->next_blkoff = blk_off;
  2812. mutex_unlock(&curseg->curseg_mutex);
  2813. out:
  2814. f2fs_put_page(new, 1);
  2815. return err;
  2816. }
  2817. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2818. {
  2819. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2820. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2821. int type = CURSEG_HOT_DATA;
  2822. int err;
  2823. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2824. int npages = f2fs_npages_for_summary_flush(sbi, true);
  2825. if (npages >= 2)
  2826. f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2827. META_CP, true);
  2828. /* restore for compacted data summary */
  2829. err = read_compacted_summaries(sbi);
  2830. if (err)
  2831. return err;
  2832. type = CURSEG_HOT_NODE;
  2833. }
  2834. if (__exist_node_summaries(sbi))
  2835. f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2836. NR_CURSEG_TYPE - type, META_CP, true);
  2837. for (; type <= CURSEG_COLD_NODE; type++) {
  2838. err = read_normal_summaries(sbi, type);
  2839. if (err)
  2840. return err;
  2841. }
  2842. /* sanity check for summary blocks */
  2843. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2844. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2845. return -EINVAL;
  2846. return 0;
  2847. }
  2848. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2849. {
  2850. struct page *page;
  2851. unsigned char *kaddr;
  2852. struct f2fs_summary *summary;
  2853. struct curseg_info *seg_i;
  2854. int written_size = 0;
  2855. int i, j;
  2856. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2857. kaddr = (unsigned char *)page_address(page);
  2858. memset(kaddr, 0, PAGE_SIZE);
  2859. /* Step 1: write nat cache */
  2860. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2861. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2862. written_size += SUM_JOURNAL_SIZE;
  2863. /* Step 2: write sit cache */
  2864. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2865. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2866. written_size += SUM_JOURNAL_SIZE;
  2867. /* Step 3: write summary entries */
  2868. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2869. unsigned short blkoff;
  2870. seg_i = CURSEG_I(sbi, i);
  2871. if (sbi->ckpt->alloc_type[i] == SSR)
  2872. blkoff = sbi->blocks_per_seg;
  2873. else
  2874. blkoff = curseg_blkoff(sbi, i);
  2875. for (j = 0; j < blkoff; j++) {
  2876. if (!page) {
  2877. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2878. kaddr = (unsigned char *)page_address(page);
  2879. memset(kaddr, 0, PAGE_SIZE);
  2880. written_size = 0;
  2881. }
  2882. summary = (struct f2fs_summary *)(kaddr + written_size);
  2883. *summary = seg_i->sum_blk->entries[j];
  2884. written_size += SUMMARY_SIZE;
  2885. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2886. SUM_FOOTER_SIZE)
  2887. continue;
  2888. set_page_dirty(page);
  2889. f2fs_put_page(page, 1);
  2890. page = NULL;
  2891. }
  2892. }
  2893. if (page) {
  2894. set_page_dirty(page);
  2895. f2fs_put_page(page, 1);
  2896. }
  2897. }
  2898. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2899. block_t blkaddr, int type)
  2900. {
  2901. int i, end;
  2902. if (IS_DATASEG(type))
  2903. end = type + NR_CURSEG_DATA_TYPE;
  2904. else
  2905. end = type + NR_CURSEG_NODE_TYPE;
  2906. for (i = type; i < end; i++)
  2907. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2908. }
  2909. void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2910. {
  2911. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2912. write_compacted_summaries(sbi, start_blk);
  2913. else
  2914. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2915. }
  2916. void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2917. {
  2918. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2919. }
  2920. int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2921. unsigned int val, int alloc)
  2922. {
  2923. int i;
  2924. if (type == NAT_JOURNAL) {
  2925. for (i = 0; i < nats_in_cursum(journal); i++) {
  2926. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2927. return i;
  2928. }
  2929. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2930. return update_nats_in_cursum(journal, 1);
  2931. } else if (type == SIT_JOURNAL) {
  2932. for (i = 0; i < sits_in_cursum(journal); i++)
  2933. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2934. return i;
  2935. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2936. return update_sits_in_cursum(journal, 1);
  2937. }
  2938. return -1;
  2939. }
  2940. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2941. unsigned int segno)
  2942. {
  2943. return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
  2944. }
  2945. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2946. unsigned int start)
  2947. {
  2948. struct sit_info *sit_i = SIT_I(sbi);
  2949. struct page *page;
  2950. pgoff_t src_off, dst_off;
  2951. src_off = current_sit_addr(sbi, start);
  2952. dst_off = next_sit_addr(sbi, src_off);
  2953. page = f2fs_grab_meta_page(sbi, dst_off);
  2954. seg_info_to_sit_page(sbi, page, start);
  2955. set_page_dirty(page);
  2956. set_to_next_sit(sit_i, start);
  2957. return page;
  2958. }
  2959. static struct sit_entry_set *grab_sit_entry_set(void)
  2960. {
  2961. struct sit_entry_set *ses =
  2962. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2963. ses->entry_cnt = 0;
  2964. INIT_LIST_HEAD(&ses->set_list);
  2965. return ses;
  2966. }
  2967. static void release_sit_entry_set(struct sit_entry_set *ses)
  2968. {
  2969. list_del(&ses->set_list);
  2970. kmem_cache_free(sit_entry_set_slab, ses);
  2971. }
  2972. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2973. struct list_head *head)
  2974. {
  2975. struct sit_entry_set *next = ses;
  2976. if (list_is_last(&ses->set_list, head))
  2977. return;
  2978. list_for_each_entry_continue(next, head, set_list)
  2979. if (ses->entry_cnt <= next->entry_cnt)
  2980. break;
  2981. list_move_tail(&ses->set_list, &next->set_list);
  2982. }
  2983. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2984. {
  2985. struct sit_entry_set *ses;
  2986. unsigned int start_segno = START_SEGNO(segno);
  2987. list_for_each_entry(ses, head, set_list) {
  2988. if (ses->start_segno == start_segno) {
  2989. ses->entry_cnt++;
  2990. adjust_sit_entry_set(ses, head);
  2991. return;
  2992. }
  2993. }
  2994. ses = grab_sit_entry_set();
  2995. ses->start_segno = start_segno;
  2996. ses->entry_cnt++;
  2997. list_add(&ses->set_list, head);
  2998. }
  2999. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  3000. {
  3001. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3002. struct list_head *set_list = &sm_info->sit_entry_set;
  3003. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  3004. unsigned int segno;
  3005. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  3006. add_sit_entry(segno, set_list);
  3007. }
  3008. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  3009. {
  3010. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3011. struct f2fs_journal *journal = curseg->journal;
  3012. int i;
  3013. down_write(&curseg->journal_rwsem);
  3014. for (i = 0; i < sits_in_cursum(journal); i++) {
  3015. unsigned int segno;
  3016. bool dirtied;
  3017. segno = le32_to_cpu(segno_in_journal(journal, i));
  3018. dirtied = __mark_sit_entry_dirty(sbi, segno);
  3019. if (!dirtied)
  3020. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  3021. }
  3022. update_sits_in_cursum(journal, -i);
  3023. up_write(&curseg->journal_rwsem);
  3024. }
  3025. /*
  3026. * CP calls this function, which flushes SIT entries including sit_journal,
  3027. * and moves prefree segs to free segs.
  3028. */
  3029. void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  3030. {
  3031. struct sit_info *sit_i = SIT_I(sbi);
  3032. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  3033. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3034. struct f2fs_journal *journal = curseg->journal;
  3035. struct sit_entry_set *ses, *tmp;
  3036. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  3037. bool to_journal = true;
  3038. struct seg_entry *se;
  3039. down_write(&sit_i->sentry_lock);
  3040. if (!sit_i->dirty_sentries)
  3041. goto out;
  3042. /*
  3043. * add and account sit entries of dirty bitmap in sit entry
  3044. * set temporarily
  3045. */
  3046. add_sits_in_set(sbi);
  3047. /*
  3048. * if there are no enough space in journal to store dirty sit
  3049. * entries, remove all entries from journal and add and account
  3050. * them in sit entry set.
  3051. */
  3052. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  3053. remove_sits_in_journal(sbi);
  3054. /*
  3055. * there are two steps to flush sit entries:
  3056. * #1, flush sit entries to journal in current cold data summary block.
  3057. * #2, flush sit entries to sit page.
  3058. */
  3059. list_for_each_entry_safe(ses, tmp, head, set_list) {
  3060. struct page *page = NULL;
  3061. struct f2fs_sit_block *raw_sit = NULL;
  3062. unsigned int start_segno = ses->start_segno;
  3063. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  3064. (unsigned long)MAIN_SEGS(sbi));
  3065. unsigned int segno = start_segno;
  3066. if (to_journal &&
  3067. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  3068. to_journal = false;
  3069. if (to_journal) {
  3070. down_write(&curseg->journal_rwsem);
  3071. } else {
  3072. page = get_next_sit_page(sbi, start_segno);
  3073. raw_sit = page_address(page);
  3074. }
  3075. /* flush dirty sit entries in region of current sit set */
  3076. for_each_set_bit_from(segno, bitmap, end) {
  3077. int offset, sit_offset;
  3078. se = get_seg_entry(sbi, segno);
  3079. #ifdef CONFIG_F2FS_CHECK_FS
  3080. if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
  3081. SIT_VBLOCK_MAP_SIZE))
  3082. f2fs_bug_on(sbi, 1);
  3083. #endif
  3084. /* add discard candidates */
  3085. if (!(cpc->reason & CP_DISCARD)) {
  3086. cpc->trim_start = segno;
  3087. add_discard_addrs(sbi, cpc, false);
  3088. }
  3089. if (to_journal) {
  3090. offset = f2fs_lookup_journal_in_cursum(journal,
  3091. SIT_JOURNAL, segno, 1);
  3092. f2fs_bug_on(sbi, offset < 0);
  3093. segno_in_journal(journal, offset) =
  3094. cpu_to_le32(segno);
  3095. seg_info_to_raw_sit(se,
  3096. &sit_in_journal(journal, offset));
  3097. check_block_count(sbi, segno,
  3098. &sit_in_journal(journal, offset));
  3099. } else {
  3100. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  3101. seg_info_to_raw_sit(se,
  3102. &raw_sit->entries[sit_offset]);
  3103. check_block_count(sbi, segno,
  3104. &raw_sit->entries[sit_offset]);
  3105. }
  3106. __clear_bit(segno, bitmap);
  3107. sit_i->dirty_sentries--;
  3108. ses->entry_cnt--;
  3109. }
  3110. if (to_journal)
  3111. up_write(&curseg->journal_rwsem);
  3112. else
  3113. f2fs_put_page(page, 1);
  3114. f2fs_bug_on(sbi, ses->entry_cnt);
  3115. release_sit_entry_set(ses);
  3116. }
  3117. f2fs_bug_on(sbi, !list_empty(head));
  3118. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  3119. out:
  3120. if (cpc->reason & CP_DISCARD) {
  3121. __u64 trim_start = cpc->trim_start;
  3122. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  3123. add_discard_addrs(sbi, cpc, false);
  3124. cpc->trim_start = trim_start;
  3125. }
  3126. up_write(&sit_i->sentry_lock);
  3127. set_prefree_as_free_segments(sbi);
  3128. }
  3129. static int build_sit_info(struct f2fs_sb_info *sbi)
  3130. {
  3131. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3132. struct sit_info *sit_i;
  3133. unsigned int sit_segs, start;
  3134. char *src_bitmap;
  3135. unsigned int bitmap_size;
  3136. /* allocate memory for SIT information */
  3137. sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
  3138. if (!sit_i)
  3139. return -ENOMEM;
  3140. SM_I(sbi)->sit_info = sit_i;
  3141. sit_i->sentries =
  3142. f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
  3143. MAIN_SEGS(sbi)),
  3144. GFP_KERNEL);
  3145. if (!sit_i->sentries)
  3146. return -ENOMEM;
  3147. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3148. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
  3149. GFP_KERNEL);
  3150. if (!sit_i->dirty_sentries_bitmap)
  3151. return -ENOMEM;
  3152. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3153. sit_i->sentries[start].cur_valid_map
  3154. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3155. sit_i->sentries[start].ckpt_valid_map
  3156. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3157. if (!sit_i->sentries[start].cur_valid_map ||
  3158. !sit_i->sentries[start].ckpt_valid_map)
  3159. return -ENOMEM;
  3160. #ifdef CONFIG_F2FS_CHECK_FS
  3161. sit_i->sentries[start].cur_valid_map_mir
  3162. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3163. if (!sit_i->sentries[start].cur_valid_map_mir)
  3164. return -ENOMEM;
  3165. #endif
  3166. sit_i->sentries[start].discard_map
  3167. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
  3168. GFP_KERNEL);
  3169. if (!sit_i->sentries[start].discard_map)
  3170. return -ENOMEM;
  3171. }
  3172. sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  3173. if (!sit_i->tmp_map)
  3174. return -ENOMEM;
  3175. if (sbi->segs_per_sec > 1) {
  3176. sit_i->sec_entries =
  3177. f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
  3178. MAIN_SECS(sbi)),
  3179. GFP_KERNEL);
  3180. if (!sit_i->sec_entries)
  3181. return -ENOMEM;
  3182. }
  3183. /* get information related with SIT */
  3184. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  3185. /* setup SIT bitmap from ckeckpoint pack */
  3186. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  3187. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  3188. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3189. if (!sit_i->sit_bitmap)
  3190. return -ENOMEM;
  3191. #ifdef CONFIG_F2FS_CHECK_FS
  3192. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  3193. if (!sit_i->sit_bitmap_mir)
  3194. return -ENOMEM;
  3195. #endif
  3196. /* init SIT information */
  3197. sit_i->s_ops = &default_salloc_ops;
  3198. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  3199. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  3200. sit_i->written_valid_blocks = 0;
  3201. sit_i->bitmap_size = bitmap_size;
  3202. sit_i->dirty_sentries = 0;
  3203. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  3204. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  3205. sit_i->mounted_time = ktime_get_real_seconds();
  3206. init_rwsem(&sit_i->sentry_lock);
  3207. return 0;
  3208. }
  3209. static int build_free_segmap(struct f2fs_sb_info *sbi)
  3210. {
  3211. struct free_segmap_info *free_i;
  3212. unsigned int bitmap_size, sec_bitmap_size;
  3213. /* allocate memory for free segmap information */
  3214. free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
  3215. if (!free_i)
  3216. return -ENOMEM;
  3217. SM_I(sbi)->free_info = free_i;
  3218. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3219. free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
  3220. if (!free_i->free_segmap)
  3221. return -ENOMEM;
  3222. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3223. free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
  3224. if (!free_i->free_secmap)
  3225. return -ENOMEM;
  3226. /* set all segments as dirty temporarily */
  3227. memset(free_i->free_segmap, 0xff, bitmap_size);
  3228. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  3229. /* init free segmap information */
  3230. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  3231. free_i->free_segments = 0;
  3232. free_i->free_sections = 0;
  3233. spin_lock_init(&free_i->segmap_lock);
  3234. return 0;
  3235. }
  3236. static int build_curseg(struct f2fs_sb_info *sbi)
  3237. {
  3238. struct curseg_info *array;
  3239. int i;
  3240. array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
  3241. GFP_KERNEL);
  3242. if (!array)
  3243. return -ENOMEM;
  3244. SM_I(sbi)->curseg_array = array;
  3245. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3246. mutex_init(&array[i].curseg_mutex);
  3247. array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
  3248. if (!array[i].sum_blk)
  3249. return -ENOMEM;
  3250. init_rwsem(&array[i].journal_rwsem);
  3251. array[i].journal = f2fs_kzalloc(sbi,
  3252. sizeof(struct f2fs_journal), GFP_KERNEL);
  3253. if (!array[i].journal)
  3254. return -ENOMEM;
  3255. array[i].segno = NULL_SEGNO;
  3256. array[i].next_blkoff = 0;
  3257. }
  3258. return restore_curseg_summaries(sbi);
  3259. }
  3260. static int build_sit_entries(struct f2fs_sb_info *sbi)
  3261. {
  3262. struct sit_info *sit_i = SIT_I(sbi);
  3263. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3264. struct f2fs_journal *journal = curseg->journal;
  3265. struct seg_entry *se;
  3266. struct f2fs_sit_entry sit;
  3267. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  3268. unsigned int i, start, end;
  3269. unsigned int readed, start_blk = 0;
  3270. int err = 0;
  3271. block_t total_node_blocks = 0;
  3272. do {
  3273. readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  3274. META_SIT, true);
  3275. start = start_blk * sit_i->sents_per_block;
  3276. end = (start_blk + readed) * sit_i->sents_per_block;
  3277. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  3278. struct f2fs_sit_block *sit_blk;
  3279. struct page *page;
  3280. se = &sit_i->sentries[start];
  3281. page = get_current_sit_page(sbi, start);
  3282. sit_blk = (struct f2fs_sit_block *)page_address(page);
  3283. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  3284. f2fs_put_page(page, 1);
  3285. err = check_block_count(sbi, start, &sit);
  3286. if (err)
  3287. return err;
  3288. seg_info_from_raw_sit(se, &sit);
  3289. if (IS_NODESEG(se->type))
  3290. total_node_blocks += se->valid_blocks;
  3291. /* build discard map only one time */
  3292. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3293. memset(se->discard_map, 0xff,
  3294. SIT_VBLOCK_MAP_SIZE);
  3295. } else {
  3296. memcpy(se->discard_map,
  3297. se->cur_valid_map,
  3298. SIT_VBLOCK_MAP_SIZE);
  3299. sbi->discard_blks +=
  3300. sbi->blocks_per_seg -
  3301. se->valid_blocks;
  3302. }
  3303. if (sbi->segs_per_sec > 1)
  3304. get_sec_entry(sbi, start)->valid_blocks +=
  3305. se->valid_blocks;
  3306. }
  3307. start_blk += readed;
  3308. } while (start_blk < sit_blk_cnt);
  3309. down_read(&curseg->journal_rwsem);
  3310. for (i = 0; i < sits_in_cursum(journal); i++) {
  3311. unsigned int old_valid_blocks;
  3312. start = le32_to_cpu(segno_in_journal(journal, i));
  3313. if (start >= MAIN_SEGS(sbi)) {
  3314. f2fs_msg(sbi->sb, KERN_ERR,
  3315. "Wrong journal entry on segno %u",
  3316. start);
  3317. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3318. err = -EFSCORRUPTED;
  3319. break;
  3320. }
  3321. se = &sit_i->sentries[start];
  3322. sit = sit_in_journal(journal, i);
  3323. old_valid_blocks = se->valid_blocks;
  3324. if (IS_NODESEG(se->type))
  3325. total_node_blocks -= old_valid_blocks;
  3326. err = check_block_count(sbi, start, &sit);
  3327. if (err)
  3328. break;
  3329. seg_info_from_raw_sit(se, &sit);
  3330. if (IS_NODESEG(se->type))
  3331. total_node_blocks += se->valid_blocks;
  3332. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3333. memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
  3334. } else {
  3335. memcpy(se->discard_map, se->cur_valid_map,
  3336. SIT_VBLOCK_MAP_SIZE);
  3337. sbi->discard_blks += old_valid_blocks;
  3338. sbi->discard_blks -= se->valid_blocks;
  3339. }
  3340. if (sbi->segs_per_sec > 1) {
  3341. get_sec_entry(sbi, start)->valid_blocks +=
  3342. se->valid_blocks;
  3343. get_sec_entry(sbi, start)->valid_blocks -=
  3344. old_valid_blocks;
  3345. }
  3346. }
  3347. up_read(&curseg->journal_rwsem);
  3348. if (!err && total_node_blocks != valid_node_count(sbi)) {
  3349. f2fs_msg(sbi->sb, KERN_ERR,
  3350. "SIT is corrupted node# %u vs %u",
  3351. total_node_blocks, valid_node_count(sbi));
  3352. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3353. err = -EFSCORRUPTED;
  3354. }
  3355. return err;
  3356. }
  3357. static void init_free_segmap(struct f2fs_sb_info *sbi)
  3358. {
  3359. unsigned int start;
  3360. int type;
  3361. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3362. struct seg_entry *sentry = get_seg_entry(sbi, start);
  3363. if (!sentry->valid_blocks)
  3364. __set_free(sbi, start);
  3365. else
  3366. SIT_I(sbi)->written_valid_blocks +=
  3367. sentry->valid_blocks;
  3368. }
  3369. /* set use the current segments */
  3370. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  3371. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  3372. __set_test_and_inuse(sbi, curseg_t->segno);
  3373. }
  3374. }
  3375. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  3376. {
  3377. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3378. struct free_segmap_info *free_i = FREE_I(sbi);
  3379. unsigned int segno = 0, offset = 0;
  3380. unsigned short valid_blocks;
  3381. while (1) {
  3382. /* find dirty segment based on free segmap */
  3383. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  3384. if (segno >= MAIN_SEGS(sbi))
  3385. break;
  3386. offset = segno + 1;
  3387. valid_blocks = get_valid_blocks(sbi, segno, false);
  3388. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  3389. continue;
  3390. if (valid_blocks > sbi->blocks_per_seg) {
  3391. f2fs_bug_on(sbi, 1);
  3392. continue;
  3393. }
  3394. mutex_lock(&dirty_i->seglist_lock);
  3395. __locate_dirty_segment(sbi, segno, DIRTY);
  3396. mutex_unlock(&dirty_i->seglist_lock);
  3397. }
  3398. }
  3399. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  3400. {
  3401. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3402. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3403. dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
  3404. if (!dirty_i->victim_secmap)
  3405. return -ENOMEM;
  3406. return 0;
  3407. }
  3408. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  3409. {
  3410. struct dirty_seglist_info *dirty_i;
  3411. unsigned int bitmap_size, i;
  3412. /* allocate memory for dirty segments list information */
  3413. dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
  3414. GFP_KERNEL);
  3415. if (!dirty_i)
  3416. return -ENOMEM;
  3417. SM_I(sbi)->dirty_info = dirty_i;
  3418. mutex_init(&dirty_i->seglist_lock);
  3419. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3420. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  3421. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
  3422. GFP_KERNEL);
  3423. if (!dirty_i->dirty_segmap[i])
  3424. return -ENOMEM;
  3425. }
  3426. init_dirty_segmap(sbi);
  3427. return init_victim_secmap(sbi);
  3428. }
  3429. static int sanity_check_curseg(struct f2fs_sb_info *sbi)
  3430. {
  3431. int i;
  3432. /*
  3433. * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
  3434. * In LFS curseg, all blkaddr after .next_blkoff should be unused.
  3435. */
  3436. for (i = 0; i < NO_CHECK_TYPE; i++) {
  3437. struct curseg_info *curseg = CURSEG_I(sbi, i);
  3438. struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
  3439. unsigned int blkofs = curseg->next_blkoff;
  3440. if (f2fs_test_bit(blkofs, se->cur_valid_map))
  3441. goto out;
  3442. if (curseg->alloc_type == SSR)
  3443. continue;
  3444. for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
  3445. if (!f2fs_test_bit(blkofs, se->cur_valid_map))
  3446. continue;
  3447. out:
  3448. f2fs_msg(sbi->sb, KERN_ERR,
  3449. "Current segment's next free block offset is "
  3450. "inconsistent with bitmap, logtype:%u, "
  3451. "segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
  3452. i, curseg->segno, curseg->alloc_type,
  3453. curseg->next_blkoff, blkofs);
  3454. return -EFSCORRUPTED;
  3455. }
  3456. }
  3457. return 0;
  3458. }
  3459. /*
  3460. * Update min, max modified time for cost-benefit GC algorithm
  3461. */
  3462. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  3463. {
  3464. struct sit_info *sit_i = SIT_I(sbi);
  3465. unsigned int segno;
  3466. down_write(&sit_i->sentry_lock);
  3467. sit_i->min_mtime = ULLONG_MAX;
  3468. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  3469. unsigned int i;
  3470. unsigned long long mtime = 0;
  3471. for (i = 0; i < sbi->segs_per_sec; i++)
  3472. mtime += get_seg_entry(sbi, segno + i)->mtime;
  3473. mtime = div_u64(mtime, sbi->segs_per_sec);
  3474. if (sit_i->min_mtime > mtime)
  3475. sit_i->min_mtime = mtime;
  3476. }
  3477. sit_i->max_mtime = get_mtime(sbi, false);
  3478. up_write(&sit_i->sentry_lock);
  3479. }
  3480. int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
  3481. {
  3482. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3483. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  3484. struct f2fs_sm_info *sm_info;
  3485. int err;
  3486. sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
  3487. if (!sm_info)
  3488. return -ENOMEM;
  3489. /* init sm info */
  3490. sbi->sm_info = sm_info;
  3491. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  3492. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  3493. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3494. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3495. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3496. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3497. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3498. sm_info->rec_prefree_segments = sm_info->main_segments *
  3499. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3500. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3501. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3502. if (!test_opt(sbi, LFS))
  3503. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3504. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3505. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3506. sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
  3507. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3508. sm_info->min_ssr_sections = reserved_sections(sbi);
  3509. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3510. init_rwsem(&sm_info->curseg_lock);
  3511. if (!f2fs_readonly(sbi->sb)) {
  3512. err = f2fs_create_flush_cmd_control(sbi);
  3513. if (err)
  3514. return err;
  3515. }
  3516. err = create_discard_cmd_control(sbi);
  3517. if (err)
  3518. return err;
  3519. err = build_sit_info(sbi);
  3520. if (err)
  3521. return err;
  3522. err = build_free_segmap(sbi);
  3523. if (err)
  3524. return err;
  3525. err = build_curseg(sbi);
  3526. if (err)
  3527. return err;
  3528. /* reinit free segmap based on SIT */
  3529. err = build_sit_entries(sbi);
  3530. if (err)
  3531. return err;
  3532. init_free_segmap(sbi);
  3533. err = build_dirty_segmap(sbi);
  3534. if (err)
  3535. return err;
  3536. err = sanity_check_curseg(sbi);
  3537. if (err)
  3538. return err;
  3539. init_min_max_mtime(sbi);
  3540. return 0;
  3541. }
  3542. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3543. enum dirty_type dirty_type)
  3544. {
  3545. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3546. mutex_lock(&dirty_i->seglist_lock);
  3547. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3548. dirty_i->nr_dirty[dirty_type] = 0;
  3549. mutex_unlock(&dirty_i->seglist_lock);
  3550. }
  3551. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3552. {
  3553. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3554. kvfree(dirty_i->victim_secmap);
  3555. }
  3556. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3557. {
  3558. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3559. int i;
  3560. if (!dirty_i)
  3561. return;
  3562. /* discard pre-free/dirty segments list */
  3563. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3564. discard_dirty_segmap(sbi, i);
  3565. destroy_victim_secmap(sbi);
  3566. SM_I(sbi)->dirty_info = NULL;
  3567. kfree(dirty_i);
  3568. }
  3569. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3570. {
  3571. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3572. int i;
  3573. if (!array)
  3574. return;
  3575. SM_I(sbi)->curseg_array = NULL;
  3576. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3577. kfree(array[i].sum_blk);
  3578. kfree(array[i].journal);
  3579. }
  3580. kfree(array);
  3581. }
  3582. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3583. {
  3584. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3585. if (!free_i)
  3586. return;
  3587. SM_I(sbi)->free_info = NULL;
  3588. kvfree(free_i->free_segmap);
  3589. kvfree(free_i->free_secmap);
  3590. kfree(free_i);
  3591. }
  3592. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3593. {
  3594. struct sit_info *sit_i = SIT_I(sbi);
  3595. unsigned int start;
  3596. if (!sit_i)
  3597. return;
  3598. if (sit_i->sentries) {
  3599. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3600. kfree(sit_i->sentries[start].cur_valid_map);
  3601. #ifdef CONFIG_F2FS_CHECK_FS
  3602. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3603. #endif
  3604. kfree(sit_i->sentries[start].ckpt_valid_map);
  3605. kfree(sit_i->sentries[start].discard_map);
  3606. }
  3607. }
  3608. kfree(sit_i->tmp_map);
  3609. kvfree(sit_i->sentries);
  3610. kvfree(sit_i->sec_entries);
  3611. kvfree(sit_i->dirty_sentries_bitmap);
  3612. SM_I(sbi)->sit_info = NULL;
  3613. kfree(sit_i->sit_bitmap);
  3614. #ifdef CONFIG_F2FS_CHECK_FS
  3615. kfree(sit_i->sit_bitmap_mir);
  3616. #endif
  3617. kfree(sit_i);
  3618. }
  3619. void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
  3620. {
  3621. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3622. if (!sm_info)
  3623. return;
  3624. f2fs_destroy_flush_cmd_control(sbi, true);
  3625. destroy_discard_cmd_control(sbi);
  3626. destroy_dirty_segmap(sbi);
  3627. destroy_curseg(sbi);
  3628. destroy_free_segmap(sbi);
  3629. destroy_sit_info(sbi);
  3630. sbi->sm_info = NULL;
  3631. kfree(sm_info);
  3632. }
  3633. int __init f2fs_create_segment_manager_caches(void)
  3634. {
  3635. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3636. sizeof(struct discard_entry));
  3637. if (!discard_entry_slab)
  3638. goto fail;
  3639. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3640. sizeof(struct discard_cmd));
  3641. if (!discard_cmd_slab)
  3642. goto destroy_discard_entry;
  3643. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3644. sizeof(struct sit_entry_set));
  3645. if (!sit_entry_set_slab)
  3646. goto destroy_discard_cmd;
  3647. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3648. sizeof(struct inmem_pages));
  3649. if (!inmem_entry_slab)
  3650. goto destroy_sit_entry_set;
  3651. return 0;
  3652. destroy_sit_entry_set:
  3653. kmem_cache_destroy(sit_entry_set_slab);
  3654. destroy_discard_cmd:
  3655. kmem_cache_destroy(discard_cmd_slab);
  3656. destroy_discard_entry:
  3657. kmem_cache_destroy(discard_entry_slab);
  3658. fail:
  3659. return -ENOMEM;
  3660. }
  3661. void f2fs_destroy_segment_manager_caches(void)
  3662. {
  3663. kmem_cache_destroy(sit_entry_set_slab);
  3664. kmem_cache_destroy(discard_cmd_slab);
  3665. kmem_cache_destroy(discard_entry_slab);
  3666. kmem_cache_destroy(inmem_entry_slab);
  3667. }