intel_ringbuffer.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int
  279. gen7_render_ring_flush(struct intel_engine_cs *ring,
  280. u32 invalidate_domains, u32 flush_domains)
  281. {
  282. u32 flags = 0;
  283. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  284. int ret;
  285. /*
  286. * Ensure that any following seqno writes only happen when the render
  287. * cache is indeed flushed.
  288. *
  289. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  290. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  291. * don't try to be clever and just set it unconditionally.
  292. */
  293. flags |= PIPE_CONTROL_CS_STALL;
  294. /* Just flush everything. Experiments have shown that reducing the
  295. * number of bits based on the write domains has little performance
  296. * impact.
  297. */
  298. if (flush_domains) {
  299. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  300. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  301. }
  302. if (invalidate_domains) {
  303. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  304. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  306. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  307. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  310. /*
  311. * TLB invalidate requires a post-sync write.
  312. */
  313. flags |= PIPE_CONTROL_QW_WRITE;
  314. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  315. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  316. /* Workaround: we must issue a pipe_control with CS-stall bit
  317. * set before a pipe_control command that has the state cache
  318. * invalidate bit set. */
  319. gen7_render_ring_cs_stall_wa(ring);
  320. }
  321. ret = intel_ring_begin(ring, 4);
  322. if (ret)
  323. return ret;
  324. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  325. intel_ring_emit(ring, flags);
  326. intel_ring_emit(ring, scratch_addr);
  327. intel_ring_emit(ring, 0);
  328. intel_ring_advance(ring);
  329. return 0;
  330. }
  331. static int
  332. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  333. u32 flags, u32 scratch_addr)
  334. {
  335. int ret;
  336. ret = intel_ring_begin(ring, 6);
  337. if (ret)
  338. return ret;
  339. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  340. intel_ring_emit(ring, flags);
  341. intel_ring_emit(ring, scratch_addr);
  342. intel_ring_emit(ring, 0);
  343. intel_ring_emit(ring, 0);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_advance(ring);
  346. return 0;
  347. }
  348. static int
  349. gen8_render_ring_flush(struct intel_engine_cs *ring,
  350. u32 invalidate_domains, u32 flush_domains)
  351. {
  352. u32 flags = 0;
  353. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  354. int ret;
  355. flags |= PIPE_CONTROL_CS_STALL;
  356. if (flush_domains) {
  357. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  358. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  359. }
  360. if (invalidate_domains) {
  361. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  362. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  367. flags |= PIPE_CONTROL_QW_WRITE;
  368. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  369. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  370. ret = gen8_emit_pipe_control(ring,
  371. PIPE_CONTROL_CS_STALL |
  372. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  373. 0);
  374. if (ret)
  375. return ret;
  376. }
  377. return gen8_emit_pipe_control(ring, flags, scratch_addr);
  378. }
  379. static void ring_write_tail(struct intel_engine_cs *ring,
  380. u32 value)
  381. {
  382. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  383. I915_WRITE_TAIL(ring, value);
  384. }
  385. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  386. {
  387. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  388. u64 acthd;
  389. if (INTEL_INFO(ring->dev)->gen >= 8)
  390. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  391. RING_ACTHD_UDW(ring->mmio_base));
  392. else if (INTEL_INFO(ring->dev)->gen >= 4)
  393. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  394. else
  395. acthd = I915_READ(ACTHD);
  396. return acthd;
  397. }
  398. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  399. {
  400. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  401. u32 addr;
  402. addr = dev_priv->status_page_dmah->busaddr;
  403. if (INTEL_INFO(ring->dev)->gen >= 4)
  404. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  405. I915_WRITE(HWS_PGA, addr);
  406. }
  407. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  408. {
  409. struct drm_device *dev = ring->dev;
  410. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  411. u32 mmio = 0;
  412. /* The ring status page addresses are no longer next to the rest of
  413. * the ring registers as of gen7.
  414. */
  415. if (IS_GEN7(dev)) {
  416. switch (ring->id) {
  417. case RCS:
  418. mmio = RENDER_HWS_PGA_GEN7;
  419. break;
  420. case BCS:
  421. mmio = BLT_HWS_PGA_GEN7;
  422. break;
  423. /*
  424. * VCS2 actually doesn't exist on Gen7. Only shut up
  425. * gcc switch check warning
  426. */
  427. case VCS2:
  428. case VCS:
  429. mmio = BSD_HWS_PGA_GEN7;
  430. break;
  431. case VECS:
  432. mmio = VEBOX_HWS_PGA_GEN7;
  433. break;
  434. }
  435. } else if (IS_GEN6(ring->dev)) {
  436. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  437. } else {
  438. /* XXX: gen8 returns to sanity */
  439. mmio = RING_HWS_PGA(ring->mmio_base);
  440. }
  441. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  442. POSTING_READ(mmio);
  443. /*
  444. * Flush the TLB for this page
  445. *
  446. * FIXME: These two bits have disappeared on gen8, so a question
  447. * arises: do we still need this and if so how should we go about
  448. * invalidating the TLB?
  449. */
  450. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  451. u32 reg = RING_INSTPM(ring->mmio_base);
  452. /* ring should be idle before issuing a sync flush*/
  453. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  454. I915_WRITE(reg,
  455. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  456. INSTPM_SYNC_FLUSH));
  457. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  458. 1000))
  459. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  460. ring->name);
  461. }
  462. }
  463. static bool stop_ring(struct intel_engine_cs *ring)
  464. {
  465. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  466. if (!IS_GEN2(ring->dev)) {
  467. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  468. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  469. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  470. /* Sometimes we observe that the idle flag is not
  471. * set even though the ring is empty. So double
  472. * check before giving up.
  473. */
  474. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  475. return false;
  476. }
  477. }
  478. I915_WRITE_CTL(ring, 0);
  479. I915_WRITE_HEAD(ring, 0);
  480. ring->write_tail(ring, 0);
  481. if (!IS_GEN2(ring->dev)) {
  482. (void)I915_READ_CTL(ring);
  483. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  484. }
  485. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  486. }
  487. static int init_ring_common(struct intel_engine_cs *ring)
  488. {
  489. struct drm_device *dev = ring->dev;
  490. struct drm_i915_private *dev_priv = dev->dev_private;
  491. struct intel_ringbuffer *ringbuf = ring->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(ring)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. ring->name,
  500. I915_READ_CTL(ring),
  501. I915_READ_HEAD(ring),
  502. I915_READ_TAIL(ring),
  503. I915_READ_START(ring));
  504. if (!stop_ring(ring)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. ring->name,
  508. I915_READ_CTL(ring),
  509. I915_READ_HEAD(ring),
  510. I915_READ_TAIL(ring),
  511. I915_READ_START(ring));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev))
  517. intel_ring_setup_status_page(ring);
  518. else
  519. ring_setup_phys_status_page(ring);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(ring);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(ring))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. ring->name, I915_READ_HEAD(ring));
  531. I915_WRITE_HEAD(ring, 0);
  532. (void)I915_READ_HEAD(ring);
  533. I915_WRITE_CTL(ring,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  538. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. ring->name,
  543. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  544. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  545. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  546. ret = -EIO;
  547. goto out;
  548. }
  549. ringbuf->last_retired_head = -1;
  550. ringbuf->head = I915_READ_HEAD(ring);
  551. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  552. intel_ring_update_space(ringbuf);
  553. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  554. out:
  555. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  556. return ret;
  557. }
  558. void
  559. intel_fini_pipe_control(struct intel_engine_cs *ring)
  560. {
  561. struct drm_device *dev = ring->dev;
  562. if (ring->scratch.obj == NULL)
  563. return;
  564. if (INTEL_INFO(dev)->gen >= 5) {
  565. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  566. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  567. }
  568. drm_gem_object_unreference(&ring->scratch.obj->base);
  569. ring->scratch.obj = NULL;
  570. }
  571. int
  572. intel_init_pipe_control(struct intel_engine_cs *ring)
  573. {
  574. int ret;
  575. WARN_ON(ring->scratch.obj);
  576. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  577. if (ring->scratch.obj == NULL) {
  578. DRM_ERROR("Failed to allocate seqno page\n");
  579. ret = -ENOMEM;
  580. goto err;
  581. }
  582. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  583. if (ret)
  584. goto err_unref;
  585. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  586. if (ret)
  587. goto err_unref;
  588. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  589. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  590. if (ring->scratch.cpu_page == NULL) {
  591. ret = -ENOMEM;
  592. goto err_unpin;
  593. }
  594. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  595. ring->name, ring->scratch.gtt_offset);
  596. return 0;
  597. err_unpin:
  598. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  599. err_unref:
  600. drm_gem_object_unreference(&ring->scratch.obj->base);
  601. err:
  602. return ret;
  603. }
  604. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  605. struct intel_context *ctx)
  606. {
  607. int ret, i;
  608. struct drm_device *dev = ring->dev;
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. struct i915_workarounds *w = &dev_priv->workarounds;
  611. if (WARN_ON_ONCE(w->count == 0))
  612. return 0;
  613. ring->gpu_caches_dirty = true;
  614. ret = intel_ring_flush_all_caches(ring);
  615. if (ret)
  616. return ret;
  617. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  618. if (ret)
  619. return ret;
  620. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  621. for (i = 0; i < w->count; i++) {
  622. intel_ring_emit(ring, w->reg[i].addr);
  623. intel_ring_emit(ring, w->reg[i].value);
  624. }
  625. intel_ring_emit(ring, MI_NOOP);
  626. intel_ring_advance(ring);
  627. ring->gpu_caches_dirty = true;
  628. ret = intel_ring_flush_all_caches(ring);
  629. if (ret)
  630. return ret;
  631. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  632. return 0;
  633. }
  634. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  635. struct intel_context *ctx)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(ring, ctx);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(ring);
  642. if (ret)
  643. DRM_ERROR("init render state: %d\n", ret);
  644. return ret;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. const u32 addr, const u32 mask, const u32 val)
  648. {
  649. const u32 idx = dev_priv->workarounds.count;
  650. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  651. return -ENOSPC;
  652. dev_priv->workarounds.reg[idx].addr = addr;
  653. dev_priv->workarounds.reg[idx].value = val;
  654. dev_priv->workarounds.reg[idx].mask = mask;
  655. dev_priv->workarounds.count++;
  656. return 0;
  657. }
  658. #define WA_REG(addr, mask, val) { \
  659. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  660. if (r) \
  661. return r; \
  662. }
  663. #define WA_SET_BIT_MASKED(addr, mask) \
  664. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  665. #define WA_CLR_BIT_MASKED(addr, mask) \
  666. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  667. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  668. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  669. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  670. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  671. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  672. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  673. {
  674. struct drm_device *dev = ring->dev;
  675. struct drm_i915_private *dev_priv = dev->dev_private;
  676. /* WaDisablePartialInstShootdown:bdw */
  677. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  678. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  679. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  680. STALL_DOP_GATING_DISABLE);
  681. /* WaDisableDopClockGating:bdw */
  682. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  683. DOP_CLOCK_GATING_DISABLE);
  684. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  685. GEN8_SAMPLER_POWER_BYPASS_DIS);
  686. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  687. * workaround for for a possible hang in the unlikely event a TLB
  688. * invalidation occurs during a PSD flush.
  689. */
  690. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  691. /* WaForceEnableNonCoherent:bdw */
  692. HDC_FORCE_NON_COHERENT |
  693. /* WaForceContextSaveRestoreNonCoherent:bdw */
  694. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  695. /* WaHdcDisableFetchWhenMasked:bdw */
  696. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  697. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  698. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  699. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  700. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  701. * polygons in the same 8x4 pixel/sample area to be processed without
  702. * stalling waiting for the earlier ones to write to Hierarchical Z
  703. * buffer."
  704. *
  705. * This optimization is off by default for Broadwell; turn it on.
  706. */
  707. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  708. /* Wa4x4STCOptimizationDisable:bdw */
  709. WA_SET_BIT_MASKED(CACHE_MODE_1,
  710. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  711. /*
  712. * BSpec recommends 8x4 when MSAA is used,
  713. * however in practice 16x4 seems fastest.
  714. *
  715. * Note that PS/WM thread counts depend on the WIZ hashing
  716. * disable bit, which we don't touch here, but it's good
  717. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  718. */
  719. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  720. GEN6_WIZ_HASHING_MASK,
  721. GEN6_WIZ_HASHING_16x4);
  722. /* WaProgramL3SqcReg1Default:bdw */
  723. WA_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  724. return 0;
  725. }
  726. static int chv_init_workarounds(struct intel_engine_cs *ring)
  727. {
  728. struct drm_device *dev = ring->dev;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. /* WaDisablePartialInstShootdown:chv */
  731. /* WaDisableThreadStallDopClockGating:chv */
  732. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  733. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  734. STALL_DOP_GATING_DISABLE);
  735. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  736. * workaround for a possible hang in the unlikely event a TLB
  737. * invalidation occurs during a PSD flush.
  738. */
  739. /* WaForceEnableNonCoherent:chv */
  740. /* WaHdcDisableFetchWhenMasked:chv */
  741. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  742. HDC_FORCE_NON_COHERENT |
  743. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  744. /* According to the CACHE_MODE_0 default value documentation, some
  745. * CHV platforms disable this optimization by default. Turn it on.
  746. */
  747. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  748. /* Wa4x4STCOptimizationDisable:chv */
  749. WA_SET_BIT_MASKED(CACHE_MODE_1,
  750. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  751. /* Improve HiZ throughput on CHV. */
  752. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  753. /*
  754. * BSpec recommends 8x4 when MSAA is used,
  755. * however in practice 16x4 seems fastest.
  756. *
  757. * Note that PS/WM thread counts depend on the WIZ hashing
  758. * disable bit, which we don't touch here, but it's good
  759. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  760. */
  761. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  762. GEN6_WIZ_HASHING_MASK,
  763. GEN6_WIZ_HASHING_16x4);
  764. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  765. INTEL_REVID(dev) == SKL_REVID_D0)
  766. /* WaBarrierPerformanceFixDisable:skl */
  767. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  768. HDC_FENCE_DEST_SLM_DISABLE |
  769. HDC_BARRIER_PERFORMANCE_DISABLE);
  770. return 0;
  771. }
  772. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  773. {
  774. struct drm_device *dev = ring->dev;
  775. struct drm_i915_private *dev_priv = dev->dev_private;
  776. /* WaDisablePartialInstShootdown:skl */
  777. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  778. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  779. /* Syncing dependencies between camera and graphics */
  780. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  781. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  782. if (INTEL_REVID(dev) == SKL_REVID_A0 ||
  783. INTEL_REVID(dev) == SKL_REVID_B0) {
  784. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl */
  785. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  786. GEN9_DG_MIRROR_FIX_ENABLE);
  787. }
  788. if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
  789. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
  790. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  791. GEN9_RHWO_OPTIMIZATION_DISABLE);
  792. WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
  793. DISABLE_PIXEL_MASK_CAMMING);
  794. }
  795. if (INTEL_REVID(dev) >= SKL_REVID_C0) {
  796. /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
  797. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  798. GEN9_ENABLE_YV12_BUGFIX);
  799. }
  800. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  801. /*
  802. *Use Force Non-Coherent whenever executing a 3D context. This
  803. * is a workaround for a possible hang in the unlikely event
  804. * a TLB invalidation occurs during a PSD flush.
  805. */
  806. /* WaForceEnableNonCoherent:skl */
  807. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  808. HDC_FORCE_NON_COHERENT);
  809. }
  810. /* Wa4x4STCOptimizationDisable:skl */
  811. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  812. /* WaDisablePartialResolveInVc:skl */
  813. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  814. /* WaCcsTlbPrefetchDisable:skl */
  815. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  816. GEN9_CCS_TLB_PREFETCH_ENABLE);
  817. return 0;
  818. }
  819. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  820. {
  821. struct drm_device *dev = ring->dev;
  822. struct drm_i915_private *dev_priv = dev->dev_private;
  823. u8 vals[3] = { 0, 0, 0 };
  824. unsigned int i;
  825. for (i = 0; i < 3; i++) {
  826. u8 ss;
  827. /*
  828. * Only consider slices where one, and only one, subslice has 7
  829. * EUs
  830. */
  831. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  832. continue;
  833. /*
  834. * subslice_7eu[i] != 0 (because of the check above) and
  835. * ss_max == 4 (maximum number of subslices possible per slice)
  836. *
  837. * -> 0 <= ss <= 3;
  838. */
  839. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  840. vals[i] = 3 - ss;
  841. }
  842. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  843. return 0;
  844. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  845. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  846. GEN9_IZ_HASHING_MASK(2) |
  847. GEN9_IZ_HASHING_MASK(1) |
  848. GEN9_IZ_HASHING_MASK(0),
  849. GEN9_IZ_HASHING(2, vals[2]) |
  850. GEN9_IZ_HASHING(1, vals[1]) |
  851. GEN9_IZ_HASHING(0, vals[0]));
  852. return 0;
  853. }
  854. static int skl_init_workarounds(struct intel_engine_cs *ring)
  855. {
  856. struct drm_device *dev = ring->dev;
  857. struct drm_i915_private *dev_priv = dev->dev_private;
  858. gen9_init_workarounds(ring);
  859. /* WaDisablePowerCompilerClockGating:skl */
  860. if (INTEL_REVID(dev) == SKL_REVID_B0)
  861. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  862. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  863. return skl_tune_iz_hashing(ring);
  864. }
  865. int init_workarounds_ring(struct intel_engine_cs *ring)
  866. {
  867. struct drm_device *dev = ring->dev;
  868. struct drm_i915_private *dev_priv = dev->dev_private;
  869. WARN_ON(ring->id != RCS);
  870. dev_priv->workarounds.count = 0;
  871. if (IS_BROADWELL(dev))
  872. return bdw_init_workarounds(ring);
  873. if (IS_CHERRYVIEW(dev))
  874. return chv_init_workarounds(ring);
  875. if (IS_SKYLAKE(dev))
  876. return skl_init_workarounds(ring);
  877. else if (IS_GEN9(dev))
  878. return gen9_init_workarounds(ring);
  879. return 0;
  880. }
  881. static int init_render_ring(struct intel_engine_cs *ring)
  882. {
  883. struct drm_device *dev = ring->dev;
  884. struct drm_i915_private *dev_priv = dev->dev_private;
  885. int ret = init_ring_common(ring);
  886. if (ret)
  887. return ret;
  888. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  889. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  890. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  891. /* We need to disable the AsyncFlip performance optimisations in order
  892. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  893. * programmed to '1' on all products.
  894. *
  895. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  896. */
  897. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  898. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  899. /* Required for the hardware to program scanline values for waiting */
  900. /* WaEnableFlushTlbInvalidationMode:snb */
  901. if (INTEL_INFO(dev)->gen == 6)
  902. I915_WRITE(GFX_MODE,
  903. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  904. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  905. if (IS_GEN7(dev))
  906. I915_WRITE(GFX_MODE_GEN7,
  907. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  908. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  909. if (IS_GEN6(dev)) {
  910. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  911. * "If this bit is set, STCunit will have LRA as replacement
  912. * policy. [...] This bit must be reset. LRA replacement
  913. * policy is not supported."
  914. */
  915. I915_WRITE(CACHE_MODE_0,
  916. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  917. }
  918. if (INTEL_INFO(dev)->gen >= 6)
  919. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  920. if (HAS_L3_DPF(dev))
  921. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  922. return init_workarounds_ring(ring);
  923. }
  924. static void render_ring_cleanup(struct intel_engine_cs *ring)
  925. {
  926. struct drm_device *dev = ring->dev;
  927. struct drm_i915_private *dev_priv = dev->dev_private;
  928. if (dev_priv->semaphore_obj) {
  929. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  930. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  931. dev_priv->semaphore_obj = NULL;
  932. }
  933. intel_fini_pipe_control(ring);
  934. }
  935. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  936. unsigned int num_dwords)
  937. {
  938. #define MBOX_UPDATE_DWORDS 8
  939. struct drm_device *dev = signaller->dev;
  940. struct drm_i915_private *dev_priv = dev->dev_private;
  941. struct intel_engine_cs *waiter;
  942. int i, ret, num_rings;
  943. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  944. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  945. #undef MBOX_UPDATE_DWORDS
  946. ret = intel_ring_begin(signaller, num_dwords);
  947. if (ret)
  948. return ret;
  949. for_each_ring(waiter, dev_priv, i) {
  950. u32 seqno;
  951. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  952. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  953. continue;
  954. seqno = i915_gem_request_get_seqno(
  955. signaller->outstanding_lazy_request);
  956. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  957. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  958. PIPE_CONTROL_QW_WRITE |
  959. PIPE_CONTROL_FLUSH_ENABLE);
  960. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  961. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  962. intel_ring_emit(signaller, seqno);
  963. intel_ring_emit(signaller, 0);
  964. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  965. MI_SEMAPHORE_TARGET(waiter->id));
  966. intel_ring_emit(signaller, 0);
  967. }
  968. return 0;
  969. }
  970. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  971. unsigned int num_dwords)
  972. {
  973. #define MBOX_UPDATE_DWORDS 6
  974. struct drm_device *dev = signaller->dev;
  975. struct drm_i915_private *dev_priv = dev->dev_private;
  976. struct intel_engine_cs *waiter;
  977. int i, ret, num_rings;
  978. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  979. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  980. #undef MBOX_UPDATE_DWORDS
  981. ret = intel_ring_begin(signaller, num_dwords);
  982. if (ret)
  983. return ret;
  984. for_each_ring(waiter, dev_priv, i) {
  985. u32 seqno;
  986. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  987. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  988. continue;
  989. seqno = i915_gem_request_get_seqno(
  990. signaller->outstanding_lazy_request);
  991. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  992. MI_FLUSH_DW_OP_STOREDW);
  993. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  994. MI_FLUSH_DW_USE_GTT);
  995. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  996. intel_ring_emit(signaller, seqno);
  997. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  998. MI_SEMAPHORE_TARGET(waiter->id));
  999. intel_ring_emit(signaller, 0);
  1000. }
  1001. return 0;
  1002. }
  1003. static int gen6_signal(struct intel_engine_cs *signaller,
  1004. unsigned int num_dwords)
  1005. {
  1006. struct drm_device *dev = signaller->dev;
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. struct intel_engine_cs *useless;
  1009. int i, ret, num_rings;
  1010. #define MBOX_UPDATE_DWORDS 3
  1011. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1012. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1013. #undef MBOX_UPDATE_DWORDS
  1014. ret = intel_ring_begin(signaller, num_dwords);
  1015. if (ret)
  1016. return ret;
  1017. for_each_ring(useless, dev_priv, i) {
  1018. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1019. if (mbox_reg != GEN6_NOSYNC) {
  1020. u32 seqno = i915_gem_request_get_seqno(
  1021. signaller->outstanding_lazy_request);
  1022. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1023. intel_ring_emit(signaller, mbox_reg);
  1024. intel_ring_emit(signaller, seqno);
  1025. }
  1026. }
  1027. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1028. if (num_rings % 2 == 0)
  1029. intel_ring_emit(signaller, MI_NOOP);
  1030. return 0;
  1031. }
  1032. /**
  1033. * gen6_add_request - Update the semaphore mailbox registers
  1034. *
  1035. * @ring - ring that is adding a request
  1036. * @seqno - return seqno stuck into the ring
  1037. *
  1038. * Update the mailbox registers in the *other* rings with the current seqno.
  1039. * This acts like a signal in the canonical semaphore.
  1040. */
  1041. static int
  1042. gen6_add_request(struct intel_engine_cs *ring)
  1043. {
  1044. int ret;
  1045. if (ring->semaphore.signal)
  1046. ret = ring->semaphore.signal(ring, 4);
  1047. else
  1048. ret = intel_ring_begin(ring, 4);
  1049. if (ret)
  1050. return ret;
  1051. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1052. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1053. intel_ring_emit(ring,
  1054. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1055. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1056. __intel_ring_advance(ring);
  1057. return 0;
  1058. }
  1059. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1060. u32 seqno)
  1061. {
  1062. struct drm_i915_private *dev_priv = dev->dev_private;
  1063. return dev_priv->last_seqno < seqno;
  1064. }
  1065. /**
  1066. * intel_ring_sync - sync the waiter to the signaller on seqno
  1067. *
  1068. * @waiter - ring that is waiting
  1069. * @signaller - ring which has, or will signal
  1070. * @seqno - seqno which the waiter will block on
  1071. */
  1072. static int
  1073. gen8_ring_sync(struct intel_engine_cs *waiter,
  1074. struct intel_engine_cs *signaller,
  1075. u32 seqno)
  1076. {
  1077. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1078. int ret;
  1079. ret = intel_ring_begin(waiter, 4);
  1080. if (ret)
  1081. return ret;
  1082. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1083. MI_SEMAPHORE_GLOBAL_GTT |
  1084. MI_SEMAPHORE_POLL |
  1085. MI_SEMAPHORE_SAD_GTE_SDD);
  1086. intel_ring_emit(waiter, seqno);
  1087. intel_ring_emit(waiter,
  1088. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1089. intel_ring_emit(waiter,
  1090. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1091. intel_ring_advance(waiter);
  1092. return 0;
  1093. }
  1094. static int
  1095. gen6_ring_sync(struct intel_engine_cs *waiter,
  1096. struct intel_engine_cs *signaller,
  1097. u32 seqno)
  1098. {
  1099. u32 dw1 = MI_SEMAPHORE_MBOX |
  1100. MI_SEMAPHORE_COMPARE |
  1101. MI_SEMAPHORE_REGISTER;
  1102. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1103. int ret;
  1104. /* Throughout all of the GEM code, seqno passed implies our current
  1105. * seqno is >= the last seqno executed. However for hardware the
  1106. * comparison is strictly greater than.
  1107. */
  1108. seqno -= 1;
  1109. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1110. ret = intel_ring_begin(waiter, 4);
  1111. if (ret)
  1112. return ret;
  1113. /* If seqno wrap happened, omit the wait with no-ops */
  1114. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1115. intel_ring_emit(waiter, dw1 | wait_mbox);
  1116. intel_ring_emit(waiter, seqno);
  1117. intel_ring_emit(waiter, 0);
  1118. intel_ring_emit(waiter, MI_NOOP);
  1119. } else {
  1120. intel_ring_emit(waiter, MI_NOOP);
  1121. intel_ring_emit(waiter, MI_NOOP);
  1122. intel_ring_emit(waiter, MI_NOOP);
  1123. intel_ring_emit(waiter, MI_NOOP);
  1124. }
  1125. intel_ring_advance(waiter);
  1126. return 0;
  1127. }
  1128. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1129. do { \
  1130. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1131. PIPE_CONTROL_DEPTH_STALL); \
  1132. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1133. intel_ring_emit(ring__, 0); \
  1134. intel_ring_emit(ring__, 0); \
  1135. } while (0)
  1136. static int
  1137. pc_render_add_request(struct intel_engine_cs *ring)
  1138. {
  1139. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1140. int ret;
  1141. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1142. * incoherent with writes to memory, i.e. completely fubar,
  1143. * so we need to use PIPE_NOTIFY instead.
  1144. *
  1145. * However, we also need to workaround the qword write
  1146. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1147. * memory before requesting an interrupt.
  1148. */
  1149. ret = intel_ring_begin(ring, 32);
  1150. if (ret)
  1151. return ret;
  1152. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1153. PIPE_CONTROL_WRITE_FLUSH |
  1154. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1155. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1156. intel_ring_emit(ring,
  1157. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1158. intel_ring_emit(ring, 0);
  1159. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1160. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1161. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1162. scratch_addr += 2 * CACHELINE_BYTES;
  1163. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1164. scratch_addr += 2 * CACHELINE_BYTES;
  1165. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1166. scratch_addr += 2 * CACHELINE_BYTES;
  1167. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1168. scratch_addr += 2 * CACHELINE_BYTES;
  1169. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1170. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1171. PIPE_CONTROL_WRITE_FLUSH |
  1172. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1173. PIPE_CONTROL_NOTIFY);
  1174. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1175. intel_ring_emit(ring,
  1176. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1177. intel_ring_emit(ring, 0);
  1178. __intel_ring_advance(ring);
  1179. return 0;
  1180. }
  1181. static u32
  1182. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1183. {
  1184. /* Workaround to force correct ordering between irq and seqno writes on
  1185. * ivb (and maybe also on snb) by reading from a CS register (like
  1186. * ACTHD) before reading the status page. */
  1187. if (!lazy_coherency) {
  1188. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1189. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1190. }
  1191. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1192. }
  1193. static u32
  1194. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1195. {
  1196. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1197. }
  1198. static void
  1199. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1200. {
  1201. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1202. }
  1203. static u32
  1204. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1205. {
  1206. return ring->scratch.cpu_page[0];
  1207. }
  1208. static void
  1209. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1210. {
  1211. ring->scratch.cpu_page[0] = seqno;
  1212. }
  1213. static bool
  1214. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1215. {
  1216. struct drm_device *dev = ring->dev;
  1217. struct drm_i915_private *dev_priv = dev->dev_private;
  1218. unsigned long flags;
  1219. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1220. return false;
  1221. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1222. if (ring->irq_refcount++ == 0)
  1223. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1224. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1225. return true;
  1226. }
  1227. static void
  1228. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1229. {
  1230. struct drm_device *dev = ring->dev;
  1231. struct drm_i915_private *dev_priv = dev->dev_private;
  1232. unsigned long flags;
  1233. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1234. if (--ring->irq_refcount == 0)
  1235. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1236. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1237. }
  1238. static bool
  1239. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1240. {
  1241. struct drm_device *dev = ring->dev;
  1242. struct drm_i915_private *dev_priv = dev->dev_private;
  1243. unsigned long flags;
  1244. if (!intel_irqs_enabled(dev_priv))
  1245. return false;
  1246. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1247. if (ring->irq_refcount++ == 0) {
  1248. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1249. I915_WRITE(IMR, dev_priv->irq_mask);
  1250. POSTING_READ(IMR);
  1251. }
  1252. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1253. return true;
  1254. }
  1255. static void
  1256. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1257. {
  1258. struct drm_device *dev = ring->dev;
  1259. struct drm_i915_private *dev_priv = dev->dev_private;
  1260. unsigned long flags;
  1261. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1262. if (--ring->irq_refcount == 0) {
  1263. dev_priv->irq_mask |= ring->irq_enable_mask;
  1264. I915_WRITE(IMR, dev_priv->irq_mask);
  1265. POSTING_READ(IMR);
  1266. }
  1267. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1268. }
  1269. static bool
  1270. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1271. {
  1272. struct drm_device *dev = ring->dev;
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. unsigned long flags;
  1275. if (!intel_irqs_enabled(dev_priv))
  1276. return false;
  1277. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1278. if (ring->irq_refcount++ == 0) {
  1279. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1280. I915_WRITE16(IMR, dev_priv->irq_mask);
  1281. POSTING_READ16(IMR);
  1282. }
  1283. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1284. return true;
  1285. }
  1286. static void
  1287. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1288. {
  1289. struct drm_device *dev = ring->dev;
  1290. struct drm_i915_private *dev_priv = dev->dev_private;
  1291. unsigned long flags;
  1292. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1293. if (--ring->irq_refcount == 0) {
  1294. dev_priv->irq_mask |= ring->irq_enable_mask;
  1295. I915_WRITE16(IMR, dev_priv->irq_mask);
  1296. POSTING_READ16(IMR);
  1297. }
  1298. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1299. }
  1300. static int
  1301. bsd_ring_flush(struct intel_engine_cs *ring,
  1302. u32 invalidate_domains,
  1303. u32 flush_domains)
  1304. {
  1305. int ret;
  1306. ret = intel_ring_begin(ring, 2);
  1307. if (ret)
  1308. return ret;
  1309. intel_ring_emit(ring, MI_FLUSH);
  1310. intel_ring_emit(ring, MI_NOOP);
  1311. intel_ring_advance(ring);
  1312. return 0;
  1313. }
  1314. static int
  1315. i9xx_add_request(struct intel_engine_cs *ring)
  1316. {
  1317. int ret;
  1318. ret = intel_ring_begin(ring, 4);
  1319. if (ret)
  1320. return ret;
  1321. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1322. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1323. intel_ring_emit(ring,
  1324. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1325. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1326. __intel_ring_advance(ring);
  1327. return 0;
  1328. }
  1329. static bool
  1330. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1331. {
  1332. struct drm_device *dev = ring->dev;
  1333. struct drm_i915_private *dev_priv = dev->dev_private;
  1334. unsigned long flags;
  1335. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1336. return false;
  1337. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1338. if (ring->irq_refcount++ == 0) {
  1339. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1340. I915_WRITE_IMR(ring,
  1341. ~(ring->irq_enable_mask |
  1342. GT_PARITY_ERROR(dev)));
  1343. else
  1344. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1345. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1346. }
  1347. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1348. return true;
  1349. }
  1350. static void
  1351. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1352. {
  1353. struct drm_device *dev = ring->dev;
  1354. struct drm_i915_private *dev_priv = dev->dev_private;
  1355. unsigned long flags;
  1356. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1357. if (--ring->irq_refcount == 0) {
  1358. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1359. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1360. else
  1361. I915_WRITE_IMR(ring, ~0);
  1362. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1363. }
  1364. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1365. }
  1366. static bool
  1367. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1368. {
  1369. struct drm_device *dev = ring->dev;
  1370. struct drm_i915_private *dev_priv = dev->dev_private;
  1371. unsigned long flags;
  1372. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1373. return false;
  1374. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1375. if (ring->irq_refcount++ == 0) {
  1376. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1377. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1378. }
  1379. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1380. return true;
  1381. }
  1382. static void
  1383. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1384. {
  1385. struct drm_device *dev = ring->dev;
  1386. struct drm_i915_private *dev_priv = dev->dev_private;
  1387. unsigned long flags;
  1388. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1389. if (--ring->irq_refcount == 0) {
  1390. I915_WRITE_IMR(ring, ~0);
  1391. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1392. }
  1393. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1394. }
  1395. static bool
  1396. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1397. {
  1398. struct drm_device *dev = ring->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. unsigned long flags;
  1401. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1402. return false;
  1403. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1404. if (ring->irq_refcount++ == 0) {
  1405. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1406. I915_WRITE_IMR(ring,
  1407. ~(ring->irq_enable_mask |
  1408. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1409. } else {
  1410. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1411. }
  1412. POSTING_READ(RING_IMR(ring->mmio_base));
  1413. }
  1414. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1415. return true;
  1416. }
  1417. static void
  1418. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1419. {
  1420. struct drm_device *dev = ring->dev;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. unsigned long flags;
  1423. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1424. if (--ring->irq_refcount == 0) {
  1425. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1426. I915_WRITE_IMR(ring,
  1427. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1428. } else {
  1429. I915_WRITE_IMR(ring, ~0);
  1430. }
  1431. POSTING_READ(RING_IMR(ring->mmio_base));
  1432. }
  1433. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1434. }
  1435. static int
  1436. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1437. u64 offset, u32 length,
  1438. unsigned dispatch_flags)
  1439. {
  1440. int ret;
  1441. ret = intel_ring_begin(ring, 2);
  1442. if (ret)
  1443. return ret;
  1444. intel_ring_emit(ring,
  1445. MI_BATCH_BUFFER_START |
  1446. MI_BATCH_GTT |
  1447. (dispatch_flags & I915_DISPATCH_SECURE ?
  1448. 0 : MI_BATCH_NON_SECURE_I965));
  1449. intel_ring_emit(ring, offset);
  1450. intel_ring_advance(ring);
  1451. return 0;
  1452. }
  1453. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1454. #define I830_BATCH_LIMIT (256*1024)
  1455. #define I830_TLB_ENTRIES (2)
  1456. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1457. static int
  1458. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1459. u64 offset, u32 len,
  1460. unsigned dispatch_flags)
  1461. {
  1462. u32 cs_offset = ring->scratch.gtt_offset;
  1463. int ret;
  1464. ret = intel_ring_begin(ring, 6);
  1465. if (ret)
  1466. return ret;
  1467. /* Evict the invalid PTE TLBs */
  1468. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1469. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1470. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1471. intel_ring_emit(ring, cs_offset);
  1472. intel_ring_emit(ring, 0xdeadbeef);
  1473. intel_ring_emit(ring, MI_NOOP);
  1474. intel_ring_advance(ring);
  1475. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1476. if (len > I830_BATCH_LIMIT)
  1477. return -ENOSPC;
  1478. ret = intel_ring_begin(ring, 6 + 2);
  1479. if (ret)
  1480. return ret;
  1481. /* Blit the batch (which has now all relocs applied) to the
  1482. * stable batch scratch bo area (so that the CS never
  1483. * stumbles over its tlb invalidation bug) ...
  1484. */
  1485. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1486. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1487. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1488. intel_ring_emit(ring, cs_offset);
  1489. intel_ring_emit(ring, 4096);
  1490. intel_ring_emit(ring, offset);
  1491. intel_ring_emit(ring, MI_FLUSH);
  1492. intel_ring_emit(ring, MI_NOOP);
  1493. intel_ring_advance(ring);
  1494. /* ... and execute it. */
  1495. offset = cs_offset;
  1496. }
  1497. ret = intel_ring_begin(ring, 4);
  1498. if (ret)
  1499. return ret;
  1500. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1501. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1502. 0 : MI_BATCH_NON_SECURE));
  1503. intel_ring_emit(ring, offset + len - 8);
  1504. intel_ring_emit(ring, MI_NOOP);
  1505. intel_ring_advance(ring);
  1506. return 0;
  1507. }
  1508. static int
  1509. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1510. u64 offset, u32 len,
  1511. unsigned dispatch_flags)
  1512. {
  1513. int ret;
  1514. ret = intel_ring_begin(ring, 2);
  1515. if (ret)
  1516. return ret;
  1517. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1518. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1519. 0 : MI_BATCH_NON_SECURE));
  1520. intel_ring_advance(ring);
  1521. return 0;
  1522. }
  1523. static void cleanup_status_page(struct intel_engine_cs *ring)
  1524. {
  1525. struct drm_i915_gem_object *obj;
  1526. obj = ring->status_page.obj;
  1527. if (obj == NULL)
  1528. return;
  1529. kunmap(sg_page(obj->pages->sgl));
  1530. i915_gem_object_ggtt_unpin(obj);
  1531. drm_gem_object_unreference(&obj->base);
  1532. ring->status_page.obj = NULL;
  1533. }
  1534. static int init_status_page(struct intel_engine_cs *ring)
  1535. {
  1536. struct drm_i915_gem_object *obj;
  1537. if ((obj = ring->status_page.obj) == NULL) {
  1538. unsigned flags;
  1539. int ret;
  1540. obj = i915_gem_alloc_object(ring->dev, 4096);
  1541. if (obj == NULL) {
  1542. DRM_ERROR("Failed to allocate status page\n");
  1543. return -ENOMEM;
  1544. }
  1545. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1546. if (ret)
  1547. goto err_unref;
  1548. flags = 0;
  1549. if (!HAS_LLC(ring->dev))
  1550. /* On g33, we cannot place HWS above 256MiB, so
  1551. * restrict its pinning to the low mappable arena.
  1552. * Though this restriction is not documented for
  1553. * gen4, gen5, or byt, they also behave similarly
  1554. * and hang if the HWS is placed at the top of the
  1555. * GTT. To generalise, it appears that all !llc
  1556. * platforms have issues with us placing the HWS
  1557. * above the mappable region (even though we never
  1558. * actualy map it).
  1559. */
  1560. flags |= PIN_MAPPABLE;
  1561. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1562. if (ret) {
  1563. err_unref:
  1564. drm_gem_object_unreference(&obj->base);
  1565. return ret;
  1566. }
  1567. ring->status_page.obj = obj;
  1568. }
  1569. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1570. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1571. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1572. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1573. ring->name, ring->status_page.gfx_addr);
  1574. return 0;
  1575. }
  1576. static int init_phys_status_page(struct intel_engine_cs *ring)
  1577. {
  1578. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1579. if (!dev_priv->status_page_dmah) {
  1580. dev_priv->status_page_dmah =
  1581. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1582. if (!dev_priv->status_page_dmah)
  1583. return -ENOMEM;
  1584. }
  1585. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1586. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1587. return 0;
  1588. }
  1589. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1590. {
  1591. iounmap(ringbuf->virtual_start);
  1592. ringbuf->virtual_start = NULL;
  1593. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1594. }
  1595. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1596. struct intel_ringbuffer *ringbuf)
  1597. {
  1598. struct drm_i915_private *dev_priv = to_i915(dev);
  1599. struct drm_i915_gem_object *obj = ringbuf->obj;
  1600. int ret;
  1601. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1602. if (ret)
  1603. return ret;
  1604. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1605. if (ret) {
  1606. i915_gem_object_ggtt_unpin(obj);
  1607. return ret;
  1608. }
  1609. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1610. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1611. if (ringbuf->virtual_start == NULL) {
  1612. i915_gem_object_ggtt_unpin(obj);
  1613. return -EINVAL;
  1614. }
  1615. return 0;
  1616. }
  1617. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1618. {
  1619. drm_gem_object_unreference(&ringbuf->obj->base);
  1620. ringbuf->obj = NULL;
  1621. }
  1622. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1623. struct intel_ringbuffer *ringbuf)
  1624. {
  1625. struct drm_i915_gem_object *obj;
  1626. obj = NULL;
  1627. if (!HAS_LLC(dev))
  1628. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1629. if (obj == NULL)
  1630. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1631. if (obj == NULL)
  1632. return -ENOMEM;
  1633. /* mark ring buffers as read-only from GPU side by default */
  1634. obj->gt_ro = 1;
  1635. ringbuf->obj = obj;
  1636. return 0;
  1637. }
  1638. static int intel_init_ring_buffer(struct drm_device *dev,
  1639. struct intel_engine_cs *ring)
  1640. {
  1641. struct intel_ringbuffer *ringbuf;
  1642. int ret;
  1643. WARN_ON(ring->buffer);
  1644. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1645. if (!ringbuf)
  1646. return -ENOMEM;
  1647. ring->buffer = ringbuf;
  1648. ring->dev = dev;
  1649. INIT_LIST_HEAD(&ring->active_list);
  1650. INIT_LIST_HEAD(&ring->request_list);
  1651. INIT_LIST_HEAD(&ring->execlist_queue);
  1652. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1653. ringbuf->size = 32 * PAGE_SIZE;
  1654. ringbuf->ring = ring;
  1655. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1656. init_waitqueue_head(&ring->irq_queue);
  1657. if (I915_NEED_GFX_HWS(dev)) {
  1658. ret = init_status_page(ring);
  1659. if (ret)
  1660. goto error;
  1661. } else {
  1662. BUG_ON(ring->id != RCS);
  1663. ret = init_phys_status_page(ring);
  1664. if (ret)
  1665. goto error;
  1666. }
  1667. WARN_ON(ringbuf->obj);
  1668. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1669. if (ret) {
  1670. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1671. ring->name, ret);
  1672. goto error;
  1673. }
  1674. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1675. if (ret) {
  1676. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1677. ring->name, ret);
  1678. intel_destroy_ringbuffer_obj(ringbuf);
  1679. goto error;
  1680. }
  1681. /* Workaround an erratum on the i830 which causes a hang if
  1682. * the TAIL pointer points to within the last 2 cachelines
  1683. * of the buffer.
  1684. */
  1685. ringbuf->effective_size = ringbuf->size;
  1686. if (IS_I830(dev) || IS_845G(dev))
  1687. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1688. ret = i915_cmd_parser_init_ring(ring);
  1689. if (ret)
  1690. goto error;
  1691. return 0;
  1692. error:
  1693. kfree(ringbuf);
  1694. ring->buffer = NULL;
  1695. return ret;
  1696. }
  1697. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1698. {
  1699. struct drm_i915_private *dev_priv;
  1700. struct intel_ringbuffer *ringbuf;
  1701. if (!intel_ring_initialized(ring))
  1702. return;
  1703. dev_priv = to_i915(ring->dev);
  1704. ringbuf = ring->buffer;
  1705. intel_stop_ring_buffer(ring);
  1706. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1707. intel_unpin_ringbuffer_obj(ringbuf);
  1708. intel_destroy_ringbuffer_obj(ringbuf);
  1709. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1710. if (ring->cleanup)
  1711. ring->cleanup(ring);
  1712. cleanup_status_page(ring);
  1713. i915_cmd_parser_fini_ring(ring);
  1714. i915_gem_batch_pool_fini(&ring->batch_pool);
  1715. kfree(ringbuf);
  1716. ring->buffer = NULL;
  1717. }
  1718. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1719. {
  1720. struct intel_ringbuffer *ringbuf = ring->buffer;
  1721. struct drm_i915_gem_request *request;
  1722. int ret, new_space;
  1723. if (intel_ring_space(ringbuf) >= n)
  1724. return 0;
  1725. list_for_each_entry(request, &ring->request_list, list) {
  1726. new_space = __intel_ring_space(request->postfix, ringbuf->tail,
  1727. ringbuf->size);
  1728. if (new_space >= n)
  1729. break;
  1730. }
  1731. if (WARN_ON(&request->list == &ring->request_list))
  1732. return -ENOSPC;
  1733. ret = i915_wait_request(request);
  1734. if (ret)
  1735. return ret;
  1736. i915_gem_retire_requests_ring(ring);
  1737. WARN_ON(intel_ring_space(ringbuf) < new_space);
  1738. return 0;
  1739. }
  1740. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1741. {
  1742. uint32_t __iomem *virt;
  1743. struct intel_ringbuffer *ringbuf = ring->buffer;
  1744. int rem = ringbuf->size - ringbuf->tail;
  1745. if (ringbuf->space < rem) {
  1746. int ret = ring_wait_for_space(ring, rem);
  1747. if (ret)
  1748. return ret;
  1749. }
  1750. virt = ringbuf->virtual_start + ringbuf->tail;
  1751. rem /= 4;
  1752. while (rem--)
  1753. iowrite32(MI_NOOP, virt++);
  1754. ringbuf->tail = 0;
  1755. intel_ring_update_space(ringbuf);
  1756. return 0;
  1757. }
  1758. int intel_ring_idle(struct intel_engine_cs *ring)
  1759. {
  1760. struct drm_i915_gem_request *req;
  1761. int ret;
  1762. /* We need to add any requests required to flush the objects and ring */
  1763. if (ring->outstanding_lazy_request) {
  1764. ret = i915_add_request(ring);
  1765. if (ret)
  1766. return ret;
  1767. }
  1768. /* Wait upon the last request to be completed */
  1769. if (list_empty(&ring->request_list))
  1770. return 0;
  1771. req = list_entry(ring->request_list.prev,
  1772. struct drm_i915_gem_request,
  1773. list);
  1774. return i915_wait_request(req);
  1775. }
  1776. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1777. {
  1778. request->ringbuf = request->ring->buffer;
  1779. return 0;
  1780. }
  1781. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1782. int bytes)
  1783. {
  1784. struct intel_ringbuffer *ringbuf = ring->buffer;
  1785. int ret;
  1786. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1787. ret = intel_wrap_ring_buffer(ring);
  1788. if (unlikely(ret))
  1789. return ret;
  1790. }
  1791. if (unlikely(ringbuf->space < bytes)) {
  1792. ret = ring_wait_for_space(ring, bytes);
  1793. if (unlikely(ret))
  1794. return ret;
  1795. }
  1796. return 0;
  1797. }
  1798. int intel_ring_begin(struct intel_engine_cs *ring,
  1799. int num_dwords)
  1800. {
  1801. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1802. int ret;
  1803. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1804. dev_priv->mm.interruptible);
  1805. if (ret)
  1806. return ret;
  1807. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1808. if (ret)
  1809. return ret;
  1810. /* Preallocate the olr before touching the ring */
  1811. ret = i915_gem_request_alloc(ring, ring->default_context);
  1812. if (ret)
  1813. return ret;
  1814. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1815. return 0;
  1816. }
  1817. /* Align the ring tail to a cacheline boundary */
  1818. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1819. {
  1820. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1821. int ret;
  1822. if (num_dwords == 0)
  1823. return 0;
  1824. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1825. ret = intel_ring_begin(ring, num_dwords);
  1826. if (ret)
  1827. return ret;
  1828. while (num_dwords--)
  1829. intel_ring_emit(ring, MI_NOOP);
  1830. intel_ring_advance(ring);
  1831. return 0;
  1832. }
  1833. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1834. {
  1835. struct drm_device *dev = ring->dev;
  1836. struct drm_i915_private *dev_priv = dev->dev_private;
  1837. BUG_ON(ring->outstanding_lazy_request);
  1838. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1839. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1840. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1841. if (HAS_VEBOX(dev))
  1842. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1843. }
  1844. ring->set_seqno(ring, seqno);
  1845. ring->hangcheck.seqno = seqno;
  1846. }
  1847. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1848. u32 value)
  1849. {
  1850. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1851. /* Every tail move must follow the sequence below */
  1852. /* Disable notification that the ring is IDLE. The GT
  1853. * will then assume that it is busy and bring it out of rc6.
  1854. */
  1855. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1856. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1857. /* Clear the context id. Here be magic! */
  1858. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1859. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1860. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1861. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1862. 50))
  1863. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1864. /* Now that the ring is fully powered up, update the tail */
  1865. I915_WRITE_TAIL(ring, value);
  1866. POSTING_READ(RING_TAIL(ring->mmio_base));
  1867. /* Let the ring send IDLE messages to the GT again,
  1868. * and so let it sleep to conserve power when idle.
  1869. */
  1870. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1871. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1872. }
  1873. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1874. u32 invalidate, u32 flush)
  1875. {
  1876. uint32_t cmd;
  1877. int ret;
  1878. ret = intel_ring_begin(ring, 4);
  1879. if (ret)
  1880. return ret;
  1881. cmd = MI_FLUSH_DW;
  1882. if (INTEL_INFO(ring->dev)->gen >= 8)
  1883. cmd += 1;
  1884. /* We always require a command barrier so that subsequent
  1885. * commands, such as breadcrumb interrupts, are strictly ordered
  1886. * wrt the contents of the write cache being flushed to memory
  1887. * (and thus being coherent from the CPU).
  1888. */
  1889. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1890. /*
  1891. * Bspec vol 1c.5 - video engine command streamer:
  1892. * "If ENABLED, all TLBs will be invalidated once the flush
  1893. * operation is complete. This bit is only valid when the
  1894. * Post-Sync Operation field is a value of 1h or 3h."
  1895. */
  1896. if (invalidate & I915_GEM_GPU_DOMAINS)
  1897. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1898. intel_ring_emit(ring, cmd);
  1899. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1900. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1901. intel_ring_emit(ring, 0); /* upper addr */
  1902. intel_ring_emit(ring, 0); /* value */
  1903. } else {
  1904. intel_ring_emit(ring, 0);
  1905. intel_ring_emit(ring, MI_NOOP);
  1906. }
  1907. intel_ring_advance(ring);
  1908. return 0;
  1909. }
  1910. static int
  1911. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1912. u64 offset, u32 len,
  1913. unsigned dispatch_flags)
  1914. {
  1915. bool ppgtt = USES_PPGTT(ring->dev) &&
  1916. !(dispatch_flags & I915_DISPATCH_SECURE);
  1917. int ret;
  1918. ret = intel_ring_begin(ring, 4);
  1919. if (ret)
  1920. return ret;
  1921. /* FIXME(BDW): Address space and security selectors. */
  1922. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1923. intel_ring_emit(ring, lower_32_bits(offset));
  1924. intel_ring_emit(ring, upper_32_bits(offset));
  1925. intel_ring_emit(ring, MI_NOOP);
  1926. intel_ring_advance(ring);
  1927. return 0;
  1928. }
  1929. static int
  1930. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1931. u64 offset, u32 len,
  1932. unsigned dispatch_flags)
  1933. {
  1934. int ret;
  1935. ret = intel_ring_begin(ring, 2);
  1936. if (ret)
  1937. return ret;
  1938. intel_ring_emit(ring,
  1939. MI_BATCH_BUFFER_START |
  1940. (dispatch_flags & I915_DISPATCH_SECURE ?
  1941. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1942. /* bit0-7 is the length on GEN6+ */
  1943. intel_ring_emit(ring, offset);
  1944. intel_ring_advance(ring);
  1945. return 0;
  1946. }
  1947. static int
  1948. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1949. u64 offset, u32 len,
  1950. unsigned dispatch_flags)
  1951. {
  1952. int ret;
  1953. ret = intel_ring_begin(ring, 2);
  1954. if (ret)
  1955. return ret;
  1956. intel_ring_emit(ring,
  1957. MI_BATCH_BUFFER_START |
  1958. (dispatch_flags & I915_DISPATCH_SECURE ?
  1959. 0 : MI_BATCH_NON_SECURE_I965));
  1960. /* bit0-7 is the length on GEN6+ */
  1961. intel_ring_emit(ring, offset);
  1962. intel_ring_advance(ring);
  1963. return 0;
  1964. }
  1965. /* Blitter support (SandyBridge+) */
  1966. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1967. u32 invalidate, u32 flush)
  1968. {
  1969. struct drm_device *dev = ring->dev;
  1970. uint32_t cmd;
  1971. int ret;
  1972. ret = intel_ring_begin(ring, 4);
  1973. if (ret)
  1974. return ret;
  1975. cmd = MI_FLUSH_DW;
  1976. if (INTEL_INFO(dev)->gen >= 8)
  1977. cmd += 1;
  1978. /* We always require a command barrier so that subsequent
  1979. * commands, such as breadcrumb interrupts, are strictly ordered
  1980. * wrt the contents of the write cache being flushed to memory
  1981. * (and thus being coherent from the CPU).
  1982. */
  1983. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1984. /*
  1985. * Bspec vol 1c.3 - blitter engine command streamer:
  1986. * "If ENABLED, all TLBs will be invalidated once the flush
  1987. * operation is complete. This bit is only valid when the
  1988. * Post-Sync Operation field is a value of 1h or 3h."
  1989. */
  1990. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1991. cmd |= MI_INVALIDATE_TLB;
  1992. intel_ring_emit(ring, cmd);
  1993. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1994. if (INTEL_INFO(dev)->gen >= 8) {
  1995. intel_ring_emit(ring, 0); /* upper addr */
  1996. intel_ring_emit(ring, 0); /* value */
  1997. } else {
  1998. intel_ring_emit(ring, 0);
  1999. intel_ring_emit(ring, MI_NOOP);
  2000. }
  2001. intel_ring_advance(ring);
  2002. return 0;
  2003. }
  2004. int intel_init_render_ring_buffer(struct drm_device *dev)
  2005. {
  2006. struct drm_i915_private *dev_priv = dev->dev_private;
  2007. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2008. struct drm_i915_gem_object *obj;
  2009. int ret;
  2010. ring->name = "render ring";
  2011. ring->id = RCS;
  2012. ring->mmio_base = RENDER_RING_BASE;
  2013. if (INTEL_INFO(dev)->gen >= 8) {
  2014. if (i915_semaphore_is_enabled(dev)) {
  2015. obj = i915_gem_alloc_object(dev, 4096);
  2016. if (obj == NULL) {
  2017. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2018. i915.semaphores = 0;
  2019. } else {
  2020. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2021. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2022. if (ret != 0) {
  2023. drm_gem_object_unreference(&obj->base);
  2024. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2025. i915.semaphores = 0;
  2026. } else
  2027. dev_priv->semaphore_obj = obj;
  2028. }
  2029. }
  2030. ring->init_context = intel_rcs_ctx_init;
  2031. ring->add_request = gen6_add_request;
  2032. ring->flush = gen8_render_ring_flush;
  2033. ring->irq_get = gen8_ring_get_irq;
  2034. ring->irq_put = gen8_ring_put_irq;
  2035. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2036. ring->get_seqno = gen6_ring_get_seqno;
  2037. ring->set_seqno = ring_set_seqno;
  2038. if (i915_semaphore_is_enabled(dev)) {
  2039. WARN_ON(!dev_priv->semaphore_obj);
  2040. ring->semaphore.sync_to = gen8_ring_sync;
  2041. ring->semaphore.signal = gen8_rcs_signal;
  2042. GEN8_RING_SEMAPHORE_INIT;
  2043. }
  2044. } else if (INTEL_INFO(dev)->gen >= 6) {
  2045. ring->add_request = gen6_add_request;
  2046. ring->flush = gen7_render_ring_flush;
  2047. if (INTEL_INFO(dev)->gen == 6)
  2048. ring->flush = gen6_render_ring_flush;
  2049. ring->irq_get = gen6_ring_get_irq;
  2050. ring->irq_put = gen6_ring_put_irq;
  2051. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2052. ring->get_seqno = gen6_ring_get_seqno;
  2053. ring->set_seqno = ring_set_seqno;
  2054. if (i915_semaphore_is_enabled(dev)) {
  2055. ring->semaphore.sync_to = gen6_ring_sync;
  2056. ring->semaphore.signal = gen6_signal;
  2057. /*
  2058. * The current semaphore is only applied on pre-gen8
  2059. * platform. And there is no VCS2 ring on the pre-gen8
  2060. * platform. So the semaphore between RCS and VCS2 is
  2061. * initialized as INVALID. Gen8 will initialize the
  2062. * sema between VCS2 and RCS later.
  2063. */
  2064. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2065. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2066. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2067. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2068. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2069. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2070. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2071. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2072. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2073. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2074. }
  2075. } else if (IS_GEN5(dev)) {
  2076. ring->add_request = pc_render_add_request;
  2077. ring->flush = gen4_render_ring_flush;
  2078. ring->get_seqno = pc_render_get_seqno;
  2079. ring->set_seqno = pc_render_set_seqno;
  2080. ring->irq_get = gen5_ring_get_irq;
  2081. ring->irq_put = gen5_ring_put_irq;
  2082. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2083. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2084. } else {
  2085. ring->add_request = i9xx_add_request;
  2086. if (INTEL_INFO(dev)->gen < 4)
  2087. ring->flush = gen2_render_ring_flush;
  2088. else
  2089. ring->flush = gen4_render_ring_flush;
  2090. ring->get_seqno = ring_get_seqno;
  2091. ring->set_seqno = ring_set_seqno;
  2092. if (IS_GEN2(dev)) {
  2093. ring->irq_get = i8xx_ring_get_irq;
  2094. ring->irq_put = i8xx_ring_put_irq;
  2095. } else {
  2096. ring->irq_get = i9xx_ring_get_irq;
  2097. ring->irq_put = i9xx_ring_put_irq;
  2098. }
  2099. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2100. }
  2101. ring->write_tail = ring_write_tail;
  2102. if (IS_HASWELL(dev))
  2103. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2104. else if (IS_GEN8(dev))
  2105. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2106. else if (INTEL_INFO(dev)->gen >= 6)
  2107. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2108. else if (INTEL_INFO(dev)->gen >= 4)
  2109. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2110. else if (IS_I830(dev) || IS_845G(dev))
  2111. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2112. else
  2113. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2114. ring->init_hw = init_render_ring;
  2115. ring->cleanup = render_ring_cleanup;
  2116. /* Workaround batchbuffer to combat CS tlb bug. */
  2117. if (HAS_BROKEN_CS_TLB(dev)) {
  2118. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2119. if (obj == NULL) {
  2120. DRM_ERROR("Failed to allocate batch bo\n");
  2121. return -ENOMEM;
  2122. }
  2123. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2124. if (ret != 0) {
  2125. drm_gem_object_unreference(&obj->base);
  2126. DRM_ERROR("Failed to ping batch bo\n");
  2127. return ret;
  2128. }
  2129. ring->scratch.obj = obj;
  2130. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2131. }
  2132. ret = intel_init_ring_buffer(dev, ring);
  2133. if (ret)
  2134. return ret;
  2135. if (INTEL_INFO(dev)->gen >= 5) {
  2136. ret = intel_init_pipe_control(ring);
  2137. if (ret)
  2138. return ret;
  2139. }
  2140. return 0;
  2141. }
  2142. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2143. {
  2144. struct drm_i915_private *dev_priv = dev->dev_private;
  2145. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2146. ring->name = "bsd ring";
  2147. ring->id = VCS;
  2148. ring->write_tail = ring_write_tail;
  2149. if (INTEL_INFO(dev)->gen >= 6) {
  2150. ring->mmio_base = GEN6_BSD_RING_BASE;
  2151. /* gen6 bsd needs a special wa for tail updates */
  2152. if (IS_GEN6(dev))
  2153. ring->write_tail = gen6_bsd_ring_write_tail;
  2154. ring->flush = gen6_bsd_ring_flush;
  2155. ring->add_request = gen6_add_request;
  2156. ring->get_seqno = gen6_ring_get_seqno;
  2157. ring->set_seqno = ring_set_seqno;
  2158. if (INTEL_INFO(dev)->gen >= 8) {
  2159. ring->irq_enable_mask =
  2160. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2161. ring->irq_get = gen8_ring_get_irq;
  2162. ring->irq_put = gen8_ring_put_irq;
  2163. ring->dispatch_execbuffer =
  2164. gen8_ring_dispatch_execbuffer;
  2165. if (i915_semaphore_is_enabled(dev)) {
  2166. ring->semaphore.sync_to = gen8_ring_sync;
  2167. ring->semaphore.signal = gen8_xcs_signal;
  2168. GEN8_RING_SEMAPHORE_INIT;
  2169. }
  2170. } else {
  2171. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2172. ring->irq_get = gen6_ring_get_irq;
  2173. ring->irq_put = gen6_ring_put_irq;
  2174. ring->dispatch_execbuffer =
  2175. gen6_ring_dispatch_execbuffer;
  2176. if (i915_semaphore_is_enabled(dev)) {
  2177. ring->semaphore.sync_to = gen6_ring_sync;
  2178. ring->semaphore.signal = gen6_signal;
  2179. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2180. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2181. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2182. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2183. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2184. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2185. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2186. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2187. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2188. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2189. }
  2190. }
  2191. } else {
  2192. ring->mmio_base = BSD_RING_BASE;
  2193. ring->flush = bsd_ring_flush;
  2194. ring->add_request = i9xx_add_request;
  2195. ring->get_seqno = ring_get_seqno;
  2196. ring->set_seqno = ring_set_seqno;
  2197. if (IS_GEN5(dev)) {
  2198. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2199. ring->irq_get = gen5_ring_get_irq;
  2200. ring->irq_put = gen5_ring_put_irq;
  2201. } else {
  2202. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2203. ring->irq_get = i9xx_ring_get_irq;
  2204. ring->irq_put = i9xx_ring_put_irq;
  2205. }
  2206. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2207. }
  2208. ring->init_hw = init_ring_common;
  2209. return intel_init_ring_buffer(dev, ring);
  2210. }
  2211. /**
  2212. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2213. */
  2214. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2215. {
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2218. ring->name = "bsd2 ring";
  2219. ring->id = VCS2;
  2220. ring->write_tail = ring_write_tail;
  2221. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2222. ring->flush = gen6_bsd_ring_flush;
  2223. ring->add_request = gen6_add_request;
  2224. ring->get_seqno = gen6_ring_get_seqno;
  2225. ring->set_seqno = ring_set_seqno;
  2226. ring->irq_enable_mask =
  2227. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2228. ring->irq_get = gen8_ring_get_irq;
  2229. ring->irq_put = gen8_ring_put_irq;
  2230. ring->dispatch_execbuffer =
  2231. gen8_ring_dispatch_execbuffer;
  2232. if (i915_semaphore_is_enabled(dev)) {
  2233. ring->semaphore.sync_to = gen8_ring_sync;
  2234. ring->semaphore.signal = gen8_xcs_signal;
  2235. GEN8_RING_SEMAPHORE_INIT;
  2236. }
  2237. ring->init_hw = init_ring_common;
  2238. return intel_init_ring_buffer(dev, ring);
  2239. }
  2240. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2241. {
  2242. struct drm_i915_private *dev_priv = dev->dev_private;
  2243. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2244. ring->name = "blitter ring";
  2245. ring->id = BCS;
  2246. ring->mmio_base = BLT_RING_BASE;
  2247. ring->write_tail = ring_write_tail;
  2248. ring->flush = gen6_ring_flush;
  2249. ring->add_request = gen6_add_request;
  2250. ring->get_seqno = gen6_ring_get_seqno;
  2251. ring->set_seqno = ring_set_seqno;
  2252. if (INTEL_INFO(dev)->gen >= 8) {
  2253. ring->irq_enable_mask =
  2254. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2255. ring->irq_get = gen8_ring_get_irq;
  2256. ring->irq_put = gen8_ring_put_irq;
  2257. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2258. if (i915_semaphore_is_enabled(dev)) {
  2259. ring->semaphore.sync_to = gen8_ring_sync;
  2260. ring->semaphore.signal = gen8_xcs_signal;
  2261. GEN8_RING_SEMAPHORE_INIT;
  2262. }
  2263. } else {
  2264. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2265. ring->irq_get = gen6_ring_get_irq;
  2266. ring->irq_put = gen6_ring_put_irq;
  2267. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2268. if (i915_semaphore_is_enabled(dev)) {
  2269. ring->semaphore.signal = gen6_signal;
  2270. ring->semaphore.sync_to = gen6_ring_sync;
  2271. /*
  2272. * The current semaphore is only applied on pre-gen8
  2273. * platform. And there is no VCS2 ring on the pre-gen8
  2274. * platform. So the semaphore between BCS and VCS2 is
  2275. * initialized as INVALID. Gen8 will initialize the
  2276. * sema between BCS and VCS2 later.
  2277. */
  2278. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2279. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2280. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2281. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2282. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2283. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2284. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2285. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2286. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2287. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2288. }
  2289. }
  2290. ring->init_hw = init_ring_common;
  2291. return intel_init_ring_buffer(dev, ring);
  2292. }
  2293. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2294. {
  2295. struct drm_i915_private *dev_priv = dev->dev_private;
  2296. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2297. ring->name = "video enhancement ring";
  2298. ring->id = VECS;
  2299. ring->mmio_base = VEBOX_RING_BASE;
  2300. ring->write_tail = ring_write_tail;
  2301. ring->flush = gen6_ring_flush;
  2302. ring->add_request = gen6_add_request;
  2303. ring->get_seqno = gen6_ring_get_seqno;
  2304. ring->set_seqno = ring_set_seqno;
  2305. if (INTEL_INFO(dev)->gen >= 8) {
  2306. ring->irq_enable_mask =
  2307. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2308. ring->irq_get = gen8_ring_get_irq;
  2309. ring->irq_put = gen8_ring_put_irq;
  2310. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2311. if (i915_semaphore_is_enabled(dev)) {
  2312. ring->semaphore.sync_to = gen8_ring_sync;
  2313. ring->semaphore.signal = gen8_xcs_signal;
  2314. GEN8_RING_SEMAPHORE_INIT;
  2315. }
  2316. } else {
  2317. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2318. ring->irq_get = hsw_vebox_get_irq;
  2319. ring->irq_put = hsw_vebox_put_irq;
  2320. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2321. if (i915_semaphore_is_enabled(dev)) {
  2322. ring->semaphore.sync_to = gen6_ring_sync;
  2323. ring->semaphore.signal = gen6_signal;
  2324. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2325. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2326. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2327. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2328. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2329. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2330. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2331. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2332. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2333. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2334. }
  2335. }
  2336. ring->init_hw = init_ring_common;
  2337. return intel_init_ring_buffer(dev, ring);
  2338. }
  2339. int
  2340. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2341. {
  2342. int ret;
  2343. if (!ring->gpu_caches_dirty)
  2344. return 0;
  2345. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2346. if (ret)
  2347. return ret;
  2348. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2349. ring->gpu_caches_dirty = false;
  2350. return 0;
  2351. }
  2352. int
  2353. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2354. {
  2355. uint32_t flush_domains;
  2356. int ret;
  2357. flush_domains = 0;
  2358. if (ring->gpu_caches_dirty)
  2359. flush_domains = I915_GEM_GPU_DOMAINS;
  2360. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2361. if (ret)
  2362. return ret;
  2363. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2364. ring->gpu_caches_dirty = false;
  2365. return 0;
  2366. }
  2367. void
  2368. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2369. {
  2370. int ret;
  2371. if (!intel_ring_initialized(ring))
  2372. return;
  2373. ret = intel_ring_idle(ring);
  2374. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2375. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2376. ring->name, ret);
  2377. stop_ring(ring);
  2378. }