tree.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/ftrace_event.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include "rcu.h"
  61. MODULE_ALIAS("rcutree");
  62. #ifdef MODULE_PARAM_PREFIX
  63. #undef MODULE_PARAM_PREFIX
  64. #endif
  65. #define MODULE_PARAM_PREFIX "rcutree."
  66. /* Data structures. */
  67. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  68. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  69. /*
  70. * In order to export the rcu_state name to the tracing tools, it
  71. * needs to be added in the __tracepoint_string section.
  72. * This requires defining a separate variable tp_<sname>_varname
  73. * that points to the string being used, and this will allow
  74. * the tracing userspace tools to be able to decipher the string
  75. * address to the matching string.
  76. */
  77. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  78. static char sname##_varname[] = #sname; \
  79. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
  80. struct rcu_state sname##_state = { \
  81. .level = { &sname##_state.node[0] }, \
  82. .call = cr, \
  83. .fqs_state = RCU_GP_IDLE, \
  84. .gpnum = 0UL - 300UL, \
  85. .completed = 0UL - 300UL, \
  86. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  87. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  88. .orphan_donetail = &sname##_state.orphan_donelist, \
  89. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  90. .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  91. .name = sname##_varname, \
  92. .abbr = sabbr, \
  93. }; \
  94. DEFINE_PER_CPU(struct rcu_data, sname##_data)
  95. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  96. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  97. static struct rcu_state *rcu_state;
  98. LIST_HEAD(rcu_struct_flavors);
  99. /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
  100. static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
  101. module_param(rcu_fanout_leaf, int, 0444);
  102. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  103. static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
  104. NUM_RCU_LVL_0,
  105. NUM_RCU_LVL_1,
  106. NUM_RCU_LVL_2,
  107. NUM_RCU_LVL_3,
  108. NUM_RCU_LVL_4,
  109. };
  110. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  111. /*
  112. * The rcu_scheduler_active variable transitions from zero to one just
  113. * before the first task is spawned. So when this variable is zero, RCU
  114. * can assume that there is but one task, allowing RCU to (for example)
  115. * optimize synchronize_sched() to a simple barrier(). When this variable
  116. * is one, RCU must actually do all the hard work required to detect real
  117. * grace periods. This variable is also used to suppress boot-time false
  118. * positives from lockdep-RCU error checking.
  119. */
  120. int rcu_scheduler_active __read_mostly;
  121. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  122. /*
  123. * The rcu_scheduler_fully_active variable transitions from zero to one
  124. * during the early_initcall() processing, which is after the scheduler
  125. * is capable of creating new tasks. So RCU processing (for example,
  126. * creating tasks for RCU priority boosting) must be delayed until after
  127. * rcu_scheduler_fully_active transitions from zero to one. We also
  128. * currently delay invocation of any RCU callbacks until after this point.
  129. *
  130. * It might later prove better for people registering RCU callbacks during
  131. * early boot to take responsibility for these callbacks, but one step at
  132. * a time.
  133. */
  134. static int rcu_scheduler_fully_active __read_mostly;
  135. #ifdef CONFIG_RCU_BOOST
  136. /*
  137. * Control variables for per-CPU and per-rcu_node kthreads. These
  138. * handle all flavors of RCU.
  139. */
  140. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  141. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  142. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  143. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  144. #endif /* #ifdef CONFIG_RCU_BOOST */
  145. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  146. static void invoke_rcu_core(void);
  147. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  148. /*
  149. * Track the rcutorture test sequence number and the update version
  150. * number within a given test. The rcutorture_testseq is incremented
  151. * on every rcutorture module load and unload, so has an odd value
  152. * when a test is running. The rcutorture_vernum is set to zero
  153. * when rcutorture starts and is incremented on each rcutorture update.
  154. * These variables enable correlating rcutorture output with the
  155. * RCU tracing information.
  156. */
  157. unsigned long rcutorture_testseq;
  158. unsigned long rcutorture_vernum;
  159. /*
  160. * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
  161. * permit this function to be invoked without holding the root rcu_node
  162. * structure's ->lock, but of course results can be subject to change.
  163. */
  164. static int rcu_gp_in_progress(struct rcu_state *rsp)
  165. {
  166. return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  167. }
  168. /*
  169. * Note a quiescent state. Because we do not need to know
  170. * how many quiescent states passed, just if there was at least
  171. * one since the start of the grace period, this just sets a flag.
  172. * The caller must have disabled preemption.
  173. */
  174. void rcu_sched_qs(int cpu)
  175. {
  176. struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
  177. if (rdp->passed_quiesce == 0)
  178. trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
  179. rdp->passed_quiesce = 1;
  180. }
  181. void rcu_bh_qs(int cpu)
  182. {
  183. struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
  184. if (rdp->passed_quiesce == 0)
  185. trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
  186. rdp->passed_quiesce = 1;
  187. }
  188. /*
  189. * Note a context switch. This is a quiescent state for RCU-sched,
  190. * and requires special handling for preemptible RCU.
  191. * The caller must have disabled preemption.
  192. */
  193. void rcu_note_context_switch(int cpu)
  194. {
  195. trace_rcu_utilization(TPS("Start context switch"));
  196. rcu_sched_qs(cpu);
  197. rcu_preempt_note_context_switch(cpu);
  198. trace_rcu_utilization(TPS("End context switch"));
  199. }
  200. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  201. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  202. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  203. .dynticks = ATOMIC_INIT(1),
  204. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  205. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  206. .dynticks_idle = ATOMIC_INIT(1),
  207. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  208. };
  209. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  210. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  211. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  212. module_param(blimit, long, 0444);
  213. module_param(qhimark, long, 0444);
  214. module_param(qlowmark, long, 0444);
  215. static ulong jiffies_till_first_fqs = ULONG_MAX;
  216. static ulong jiffies_till_next_fqs = ULONG_MAX;
  217. module_param(jiffies_till_first_fqs, ulong, 0644);
  218. module_param(jiffies_till_next_fqs, ulong, 0644);
  219. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  220. struct rcu_data *rdp);
  221. static void force_qs_rnp(struct rcu_state *rsp,
  222. int (*f)(struct rcu_data *rsp, bool *isidle,
  223. unsigned long *maxj),
  224. bool *isidle, unsigned long *maxj);
  225. static void force_quiescent_state(struct rcu_state *rsp);
  226. static int rcu_pending(int cpu);
  227. /*
  228. * Return the number of RCU-sched batches processed thus far for debug & stats.
  229. */
  230. long rcu_batches_completed_sched(void)
  231. {
  232. return rcu_sched_state.completed;
  233. }
  234. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  235. /*
  236. * Return the number of RCU BH batches processed thus far for debug & stats.
  237. */
  238. long rcu_batches_completed_bh(void)
  239. {
  240. return rcu_bh_state.completed;
  241. }
  242. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  243. /*
  244. * Force a quiescent state for RCU BH.
  245. */
  246. void rcu_bh_force_quiescent_state(void)
  247. {
  248. force_quiescent_state(&rcu_bh_state);
  249. }
  250. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  251. /*
  252. * Record the number of times rcutorture tests have been initiated and
  253. * terminated. This information allows the debugfs tracing stats to be
  254. * correlated to the rcutorture messages, even when the rcutorture module
  255. * is being repeatedly loaded and unloaded. In other words, we cannot
  256. * store this state in rcutorture itself.
  257. */
  258. void rcutorture_record_test_transition(void)
  259. {
  260. rcutorture_testseq++;
  261. rcutorture_vernum = 0;
  262. }
  263. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  264. /*
  265. * Record the number of writer passes through the current rcutorture test.
  266. * This is also used to correlate debugfs tracing stats with the rcutorture
  267. * messages.
  268. */
  269. void rcutorture_record_progress(unsigned long vernum)
  270. {
  271. rcutorture_vernum++;
  272. }
  273. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  274. /*
  275. * Force a quiescent state for RCU-sched.
  276. */
  277. void rcu_sched_force_quiescent_state(void)
  278. {
  279. force_quiescent_state(&rcu_sched_state);
  280. }
  281. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  282. /*
  283. * Does the CPU have callbacks ready to be invoked?
  284. */
  285. static int
  286. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  287. {
  288. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  289. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  290. }
  291. /*
  292. * Return the root node of the specified rcu_state structure.
  293. */
  294. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  295. {
  296. return &rsp->node[0];
  297. }
  298. /*
  299. * Is there any need for future grace periods?
  300. * Interrupts must be disabled. If the caller does not hold the root
  301. * rnp_node structure's ->lock, the results are advisory only.
  302. */
  303. static int rcu_future_needs_gp(struct rcu_state *rsp)
  304. {
  305. struct rcu_node *rnp = rcu_get_root(rsp);
  306. int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
  307. int *fp = &rnp->need_future_gp[idx];
  308. return ACCESS_ONCE(*fp);
  309. }
  310. /*
  311. * Does the current CPU require a not-yet-started grace period?
  312. * The caller must have disabled interrupts to prevent races with
  313. * normal callback registry.
  314. */
  315. static int
  316. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  317. {
  318. int i;
  319. if (rcu_gp_in_progress(rsp))
  320. return 0; /* No, a grace period is already in progress. */
  321. if (rcu_future_needs_gp(rsp))
  322. return 1; /* Yes, a no-CBs CPU needs one. */
  323. if (!rdp->nxttail[RCU_NEXT_TAIL])
  324. return 0; /* No, this is a no-CBs (or offline) CPU. */
  325. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  326. return 1; /* Yes, this CPU has newly registered callbacks. */
  327. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  328. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  329. ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
  330. rdp->nxtcompleted[i]))
  331. return 1; /* Yes, CBs for future grace period. */
  332. return 0; /* No grace period needed. */
  333. }
  334. /*
  335. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  336. *
  337. * If the new value of the ->dynticks_nesting counter now is zero,
  338. * we really have entered idle, and must do the appropriate accounting.
  339. * The caller must have disabled interrupts.
  340. */
  341. static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
  342. bool user)
  343. {
  344. struct rcu_state *rsp;
  345. struct rcu_data *rdp;
  346. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  347. if (!user && !is_idle_task(current)) {
  348. struct task_struct *idle __maybe_unused =
  349. idle_task(smp_processor_id());
  350. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  351. ftrace_dump(DUMP_ORIG);
  352. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  353. current->pid, current->comm,
  354. idle->pid, idle->comm); /* must be idle task! */
  355. }
  356. for_each_rcu_flavor(rsp) {
  357. rdp = this_cpu_ptr(rsp->rda);
  358. do_nocb_deferred_wakeup(rdp);
  359. }
  360. rcu_prepare_for_idle(smp_processor_id());
  361. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  362. smp_mb__before_atomic_inc(); /* See above. */
  363. atomic_inc(&rdtp->dynticks);
  364. smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
  365. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  366. /*
  367. * It is illegal to enter an extended quiescent state while
  368. * in an RCU read-side critical section.
  369. */
  370. rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
  371. "Illegal idle entry in RCU read-side critical section.");
  372. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
  373. "Illegal idle entry in RCU-bh read-side critical section.");
  374. rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
  375. "Illegal idle entry in RCU-sched read-side critical section.");
  376. }
  377. /*
  378. * Enter an RCU extended quiescent state, which can be either the
  379. * idle loop or adaptive-tickless usermode execution.
  380. */
  381. static void rcu_eqs_enter(bool user)
  382. {
  383. long long oldval;
  384. struct rcu_dynticks *rdtp;
  385. rdtp = this_cpu_ptr(&rcu_dynticks);
  386. oldval = rdtp->dynticks_nesting;
  387. WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
  388. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
  389. rdtp->dynticks_nesting = 0;
  390. rcu_eqs_enter_common(rdtp, oldval, user);
  391. } else {
  392. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  393. }
  394. }
  395. /**
  396. * rcu_idle_enter - inform RCU that current CPU is entering idle
  397. *
  398. * Enter idle mode, in other words, -leave- the mode in which RCU
  399. * read-side critical sections can occur. (Though RCU read-side
  400. * critical sections can occur in irq handlers in idle, a possibility
  401. * handled by irq_enter() and irq_exit().)
  402. *
  403. * We crowbar the ->dynticks_nesting field to zero to allow for
  404. * the possibility of usermode upcalls having messed up our count
  405. * of interrupt nesting level during the prior busy period.
  406. */
  407. void rcu_idle_enter(void)
  408. {
  409. unsigned long flags;
  410. local_irq_save(flags);
  411. rcu_eqs_enter(false);
  412. rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
  413. local_irq_restore(flags);
  414. }
  415. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  416. #ifdef CONFIG_RCU_USER_QS
  417. /**
  418. * rcu_user_enter - inform RCU that we are resuming userspace.
  419. *
  420. * Enter RCU idle mode right before resuming userspace. No use of RCU
  421. * is permitted between this call and rcu_user_exit(). This way the
  422. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  423. * when the CPU runs in userspace.
  424. */
  425. void rcu_user_enter(void)
  426. {
  427. rcu_eqs_enter(1);
  428. }
  429. #endif /* CONFIG_RCU_USER_QS */
  430. /**
  431. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  432. *
  433. * Exit from an interrupt handler, which might possibly result in entering
  434. * idle mode, in other words, leaving the mode in which read-side critical
  435. * sections can occur.
  436. *
  437. * This code assumes that the idle loop never does anything that might
  438. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  439. * architecture violates this assumption, RCU will give you what you
  440. * deserve, good and hard. But very infrequently and irreproducibly.
  441. *
  442. * Use things like work queues to work around this limitation.
  443. *
  444. * You have been warned.
  445. */
  446. void rcu_irq_exit(void)
  447. {
  448. unsigned long flags;
  449. long long oldval;
  450. struct rcu_dynticks *rdtp;
  451. local_irq_save(flags);
  452. rdtp = this_cpu_ptr(&rcu_dynticks);
  453. oldval = rdtp->dynticks_nesting;
  454. rdtp->dynticks_nesting--;
  455. WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
  456. if (rdtp->dynticks_nesting)
  457. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  458. else
  459. rcu_eqs_enter_common(rdtp, oldval, true);
  460. rcu_sysidle_enter(rdtp, 1);
  461. local_irq_restore(flags);
  462. }
  463. /*
  464. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  465. *
  466. * If the new value of the ->dynticks_nesting counter was previously zero,
  467. * we really have exited idle, and must do the appropriate accounting.
  468. * The caller must have disabled interrupts.
  469. */
  470. static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
  471. int user)
  472. {
  473. smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
  474. atomic_inc(&rdtp->dynticks);
  475. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  476. smp_mb__after_atomic_inc(); /* See above. */
  477. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  478. rcu_cleanup_after_idle(smp_processor_id());
  479. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  480. if (!user && !is_idle_task(current)) {
  481. struct task_struct *idle __maybe_unused =
  482. idle_task(smp_processor_id());
  483. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  484. oldval, rdtp->dynticks_nesting);
  485. ftrace_dump(DUMP_ORIG);
  486. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  487. current->pid, current->comm,
  488. idle->pid, idle->comm); /* must be idle task! */
  489. }
  490. }
  491. /*
  492. * Exit an RCU extended quiescent state, which can be either the
  493. * idle loop or adaptive-tickless usermode execution.
  494. */
  495. static void rcu_eqs_exit(bool user)
  496. {
  497. struct rcu_dynticks *rdtp;
  498. long long oldval;
  499. rdtp = this_cpu_ptr(&rcu_dynticks);
  500. oldval = rdtp->dynticks_nesting;
  501. WARN_ON_ONCE(oldval < 0);
  502. if (oldval & DYNTICK_TASK_NEST_MASK) {
  503. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  504. } else {
  505. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  506. rcu_eqs_exit_common(rdtp, oldval, user);
  507. }
  508. }
  509. /**
  510. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  511. *
  512. * Exit idle mode, in other words, -enter- the mode in which RCU
  513. * read-side critical sections can occur.
  514. *
  515. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  516. * allow for the possibility of usermode upcalls messing up our count
  517. * of interrupt nesting level during the busy period that is just
  518. * now starting.
  519. */
  520. void rcu_idle_exit(void)
  521. {
  522. unsigned long flags;
  523. local_irq_save(flags);
  524. rcu_eqs_exit(false);
  525. rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
  526. local_irq_restore(flags);
  527. }
  528. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  529. #ifdef CONFIG_RCU_USER_QS
  530. /**
  531. * rcu_user_exit - inform RCU that we are exiting userspace.
  532. *
  533. * Exit RCU idle mode while entering the kernel because it can
  534. * run a RCU read side critical section anytime.
  535. */
  536. void rcu_user_exit(void)
  537. {
  538. rcu_eqs_exit(1);
  539. }
  540. #endif /* CONFIG_RCU_USER_QS */
  541. /**
  542. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  543. *
  544. * Enter an interrupt handler, which might possibly result in exiting
  545. * idle mode, in other words, entering the mode in which read-side critical
  546. * sections can occur.
  547. *
  548. * Note that the Linux kernel is fully capable of entering an interrupt
  549. * handler that it never exits, for example when doing upcalls to
  550. * user mode! This code assumes that the idle loop never does upcalls to
  551. * user mode. If your architecture does do upcalls from the idle loop (or
  552. * does anything else that results in unbalanced calls to the irq_enter()
  553. * and irq_exit() functions), RCU will give you what you deserve, good
  554. * and hard. But very infrequently and irreproducibly.
  555. *
  556. * Use things like work queues to work around this limitation.
  557. *
  558. * You have been warned.
  559. */
  560. void rcu_irq_enter(void)
  561. {
  562. unsigned long flags;
  563. struct rcu_dynticks *rdtp;
  564. long long oldval;
  565. local_irq_save(flags);
  566. rdtp = this_cpu_ptr(&rcu_dynticks);
  567. oldval = rdtp->dynticks_nesting;
  568. rdtp->dynticks_nesting++;
  569. WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
  570. if (oldval)
  571. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  572. else
  573. rcu_eqs_exit_common(rdtp, oldval, true);
  574. rcu_sysidle_exit(rdtp, 1);
  575. local_irq_restore(flags);
  576. }
  577. /**
  578. * rcu_nmi_enter - inform RCU of entry to NMI context
  579. *
  580. * If the CPU was idle with dynamic ticks active, and there is no
  581. * irq handler running, this updates rdtp->dynticks_nmi to let the
  582. * RCU grace-period handling know that the CPU is active.
  583. */
  584. void rcu_nmi_enter(void)
  585. {
  586. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  587. if (rdtp->dynticks_nmi_nesting == 0 &&
  588. (atomic_read(&rdtp->dynticks) & 0x1))
  589. return;
  590. rdtp->dynticks_nmi_nesting++;
  591. smp_mb__before_atomic_inc(); /* Force delay from prior write. */
  592. atomic_inc(&rdtp->dynticks);
  593. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  594. smp_mb__after_atomic_inc(); /* See above. */
  595. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  596. }
  597. /**
  598. * rcu_nmi_exit - inform RCU of exit from NMI context
  599. *
  600. * If the CPU was idle with dynamic ticks active, and there is no
  601. * irq handler running, this updates rdtp->dynticks_nmi to let the
  602. * RCU grace-period handling know that the CPU is no longer active.
  603. */
  604. void rcu_nmi_exit(void)
  605. {
  606. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  607. if (rdtp->dynticks_nmi_nesting == 0 ||
  608. --rdtp->dynticks_nmi_nesting != 0)
  609. return;
  610. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  611. smp_mb__before_atomic_inc(); /* See above. */
  612. atomic_inc(&rdtp->dynticks);
  613. smp_mb__after_atomic_inc(); /* Force delay to next write. */
  614. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  615. }
  616. /**
  617. * __rcu_is_watching - are RCU read-side critical sections safe?
  618. *
  619. * Return true if RCU is watching the running CPU, which means that
  620. * this CPU can safely enter RCU read-side critical sections. Unlike
  621. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  622. * least disabled preemption.
  623. */
  624. bool notrace __rcu_is_watching(void)
  625. {
  626. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  627. }
  628. /**
  629. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  630. *
  631. * If the current CPU is in its idle loop and is neither in an interrupt
  632. * or NMI handler, return true.
  633. */
  634. bool notrace rcu_is_watching(void)
  635. {
  636. int ret;
  637. preempt_disable();
  638. ret = __rcu_is_watching();
  639. preempt_enable();
  640. return ret;
  641. }
  642. EXPORT_SYMBOL_GPL(rcu_is_watching);
  643. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  644. /*
  645. * Is the current CPU online? Disable preemption to avoid false positives
  646. * that could otherwise happen due to the current CPU number being sampled,
  647. * this task being preempted, its old CPU being taken offline, resuming
  648. * on some other CPU, then determining that its old CPU is now offline.
  649. * It is OK to use RCU on an offline processor during initial boot, hence
  650. * the check for rcu_scheduler_fully_active. Note also that it is OK
  651. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  652. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  653. * offline to continue to use RCU for one jiffy after marking itself
  654. * offline in the cpu_online_mask. This leniency is necessary given the
  655. * non-atomic nature of the online and offline processing, for example,
  656. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  657. * notifiers.
  658. *
  659. * This is also why RCU internally marks CPUs online during the
  660. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  661. *
  662. * Disable checking if in an NMI handler because we cannot safely report
  663. * errors from NMI handlers anyway.
  664. */
  665. bool rcu_lockdep_current_cpu_online(void)
  666. {
  667. struct rcu_data *rdp;
  668. struct rcu_node *rnp;
  669. bool ret;
  670. if (in_nmi())
  671. return true;
  672. preempt_disable();
  673. rdp = this_cpu_ptr(&rcu_sched_data);
  674. rnp = rdp->mynode;
  675. ret = (rdp->grpmask & rnp->qsmaskinit) ||
  676. !rcu_scheduler_fully_active;
  677. preempt_enable();
  678. return ret;
  679. }
  680. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  681. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  682. /**
  683. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  684. *
  685. * If the current CPU is idle or running at a first-level (not nested)
  686. * interrupt from idle, return true. The caller must have at least
  687. * disabled preemption.
  688. */
  689. static int rcu_is_cpu_rrupt_from_idle(void)
  690. {
  691. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  692. }
  693. /*
  694. * Snapshot the specified CPU's dynticks counter so that we can later
  695. * credit them with an implicit quiescent state. Return 1 if this CPU
  696. * is in dynticks idle mode, which is an extended quiescent state.
  697. */
  698. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  699. bool *isidle, unsigned long *maxj)
  700. {
  701. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  702. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  703. if ((rdp->dynticks_snap & 0x1) == 0) {
  704. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  705. return 1;
  706. } else {
  707. return 0;
  708. }
  709. }
  710. /*
  711. * This function really isn't for public consumption, but RCU is special in
  712. * that context switches can allow the state machine to make progress.
  713. */
  714. extern void resched_cpu(int cpu);
  715. /*
  716. * Return true if the specified CPU has passed through a quiescent
  717. * state by virtue of being in or having passed through an dynticks
  718. * idle state since the last call to dyntick_save_progress_counter()
  719. * for this same CPU, or by virtue of having been offline.
  720. */
  721. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  722. bool *isidle, unsigned long *maxj)
  723. {
  724. unsigned int curr;
  725. unsigned int snap;
  726. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  727. snap = (unsigned int)rdp->dynticks_snap;
  728. /*
  729. * If the CPU passed through or entered a dynticks idle phase with
  730. * no active irq/NMI handlers, then we can safely pretend that the CPU
  731. * already acknowledged the request to pass through a quiescent
  732. * state. Either way, that CPU cannot possibly be in an RCU
  733. * read-side critical section that started before the beginning
  734. * of the current RCU grace period.
  735. */
  736. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  737. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  738. rdp->dynticks_fqs++;
  739. return 1;
  740. }
  741. /*
  742. * Check for the CPU being offline, but only if the grace period
  743. * is old enough. We don't need to worry about the CPU changing
  744. * state: If we see it offline even once, it has been through a
  745. * quiescent state.
  746. *
  747. * The reason for insisting that the grace period be at least
  748. * one jiffy old is that CPUs that are not quite online and that
  749. * have just gone offline can still execute RCU read-side critical
  750. * sections.
  751. */
  752. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  753. return 0; /* Grace period is not old enough. */
  754. barrier();
  755. if (cpu_is_offline(rdp->cpu)) {
  756. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  757. rdp->offline_fqs++;
  758. return 1;
  759. }
  760. /*
  761. * There is a possibility that a CPU in adaptive-ticks state
  762. * might run in the kernel with the scheduling-clock tick disabled
  763. * for an extended time period. Invoke rcu_kick_nohz_cpu() to
  764. * force the CPU to restart the scheduling-clock tick in this
  765. * CPU is in this state.
  766. */
  767. rcu_kick_nohz_cpu(rdp->cpu);
  768. /*
  769. * Alternatively, the CPU might be running in the kernel
  770. * for an extended period of time without a quiescent state.
  771. * Attempt to force the CPU through the scheduler to gain the
  772. * needed quiescent state, but only if the grace period has gone
  773. * on for an uncommonly long time. If there are many stuck CPUs,
  774. * we will beat on the first one until it gets unstuck, then move
  775. * to the next. Only do this for the primary flavor of RCU.
  776. */
  777. if (rdp->rsp == rcu_state &&
  778. ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  779. rdp->rsp->jiffies_resched += 5;
  780. resched_cpu(rdp->cpu);
  781. }
  782. return 0;
  783. }
  784. static void record_gp_stall_check_time(struct rcu_state *rsp)
  785. {
  786. unsigned long j = jiffies;
  787. unsigned long j1;
  788. rsp->gp_start = j;
  789. smp_wmb(); /* Record start time before stall time. */
  790. j1 = rcu_jiffies_till_stall_check();
  791. ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
  792. rsp->jiffies_resched = j + j1 / 2;
  793. }
  794. /*
  795. * Dump stacks of all tasks running on stalled CPUs. This is a fallback
  796. * for architectures that do not implement trigger_all_cpu_backtrace().
  797. * The NMI-triggered stack traces are more accurate because they are
  798. * printed by the target CPU.
  799. */
  800. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  801. {
  802. int cpu;
  803. unsigned long flags;
  804. struct rcu_node *rnp;
  805. rcu_for_each_leaf_node(rsp, rnp) {
  806. raw_spin_lock_irqsave(&rnp->lock, flags);
  807. if (rnp->qsmask != 0) {
  808. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  809. if (rnp->qsmask & (1UL << cpu))
  810. dump_cpu_task(rnp->grplo + cpu);
  811. }
  812. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  813. }
  814. }
  815. static void print_other_cpu_stall(struct rcu_state *rsp)
  816. {
  817. int cpu;
  818. long delta;
  819. unsigned long flags;
  820. int ndetected = 0;
  821. struct rcu_node *rnp = rcu_get_root(rsp);
  822. long totqlen = 0;
  823. /* Only let one CPU complain about others per time interval. */
  824. raw_spin_lock_irqsave(&rnp->lock, flags);
  825. delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
  826. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  827. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  828. return;
  829. }
  830. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
  831. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  832. /*
  833. * OK, time to rat on our buddy...
  834. * See Documentation/RCU/stallwarn.txt for info on how to debug
  835. * RCU CPU stall warnings.
  836. */
  837. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  838. rsp->name);
  839. print_cpu_stall_info_begin();
  840. rcu_for_each_leaf_node(rsp, rnp) {
  841. raw_spin_lock_irqsave(&rnp->lock, flags);
  842. ndetected += rcu_print_task_stall(rnp);
  843. if (rnp->qsmask != 0) {
  844. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  845. if (rnp->qsmask & (1UL << cpu)) {
  846. print_cpu_stall_info(rsp,
  847. rnp->grplo + cpu);
  848. ndetected++;
  849. }
  850. }
  851. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  852. }
  853. /*
  854. * Now rat on any tasks that got kicked up to the root rcu_node
  855. * due to CPU offlining.
  856. */
  857. rnp = rcu_get_root(rsp);
  858. raw_spin_lock_irqsave(&rnp->lock, flags);
  859. ndetected += rcu_print_task_stall(rnp);
  860. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  861. print_cpu_stall_info_end();
  862. for_each_possible_cpu(cpu)
  863. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  864. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  865. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  866. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  867. if (ndetected == 0)
  868. pr_err("INFO: Stall ended before state dump start\n");
  869. else if (!trigger_all_cpu_backtrace())
  870. rcu_dump_cpu_stacks(rsp);
  871. /* Complain about tasks blocking the grace period. */
  872. rcu_print_detail_task_stall(rsp);
  873. force_quiescent_state(rsp); /* Kick them all. */
  874. }
  875. /*
  876. * This function really isn't for public consumption, but RCU is special in
  877. * that context switches can allow the state machine to make progress.
  878. */
  879. extern void resched_cpu(int cpu);
  880. static void print_cpu_stall(struct rcu_state *rsp)
  881. {
  882. int cpu;
  883. unsigned long flags;
  884. struct rcu_node *rnp = rcu_get_root(rsp);
  885. long totqlen = 0;
  886. /*
  887. * OK, time to rat on ourselves...
  888. * See Documentation/RCU/stallwarn.txt for info on how to debug
  889. * RCU CPU stall warnings.
  890. */
  891. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  892. print_cpu_stall_info_begin();
  893. print_cpu_stall_info(rsp, smp_processor_id());
  894. print_cpu_stall_info_end();
  895. for_each_possible_cpu(cpu)
  896. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  897. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  898. jiffies - rsp->gp_start,
  899. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  900. if (!trigger_all_cpu_backtrace())
  901. dump_stack();
  902. raw_spin_lock_irqsave(&rnp->lock, flags);
  903. if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
  904. ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
  905. 3 * rcu_jiffies_till_stall_check() + 3;
  906. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  907. /*
  908. * Attempt to revive the RCU machinery by forcing a context switch.
  909. *
  910. * A context switch would normally allow the RCU state machine to make
  911. * progress and it could be we're stuck in kernel space without context
  912. * switches for an entirely unreasonable amount of time.
  913. */
  914. resched_cpu(smp_processor_id());
  915. }
  916. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  917. {
  918. unsigned long completed;
  919. unsigned long gpnum;
  920. unsigned long gps;
  921. unsigned long j;
  922. unsigned long js;
  923. struct rcu_node *rnp;
  924. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  925. return;
  926. j = jiffies;
  927. /*
  928. * Lots of memory barriers to reject false positives.
  929. *
  930. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  931. * then rsp->gp_start, and finally rsp->completed. These values
  932. * are updated in the opposite order with memory barriers (or
  933. * equivalent) during grace-period initialization and cleanup.
  934. * Now, a false positive can occur if we get an new value of
  935. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  936. * the memory barriers, the only way that this can happen is if one
  937. * grace period ends and another starts between these two fetches.
  938. * Detect this by comparing rsp->completed with the previous fetch
  939. * from rsp->gpnum.
  940. *
  941. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  942. * and rsp->gp_start suffice to forestall false positives.
  943. */
  944. gpnum = ACCESS_ONCE(rsp->gpnum);
  945. smp_rmb(); /* Pick up ->gpnum first... */
  946. js = ACCESS_ONCE(rsp->jiffies_stall);
  947. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  948. gps = ACCESS_ONCE(rsp->gp_start);
  949. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  950. completed = ACCESS_ONCE(rsp->completed);
  951. if (ULONG_CMP_GE(completed, gpnum) ||
  952. ULONG_CMP_LT(j, js) ||
  953. ULONG_CMP_GE(gps, js))
  954. return; /* No stall or GP completed since entering function. */
  955. rnp = rdp->mynode;
  956. if (rcu_gp_in_progress(rsp) &&
  957. (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
  958. /* We haven't checked in, so go dump stack. */
  959. print_cpu_stall(rsp);
  960. } else if (rcu_gp_in_progress(rsp) &&
  961. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  962. /* They had a few time units to dump stack, so complain. */
  963. print_other_cpu_stall(rsp);
  964. }
  965. }
  966. /**
  967. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  968. *
  969. * Set the stall-warning timeout way off into the future, thus preventing
  970. * any RCU CPU stall-warning messages from appearing in the current set of
  971. * RCU grace periods.
  972. *
  973. * The caller must disable hard irqs.
  974. */
  975. void rcu_cpu_stall_reset(void)
  976. {
  977. struct rcu_state *rsp;
  978. for_each_rcu_flavor(rsp)
  979. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
  980. }
  981. /*
  982. * Initialize the specified rcu_data structure's callback list to empty.
  983. */
  984. static void init_callback_list(struct rcu_data *rdp)
  985. {
  986. int i;
  987. if (init_nocb_callback_list(rdp))
  988. return;
  989. rdp->nxtlist = NULL;
  990. for (i = 0; i < RCU_NEXT_SIZE; i++)
  991. rdp->nxttail[i] = &rdp->nxtlist;
  992. }
  993. /*
  994. * Determine the value that ->completed will have at the end of the
  995. * next subsequent grace period. This is used to tag callbacks so that
  996. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  997. * been dyntick-idle for an extended period with callbacks under the
  998. * influence of RCU_FAST_NO_HZ.
  999. *
  1000. * The caller must hold rnp->lock with interrupts disabled.
  1001. */
  1002. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1003. struct rcu_node *rnp)
  1004. {
  1005. /*
  1006. * If RCU is idle, we just wait for the next grace period.
  1007. * But we can only be sure that RCU is idle if we are looking
  1008. * at the root rcu_node structure -- otherwise, a new grace
  1009. * period might have started, but just not yet gotten around
  1010. * to initializing the current non-root rcu_node structure.
  1011. */
  1012. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1013. return rnp->completed + 1;
  1014. /*
  1015. * Otherwise, wait for a possible partial grace period and
  1016. * then the subsequent full grace period.
  1017. */
  1018. return rnp->completed + 2;
  1019. }
  1020. /*
  1021. * Trace-event helper function for rcu_start_future_gp() and
  1022. * rcu_nocb_wait_gp().
  1023. */
  1024. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1025. unsigned long c, const char *s)
  1026. {
  1027. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1028. rnp->completed, c, rnp->level,
  1029. rnp->grplo, rnp->grphi, s);
  1030. }
  1031. /*
  1032. * Start some future grace period, as needed to handle newly arrived
  1033. * callbacks. The required future grace periods are recorded in each
  1034. * rcu_node structure's ->need_future_gp field. Returns true if there
  1035. * is reason to awaken the grace-period kthread.
  1036. *
  1037. * The caller must hold the specified rcu_node structure's ->lock.
  1038. */
  1039. static bool __maybe_unused
  1040. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1041. unsigned long *c_out)
  1042. {
  1043. unsigned long c;
  1044. int i;
  1045. bool ret = false;
  1046. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1047. /*
  1048. * Pick up grace-period number for new callbacks. If this
  1049. * grace period is already marked as needed, return to the caller.
  1050. */
  1051. c = rcu_cbs_completed(rdp->rsp, rnp);
  1052. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1053. if (rnp->need_future_gp[c & 0x1]) {
  1054. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1055. goto out;
  1056. }
  1057. /*
  1058. * If either this rcu_node structure or the root rcu_node structure
  1059. * believe that a grace period is in progress, then we must wait
  1060. * for the one following, which is in "c". Because our request
  1061. * will be noticed at the end of the current grace period, we don't
  1062. * need to explicitly start one.
  1063. */
  1064. if (rnp->gpnum != rnp->completed ||
  1065. ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
  1066. rnp->need_future_gp[c & 0x1]++;
  1067. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1068. goto out;
  1069. }
  1070. /*
  1071. * There might be no grace period in progress. If we don't already
  1072. * hold it, acquire the root rcu_node structure's lock in order to
  1073. * start one (if needed).
  1074. */
  1075. if (rnp != rnp_root) {
  1076. raw_spin_lock(&rnp_root->lock);
  1077. smp_mb__after_unlock_lock();
  1078. }
  1079. /*
  1080. * Get a new grace-period number. If there really is no grace
  1081. * period in progress, it will be smaller than the one we obtained
  1082. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1083. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1084. */
  1085. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1086. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1087. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1088. rdp->nxtcompleted[i] = c;
  1089. /*
  1090. * If the needed for the required grace period is already
  1091. * recorded, trace and leave.
  1092. */
  1093. if (rnp_root->need_future_gp[c & 0x1]) {
  1094. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1095. goto unlock_out;
  1096. }
  1097. /* Record the need for the future grace period. */
  1098. rnp_root->need_future_gp[c & 0x1]++;
  1099. /* If a grace period is not already in progress, start one. */
  1100. if (rnp_root->gpnum != rnp_root->completed) {
  1101. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1102. } else {
  1103. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1104. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1105. }
  1106. unlock_out:
  1107. if (rnp != rnp_root)
  1108. raw_spin_unlock(&rnp_root->lock);
  1109. out:
  1110. if (c_out != NULL)
  1111. *c_out = c;
  1112. return ret;
  1113. }
  1114. /*
  1115. * Clean up any old requests for the just-ended grace period. Also return
  1116. * whether any additional grace periods have been requested. Also invoke
  1117. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1118. * waiting for this grace period to complete.
  1119. */
  1120. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1121. {
  1122. int c = rnp->completed;
  1123. int needmore;
  1124. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1125. rcu_nocb_gp_cleanup(rsp, rnp);
  1126. rnp->need_future_gp[c & 0x1] = 0;
  1127. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1128. trace_rcu_future_gp(rnp, rdp, c,
  1129. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1130. return needmore;
  1131. }
  1132. /*
  1133. * Awaken the grace-period kthread for the specified flavor of RCU.
  1134. * Don't do a self-awaken, and don't bother awakening when there is
  1135. * nothing for the grace-period kthread to do (as in several CPUs
  1136. * raced to awaken, and we lost), and finally don't try to awaken
  1137. * a kthread that has not yet been created.
  1138. */
  1139. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1140. {
  1141. if (current == rsp->gp_kthread ||
  1142. !ACCESS_ONCE(rsp->gp_flags) ||
  1143. !rsp->gp_kthread)
  1144. return;
  1145. wake_up(&rsp->gp_wq);
  1146. }
  1147. /*
  1148. * If there is room, assign a ->completed number to any callbacks on
  1149. * this CPU that have not already been assigned. Also accelerate any
  1150. * callbacks that were previously assigned a ->completed number that has
  1151. * since proven to be too conservative, which can happen if callbacks get
  1152. * assigned a ->completed number while RCU is idle, but with reference to
  1153. * a non-root rcu_node structure. This function is idempotent, so it does
  1154. * not hurt to call it repeatedly. Returns an flag saying that we should
  1155. * awaken the RCU grace-period kthread.
  1156. *
  1157. * The caller must hold rnp->lock with interrupts disabled.
  1158. */
  1159. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1160. struct rcu_data *rdp)
  1161. {
  1162. unsigned long c;
  1163. int i;
  1164. bool ret;
  1165. /* If the CPU has no callbacks, nothing to do. */
  1166. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1167. return false;
  1168. /*
  1169. * Starting from the sublist containing the callbacks most
  1170. * recently assigned a ->completed number and working down, find the
  1171. * first sublist that is not assignable to an upcoming grace period.
  1172. * Such a sublist has something in it (first two tests) and has
  1173. * a ->completed number assigned that will complete sooner than
  1174. * the ->completed number for newly arrived callbacks (last test).
  1175. *
  1176. * The key point is that any later sublist can be assigned the
  1177. * same ->completed number as the newly arrived callbacks, which
  1178. * means that the callbacks in any of these later sublist can be
  1179. * grouped into a single sublist, whether or not they have already
  1180. * been assigned a ->completed number.
  1181. */
  1182. c = rcu_cbs_completed(rsp, rnp);
  1183. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1184. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1185. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1186. break;
  1187. /*
  1188. * If there are no sublist for unassigned callbacks, leave.
  1189. * At the same time, advance "i" one sublist, so that "i" will
  1190. * index into the sublist where all the remaining callbacks should
  1191. * be grouped into.
  1192. */
  1193. if (++i >= RCU_NEXT_TAIL)
  1194. return false;
  1195. /*
  1196. * Assign all subsequent callbacks' ->completed number to the next
  1197. * full grace period and group them all in the sublist initially
  1198. * indexed by "i".
  1199. */
  1200. for (; i <= RCU_NEXT_TAIL; i++) {
  1201. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1202. rdp->nxtcompleted[i] = c;
  1203. }
  1204. /* Record any needed additional grace periods. */
  1205. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1206. /* Trace depending on how much we were able to accelerate. */
  1207. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1208. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1209. else
  1210. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1211. return ret;
  1212. }
  1213. /*
  1214. * Move any callbacks whose grace period has completed to the
  1215. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1216. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1217. * sublist. This function is idempotent, so it does not hurt to
  1218. * invoke it repeatedly. As long as it is not invoked -too- often...
  1219. * Returns true if the RCU grace-period kthread needs to be awakened.
  1220. *
  1221. * The caller must hold rnp->lock with interrupts disabled.
  1222. */
  1223. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1224. struct rcu_data *rdp)
  1225. {
  1226. int i, j;
  1227. /* If the CPU has no callbacks, nothing to do. */
  1228. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1229. return false;
  1230. /*
  1231. * Find all callbacks whose ->completed numbers indicate that they
  1232. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1233. */
  1234. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1235. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1236. break;
  1237. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1238. }
  1239. /* Clean up any sublist tail pointers that were misordered above. */
  1240. for (j = RCU_WAIT_TAIL; j < i; j++)
  1241. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1242. /* Copy down callbacks to fill in empty sublists. */
  1243. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1244. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1245. break;
  1246. rdp->nxttail[j] = rdp->nxttail[i];
  1247. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1248. }
  1249. /* Classify any remaining callbacks. */
  1250. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1251. }
  1252. /*
  1253. * Update CPU-local rcu_data state to record the beginnings and ends of
  1254. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1255. * structure corresponding to the current CPU, and must have irqs disabled.
  1256. * Returns true if the grace-period kthread needs to be awakened.
  1257. */
  1258. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1259. struct rcu_data *rdp)
  1260. {
  1261. bool ret;
  1262. /* Handle the ends of any preceding grace periods first. */
  1263. if (rdp->completed == rnp->completed) {
  1264. /* No grace period end, so just accelerate recent callbacks. */
  1265. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1266. } else {
  1267. /* Advance callbacks. */
  1268. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1269. /* Remember that we saw this grace-period completion. */
  1270. rdp->completed = rnp->completed;
  1271. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1272. }
  1273. if (rdp->gpnum != rnp->gpnum) {
  1274. /*
  1275. * If the current grace period is waiting for this CPU,
  1276. * set up to detect a quiescent state, otherwise don't
  1277. * go looking for one.
  1278. */
  1279. rdp->gpnum = rnp->gpnum;
  1280. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1281. rdp->passed_quiesce = 0;
  1282. rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
  1283. zero_cpu_stall_ticks(rdp);
  1284. }
  1285. return ret;
  1286. }
  1287. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1288. {
  1289. unsigned long flags;
  1290. bool needwake;
  1291. struct rcu_node *rnp;
  1292. local_irq_save(flags);
  1293. rnp = rdp->mynode;
  1294. if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
  1295. rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
  1296. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1297. local_irq_restore(flags);
  1298. return;
  1299. }
  1300. smp_mb__after_unlock_lock();
  1301. needwake = __note_gp_changes(rsp, rnp, rdp);
  1302. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1303. if (needwake)
  1304. rcu_gp_kthread_wake(rsp);
  1305. }
  1306. /*
  1307. * Initialize a new grace period. Return 0 if no grace period required.
  1308. */
  1309. static int rcu_gp_init(struct rcu_state *rsp)
  1310. {
  1311. struct rcu_data *rdp;
  1312. struct rcu_node *rnp = rcu_get_root(rsp);
  1313. rcu_bind_gp_kthread();
  1314. raw_spin_lock_irq(&rnp->lock);
  1315. smp_mb__after_unlock_lock();
  1316. if (!ACCESS_ONCE(rsp->gp_flags)) {
  1317. /* Spurious wakeup, tell caller to go back to sleep. */
  1318. raw_spin_unlock_irq(&rnp->lock);
  1319. return 0;
  1320. }
  1321. ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
  1322. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1323. /*
  1324. * Grace period already in progress, don't start another.
  1325. * Not supposed to be able to happen.
  1326. */
  1327. raw_spin_unlock_irq(&rnp->lock);
  1328. return 0;
  1329. }
  1330. /* Advance to a new grace period and initialize state. */
  1331. record_gp_stall_check_time(rsp);
  1332. /* Record GP times before starting GP, hence smp_store_release(). */
  1333. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1334. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1335. raw_spin_unlock_irq(&rnp->lock);
  1336. /* Exclude any concurrent CPU-hotplug operations. */
  1337. mutex_lock(&rsp->onoff_mutex);
  1338. smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
  1339. /*
  1340. * Set the quiescent-state-needed bits in all the rcu_node
  1341. * structures for all currently online CPUs in breadth-first order,
  1342. * starting from the root rcu_node structure, relying on the layout
  1343. * of the tree within the rsp->node[] array. Note that other CPUs
  1344. * will access only the leaves of the hierarchy, thus seeing that no
  1345. * grace period is in progress, at least until the corresponding
  1346. * leaf node has been initialized. In addition, we have excluded
  1347. * CPU-hotplug operations.
  1348. *
  1349. * The grace period cannot complete until the initialization
  1350. * process finishes, because this kthread handles both.
  1351. */
  1352. rcu_for_each_node_breadth_first(rsp, rnp) {
  1353. raw_spin_lock_irq(&rnp->lock);
  1354. smp_mb__after_unlock_lock();
  1355. rdp = this_cpu_ptr(rsp->rda);
  1356. rcu_preempt_check_blocked_tasks(rnp);
  1357. rnp->qsmask = rnp->qsmaskinit;
  1358. ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
  1359. WARN_ON_ONCE(rnp->completed != rsp->completed);
  1360. ACCESS_ONCE(rnp->completed) = rsp->completed;
  1361. if (rnp == rdp->mynode)
  1362. (void)__note_gp_changes(rsp, rnp, rdp);
  1363. rcu_preempt_boost_start_gp(rnp);
  1364. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1365. rnp->level, rnp->grplo,
  1366. rnp->grphi, rnp->qsmask);
  1367. raw_spin_unlock_irq(&rnp->lock);
  1368. #ifdef CONFIG_PROVE_RCU_DELAY
  1369. if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
  1370. system_state == SYSTEM_RUNNING)
  1371. udelay(200);
  1372. #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
  1373. cond_resched();
  1374. }
  1375. mutex_unlock(&rsp->onoff_mutex);
  1376. return 1;
  1377. }
  1378. /*
  1379. * Do one round of quiescent-state forcing.
  1380. */
  1381. static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
  1382. {
  1383. int fqs_state = fqs_state_in;
  1384. bool isidle = false;
  1385. unsigned long maxj;
  1386. struct rcu_node *rnp = rcu_get_root(rsp);
  1387. rsp->n_force_qs++;
  1388. if (fqs_state == RCU_SAVE_DYNTICK) {
  1389. /* Collect dyntick-idle snapshots. */
  1390. if (is_sysidle_rcu_state(rsp)) {
  1391. isidle = 1;
  1392. maxj = jiffies - ULONG_MAX / 4;
  1393. }
  1394. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1395. &isidle, &maxj);
  1396. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1397. fqs_state = RCU_FORCE_QS;
  1398. } else {
  1399. /* Handle dyntick-idle and offline CPUs. */
  1400. isidle = 0;
  1401. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1402. }
  1403. /* Clear flag to prevent immediate re-entry. */
  1404. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1405. raw_spin_lock_irq(&rnp->lock);
  1406. smp_mb__after_unlock_lock();
  1407. ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
  1408. raw_spin_unlock_irq(&rnp->lock);
  1409. }
  1410. return fqs_state;
  1411. }
  1412. /*
  1413. * Clean up after the old grace period.
  1414. */
  1415. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1416. {
  1417. unsigned long gp_duration;
  1418. bool needgp = false;
  1419. int nocb = 0;
  1420. struct rcu_data *rdp;
  1421. struct rcu_node *rnp = rcu_get_root(rsp);
  1422. raw_spin_lock_irq(&rnp->lock);
  1423. smp_mb__after_unlock_lock();
  1424. gp_duration = jiffies - rsp->gp_start;
  1425. if (gp_duration > rsp->gp_max)
  1426. rsp->gp_max = gp_duration;
  1427. /*
  1428. * We know the grace period is complete, but to everyone else
  1429. * it appears to still be ongoing. But it is also the case
  1430. * that to everyone else it looks like there is nothing that
  1431. * they can do to advance the grace period. It is therefore
  1432. * safe for us to drop the lock in order to mark the grace
  1433. * period as completed in all of the rcu_node structures.
  1434. */
  1435. raw_spin_unlock_irq(&rnp->lock);
  1436. /*
  1437. * Propagate new ->completed value to rcu_node structures so
  1438. * that other CPUs don't have to wait until the start of the next
  1439. * grace period to process their callbacks. This also avoids
  1440. * some nasty RCU grace-period initialization races by forcing
  1441. * the end of the current grace period to be completely recorded in
  1442. * all of the rcu_node structures before the beginning of the next
  1443. * grace period is recorded in any of the rcu_node structures.
  1444. */
  1445. rcu_for_each_node_breadth_first(rsp, rnp) {
  1446. raw_spin_lock_irq(&rnp->lock);
  1447. smp_mb__after_unlock_lock();
  1448. ACCESS_ONCE(rnp->completed) = rsp->gpnum;
  1449. rdp = this_cpu_ptr(rsp->rda);
  1450. if (rnp == rdp->mynode)
  1451. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1452. /* smp_mb() provided by prior unlock-lock pair. */
  1453. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1454. raw_spin_unlock_irq(&rnp->lock);
  1455. cond_resched();
  1456. }
  1457. rnp = rcu_get_root(rsp);
  1458. raw_spin_lock_irq(&rnp->lock);
  1459. smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
  1460. rcu_nocb_gp_set(rnp, nocb);
  1461. /* Declare grace period done. */
  1462. ACCESS_ONCE(rsp->completed) = rsp->gpnum;
  1463. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1464. rsp->fqs_state = RCU_GP_IDLE;
  1465. rdp = this_cpu_ptr(rsp->rda);
  1466. /* Advance CBs to reduce false positives below. */
  1467. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1468. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1469. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1470. trace_rcu_grace_period(rsp->name,
  1471. ACCESS_ONCE(rsp->gpnum),
  1472. TPS("newreq"));
  1473. }
  1474. raw_spin_unlock_irq(&rnp->lock);
  1475. }
  1476. /*
  1477. * Body of kthread that handles grace periods.
  1478. */
  1479. static int __noreturn rcu_gp_kthread(void *arg)
  1480. {
  1481. int fqs_state;
  1482. int gf;
  1483. unsigned long j;
  1484. int ret;
  1485. struct rcu_state *rsp = arg;
  1486. struct rcu_node *rnp = rcu_get_root(rsp);
  1487. for (;;) {
  1488. /* Handle grace-period start. */
  1489. for (;;) {
  1490. trace_rcu_grace_period(rsp->name,
  1491. ACCESS_ONCE(rsp->gpnum),
  1492. TPS("reqwait"));
  1493. wait_event_interruptible(rsp->gp_wq,
  1494. ACCESS_ONCE(rsp->gp_flags) &
  1495. RCU_GP_FLAG_INIT);
  1496. /* Locking provides needed memory barrier. */
  1497. if (rcu_gp_init(rsp))
  1498. break;
  1499. cond_resched();
  1500. flush_signals(current);
  1501. trace_rcu_grace_period(rsp->name,
  1502. ACCESS_ONCE(rsp->gpnum),
  1503. TPS("reqwaitsig"));
  1504. }
  1505. /* Handle quiescent-state forcing. */
  1506. fqs_state = RCU_SAVE_DYNTICK;
  1507. j = jiffies_till_first_fqs;
  1508. if (j > HZ) {
  1509. j = HZ;
  1510. jiffies_till_first_fqs = HZ;
  1511. }
  1512. ret = 0;
  1513. for (;;) {
  1514. if (!ret)
  1515. rsp->jiffies_force_qs = jiffies + j;
  1516. trace_rcu_grace_period(rsp->name,
  1517. ACCESS_ONCE(rsp->gpnum),
  1518. TPS("fqswait"));
  1519. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1520. ((gf = ACCESS_ONCE(rsp->gp_flags)) &
  1521. RCU_GP_FLAG_FQS) ||
  1522. (!ACCESS_ONCE(rnp->qsmask) &&
  1523. !rcu_preempt_blocked_readers_cgp(rnp)),
  1524. j);
  1525. /* Locking provides needed memory barriers. */
  1526. /* If grace period done, leave loop. */
  1527. if (!ACCESS_ONCE(rnp->qsmask) &&
  1528. !rcu_preempt_blocked_readers_cgp(rnp))
  1529. break;
  1530. /* If time for quiescent-state forcing, do it. */
  1531. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1532. (gf & RCU_GP_FLAG_FQS)) {
  1533. trace_rcu_grace_period(rsp->name,
  1534. ACCESS_ONCE(rsp->gpnum),
  1535. TPS("fqsstart"));
  1536. fqs_state = rcu_gp_fqs(rsp, fqs_state);
  1537. trace_rcu_grace_period(rsp->name,
  1538. ACCESS_ONCE(rsp->gpnum),
  1539. TPS("fqsend"));
  1540. cond_resched();
  1541. } else {
  1542. /* Deal with stray signal. */
  1543. cond_resched();
  1544. flush_signals(current);
  1545. trace_rcu_grace_period(rsp->name,
  1546. ACCESS_ONCE(rsp->gpnum),
  1547. TPS("fqswaitsig"));
  1548. }
  1549. j = jiffies_till_next_fqs;
  1550. if (j > HZ) {
  1551. j = HZ;
  1552. jiffies_till_next_fqs = HZ;
  1553. } else if (j < 1) {
  1554. j = 1;
  1555. jiffies_till_next_fqs = 1;
  1556. }
  1557. }
  1558. /* Handle grace-period end. */
  1559. rcu_gp_cleanup(rsp);
  1560. }
  1561. }
  1562. /*
  1563. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1564. * in preparation for detecting the next grace period. The caller must hold
  1565. * the root node's ->lock and hard irqs must be disabled.
  1566. *
  1567. * Note that it is legal for a dying CPU (which is marked as offline) to
  1568. * invoke this function. This can happen when the dying CPU reports its
  1569. * quiescent state.
  1570. *
  1571. * Returns true if the grace-period kthread must be awakened.
  1572. */
  1573. static bool
  1574. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1575. struct rcu_data *rdp)
  1576. {
  1577. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1578. /*
  1579. * Either we have not yet spawned the grace-period
  1580. * task, this CPU does not need another grace period,
  1581. * or a grace period is already in progress.
  1582. * Either way, don't start a new grace period.
  1583. */
  1584. return false;
  1585. }
  1586. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1587. trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
  1588. TPS("newreq"));
  1589. /*
  1590. * We can't do wakeups while holding the rnp->lock, as that
  1591. * could cause possible deadlocks with the rq->lock. Defer
  1592. * the wakeup to our caller.
  1593. */
  1594. return true;
  1595. }
  1596. /*
  1597. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  1598. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  1599. * is invoked indirectly from rcu_advance_cbs(), which would result in
  1600. * endless recursion -- or would do so if it wasn't for the self-deadlock
  1601. * that is encountered beforehand.
  1602. *
  1603. * Returns true if the grace-period kthread needs to be awakened.
  1604. */
  1605. static bool rcu_start_gp(struct rcu_state *rsp)
  1606. {
  1607. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1608. struct rcu_node *rnp = rcu_get_root(rsp);
  1609. bool ret = false;
  1610. /*
  1611. * If there is no grace period in progress right now, any
  1612. * callbacks we have up to this point will be satisfied by the
  1613. * next grace period. Also, advancing the callbacks reduces the
  1614. * probability of false positives from cpu_needs_another_gp()
  1615. * resulting in pointless grace periods. So, advance callbacks
  1616. * then start the grace period!
  1617. */
  1618. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  1619. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  1620. return ret;
  1621. }
  1622. /*
  1623. * Report a full set of quiescent states to the specified rcu_state
  1624. * data structure. This involves cleaning up after the prior grace
  1625. * period and letting rcu_start_gp() start up the next grace period
  1626. * if one is needed. Note that the caller must hold rnp->lock, which
  1627. * is released before return.
  1628. */
  1629. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  1630. __releases(rcu_get_root(rsp)->lock)
  1631. {
  1632. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  1633. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  1634. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1635. }
  1636. /*
  1637. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  1638. * Allows quiescent states for a group of CPUs to be reported at one go
  1639. * to the specified rcu_node structure, though all the CPUs in the group
  1640. * must be represented by the same rcu_node structure (which need not be
  1641. * a leaf rcu_node structure, though it often will be). That structure's
  1642. * lock must be held upon entry, and it is released before return.
  1643. */
  1644. static void
  1645. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  1646. struct rcu_node *rnp, unsigned long flags)
  1647. __releases(rnp->lock)
  1648. {
  1649. struct rcu_node *rnp_c;
  1650. /* Walk up the rcu_node hierarchy. */
  1651. for (;;) {
  1652. if (!(rnp->qsmask & mask)) {
  1653. /* Our bit has already been cleared, so done. */
  1654. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1655. return;
  1656. }
  1657. rnp->qsmask &= ~mask;
  1658. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  1659. mask, rnp->qsmask, rnp->level,
  1660. rnp->grplo, rnp->grphi,
  1661. !!rnp->gp_tasks);
  1662. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  1663. /* Other bits still set at this level, so done. */
  1664. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1665. return;
  1666. }
  1667. mask = rnp->grpmask;
  1668. if (rnp->parent == NULL) {
  1669. /* No more levels. Exit loop holding root lock. */
  1670. break;
  1671. }
  1672. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1673. rnp_c = rnp;
  1674. rnp = rnp->parent;
  1675. raw_spin_lock_irqsave(&rnp->lock, flags);
  1676. smp_mb__after_unlock_lock();
  1677. WARN_ON_ONCE(rnp_c->qsmask);
  1678. }
  1679. /*
  1680. * Get here if we are the last CPU to pass through a quiescent
  1681. * state for this grace period. Invoke rcu_report_qs_rsp()
  1682. * to clean up and start the next grace period if one is needed.
  1683. */
  1684. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  1685. }
  1686. /*
  1687. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  1688. * structure. This must be either called from the specified CPU, or
  1689. * called when the specified CPU is known to be offline (and when it is
  1690. * also known that no other CPU is concurrently trying to help the offline
  1691. * CPU). The lastcomp argument is used to make sure we are still in the
  1692. * grace period of interest. We don't want to end the current grace period
  1693. * based on quiescent states detected in an earlier grace period!
  1694. */
  1695. static void
  1696. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  1697. {
  1698. unsigned long flags;
  1699. unsigned long mask;
  1700. bool needwake;
  1701. struct rcu_node *rnp;
  1702. rnp = rdp->mynode;
  1703. raw_spin_lock_irqsave(&rnp->lock, flags);
  1704. smp_mb__after_unlock_lock();
  1705. if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
  1706. rnp->completed == rnp->gpnum) {
  1707. /*
  1708. * The grace period in which this quiescent state was
  1709. * recorded has ended, so don't report it upwards.
  1710. * We will instead need a new quiescent state that lies
  1711. * within the current grace period.
  1712. */
  1713. rdp->passed_quiesce = 0; /* need qs for new gp. */
  1714. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1715. return;
  1716. }
  1717. mask = rdp->grpmask;
  1718. if ((rnp->qsmask & mask) == 0) {
  1719. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1720. } else {
  1721. rdp->qs_pending = 0;
  1722. /*
  1723. * This GP can't end until cpu checks in, so all of our
  1724. * callbacks can be processed during the next GP.
  1725. */
  1726. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1727. rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
  1728. if (needwake)
  1729. rcu_gp_kthread_wake(rsp);
  1730. }
  1731. }
  1732. /*
  1733. * Check to see if there is a new grace period of which this CPU
  1734. * is not yet aware, and if so, set up local rcu_data state for it.
  1735. * Otherwise, see if this CPU has just passed through its first
  1736. * quiescent state for this grace period, and record that fact if so.
  1737. */
  1738. static void
  1739. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  1740. {
  1741. /* Check for grace-period ends and beginnings. */
  1742. note_gp_changes(rsp, rdp);
  1743. /*
  1744. * Does this CPU still need to do its part for current grace period?
  1745. * If no, return and let the other CPUs do their part as well.
  1746. */
  1747. if (!rdp->qs_pending)
  1748. return;
  1749. /*
  1750. * Was there a quiescent state since the beginning of the grace
  1751. * period? If no, then exit and wait for the next call.
  1752. */
  1753. if (!rdp->passed_quiesce)
  1754. return;
  1755. /*
  1756. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  1757. * judge of that).
  1758. */
  1759. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  1760. }
  1761. #ifdef CONFIG_HOTPLUG_CPU
  1762. /*
  1763. * Send the specified CPU's RCU callbacks to the orphanage. The
  1764. * specified CPU must be offline, and the caller must hold the
  1765. * ->orphan_lock.
  1766. */
  1767. static void
  1768. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  1769. struct rcu_node *rnp, struct rcu_data *rdp)
  1770. {
  1771. /* No-CBs CPUs do not have orphanable callbacks. */
  1772. if (rcu_is_nocb_cpu(rdp->cpu))
  1773. return;
  1774. /*
  1775. * Orphan the callbacks. First adjust the counts. This is safe
  1776. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  1777. * cannot be running now. Thus no memory barrier is required.
  1778. */
  1779. if (rdp->nxtlist != NULL) {
  1780. rsp->qlen_lazy += rdp->qlen_lazy;
  1781. rsp->qlen += rdp->qlen;
  1782. rdp->n_cbs_orphaned += rdp->qlen;
  1783. rdp->qlen_lazy = 0;
  1784. ACCESS_ONCE(rdp->qlen) = 0;
  1785. }
  1786. /*
  1787. * Next, move those callbacks still needing a grace period to
  1788. * the orphanage, where some other CPU will pick them up.
  1789. * Some of the callbacks might have gone partway through a grace
  1790. * period, but that is too bad. They get to start over because we
  1791. * cannot assume that grace periods are synchronized across CPUs.
  1792. * We don't bother updating the ->nxttail[] array yet, instead
  1793. * we just reset the whole thing later on.
  1794. */
  1795. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  1796. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  1797. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  1798. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1799. }
  1800. /*
  1801. * Then move the ready-to-invoke callbacks to the orphanage,
  1802. * where some other CPU will pick them up. These will not be
  1803. * required to pass though another grace period: They are done.
  1804. */
  1805. if (rdp->nxtlist != NULL) {
  1806. *rsp->orphan_donetail = rdp->nxtlist;
  1807. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  1808. }
  1809. /* Finally, initialize the rcu_data structure's list to empty. */
  1810. init_callback_list(rdp);
  1811. }
  1812. /*
  1813. * Adopt the RCU callbacks from the specified rcu_state structure's
  1814. * orphanage. The caller must hold the ->orphan_lock.
  1815. */
  1816. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
  1817. {
  1818. int i;
  1819. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  1820. /* No-CBs CPUs are handled specially. */
  1821. if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
  1822. return;
  1823. /* Do the accounting first. */
  1824. rdp->qlen_lazy += rsp->qlen_lazy;
  1825. rdp->qlen += rsp->qlen;
  1826. rdp->n_cbs_adopted += rsp->qlen;
  1827. if (rsp->qlen_lazy != rsp->qlen)
  1828. rcu_idle_count_callbacks_posted();
  1829. rsp->qlen_lazy = 0;
  1830. rsp->qlen = 0;
  1831. /*
  1832. * We do not need a memory barrier here because the only way we
  1833. * can get here if there is an rcu_barrier() in flight is if
  1834. * we are the task doing the rcu_barrier().
  1835. */
  1836. /* First adopt the ready-to-invoke callbacks. */
  1837. if (rsp->orphan_donelist != NULL) {
  1838. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  1839. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  1840. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  1841. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1842. rdp->nxttail[i] = rsp->orphan_donetail;
  1843. rsp->orphan_donelist = NULL;
  1844. rsp->orphan_donetail = &rsp->orphan_donelist;
  1845. }
  1846. /* And then adopt the callbacks that still need a grace period. */
  1847. if (rsp->orphan_nxtlist != NULL) {
  1848. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  1849. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  1850. rsp->orphan_nxtlist = NULL;
  1851. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1852. }
  1853. }
  1854. /*
  1855. * Trace the fact that this CPU is going offline.
  1856. */
  1857. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1858. {
  1859. RCU_TRACE(unsigned long mask);
  1860. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  1861. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  1862. RCU_TRACE(mask = rdp->grpmask);
  1863. trace_rcu_grace_period(rsp->name,
  1864. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  1865. TPS("cpuofl"));
  1866. }
  1867. /*
  1868. * The CPU has been completely removed, and some other CPU is reporting
  1869. * this fact from process context. Do the remainder of the cleanup,
  1870. * including orphaning the outgoing CPU's RCU callbacks, and also
  1871. * adopting them. There can only be one CPU hotplug operation at a time,
  1872. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  1873. */
  1874. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1875. {
  1876. unsigned long flags;
  1877. unsigned long mask;
  1878. int need_report = 0;
  1879. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1880. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  1881. /* Adjust any no-longer-needed kthreads. */
  1882. rcu_boost_kthread_setaffinity(rnp, -1);
  1883. /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
  1884. /* Exclude any attempts to start a new grace period. */
  1885. mutex_lock(&rsp->onoff_mutex);
  1886. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  1887. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  1888. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  1889. rcu_adopt_orphan_cbs(rsp, flags);
  1890. /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
  1891. mask = rdp->grpmask; /* rnp->grplo is constant. */
  1892. do {
  1893. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1894. smp_mb__after_unlock_lock();
  1895. rnp->qsmaskinit &= ~mask;
  1896. if (rnp->qsmaskinit != 0) {
  1897. if (rnp != rdp->mynode)
  1898. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1899. break;
  1900. }
  1901. if (rnp == rdp->mynode)
  1902. need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
  1903. else
  1904. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1905. mask = rnp->grpmask;
  1906. rnp = rnp->parent;
  1907. } while (rnp != NULL);
  1908. /*
  1909. * We still hold the leaf rcu_node structure lock here, and
  1910. * irqs are still disabled. The reason for this subterfuge is
  1911. * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
  1912. * held leads to deadlock.
  1913. */
  1914. raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
  1915. rnp = rdp->mynode;
  1916. if (need_report & RCU_OFL_TASKS_NORM_GP)
  1917. rcu_report_unblock_qs_rnp(rnp, flags);
  1918. else
  1919. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1920. if (need_report & RCU_OFL_TASKS_EXP_GP)
  1921. rcu_report_exp_rnp(rsp, rnp, true);
  1922. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  1923. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  1924. cpu, rdp->qlen, rdp->nxtlist);
  1925. init_callback_list(rdp);
  1926. /* Disallow further callbacks on this CPU. */
  1927. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  1928. mutex_unlock(&rsp->onoff_mutex);
  1929. }
  1930. #else /* #ifdef CONFIG_HOTPLUG_CPU */
  1931. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1932. {
  1933. }
  1934. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1935. {
  1936. }
  1937. #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
  1938. /*
  1939. * Invoke any RCU callbacks that have made it to the end of their grace
  1940. * period. Thottle as specified by rdp->blimit.
  1941. */
  1942. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  1943. {
  1944. unsigned long flags;
  1945. struct rcu_head *next, *list, **tail;
  1946. long bl, count, count_lazy;
  1947. int i;
  1948. /* If no callbacks are ready, just return. */
  1949. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  1950. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  1951. trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
  1952. need_resched(), is_idle_task(current),
  1953. rcu_is_callbacks_kthread());
  1954. return;
  1955. }
  1956. /*
  1957. * Extract the list of ready callbacks, disabling to prevent
  1958. * races with call_rcu() from interrupt handlers.
  1959. */
  1960. local_irq_save(flags);
  1961. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  1962. bl = rdp->blimit;
  1963. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  1964. list = rdp->nxtlist;
  1965. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  1966. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1967. tail = rdp->nxttail[RCU_DONE_TAIL];
  1968. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  1969. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1970. rdp->nxttail[i] = &rdp->nxtlist;
  1971. local_irq_restore(flags);
  1972. /* Invoke callbacks. */
  1973. count = count_lazy = 0;
  1974. while (list) {
  1975. next = list->next;
  1976. prefetch(next);
  1977. debug_rcu_head_unqueue(list);
  1978. if (__rcu_reclaim(rsp->name, list))
  1979. count_lazy++;
  1980. list = next;
  1981. /* Stop only if limit reached and CPU has something to do. */
  1982. if (++count >= bl &&
  1983. (need_resched() ||
  1984. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  1985. break;
  1986. }
  1987. local_irq_save(flags);
  1988. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  1989. is_idle_task(current),
  1990. rcu_is_callbacks_kthread());
  1991. /* Update count, and requeue any remaining callbacks. */
  1992. if (list != NULL) {
  1993. *tail = rdp->nxtlist;
  1994. rdp->nxtlist = list;
  1995. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1996. if (&rdp->nxtlist == rdp->nxttail[i])
  1997. rdp->nxttail[i] = tail;
  1998. else
  1999. break;
  2000. }
  2001. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2002. rdp->qlen_lazy -= count_lazy;
  2003. ACCESS_ONCE(rdp->qlen) -= count;
  2004. rdp->n_cbs_invoked += count;
  2005. /* Reinstate batch limit if we have worked down the excess. */
  2006. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  2007. rdp->blimit = blimit;
  2008. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2009. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  2010. rdp->qlen_last_fqs_check = 0;
  2011. rdp->n_force_qs_snap = rsp->n_force_qs;
  2012. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  2013. rdp->qlen_last_fqs_check = rdp->qlen;
  2014. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  2015. local_irq_restore(flags);
  2016. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2017. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2018. invoke_rcu_core();
  2019. }
  2020. /*
  2021. * Check to see if this CPU is in a non-context-switch quiescent state
  2022. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2023. * Also schedule RCU core processing.
  2024. *
  2025. * This function must be called from hardirq context. It is normally
  2026. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  2027. * false, there is no point in invoking rcu_check_callbacks().
  2028. */
  2029. void rcu_check_callbacks(int cpu, int user)
  2030. {
  2031. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2032. increment_cpu_stall_ticks();
  2033. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2034. /*
  2035. * Get here if this CPU took its interrupt from user
  2036. * mode or from the idle loop, and if this is not a
  2037. * nested interrupt. In this case, the CPU is in
  2038. * a quiescent state, so note it.
  2039. *
  2040. * No memory barrier is required here because both
  2041. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2042. * variables that other CPUs neither access nor modify,
  2043. * at least not while the corresponding CPU is online.
  2044. */
  2045. rcu_sched_qs(cpu);
  2046. rcu_bh_qs(cpu);
  2047. } else if (!in_softirq()) {
  2048. /*
  2049. * Get here if this CPU did not take its interrupt from
  2050. * softirq, in other words, if it is not interrupting
  2051. * a rcu_bh read-side critical section. This is an _bh
  2052. * critical section, so note it.
  2053. */
  2054. rcu_bh_qs(cpu);
  2055. }
  2056. rcu_preempt_check_callbacks(cpu);
  2057. if (rcu_pending(cpu))
  2058. invoke_rcu_core();
  2059. trace_rcu_utilization(TPS("End scheduler-tick"));
  2060. }
  2061. /*
  2062. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2063. * have not yet encountered a quiescent state, using the function specified.
  2064. * Also initiate boosting for any threads blocked on the root rcu_node.
  2065. *
  2066. * The caller must have suppressed start of new grace periods.
  2067. */
  2068. static void force_qs_rnp(struct rcu_state *rsp,
  2069. int (*f)(struct rcu_data *rsp, bool *isidle,
  2070. unsigned long *maxj),
  2071. bool *isidle, unsigned long *maxj)
  2072. {
  2073. unsigned long bit;
  2074. int cpu;
  2075. unsigned long flags;
  2076. unsigned long mask;
  2077. struct rcu_node *rnp;
  2078. rcu_for_each_leaf_node(rsp, rnp) {
  2079. cond_resched();
  2080. mask = 0;
  2081. raw_spin_lock_irqsave(&rnp->lock, flags);
  2082. smp_mb__after_unlock_lock();
  2083. if (!rcu_gp_in_progress(rsp)) {
  2084. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2085. return;
  2086. }
  2087. if (rnp->qsmask == 0) {
  2088. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  2089. continue;
  2090. }
  2091. cpu = rnp->grplo;
  2092. bit = 1;
  2093. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  2094. if ((rnp->qsmask & bit) != 0) {
  2095. if ((rnp->qsmaskinit & bit) != 0)
  2096. *isidle = 0;
  2097. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  2098. mask |= bit;
  2099. }
  2100. }
  2101. if (mask != 0) {
  2102. /* rcu_report_qs_rnp() releases rnp->lock. */
  2103. rcu_report_qs_rnp(mask, rsp, rnp, flags);
  2104. continue;
  2105. }
  2106. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2107. }
  2108. rnp = rcu_get_root(rsp);
  2109. if (rnp->qsmask == 0) {
  2110. raw_spin_lock_irqsave(&rnp->lock, flags);
  2111. smp_mb__after_unlock_lock();
  2112. rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
  2113. }
  2114. }
  2115. /*
  2116. * Force quiescent states on reluctant CPUs, and also detect which
  2117. * CPUs are in dyntick-idle mode.
  2118. */
  2119. static void force_quiescent_state(struct rcu_state *rsp)
  2120. {
  2121. unsigned long flags;
  2122. bool ret;
  2123. struct rcu_node *rnp;
  2124. struct rcu_node *rnp_old = NULL;
  2125. /* Funnel through hierarchy to reduce memory contention. */
  2126. rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
  2127. for (; rnp != NULL; rnp = rnp->parent) {
  2128. ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2129. !raw_spin_trylock(&rnp->fqslock);
  2130. if (rnp_old != NULL)
  2131. raw_spin_unlock(&rnp_old->fqslock);
  2132. if (ret) {
  2133. ACCESS_ONCE(rsp->n_force_qs_lh)++;
  2134. return;
  2135. }
  2136. rnp_old = rnp;
  2137. }
  2138. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2139. /* Reached the root of the rcu_node tree, acquire lock. */
  2140. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  2141. smp_mb__after_unlock_lock();
  2142. raw_spin_unlock(&rnp_old->fqslock);
  2143. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2144. ACCESS_ONCE(rsp->n_force_qs_lh)++;
  2145. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2146. return; /* Someone beat us to it. */
  2147. }
  2148. ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
  2149. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2150. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  2151. }
  2152. /*
  2153. * This does the RCU core processing work for the specified rcu_state
  2154. * and rcu_data structures. This may be called only from the CPU to
  2155. * whom the rdp belongs.
  2156. */
  2157. static void
  2158. __rcu_process_callbacks(struct rcu_state *rsp)
  2159. {
  2160. unsigned long flags;
  2161. bool needwake;
  2162. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  2163. WARN_ON_ONCE(rdp->beenonline == 0);
  2164. /* Update RCU state based on any recent quiescent states. */
  2165. rcu_check_quiescent_state(rsp, rdp);
  2166. /* Does this CPU require a not-yet-started grace period? */
  2167. local_irq_save(flags);
  2168. if (cpu_needs_another_gp(rsp, rdp)) {
  2169. raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
  2170. needwake = rcu_start_gp(rsp);
  2171. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2172. if (needwake)
  2173. rcu_gp_kthread_wake(rsp);
  2174. } else {
  2175. local_irq_restore(flags);
  2176. }
  2177. /* If there are callbacks ready, invoke them. */
  2178. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2179. invoke_rcu_callbacks(rsp, rdp);
  2180. /* Do any needed deferred wakeups of rcuo kthreads. */
  2181. do_nocb_deferred_wakeup(rdp);
  2182. }
  2183. /*
  2184. * Do RCU core processing for the current CPU.
  2185. */
  2186. static void rcu_process_callbacks(struct softirq_action *unused)
  2187. {
  2188. struct rcu_state *rsp;
  2189. if (cpu_is_offline(smp_processor_id()))
  2190. return;
  2191. trace_rcu_utilization(TPS("Start RCU core"));
  2192. for_each_rcu_flavor(rsp)
  2193. __rcu_process_callbacks(rsp);
  2194. trace_rcu_utilization(TPS("End RCU core"));
  2195. }
  2196. /*
  2197. * Schedule RCU callback invocation. If the specified type of RCU
  2198. * does not support RCU priority boosting, just do a direct call,
  2199. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2200. * are running on the current CPU with interrupts disabled, the
  2201. * rcu_cpu_kthread_task cannot disappear out from under us.
  2202. */
  2203. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2204. {
  2205. if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
  2206. return;
  2207. if (likely(!rsp->boost)) {
  2208. rcu_do_batch(rsp, rdp);
  2209. return;
  2210. }
  2211. invoke_rcu_callbacks_kthread();
  2212. }
  2213. static void invoke_rcu_core(void)
  2214. {
  2215. if (cpu_online(smp_processor_id()))
  2216. raise_softirq(RCU_SOFTIRQ);
  2217. }
  2218. /*
  2219. * Handle any core-RCU processing required by a call_rcu() invocation.
  2220. */
  2221. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2222. struct rcu_head *head, unsigned long flags)
  2223. {
  2224. bool needwake;
  2225. /*
  2226. * If called from an extended quiescent state, invoke the RCU
  2227. * core in order to force a re-evaluation of RCU's idleness.
  2228. */
  2229. if (!rcu_is_watching() && cpu_online(smp_processor_id()))
  2230. invoke_rcu_core();
  2231. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2232. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2233. return;
  2234. /*
  2235. * Force the grace period if too many callbacks or too long waiting.
  2236. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2237. * if some other CPU has recently done so. Also, don't bother
  2238. * invoking force_quiescent_state() if the newly enqueued callback
  2239. * is the only one waiting for a grace period to complete.
  2240. */
  2241. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2242. /* Are we ignoring a completed grace period? */
  2243. note_gp_changes(rsp, rdp);
  2244. /* Start a new grace period if one not already started. */
  2245. if (!rcu_gp_in_progress(rsp)) {
  2246. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2247. raw_spin_lock(&rnp_root->lock);
  2248. smp_mb__after_unlock_lock();
  2249. needwake = rcu_start_gp(rsp);
  2250. raw_spin_unlock(&rnp_root->lock);
  2251. if (needwake)
  2252. rcu_gp_kthread_wake(rsp);
  2253. } else {
  2254. /* Give the grace period a kick. */
  2255. rdp->blimit = LONG_MAX;
  2256. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2257. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2258. force_quiescent_state(rsp);
  2259. rdp->n_force_qs_snap = rsp->n_force_qs;
  2260. rdp->qlen_last_fqs_check = rdp->qlen;
  2261. }
  2262. }
  2263. }
  2264. /*
  2265. * RCU callback function to leak a callback.
  2266. */
  2267. static void rcu_leak_callback(struct rcu_head *rhp)
  2268. {
  2269. }
  2270. /*
  2271. * Helper function for call_rcu() and friends. The cpu argument will
  2272. * normally be -1, indicating "currently running CPU". It may specify
  2273. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2274. * is expected to specify a CPU.
  2275. */
  2276. static void
  2277. __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
  2278. struct rcu_state *rsp, int cpu, bool lazy)
  2279. {
  2280. unsigned long flags;
  2281. struct rcu_data *rdp;
  2282. WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
  2283. if (debug_rcu_head_queue(head)) {
  2284. /* Probable double call_rcu(), so leak the callback. */
  2285. ACCESS_ONCE(head->func) = rcu_leak_callback;
  2286. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2287. return;
  2288. }
  2289. head->func = func;
  2290. head->next = NULL;
  2291. /*
  2292. * Opportunistically note grace-period endings and beginnings.
  2293. * Note that we might see a beginning right after we see an
  2294. * end, but never vice versa, since this CPU has to pass through
  2295. * a quiescent state betweentimes.
  2296. */
  2297. local_irq_save(flags);
  2298. rdp = this_cpu_ptr(rsp->rda);
  2299. /* Add the callback to our list. */
  2300. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2301. int offline;
  2302. if (cpu != -1)
  2303. rdp = per_cpu_ptr(rsp->rda, cpu);
  2304. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2305. WARN_ON_ONCE(offline);
  2306. /* _call_rcu() is illegal on offline CPU; leak the callback. */
  2307. local_irq_restore(flags);
  2308. return;
  2309. }
  2310. ACCESS_ONCE(rdp->qlen)++;
  2311. if (lazy)
  2312. rdp->qlen_lazy++;
  2313. else
  2314. rcu_idle_count_callbacks_posted();
  2315. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2316. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2317. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2318. if (__is_kfree_rcu_offset((unsigned long)func))
  2319. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2320. rdp->qlen_lazy, rdp->qlen);
  2321. else
  2322. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2323. /* Go handle any RCU core processing required. */
  2324. __call_rcu_core(rsp, rdp, head, flags);
  2325. local_irq_restore(flags);
  2326. }
  2327. /*
  2328. * Queue an RCU-sched callback for invocation after a grace period.
  2329. */
  2330. void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2331. {
  2332. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2333. }
  2334. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2335. /*
  2336. * Queue an RCU callback for invocation after a quicker grace period.
  2337. */
  2338. void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2339. {
  2340. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2341. }
  2342. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2343. /*
  2344. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2345. * any blocking grace-period wait automatically implies a grace period
  2346. * if there is only one CPU online at any point time during execution
  2347. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2348. * occasionally incorrectly indicate that there are multiple CPUs online
  2349. * when there was in fact only one the whole time, as this just adds
  2350. * some overhead: RCU still operates correctly.
  2351. */
  2352. static inline int rcu_blocking_is_gp(void)
  2353. {
  2354. int ret;
  2355. might_sleep(); /* Check for RCU read-side critical section. */
  2356. preempt_disable();
  2357. ret = num_online_cpus() <= 1;
  2358. preempt_enable();
  2359. return ret;
  2360. }
  2361. /**
  2362. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2363. *
  2364. * Control will return to the caller some time after a full rcu-sched
  2365. * grace period has elapsed, in other words after all currently executing
  2366. * rcu-sched read-side critical sections have completed. These read-side
  2367. * critical sections are delimited by rcu_read_lock_sched() and
  2368. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2369. * local_irq_disable(), and so on may be used in place of
  2370. * rcu_read_lock_sched().
  2371. *
  2372. * This means that all preempt_disable code sequences, including NMI and
  2373. * non-threaded hardware-interrupt handlers, in progress on entry will
  2374. * have completed before this primitive returns. However, this does not
  2375. * guarantee that softirq handlers will have completed, since in some
  2376. * kernels, these handlers can run in process context, and can block.
  2377. *
  2378. * Note that this guarantee implies further memory-ordering guarantees.
  2379. * On systems with more than one CPU, when synchronize_sched() returns,
  2380. * each CPU is guaranteed to have executed a full memory barrier since the
  2381. * end of its last RCU-sched read-side critical section whose beginning
  2382. * preceded the call to synchronize_sched(). In addition, each CPU having
  2383. * an RCU read-side critical section that extends beyond the return from
  2384. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2385. * after the beginning of synchronize_sched() and before the beginning of
  2386. * that RCU read-side critical section. Note that these guarantees include
  2387. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2388. * that are executing in the kernel.
  2389. *
  2390. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2391. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2392. * to have executed a full memory barrier during the execution of
  2393. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2394. * again only if the system has more than one CPU).
  2395. *
  2396. * This primitive provides the guarantees made by the (now removed)
  2397. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2398. * guarantees that rcu_read_lock() sections will have completed.
  2399. * In "classic RCU", these two guarantees happen to be one and
  2400. * the same, but can differ in realtime RCU implementations.
  2401. */
  2402. void synchronize_sched(void)
  2403. {
  2404. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2405. !lock_is_held(&rcu_lock_map) &&
  2406. !lock_is_held(&rcu_sched_lock_map),
  2407. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2408. if (rcu_blocking_is_gp())
  2409. return;
  2410. if (rcu_expedited)
  2411. synchronize_sched_expedited();
  2412. else
  2413. wait_rcu_gp(call_rcu_sched);
  2414. }
  2415. EXPORT_SYMBOL_GPL(synchronize_sched);
  2416. /**
  2417. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2418. *
  2419. * Control will return to the caller some time after a full rcu_bh grace
  2420. * period has elapsed, in other words after all currently executing rcu_bh
  2421. * read-side critical sections have completed. RCU read-side critical
  2422. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2423. * and may be nested.
  2424. *
  2425. * See the description of synchronize_sched() for more detailed information
  2426. * on memory ordering guarantees.
  2427. */
  2428. void synchronize_rcu_bh(void)
  2429. {
  2430. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2431. !lock_is_held(&rcu_lock_map) &&
  2432. !lock_is_held(&rcu_sched_lock_map),
  2433. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2434. if (rcu_blocking_is_gp())
  2435. return;
  2436. if (rcu_expedited)
  2437. synchronize_rcu_bh_expedited();
  2438. else
  2439. wait_rcu_gp(call_rcu_bh);
  2440. }
  2441. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2442. /**
  2443. * get_state_synchronize_rcu - Snapshot current RCU state
  2444. *
  2445. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2446. * to determine whether or not a full grace period has elapsed in the
  2447. * meantime.
  2448. */
  2449. unsigned long get_state_synchronize_rcu(void)
  2450. {
  2451. /*
  2452. * Any prior manipulation of RCU-protected data must happen
  2453. * before the load from ->gpnum.
  2454. */
  2455. smp_mb(); /* ^^^ */
  2456. /*
  2457. * Make sure this load happens before the purportedly
  2458. * time-consuming work between get_state_synchronize_rcu()
  2459. * and cond_synchronize_rcu().
  2460. */
  2461. return smp_load_acquire(&rcu_state->gpnum);
  2462. }
  2463. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2464. /**
  2465. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2466. *
  2467. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2468. *
  2469. * If a full RCU grace period has elapsed since the earlier call to
  2470. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2471. * synchronize_rcu() to wait for a full grace period.
  2472. *
  2473. * Yes, this function does not take counter wrap into account. But
  2474. * counter wrap is harmless. If the counter wraps, we have waited for
  2475. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2476. * so waiting for one additional grace period should be just fine.
  2477. */
  2478. void cond_synchronize_rcu(unsigned long oldstate)
  2479. {
  2480. unsigned long newstate;
  2481. /*
  2482. * Ensure that this load happens before any RCU-destructive
  2483. * actions the caller might carry out after we return.
  2484. */
  2485. newstate = smp_load_acquire(&rcu_state->completed);
  2486. if (ULONG_CMP_GE(oldstate, newstate))
  2487. synchronize_rcu();
  2488. }
  2489. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2490. static int synchronize_sched_expedited_cpu_stop(void *data)
  2491. {
  2492. /*
  2493. * There must be a full memory barrier on each affected CPU
  2494. * between the time that try_stop_cpus() is called and the
  2495. * time that it returns.
  2496. *
  2497. * In the current initial implementation of cpu_stop, the
  2498. * above condition is already met when the control reaches
  2499. * this point and the following smp_mb() is not strictly
  2500. * necessary. Do smp_mb() anyway for documentation and
  2501. * robustness against future implementation changes.
  2502. */
  2503. smp_mb(); /* See above comment block. */
  2504. return 0;
  2505. }
  2506. /**
  2507. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  2508. *
  2509. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  2510. * approach to force the grace period to end quickly. This consumes
  2511. * significant time on all CPUs and is unfriendly to real-time workloads,
  2512. * so is thus not recommended for any sort of common-case code. In fact,
  2513. * if you are using synchronize_sched_expedited() in a loop, please
  2514. * restructure your code to batch your updates, and then use a single
  2515. * synchronize_sched() instead.
  2516. *
  2517. * Note that it is illegal to call this function while holding any lock
  2518. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  2519. * to call this function from a CPU-hotplug notifier. Failing to observe
  2520. * these restriction will result in deadlock.
  2521. *
  2522. * This implementation can be thought of as an application of ticket
  2523. * locking to RCU, with sync_sched_expedited_started and
  2524. * sync_sched_expedited_done taking on the roles of the halves
  2525. * of the ticket-lock word. Each task atomically increments
  2526. * sync_sched_expedited_started upon entry, snapshotting the old value,
  2527. * then attempts to stop all the CPUs. If this succeeds, then each
  2528. * CPU will have executed a context switch, resulting in an RCU-sched
  2529. * grace period. We are then done, so we use atomic_cmpxchg() to
  2530. * update sync_sched_expedited_done to match our snapshot -- but
  2531. * only if someone else has not already advanced past our snapshot.
  2532. *
  2533. * On the other hand, if try_stop_cpus() fails, we check the value
  2534. * of sync_sched_expedited_done. If it has advanced past our
  2535. * initial snapshot, then someone else must have forced a grace period
  2536. * some time after we took our snapshot. In this case, our work is
  2537. * done for us, and we can simply return. Otherwise, we try again,
  2538. * but keep our initial snapshot for purposes of checking for someone
  2539. * doing our work for us.
  2540. *
  2541. * If we fail too many times in a row, we fall back to synchronize_sched().
  2542. */
  2543. void synchronize_sched_expedited(void)
  2544. {
  2545. long firstsnap, s, snap;
  2546. int trycount = 0;
  2547. struct rcu_state *rsp = &rcu_sched_state;
  2548. /*
  2549. * If we are in danger of counter wrap, just do synchronize_sched().
  2550. * By allowing sync_sched_expedited_started to advance no more than
  2551. * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
  2552. * that more than 3.5 billion CPUs would be required to force a
  2553. * counter wrap on a 32-bit system. Quite a few more CPUs would of
  2554. * course be required on a 64-bit system.
  2555. */
  2556. if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
  2557. (ulong)atomic_long_read(&rsp->expedited_done) +
  2558. ULONG_MAX / 8)) {
  2559. synchronize_sched();
  2560. atomic_long_inc(&rsp->expedited_wrap);
  2561. return;
  2562. }
  2563. /*
  2564. * Take a ticket. Note that atomic_inc_return() implies a
  2565. * full memory barrier.
  2566. */
  2567. snap = atomic_long_inc_return(&rsp->expedited_start);
  2568. firstsnap = snap;
  2569. get_online_cpus();
  2570. WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
  2571. /*
  2572. * Each pass through the following loop attempts to force a
  2573. * context switch on each CPU.
  2574. */
  2575. while (try_stop_cpus(cpu_online_mask,
  2576. synchronize_sched_expedited_cpu_stop,
  2577. NULL) == -EAGAIN) {
  2578. put_online_cpus();
  2579. atomic_long_inc(&rsp->expedited_tryfail);
  2580. /* Check to see if someone else did our work for us. */
  2581. s = atomic_long_read(&rsp->expedited_done);
  2582. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2583. /* ensure test happens before caller kfree */
  2584. smp_mb__before_atomic_inc(); /* ^^^ */
  2585. atomic_long_inc(&rsp->expedited_workdone1);
  2586. return;
  2587. }
  2588. /* No joy, try again later. Or just synchronize_sched(). */
  2589. if (trycount++ < 10) {
  2590. udelay(trycount * num_online_cpus());
  2591. } else {
  2592. wait_rcu_gp(call_rcu_sched);
  2593. atomic_long_inc(&rsp->expedited_normal);
  2594. return;
  2595. }
  2596. /* Recheck to see if someone else did our work for us. */
  2597. s = atomic_long_read(&rsp->expedited_done);
  2598. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2599. /* ensure test happens before caller kfree */
  2600. smp_mb__before_atomic_inc(); /* ^^^ */
  2601. atomic_long_inc(&rsp->expedited_workdone2);
  2602. return;
  2603. }
  2604. /*
  2605. * Refetching sync_sched_expedited_started allows later
  2606. * callers to piggyback on our grace period. We retry
  2607. * after they started, so our grace period works for them,
  2608. * and they started after our first try, so their grace
  2609. * period works for us.
  2610. */
  2611. get_online_cpus();
  2612. snap = atomic_long_read(&rsp->expedited_start);
  2613. smp_mb(); /* ensure read is before try_stop_cpus(). */
  2614. }
  2615. atomic_long_inc(&rsp->expedited_stoppedcpus);
  2616. /*
  2617. * Everyone up to our most recent fetch is covered by our grace
  2618. * period. Update the counter, but only if our work is still
  2619. * relevant -- which it won't be if someone who started later
  2620. * than we did already did their update.
  2621. */
  2622. do {
  2623. atomic_long_inc(&rsp->expedited_done_tries);
  2624. s = atomic_long_read(&rsp->expedited_done);
  2625. if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
  2626. /* ensure test happens before caller kfree */
  2627. smp_mb__before_atomic_inc(); /* ^^^ */
  2628. atomic_long_inc(&rsp->expedited_done_lost);
  2629. break;
  2630. }
  2631. } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
  2632. atomic_long_inc(&rsp->expedited_done_exit);
  2633. put_online_cpus();
  2634. }
  2635. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  2636. /*
  2637. * Check to see if there is any immediate RCU-related work to be done
  2638. * by the current CPU, for the specified type of RCU, returning 1 if so.
  2639. * The checks are in order of increasing expense: checks that can be
  2640. * carried out against CPU-local state are performed first. However,
  2641. * we must check for CPU stalls first, else we might not get a chance.
  2642. */
  2643. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  2644. {
  2645. struct rcu_node *rnp = rdp->mynode;
  2646. rdp->n_rcu_pending++;
  2647. /* Check for CPU stalls, if enabled. */
  2648. check_cpu_stall(rsp, rdp);
  2649. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  2650. if (rcu_nohz_full_cpu(rsp))
  2651. return 0;
  2652. /* Is the RCU core waiting for a quiescent state from this CPU? */
  2653. if (rcu_scheduler_fully_active &&
  2654. rdp->qs_pending && !rdp->passed_quiesce) {
  2655. rdp->n_rp_qs_pending++;
  2656. } else if (rdp->qs_pending && rdp->passed_quiesce) {
  2657. rdp->n_rp_report_qs++;
  2658. return 1;
  2659. }
  2660. /* Does this CPU have callbacks ready to invoke? */
  2661. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  2662. rdp->n_rp_cb_ready++;
  2663. return 1;
  2664. }
  2665. /* Has RCU gone idle with this CPU needing another grace period? */
  2666. if (cpu_needs_another_gp(rsp, rdp)) {
  2667. rdp->n_rp_cpu_needs_gp++;
  2668. return 1;
  2669. }
  2670. /* Has another RCU grace period completed? */
  2671. if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  2672. rdp->n_rp_gp_completed++;
  2673. return 1;
  2674. }
  2675. /* Has a new RCU grace period started? */
  2676. if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
  2677. rdp->n_rp_gp_started++;
  2678. return 1;
  2679. }
  2680. /* Does this CPU need a deferred NOCB wakeup? */
  2681. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  2682. rdp->n_rp_nocb_defer_wakeup++;
  2683. return 1;
  2684. }
  2685. /* nothing to do */
  2686. rdp->n_rp_need_nothing++;
  2687. return 0;
  2688. }
  2689. /*
  2690. * Check to see if there is any immediate RCU-related work to be done
  2691. * by the current CPU, returning 1 if so. This function is part of the
  2692. * RCU implementation; it is -not- an exported member of the RCU API.
  2693. */
  2694. static int rcu_pending(int cpu)
  2695. {
  2696. struct rcu_state *rsp;
  2697. for_each_rcu_flavor(rsp)
  2698. if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
  2699. return 1;
  2700. return 0;
  2701. }
  2702. /*
  2703. * Return true if the specified CPU has any callback. If all_lazy is
  2704. * non-NULL, store an indication of whether all callbacks are lazy.
  2705. * (If there are no callbacks, all of them are deemed to be lazy.)
  2706. */
  2707. static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
  2708. {
  2709. bool al = true;
  2710. bool hc = false;
  2711. struct rcu_data *rdp;
  2712. struct rcu_state *rsp;
  2713. for_each_rcu_flavor(rsp) {
  2714. rdp = per_cpu_ptr(rsp->rda, cpu);
  2715. if (!rdp->nxtlist)
  2716. continue;
  2717. hc = true;
  2718. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  2719. al = false;
  2720. break;
  2721. }
  2722. }
  2723. if (all_lazy)
  2724. *all_lazy = al;
  2725. return hc;
  2726. }
  2727. /*
  2728. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  2729. * the compiler is expected to optimize this away.
  2730. */
  2731. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  2732. int cpu, unsigned long done)
  2733. {
  2734. trace_rcu_barrier(rsp->name, s, cpu,
  2735. atomic_read(&rsp->barrier_cpu_count), done);
  2736. }
  2737. /*
  2738. * RCU callback function for _rcu_barrier(). If we are last, wake
  2739. * up the task executing _rcu_barrier().
  2740. */
  2741. static void rcu_barrier_callback(struct rcu_head *rhp)
  2742. {
  2743. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  2744. struct rcu_state *rsp = rdp->rsp;
  2745. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  2746. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
  2747. complete(&rsp->barrier_completion);
  2748. } else {
  2749. _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
  2750. }
  2751. }
  2752. /*
  2753. * Called with preemption disabled, and from cross-cpu IRQ context.
  2754. */
  2755. static void rcu_barrier_func(void *type)
  2756. {
  2757. struct rcu_state *rsp = type;
  2758. struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
  2759. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
  2760. atomic_inc(&rsp->barrier_cpu_count);
  2761. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  2762. }
  2763. /*
  2764. * Orchestrate the specified type of RCU barrier, waiting for all
  2765. * RCU callbacks of the specified type to complete.
  2766. */
  2767. static void _rcu_barrier(struct rcu_state *rsp)
  2768. {
  2769. int cpu;
  2770. struct rcu_data *rdp;
  2771. unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
  2772. unsigned long snap_done;
  2773. _rcu_barrier_trace(rsp, "Begin", -1, snap);
  2774. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  2775. mutex_lock(&rsp->barrier_mutex);
  2776. /*
  2777. * Ensure that all prior references, including to ->n_barrier_done,
  2778. * are ordered before the _rcu_barrier() machinery.
  2779. */
  2780. smp_mb(); /* See above block comment. */
  2781. /*
  2782. * Recheck ->n_barrier_done to see if others did our work for us.
  2783. * This means checking ->n_barrier_done for an even-to-odd-to-even
  2784. * transition. The "if" expression below therefore rounds the old
  2785. * value up to the next even number and adds two before comparing.
  2786. */
  2787. snap_done = rsp->n_barrier_done;
  2788. _rcu_barrier_trace(rsp, "Check", -1, snap_done);
  2789. /*
  2790. * If the value in snap is odd, we needed to wait for the current
  2791. * rcu_barrier() to complete, then wait for the next one, in other
  2792. * words, we need the value of snap_done to be three larger than
  2793. * the value of snap. On the other hand, if the value in snap is
  2794. * even, we only had to wait for the next rcu_barrier() to complete,
  2795. * in other words, we need the value of snap_done to be only two
  2796. * greater than the value of snap. The "(snap + 3) & ~0x1" computes
  2797. * this for us (thank you, Linus!).
  2798. */
  2799. if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
  2800. _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
  2801. smp_mb(); /* caller's subsequent code after above check. */
  2802. mutex_unlock(&rsp->barrier_mutex);
  2803. return;
  2804. }
  2805. /*
  2806. * Increment ->n_barrier_done to avoid duplicate work. Use
  2807. * ACCESS_ONCE() to prevent the compiler from speculating
  2808. * the increment to precede the early-exit check.
  2809. */
  2810. ACCESS_ONCE(rsp->n_barrier_done)++;
  2811. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
  2812. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
  2813. smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
  2814. /*
  2815. * Initialize the count to one rather than to zero in order to
  2816. * avoid a too-soon return to zero in case of a short grace period
  2817. * (or preemption of this task). Exclude CPU-hotplug operations
  2818. * to ensure that no offline CPU has callbacks queued.
  2819. */
  2820. init_completion(&rsp->barrier_completion);
  2821. atomic_set(&rsp->barrier_cpu_count, 1);
  2822. get_online_cpus();
  2823. /*
  2824. * Force each CPU with callbacks to register a new callback.
  2825. * When that callback is invoked, we will know that all of the
  2826. * corresponding CPU's preceding callbacks have been invoked.
  2827. */
  2828. for_each_possible_cpu(cpu) {
  2829. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  2830. continue;
  2831. rdp = per_cpu_ptr(rsp->rda, cpu);
  2832. if (rcu_is_nocb_cpu(cpu)) {
  2833. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  2834. rsp->n_barrier_done);
  2835. atomic_inc(&rsp->barrier_cpu_count);
  2836. __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
  2837. rsp, cpu, 0);
  2838. } else if (ACCESS_ONCE(rdp->qlen)) {
  2839. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  2840. rsp->n_barrier_done);
  2841. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  2842. } else {
  2843. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  2844. rsp->n_barrier_done);
  2845. }
  2846. }
  2847. put_online_cpus();
  2848. /*
  2849. * Now that we have an rcu_barrier_callback() callback on each
  2850. * CPU, and thus each counted, remove the initial count.
  2851. */
  2852. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  2853. complete(&rsp->barrier_completion);
  2854. /* Increment ->n_barrier_done to prevent duplicate work. */
  2855. smp_mb(); /* Keep increment after above mechanism. */
  2856. ACCESS_ONCE(rsp->n_barrier_done)++;
  2857. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
  2858. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
  2859. smp_mb(); /* Keep increment before caller's subsequent code. */
  2860. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  2861. wait_for_completion(&rsp->barrier_completion);
  2862. /* Other rcu_barrier() invocations can now safely proceed. */
  2863. mutex_unlock(&rsp->barrier_mutex);
  2864. }
  2865. /**
  2866. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  2867. */
  2868. void rcu_barrier_bh(void)
  2869. {
  2870. _rcu_barrier(&rcu_bh_state);
  2871. }
  2872. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  2873. /**
  2874. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  2875. */
  2876. void rcu_barrier_sched(void)
  2877. {
  2878. _rcu_barrier(&rcu_sched_state);
  2879. }
  2880. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  2881. /*
  2882. * Do boot-time initialization of a CPU's per-CPU RCU data.
  2883. */
  2884. static void __init
  2885. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  2886. {
  2887. unsigned long flags;
  2888. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2889. struct rcu_node *rnp = rcu_get_root(rsp);
  2890. /* Set up local state, ensuring consistent view of global state. */
  2891. raw_spin_lock_irqsave(&rnp->lock, flags);
  2892. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  2893. init_callback_list(rdp);
  2894. rdp->qlen_lazy = 0;
  2895. ACCESS_ONCE(rdp->qlen) = 0;
  2896. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  2897. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  2898. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  2899. rdp->cpu = cpu;
  2900. rdp->rsp = rsp;
  2901. rcu_boot_init_nocb_percpu_data(rdp);
  2902. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2903. }
  2904. /*
  2905. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  2906. * offline event can be happening at a given time. Note also that we
  2907. * can accept some slop in the rsp->completed access due to the fact
  2908. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  2909. */
  2910. static void
  2911. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  2912. {
  2913. unsigned long flags;
  2914. unsigned long mask;
  2915. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2916. struct rcu_node *rnp = rcu_get_root(rsp);
  2917. /* Exclude new grace periods. */
  2918. mutex_lock(&rsp->onoff_mutex);
  2919. /* Set up local state, ensuring consistent view of global state. */
  2920. raw_spin_lock_irqsave(&rnp->lock, flags);
  2921. rdp->beenonline = 1; /* We have now been online. */
  2922. rdp->qlen_last_fqs_check = 0;
  2923. rdp->n_force_qs_snap = rsp->n_force_qs;
  2924. rdp->blimit = blimit;
  2925. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  2926. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  2927. rcu_sysidle_init_percpu_data(rdp->dynticks);
  2928. atomic_set(&rdp->dynticks->dynticks,
  2929. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  2930. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2931. /* Add CPU to rcu_node bitmasks. */
  2932. rnp = rdp->mynode;
  2933. mask = rdp->grpmask;
  2934. do {
  2935. /* Exclude any attempts to start a new GP on small systems. */
  2936. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2937. rnp->qsmaskinit |= mask;
  2938. mask = rnp->grpmask;
  2939. if (rnp == rdp->mynode) {
  2940. /*
  2941. * If there is a grace period in progress, we will
  2942. * set up to wait for it next time we run the
  2943. * RCU core code.
  2944. */
  2945. rdp->gpnum = rnp->completed;
  2946. rdp->completed = rnp->completed;
  2947. rdp->passed_quiesce = 0;
  2948. rdp->qs_pending = 0;
  2949. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  2950. }
  2951. raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
  2952. rnp = rnp->parent;
  2953. } while (rnp != NULL && !(rnp->qsmaskinit & mask));
  2954. local_irq_restore(flags);
  2955. mutex_unlock(&rsp->onoff_mutex);
  2956. }
  2957. static void rcu_prepare_cpu(int cpu)
  2958. {
  2959. struct rcu_state *rsp;
  2960. for_each_rcu_flavor(rsp)
  2961. rcu_init_percpu_data(cpu, rsp);
  2962. }
  2963. /*
  2964. * Handle CPU online/offline notification events.
  2965. */
  2966. static int rcu_cpu_notify(struct notifier_block *self,
  2967. unsigned long action, void *hcpu)
  2968. {
  2969. long cpu = (long)hcpu;
  2970. struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
  2971. struct rcu_node *rnp = rdp->mynode;
  2972. struct rcu_state *rsp;
  2973. trace_rcu_utilization(TPS("Start CPU hotplug"));
  2974. switch (action) {
  2975. case CPU_UP_PREPARE:
  2976. case CPU_UP_PREPARE_FROZEN:
  2977. rcu_prepare_cpu(cpu);
  2978. rcu_prepare_kthreads(cpu);
  2979. break;
  2980. case CPU_ONLINE:
  2981. case CPU_DOWN_FAILED:
  2982. rcu_boost_kthread_setaffinity(rnp, -1);
  2983. break;
  2984. case CPU_DOWN_PREPARE:
  2985. rcu_boost_kthread_setaffinity(rnp, cpu);
  2986. break;
  2987. case CPU_DYING:
  2988. case CPU_DYING_FROZEN:
  2989. for_each_rcu_flavor(rsp)
  2990. rcu_cleanup_dying_cpu(rsp);
  2991. break;
  2992. case CPU_DEAD:
  2993. case CPU_DEAD_FROZEN:
  2994. case CPU_UP_CANCELED:
  2995. case CPU_UP_CANCELED_FROZEN:
  2996. for_each_rcu_flavor(rsp)
  2997. rcu_cleanup_dead_cpu(cpu, rsp);
  2998. break;
  2999. default:
  3000. break;
  3001. }
  3002. trace_rcu_utilization(TPS("End CPU hotplug"));
  3003. return NOTIFY_OK;
  3004. }
  3005. static int rcu_pm_notify(struct notifier_block *self,
  3006. unsigned long action, void *hcpu)
  3007. {
  3008. switch (action) {
  3009. case PM_HIBERNATION_PREPARE:
  3010. case PM_SUSPEND_PREPARE:
  3011. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3012. rcu_expedited = 1;
  3013. break;
  3014. case PM_POST_HIBERNATION:
  3015. case PM_POST_SUSPEND:
  3016. rcu_expedited = 0;
  3017. break;
  3018. default:
  3019. break;
  3020. }
  3021. return NOTIFY_OK;
  3022. }
  3023. /*
  3024. * Spawn the kthread that handles this RCU flavor's grace periods.
  3025. */
  3026. static int __init rcu_spawn_gp_kthread(void)
  3027. {
  3028. unsigned long flags;
  3029. struct rcu_node *rnp;
  3030. struct rcu_state *rsp;
  3031. struct task_struct *t;
  3032. for_each_rcu_flavor(rsp) {
  3033. t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
  3034. BUG_ON(IS_ERR(t));
  3035. rnp = rcu_get_root(rsp);
  3036. raw_spin_lock_irqsave(&rnp->lock, flags);
  3037. rsp->gp_kthread = t;
  3038. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3039. rcu_spawn_nocb_kthreads(rsp);
  3040. }
  3041. return 0;
  3042. }
  3043. early_initcall(rcu_spawn_gp_kthread);
  3044. /*
  3045. * This function is invoked towards the end of the scheduler's initialization
  3046. * process. Before this is called, the idle task might contain
  3047. * RCU read-side critical sections (during which time, this idle
  3048. * task is booting the system). After this function is called, the
  3049. * idle tasks are prohibited from containing RCU read-side critical
  3050. * sections. This function also enables RCU lockdep checking.
  3051. */
  3052. void rcu_scheduler_starting(void)
  3053. {
  3054. WARN_ON(num_online_cpus() != 1);
  3055. WARN_ON(nr_context_switches() > 0);
  3056. rcu_scheduler_active = 1;
  3057. }
  3058. /*
  3059. * Compute the per-level fanout, either using the exact fanout specified
  3060. * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
  3061. */
  3062. #ifdef CONFIG_RCU_FANOUT_EXACT
  3063. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3064. {
  3065. int i;
  3066. rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  3067. for (i = rcu_num_lvls - 2; i >= 0; i--)
  3068. rsp->levelspread[i] = CONFIG_RCU_FANOUT;
  3069. }
  3070. #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
  3071. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3072. {
  3073. int ccur;
  3074. int cprv;
  3075. int i;
  3076. cprv = nr_cpu_ids;
  3077. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3078. ccur = rsp->levelcnt[i];
  3079. rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
  3080. cprv = ccur;
  3081. }
  3082. }
  3083. #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
  3084. /*
  3085. * Helper function for rcu_init() that initializes one rcu_state structure.
  3086. */
  3087. static void __init rcu_init_one(struct rcu_state *rsp,
  3088. struct rcu_data __percpu *rda)
  3089. {
  3090. static char *buf[] = { "rcu_node_0",
  3091. "rcu_node_1",
  3092. "rcu_node_2",
  3093. "rcu_node_3" }; /* Match MAX_RCU_LVLS */
  3094. static char *fqs[] = { "rcu_node_fqs_0",
  3095. "rcu_node_fqs_1",
  3096. "rcu_node_fqs_2",
  3097. "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
  3098. int cpustride = 1;
  3099. int i;
  3100. int j;
  3101. struct rcu_node *rnp;
  3102. BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3103. /* Silence gcc 4.8 warning about array index out of range. */
  3104. if (rcu_num_lvls > RCU_NUM_LVLS)
  3105. panic("rcu_init_one: rcu_num_lvls overflow");
  3106. /* Initialize the level-tracking arrays. */
  3107. for (i = 0; i < rcu_num_lvls; i++)
  3108. rsp->levelcnt[i] = num_rcu_lvl[i];
  3109. for (i = 1; i < rcu_num_lvls; i++)
  3110. rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
  3111. rcu_init_levelspread(rsp);
  3112. /* Initialize the elements themselves, starting from the leaves. */
  3113. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3114. cpustride *= rsp->levelspread[i];
  3115. rnp = rsp->level[i];
  3116. for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
  3117. raw_spin_lock_init(&rnp->lock);
  3118. lockdep_set_class_and_name(&rnp->lock,
  3119. &rcu_node_class[i], buf[i]);
  3120. raw_spin_lock_init(&rnp->fqslock);
  3121. lockdep_set_class_and_name(&rnp->fqslock,
  3122. &rcu_fqs_class[i], fqs[i]);
  3123. rnp->gpnum = rsp->gpnum;
  3124. rnp->completed = rsp->completed;
  3125. rnp->qsmask = 0;
  3126. rnp->qsmaskinit = 0;
  3127. rnp->grplo = j * cpustride;
  3128. rnp->grphi = (j + 1) * cpustride - 1;
  3129. if (rnp->grphi >= nr_cpu_ids)
  3130. rnp->grphi = nr_cpu_ids - 1;
  3131. if (i == 0) {
  3132. rnp->grpnum = 0;
  3133. rnp->grpmask = 0;
  3134. rnp->parent = NULL;
  3135. } else {
  3136. rnp->grpnum = j % rsp->levelspread[i - 1];
  3137. rnp->grpmask = 1UL << rnp->grpnum;
  3138. rnp->parent = rsp->level[i - 1] +
  3139. j / rsp->levelspread[i - 1];
  3140. }
  3141. rnp->level = i;
  3142. INIT_LIST_HEAD(&rnp->blkd_tasks);
  3143. rcu_init_one_nocb(rnp);
  3144. }
  3145. }
  3146. rsp->rda = rda;
  3147. init_waitqueue_head(&rsp->gp_wq);
  3148. rnp = rsp->level[rcu_num_lvls - 1];
  3149. for_each_possible_cpu(i) {
  3150. while (i > rnp->grphi)
  3151. rnp++;
  3152. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  3153. rcu_boot_init_percpu_data(i, rsp);
  3154. }
  3155. list_add(&rsp->flavors, &rcu_struct_flavors);
  3156. }
  3157. /*
  3158. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  3159. * replace the definitions in tree.h because those are needed to size
  3160. * the ->node array in the rcu_state structure.
  3161. */
  3162. static void __init rcu_init_geometry(void)
  3163. {
  3164. ulong d;
  3165. int i;
  3166. int j;
  3167. int n = nr_cpu_ids;
  3168. int rcu_capacity[MAX_RCU_LVLS + 1];
  3169. /*
  3170. * Initialize any unspecified boot parameters.
  3171. * The default values of jiffies_till_first_fqs and
  3172. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  3173. * value, which is a function of HZ, then adding one for each
  3174. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3175. */
  3176. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3177. if (jiffies_till_first_fqs == ULONG_MAX)
  3178. jiffies_till_first_fqs = d;
  3179. if (jiffies_till_next_fqs == ULONG_MAX)
  3180. jiffies_till_next_fqs = d;
  3181. /* If the compile-time values are accurate, just leave. */
  3182. if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
  3183. nr_cpu_ids == NR_CPUS)
  3184. return;
  3185. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
  3186. rcu_fanout_leaf, nr_cpu_ids);
  3187. /*
  3188. * Compute number of nodes that can be handled an rcu_node tree
  3189. * with the given number of levels. Setting rcu_capacity[0] makes
  3190. * some of the arithmetic easier.
  3191. */
  3192. rcu_capacity[0] = 1;
  3193. rcu_capacity[1] = rcu_fanout_leaf;
  3194. for (i = 2; i <= MAX_RCU_LVLS; i++)
  3195. rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
  3196. /*
  3197. * The boot-time rcu_fanout_leaf parameter is only permitted
  3198. * to increase the leaf-level fanout, not decrease it. Of course,
  3199. * the leaf-level fanout cannot exceed the number of bits in
  3200. * the rcu_node masks. Finally, the tree must be able to accommodate
  3201. * the configured number of CPUs. Complain and fall back to the
  3202. * compile-time values if these limits are exceeded.
  3203. */
  3204. if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
  3205. rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
  3206. n > rcu_capacity[MAX_RCU_LVLS]) {
  3207. WARN_ON(1);
  3208. return;
  3209. }
  3210. /* Calculate the number of rcu_nodes at each level of the tree. */
  3211. for (i = 1; i <= MAX_RCU_LVLS; i++)
  3212. if (n <= rcu_capacity[i]) {
  3213. for (j = 0; j <= i; j++)
  3214. num_rcu_lvl[j] =
  3215. DIV_ROUND_UP(n, rcu_capacity[i - j]);
  3216. rcu_num_lvls = i;
  3217. for (j = i + 1; j <= MAX_RCU_LVLS; j++)
  3218. num_rcu_lvl[j] = 0;
  3219. break;
  3220. }
  3221. /* Calculate the total number of rcu_node structures. */
  3222. rcu_num_nodes = 0;
  3223. for (i = 0; i <= MAX_RCU_LVLS; i++)
  3224. rcu_num_nodes += num_rcu_lvl[i];
  3225. rcu_num_nodes -= n;
  3226. }
  3227. void __init rcu_init(void)
  3228. {
  3229. int cpu;
  3230. rcu_bootup_announce();
  3231. rcu_init_geometry();
  3232. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  3233. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  3234. __rcu_init_preempt();
  3235. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3236. /*
  3237. * We don't need protection against CPU-hotplug here because
  3238. * this is called early in boot, before either interrupts
  3239. * or the scheduler are operational.
  3240. */
  3241. cpu_notifier(rcu_cpu_notify, 0);
  3242. pm_notifier(rcu_pm_notify, 0);
  3243. for_each_online_cpu(cpu)
  3244. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  3245. }
  3246. #include "tree_plugin.h"