direct.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/module.h>
  49. #include <linux/nfs_fs.h>
  50. #include <linux/nfs_page.h>
  51. #include <linux/sunrpc/clnt.h>
  52. #include <asm/uaccess.h>
  53. #include <linux/atomic.h>
  54. #include "internal.h"
  55. #include "iostat.h"
  56. #include "pnfs.h"
  57. #define NFSDBG_FACILITY NFSDBG_VFS
  58. static struct kmem_cache *nfs_direct_cachep;
  59. /*
  60. * This represents a set of asynchronous requests that we're waiting on
  61. */
  62. struct nfs_direct_mirror {
  63. ssize_t count;
  64. };
  65. struct nfs_direct_req {
  66. struct kref kref; /* release manager */
  67. /* I/O parameters */
  68. struct nfs_open_context *ctx; /* file open context info */
  69. struct nfs_lock_context *l_ctx; /* Lock context info */
  70. struct kiocb * iocb; /* controlling i/o request */
  71. struct inode * inode; /* target file of i/o */
  72. /* completion state */
  73. atomic_t io_count; /* i/os we're waiting for */
  74. spinlock_t lock; /* protect completion state */
  75. struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
  76. int mirror_count;
  77. ssize_t count, /* bytes actually processed */
  78. bytes_left, /* bytes left to be sent */
  79. io_start, /* start of IO */
  80. error; /* any reported error */
  81. struct completion completion; /* wait for i/o completion */
  82. /* commit state */
  83. struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
  84. struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
  85. struct work_struct work;
  86. int flags;
  87. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  88. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  89. struct nfs_writeverf verf; /* unstable write verifier */
  90. };
  91. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  92. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  93. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  94. static void nfs_direct_write_schedule_work(struct work_struct *work);
  95. static inline void get_dreq(struct nfs_direct_req *dreq)
  96. {
  97. atomic_inc(&dreq->io_count);
  98. }
  99. static inline int put_dreq(struct nfs_direct_req *dreq)
  100. {
  101. return atomic_dec_and_test(&dreq->io_count);
  102. }
  103. void nfs_direct_set_resched_writes(struct nfs_direct_req *dreq)
  104. {
  105. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  106. }
  107. EXPORT_SYMBOL_GPL(nfs_direct_set_resched_writes);
  108. static void
  109. nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
  110. {
  111. int i;
  112. ssize_t count;
  113. if (dreq->mirror_count == 1) {
  114. dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
  115. dreq->count += hdr->good_bytes;
  116. } else {
  117. /* mirrored writes */
  118. count = dreq->mirrors[hdr->pgio_mirror_idx].count;
  119. if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
  120. count = hdr->io_start + hdr->good_bytes - dreq->io_start;
  121. dreq->mirrors[hdr->pgio_mirror_idx].count = count;
  122. }
  123. /* update the dreq->count by finding the minimum agreed count from all
  124. * mirrors */
  125. count = dreq->mirrors[0].count;
  126. for (i = 1; i < dreq->mirror_count; i++)
  127. count = min(count, dreq->mirrors[i].count);
  128. dreq->count = count;
  129. }
  130. }
  131. /*
  132. * nfs_direct_select_verf - select the right verifier
  133. * @dreq - direct request possibly spanning multiple servers
  134. * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
  135. * @commit_idx - commit bucket index for the DS
  136. *
  137. * returns the correct verifier to use given the role of the server
  138. */
  139. static struct nfs_writeverf *
  140. nfs_direct_select_verf(struct nfs_direct_req *dreq,
  141. struct nfs_client *ds_clp,
  142. int commit_idx)
  143. {
  144. struct nfs_writeverf *verfp = &dreq->verf;
  145. #ifdef CONFIG_NFS_V4_1
  146. /*
  147. * pNFS is in use, use the DS verf except commit_through_mds is set
  148. * for layout segment where nbuckets is zero.
  149. */
  150. if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
  151. if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
  152. verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
  153. else
  154. WARN_ON_ONCE(1);
  155. }
  156. #endif
  157. return verfp;
  158. }
  159. /*
  160. * nfs_direct_set_hdr_verf - set the write/commit verifier
  161. * @dreq - direct request possibly spanning multiple servers
  162. * @hdr - pageio header to validate against previously seen verfs
  163. *
  164. * Set the server's (MDS or DS) "seen" verifier
  165. */
  166. static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
  167. struct nfs_pgio_header *hdr)
  168. {
  169. struct nfs_writeverf *verfp;
  170. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
  171. WARN_ON_ONCE(verfp->committed >= 0);
  172. memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  173. WARN_ON_ONCE(verfp->committed < 0);
  174. }
  175. /*
  176. * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
  177. * @dreq - direct request possibly spanning multiple servers
  178. * @hdr - pageio header to validate against previously seen verf
  179. *
  180. * set the server's "seen" verf if not initialized.
  181. * returns result of comparison between @hdr->verf and the "seen"
  182. * verf of the server used by @hdr (DS or MDS)
  183. */
  184. static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
  185. struct nfs_pgio_header *hdr)
  186. {
  187. struct nfs_writeverf *verfp;
  188. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
  189. if (verfp->committed < 0) {
  190. nfs_direct_set_hdr_verf(dreq, hdr);
  191. return 0;
  192. }
  193. return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  194. }
  195. /*
  196. * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
  197. * @dreq - direct request possibly spanning multiple servers
  198. * @data - commit data to validate against previously seen verf
  199. *
  200. * returns result of comparison between @data->verf and the verf of
  201. * the server used by @data (DS or MDS)
  202. */
  203. static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
  204. struct nfs_commit_data *data)
  205. {
  206. struct nfs_writeverf *verfp;
  207. verfp = nfs_direct_select_verf(dreq, data->ds_clp,
  208. data->ds_commit_index);
  209. /* verifier not set so always fail */
  210. if (verfp->committed < 0)
  211. return 1;
  212. return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
  213. }
  214. /**
  215. * nfs_direct_IO - NFS address space operation for direct I/O
  216. * @iocb: target I/O control block
  217. * @iov: array of vectors that define I/O buffer
  218. * @pos: offset in file to begin the operation
  219. * @nr_segs: size of iovec array
  220. *
  221. * The presence of this routine in the address space ops vector means
  222. * the NFS client supports direct I/O. However, for most direct IO, we
  223. * shunt off direct read and write requests before the VFS gets them,
  224. * so this method is only ever called for swap.
  225. */
  226. ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
  227. {
  228. struct inode *inode = iocb->ki_filp->f_mapping->host;
  229. /* we only support swap file calling nfs_direct_IO */
  230. if (!IS_SWAPFILE(inode))
  231. return 0;
  232. VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
  233. if (iov_iter_rw(iter) == READ)
  234. return nfs_file_direct_read(iocb, iter, pos);
  235. return nfs_file_direct_write(iocb, iter);
  236. }
  237. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  238. {
  239. unsigned int i;
  240. for (i = 0; i < npages; i++)
  241. page_cache_release(pages[i]);
  242. }
  243. void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
  244. struct nfs_direct_req *dreq)
  245. {
  246. cinfo->lock = &dreq->inode->i_lock;
  247. cinfo->mds = &dreq->mds_cinfo;
  248. cinfo->ds = &dreq->ds_cinfo;
  249. cinfo->dreq = dreq;
  250. cinfo->completion_ops = &nfs_direct_commit_completion_ops;
  251. }
  252. static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
  253. struct nfs_pageio_descriptor *pgio,
  254. struct nfs_page *req)
  255. {
  256. int mirror_count = 1;
  257. if (pgio->pg_ops->pg_get_mirror_count)
  258. mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
  259. dreq->mirror_count = mirror_count;
  260. }
  261. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  262. {
  263. struct nfs_direct_req *dreq;
  264. dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
  265. if (!dreq)
  266. return NULL;
  267. kref_init(&dreq->kref);
  268. kref_get(&dreq->kref);
  269. init_completion(&dreq->completion);
  270. INIT_LIST_HEAD(&dreq->mds_cinfo.list);
  271. dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
  272. INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
  273. dreq->mirror_count = 1;
  274. spin_lock_init(&dreq->lock);
  275. return dreq;
  276. }
  277. static void nfs_direct_req_free(struct kref *kref)
  278. {
  279. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  280. nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
  281. if (dreq->l_ctx != NULL)
  282. nfs_put_lock_context(dreq->l_ctx);
  283. if (dreq->ctx != NULL)
  284. put_nfs_open_context(dreq->ctx);
  285. kmem_cache_free(nfs_direct_cachep, dreq);
  286. }
  287. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  288. {
  289. kref_put(&dreq->kref, nfs_direct_req_free);
  290. }
  291. ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
  292. {
  293. return dreq->bytes_left;
  294. }
  295. EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
  296. /*
  297. * Collects and returns the final error value/byte-count.
  298. */
  299. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  300. {
  301. ssize_t result = -EIOCBQUEUED;
  302. /* Async requests don't wait here */
  303. if (dreq->iocb)
  304. goto out;
  305. result = wait_for_completion_killable(&dreq->completion);
  306. if (!result)
  307. result = dreq->error;
  308. if (!result)
  309. result = dreq->count;
  310. out:
  311. return (ssize_t) result;
  312. }
  313. /*
  314. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  315. * the iocb is still valid here if this is a synchronous request.
  316. */
  317. static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
  318. {
  319. struct inode *inode = dreq->inode;
  320. if (dreq->iocb && write) {
  321. loff_t pos = dreq->iocb->ki_pos + dreq->count;
  322. spin_lock(&inode->i_lock);
  323. if (i_size_read(inode) < pos)
  324. i_size_write(inode, pos);
  325. spin_unlock(&inode->i_lock);
  326. }
  327. if (write)
  328. nfs_zap_mapping(inode, inode->i_mapping);
  329. inode_dio_end(inode);
  330. if (dreq->iocb) {
  331. long res = (long) dreq->error;
  332. if (!res)
  333. res = (long) dreq->count;
  334. dreq->iocb->ki_complete(dreq->iocb, res, 0);
  335. }
  336. complete_all(&dreq->completion);
  337. nfs_direct_req_release(dreq);
  338. }
  339. static void nfs_direct_readpage_release(struct nfs_page *req)
  340. {
  341. dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
  342. d_inode(req->wb_context->dentry)->i_sb->s_id,
  343. (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
  344. req->wb_bytes,
  345. (long long)req_offset(req));
  346. nfs_release_request(req);
  347. }
  348. static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
  349. {
  350. unsigned long bytes = 0;
  351. struct nfs_direct_req *dreq = hdr->dreq;
  352. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  353. goto out_put;
  354. spin_lock(&dreq->lock);
  355. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
  356. dreq->error = hdr->error;
  357. else
  358. nfs_direct_good_bytes(dreq, hdr);
  359. spin_unlock(&dreq->lock);
  360. while (!list_empty(&hdr->pages)) {
  361. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  362. struct page *page = req->wb_page;
  363. if (!PageCompound(page) && bytes < hdr->good_bytes)
  364. set_page_dirty(page);
  365. bytes += req->wb_bytes;
  366. nfs_list_remove_request(req);
  367. nfs_direct_readpage_release(req);
  368. }
  369. out_put:
  370. if (put_dreq(dreq))
  371. nfs_direct_complete(dreq, false);
  372. hdr->release(hdr);
  373. }
  374. static void nfs_read_sync_pgio_error(struct list_head *head)
  375. {
  376. struct nfs_page *req;
  377. while (!list_empty(head)) {
  378. req = nfs_list_entry(head->next);
  379. nfs_list_remove_request(req);
  380. nfs_release_request(req);
  381. }
  382. }
  383. static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
  384. {
  385. get_dreq(hdr->dreq);
  386. }
  387. static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
  388. .error_cleanup = nfs_read_sync_pgio_error,
  389. .init_hdr = nfs_direct_pgio_init,
  390. .completion = nfs_direct_read_completion,
  391. };
  392. /*
  393. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  394. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  395. * bail and stop sending more reads. Read length accounting is
  396. * handled automatically by nfs_direct_read_result(). Otherwise, if
  397. * no requests have been sent, just return an error.
  398. */
  399. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  400. struct iov_iter *iter,
  401. loff_t pos)
  402. {
  403. struct nfs_pageio_descriptor desc;
  404. struct inode *inode = dreq->inode;
  405. ssize_t result = -EINVAL;
  406. size_t requested_bytes = 0;
  407. size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
  408. nfs_pageio_init_read(&desc, dreq->inode, false,
  409. &nfs_direct_read_completion_ops);
  410. get_dreq(dreq);
  411. desc.pg_dreq = dreq;
  412. inode_dio_begin(inode);
  413. while (iov_iter_count(iter)) {
  414. struct page **pagevec;
  415. size_t bytes;
  416. size_t pgbase;
  417. unsigned npages, i;
  418. result = iov_iter_get_pages_alloc(iter, &pagevec,
  419. rsize, &pgbase);
  420. if (result < 0)
  421. break;
  422. bytes = result;
  423. iov_iter_advance(iter, bytes);
  424. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  425. for (i = 0; i < npages; i++) {
  426. struct nfs_page *req;
  427. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  428. /* XXX do we need to do the eof zeroing found in async_filler? */
  429. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  430. pgbase, req_len);
  431. if (IS_ERR(req)) {
  432. result = PTR_ERR(req);
  433. break;
  434. }
  435. req->wb_index = pos >> PAGE_SHIFT;
  436. req->wb_offset = pos & ~PAGE_MASK;
  437. if (!nfs_pageio_add_request(&desc, req)) {
  438. result = desc.pg_error;
  439. nfs_release_request(req);
  440. break;
  441. }
  442. pgbase = 0;
  443. bytes -= req_len;
  444. requested_bytes += req_len;
  445. pos += req_len;
  446. dreq->bytes_left -= req_len;
  447. }
  448. nfs_direct_release_pages(pagevec, npages);
  449. kvfree(pagevec);
  450. if (result < 0)
  451. break;
  452. }
  453. nfs_pageio_complete(&desc);
  454. /*
  455. * If no bytes were started, return the error, and let the
  456. * generic layer handle the completion.
  457. */
  458. if (requested_bytes == 0) {
  459. inode_dio_end(inode);
  460. nfs_direct_req_release(dreq);
  461. return result < 0 ? result : -EIO;
  462. }
  463. if (put_dreq(dreq))
  464. nfs_direct_complete(dreq, false);
  465. return 0;
  466. }
  467. /**
  468. * nfs_file_direct_read - file direct read operation for NFS files
  469. * @iocb: target I/O control block
  470. * @iter: vector of user buffers into which to read data
  471. * @pos: byte offset in file where reading starts
  472. *
  473. * We use this function for direct reads instead of calling
  474. * generic_file_aio_read() in order to avoid gfar's check to see if
  475. * the request starts before the end of the file. For that check
  476. * to work, we must generate a GETATTR before each direct read, and
  477. * even then there is a window between the GETATTR and the subsequent
  478. * READ where the file size could change. Our preference is simply
  479. * to do all reads the application wants, and the server will take
  480. * care of managing the end of file boundary.
  481. *
  482. * This function also eliminates unnecessarily updating the file's
  483. * atime locally, as the NFS server sets the file's atime, and this
  484. * client must read the updated atime from the server back into its
  485. * cache.
  486. */
  487. ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
  488. loff_t pos)
  489. {
  490. struct file *file = iocb->ki_filp;
  491. struct address_space *mapping = file->f_mapping;
  492. struct inode *inode = mapping->host;
  493. struct nfs_direct_req *dreq;
  494. struct nfs_lock_context *l_ctx;
  495. ssize_t result = -EINVAL;
  496. size_t count = iov_iter_count(iter);
  497. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  498. dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
  499. file, count, (long long) pos);
  500. result = 0;
  501. if (!count)
  502. goto out;
  503. mutex_lock(&inode->i_mutex);
  504. result = nfs_sync_mapping(mapping);
  505. if (result)
  506. goto out_unlock;
  507. task_io_account_read(count);
  508. result = -ENOMEM;
  509. dreq = nfs_direct_req_alloc();
  510. if (dreq == NULL)
  511. goto out_unlock;
  512. dreq->inode = inode;
  513. dreq->bytes_left = count;
  514. dreq->io_start = pos;
  515. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  516. l_ctx = nfs_get_lock_context(dreq->ctx);
  517. if (IS_ERR(l_ctx)) {
  518. result = PTR_ERR(l_ctx);
  519. goto out_release;
  520. }
  521. dreq->l_ctx = l_ctx;
  522. if (!is_sync_kiocb(iocb))
  523. dreq->iocb = iocb;
  524. NFS_I(inode)->read_io += count;
  525. result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
  526. mutex_unlock(&inode->i_mutex);
  527. if (!result) {
  528. result = nfs_direct_wait(dreq);
  529. if (result > 0)
  530. iocb->ki_pos = pos + result;
  531. }
  532. nfs_direct_req_release(dreq);
  533. return result;
  534. out_release:
  535. nfs_direct_req_release(dreq);
  536. out_unlock:
  537. mutex_unlock(&inode->i_mutex);
  538. out:
  539. return result;
  540. }
  541. static void
  542. nfs_direct_write_scan_commit_list(struct inode *inode,
  543. struct list_head *list,
  544. struct nfs_commit_info *cinfo)
  545. {
  546. spin_lock(cinfo->lock);
  547. #ifdef CONFIG_NFS_V4_1
  548. if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
  549. NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
  550. #endif
  551. nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
  552. spin_unlock(cinfo->lock);
  553. }
  554. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  555. {
  556. struct nfs_pageio_descriptor desc;
  557. struct nfs_page *req, *tmp;
  558. LIST_HEAD(reqs);
  559. struct nfs_commit_info cinfo;
  560. LIST_HEAD(failed);
  561. int i;
  562. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  563. nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
  564. dreq->count = 0;
  565. for (i = 0; i < dreq->mirror_count; i++)
  566. dreq->mirrors[i].count = 0;
  567. get_dreq(dreq);
  568. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
  569. &nfs_direct_write_completion_ops);
  570. desc.pg_dreq = dreq;
  571. req = nfs_list_entry(reqs.next);
  572. nfs_direct_setup_mirroring(dreq, &desc, req);
  573. if (desc.pg_error < 0) {
  574. list_splice_init(&reqs, &failed);
  575. goto out_failed;
  576. }
  577. list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
  578. if (!nfs_pageio_add_request(&desc, req)) {
  579. nfs_list_remove_request(req);
  580. nfs_list_add_request(req, &failed);
  581. spin_lock(cinfo.lock);
  582. dreq->flags = 0;
  583. if (desc.pg_error < 0)
  584. dreq->error = desc.pg_error;
  585. else
  586. dreq->error = -EIO;
  587. spin_unlock(cinfo.lock);
  588. }
  589. nfs_release_request(req);
  590. }
  591. nfs_pageio_complete(&desc);
  592. out_failed:
  593. while (!list_empty(&failed)) {
  594. req = nfs_list_entry(failed.next);
  595. nfs_list_remove_request(req);
  596. nfs_unlock_and_release_request(req);
  597. }
  598. if (put_dreq(dreq))
  599. nfs_direct_write_complete(dreq, dreq->inode);
  600. }
  601. static void nfs_direct_commit_complete(struct nfs_commit_data *data)
  602. {
  603. struct nfs_direct_req *dreq = data->dreq;
  604. struct nfs_commit_info cinfo;
  605. struct nfs_page *req;
  606. int status = data->task.tk_status;
  607. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  608. if (status < 0) {
  609. dprintk("NFS: %5u commit failed with error %d.\n",
  610. data->task.tk_pid, status);
  611. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  612. } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
  613. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  614. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  615. }
  616. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  617. while (!list_empty(&data->pages)) {
  618. req = nfs_list_entry(data->pages.next);
  619. nfs_list_remove_request(req);
  620. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
  621. /* Note the rewrite will go through mds */
  622. nfs_mark_request_commit(req, NULL, &cinfo, 0);
  623. } else
  624. nfs_release_request(req);
  625. nfs_unlock_and_release_request(req);
  626. }
  627. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  628. nfs_direct_write_complete(dreq, data->inode);
  629. }
  630. static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
  631. {
  632. /* There is no lock to clear */
  633. }
  634. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
  635. .completion = nfs_direct_commit_complete,
  636. .error_cleanup = nfs_direct_error_cleanup,
  637. };
  638. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  639. {
  640. int res;
  641. struct nfs_commit_info cinfo;
  642. LIST_HEAD(mds_list);
  643. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  644. nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
  645. res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
  646. if (res < 0) /* res == -ENOMEM */
  647. nfs_direct_write_reschedule(dreq);
  648. }
  649. static void nfs_direct_write_schedule_work(struct work_struct *work)
  650. {
  651. struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
  652. int flags = dreq->flags;
  653. dreq->flags = 0;
  654. switch (flags) {
  655. case NFS_ODIRECT_DO_COMMIT:
  656. nfs_direct_commit_schedule(dreq);
  657. break;
  658. case NFS_ODIRECT_RESCHED_WRITES:
  659. nfs_direct_write_reschedule(dreq);
  660. break;
  661. default:
  662. nfs_direct_complete(dreq, true);
  663. }
  664. }
  665. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  666. {
  667. schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
  668. }
  669. static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
  670. {
  671. struct nfs_direct_req *dreq = hdr->dreq;
  672. struct nfs_commit_info cinfo;
  673. bool request_commit = false;
  674. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  675. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  676. goto out_put;
  677. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  678. spin_lock(&dreq->lock);
  679. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  680. dreq->flags = 0;
  681. dreq->error = hdr->error;
  682. }
  683. if (dreq->error == 0) {
  684. nfs_direct_good_bytes(dreq, hdr);
  685. if (nfs_write_need_commit(hdr)) {
  686. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
  687. request_commit = true;
  688. else if (dreq->flags == 0) {
  689. nfs_direct_set_hdr_verf(dreq, hdr);
  690. request_commit = true;
  691. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  692. } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
  693. request_commit = true;
  694. if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
  695. dreq->flags =
  696. NFS_ODIRECT_RESCHED_WRITES;
  697. }
  698. }
  699. }
  700. spin_unlock(&dreq->lock);
  701. while (!list_empty(&hdr->pages)) {
  702. req = nfs_list_entry(hdr->pages.next);
  703. nfs_list_remove_request(req);
  704. if (request_commit) {
  705. kref_get(&req->wb_kref);
  706. nfs_mark_request_commit(req, hdr->lseg, &cinfo,
  707. hdr->ds_commit_idx);
  708. }
  709. nfs_unlock_and_release_request(req);
  710. }
  711. out_put:
  712. if (put_dreq(dreq))
  713. nfs_direct_write_complete(dreq, hdr->inode);
  714. hdr->release(hdr);
  715. }
  716. static void nfs_write_sync_pgio_error(struct list_head *head)
  717. {
  718. struct nfs_page *req;
  719. while (!list_empty(head)) {
  720. req = nfs_list_entry(head->next);
  721. nfs_list_remove_request(req);
  722. nfs_unlock_and_release_request(req);
  723. }
  724. }
  725. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
  726. .error_cleanup = nfs_write_sync_pgio_error,
  727. .init_hdr = nfs_direct_pgio_init,
  728. .completion = nfs_direct_write_completion,
  729. };
  730. /*
  731. * NB: Return the value of the first error return code. Subsequent
  732. * errors after the first one are ignored.
  733. */
  734. /*
  735. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  736. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  737. * bail and stop sending more writes. Write length accounting is
  738. * handled automatically by nfs_direct_write_result(). Otherwise, if
  739. * no requests have been sent, just return an error.
  740. */
  741. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  742. struct iov_iter *iter,
  743. loff_t pos)
  744. {
  745. struct nfs_pageio_descriptor desc;
  746. struct inode *inode = dreq->inode;
  747. ssize_t result = 0;
  748. size_t requested_bytes = 0;
  749. size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
  750. nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
  751. &nfs_direct_write_completion_ops);
  752. desc.pg_dreq = dreq;
  753. get_dreq(dreq);
  754. inode_dio_begin(inode);
  755. NFS_I(inode)->write_io += iov_iter_count(iter);
  756. while (iov_iter_count(iter)) {
  757. struct page **pagevec;
  758. size_t bytes;
  759. size_t pgbase;
  760. unsigned npages, i;
  761. result = iov_iter_get_pages_alloc(iter, &pagevec,
  762. wsize, &pgbase);
  763. if (result < 0)
  764. break;
  765. bytes = result;
  766. iov_iter_advance(iter, bytes);
  767. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  768. for (i = 0; i < npages; i++) {
  769. struct nfs_page *req;
  770. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  771. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  772. pgbase, req_len);
  773. if (IS_ERR(req)) {
  774. result = PTR_ERR(req);
  775. break;
  776. }
  777. nfs_direct_setup_mirroring(dreq, &desc, req);
  778. if (desc.pg_error < 0) {
  779. nfs_free_request(req);
  780. result = desc.pg_error;
  781. break;
  782. }
  783. nfs_lock_request(req);
  784. req->wb_index = pos >> PAGE_SHIFT;
  785. req->wb_offset = pos & ~PAGE_MASK;
  786. if (!nfs_pageio_add_request(&desc, req)) {
  787. result = desc.pg_error;
  788. nfs_unlock_and_release_request(req);
  789. break;
  790. }
  791. pgbase = 0;
  792. bytes -= req_len;
  793. requested_bytes += req_len;
  794. pos += req_len;
  795. dreq->bytes_left -= req_len;
  796. }
  797. nfs_direct_release_pages(pagevec, npages);
  798. kvfree(pagevec);
  799. if (result < 0)
  800. break;
  801. }
  802. nfs_pageio_complete(&desc);
  803. /*
  804. * If no bytes were started, return the error, and let the
  805. * generic layer handle the completion.
  806. */
  807. if (requested_bytes == 0) {
  808. inode_dio_end(inode);
  809. nfs_direct_req_release(dreq);
  810. return result < 0 ? result : -EIO;
  811. }
  812. if (put_dreq(dreq))
  813. nfs_direct_write_complete(dreq, dreq->inode);
  814. return 0;
  815. }
  816. /**
  817. * nfs_file_direct_write - file direct write operation for NFS files
  818. * @iocb: target I/O control block
  819. * @iter: vector of user buffers from which to write data
  820. * @pos: byte offset in file where writing starts
  821. *
  822. * We use this function for direct writes instead of calling
  823. * generic_file_aio_write() in order to avoid taking the inode
  824. * semaphore and updating the i_size. The NFS server will set
  825. * the new i_size and this client must read the updated size
  826. * back into its cache. We let the server do generic write
  827. * parameter checking and report problems.
  828. *
  829. * We eliminate local atime updates, see direct read above.
  830. *
  831. * We avoid unnecessary page cache invalidations for normal cached
  832. * readers of this file.
  833. *
  834. * Note that O_APPEND is not supported for NFS direct writes, as there
  835. * is no atomic O_APPEND write facility in the NFS protocol.
  836. */
  837. ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
  838. {
  839. ssize_t result = -EINVAL;
  840. struct file *file = iocb->ki_filp;
  841. struct address_space *mapping = file->f_mapping;
  842. struct inode *inode = mapping->host;
  843. struct nfs_direct_req *dreq;
  844. struct nfs_lock_context *l_ctx;
  845. loff_t pos, end;
  846. dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
  847. file, iov_iter_count(iter), (long long) iocb->ki_pos);
  848. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
  849. iov_iter_count(iter));
  850. pos = iocb->ki_pos;
  851. end = (pos + iov_iter_count(iter) - 1) >> PAGE_CACHE_SHIFT;
  852. mutex_lock(&inode->i_mutex);
  853. result = nfs_sync_mapping(mapping);
  854. if (result)
  855. goto out_unlock;
  856. if (mapping->nrpages) {
  857. result = invalidate_inode_pages2_range(mapping,
  858. pos >> PAGE_CACHE_SHIFT, end);
  859. if (result)
  860. goto out_unlock;
  861. }
  862. task_io_account_write(iov_iter_count(iter));
  863. result = -ENOMEM;
  864. dreq = nfs_direct_req_alloc();
  865. if (!dreq)
  866. goto out_unlock;
  867. dreq->inode = inode;
  868. dreq->bytes_left = iov_iter_count(iter);
  869. dreq->io_start = pos;
  870. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  871. l_ctx = nfs_get_lock_context(dreq->ctx);
  872. if (IS_ERR(l_ctx)) {
  873. result = PTR_ERR(l_ctx);
  874. goto out_release;
  875. }
  876. dreq->l_ctx = l_ctx;
  877. if (!is_sync_kiocb(iocb))
  878. dreq->iocb = iocb;
  879. result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
  880. if (mapping->nrpages) {
  881. invalidate_inode_pages2_range(mapping,
  882. pos >> PAGE_CACHE_SHIFT, end);
  883. }
  884. mutex_unlock(&inode->i_mutex);
  885. if (!result) {
  886. result = nfs_direct_wait(dreq);
  887. if (result > 0) {
  888. struct inode *inode = mapping->host;
  889. iocb->ki_pos = pos + result;
  890. spin_lock(&inode->i_lock);
  891. if (i_size_read(inode) < iocb->ki_pos)
  892. i_size_write(inode, iocb->ki_pos);
  893. spin_unlock(&inode->i_lock);
  894. generic_write_sync(file, pos, result);
  895. }
  896. }
  897. nfs_direct_req_release(dreq);
  898. return result;
  899. out_release:
  900. nfs_direct_req_release(dreq);
  901. out_unlock:
  902. mutex_unlock(&inode->i_mutex);
  903. return result;
  904. }
  905. /**
  906. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  907. *
  908. */
  909. int __init nfs_init_directcache(void)
  910. {
  911. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  912. sizeof(struct nfs_direct_req),
  913. 0, (SLAB_RECLAIM_ACCOUNT|
  914. SLAB_MEM_SPREAD),
  915. NULL);
  916. if (nfs_direct_cachep == NULL)
  917. return -ENOMEM;
  918. return 0;
  919. }
  920. /**
  921. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  922. *
  923. */
  924. void nfs_destroy_directcache(void)
  925. {
  926. kmem_cache_destroy(nfs_direct_cachep);
  927. }