disk-io.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <linux/error-injection.h>
  33. #include <linux/crc32c.h>
  34. #include <asm/unaligned.h>
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "free-space-tree.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #include "qgroup.h"
  52. #include "compression.h"
  53. #include "tree-checker.h"
  54. #include "ref-verify.h"
  55. #ifdef CONFIG_X86
  56. #include <asm/cpufeature.h>
  57. #endif
  58. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  59. BTRFS_HEADER_FLAG_RELOC |\
  60. BTRFS_SUPER_FLAG_ERROR |\
  61. BTRFS_SUPER_FLAG_SEEDING |\
  62. BTRFS_SUPER_FLAG_METADUMP |\
  63. BTRFS_SUPER_FLAG_METADUMP_V2)
  64. static const struct extent_io_ops btree_extent_io_ops;
  65. static void end_workqueue_fn(struct btrfs_work *work);
  66. static void free_fs_root(struct btrfs_root *root);
  67. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  68. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  69. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  70. struct btrfs_fs_info *fs_info);
  71. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  72. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  73. struct extent_io_tree *dirty_pages,
  74. int mark);
  75. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  76. struct extent_io_tree *pinned_extents);
  77. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  78. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  79. /*
  80. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  81. * is complete. This is used during reads to verify checksums, and it is used
  82. * by writes to insert metadata for new file extents after IO is complete.
  83. */
  84. struct btrfs_end_io_wq {
  85. struct bio *bio;
  86. bio_end_io_t *end_io;
  87. void *private;
  88. struct btrfs_fs_info *info;
  89. blk_status_t status;
  90. enum btrfs_wq_endio_type metadata;
  91. struct btrfs_work work;
  92. };
  93. static struct kmem_cache *btrfs_end_io_wq_cache;
  94. int __init btrfs_end_io_wq_init(void)
  95. {
  96. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  97. sizeof(struct btrfs_end_io_wq),
  98. 0,
  99. SLAB_MEM_SPREAD,
  100. NULL);
  101. if (!btrfs_end_io_wq_cache)
  102. return -ENOMEM;
  103. return 0;
  104. }
  105. void __cold btrfs_end_io_wq_exit(void)
  106. {
  107. kmem_cache_destroy(btrfs_end_io_wq_cache);
  108. }
  109. /*
  110. * async submit bios are used to offload expensive checksumming
  111. * onto the worker threads. They checksum file and metadata bios
  112. * just before they are sent down the IO stack.
  113. */
  114. struct async_submit_bio {
  115. void *private_data;
  116. struct btrfs_fs_info *fs_info;
  117. struct bio *bio;
  118. extent_submit_bio_start_t *submit_bio_start;
  119. extent_submit_bio_done_t *submit_bio_done;
  120. int mirror_num;
  121. unsigned long bio_flags;
  122. /*
  123. * bio_offset is optional, can be used if the pages in the bio
  124. * can't tell us where in the file the bio should go
  125. */
  126. u64 bio_offset;
  127. struct btrfs_work work;
  128. blk_status_t status;
  129. };
  130. /*
  131. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  132. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  133. * the level the eb occupies in the tree.
  134. *
  135. * Different roots are used for different purposes and may nest inside each
  136. * other and they require separate keysets. As lockdep keys should be
  137. * static, assign keysets according to the purpose of the root as indicated
  138. * by btrfs_root->objectid. This ensures that all special purpose roots
  139. * have separate keysets.
  140. *
  141. * Lock-nesting across peer nodes is always done with the immediate parent
  142. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  143. * subclass to avoid triggering lockdep warning in such cases.
  144. *
  145. * The key is set by the readpage_end_io_hook after the buffer has passed
  146. * csum validation but before the pages are unlocked. It is also set by
  147. * btrfs_init_new_buffer on freshly allocated blocks.
  148. *
  149. * We also add a check to make sure the highest level of the tree is the
  150. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  151. * needs update as well.
  152. */
  153. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  154. # if BTRFS_MAX_LEVEL != 8
  155. # error
  156. # endif
  157. static struct btrfs_lockdep_keyset {
  158. u64 id; /* root objectid */
  159. const char *name_stem; /* lock name stem */
  160. char names[BTRFS_MAX_LEVEL + 1][20];
  161. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  162. } btrfs_lockdep_keysets[] = {
  163. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  164. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  165. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  166. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  167. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  168. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  169. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  170. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  171. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  172. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  173. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  174. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  175. { .id = 0, .name_stem = "tree" },
  176. };
  177. void __init btrfs_init_lockdep(void)
  178. {
  179. int i, j;
  180. /* initialize lockdep class names */
  181. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  182. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  183. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  184. snprintf(ks->names[j], sizeof(ks->names[j]),
  185. "btrfs-%s-%02d", ks->name_stem, j);
  186. }
  187. }
  188. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  189. int level)
  190. {
  191. struct btrfs_lockdep_keyset *ks;
  192. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  193. /* find the matching keyset, id 0 is the default entry */
  194. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  195. if (ks->id == objectid)
  196. break;
  197. lockdep_set_class_and_name(&eb->lock,
  198. &ks->keys[level], ks->names[level]);
  199. }
  200. #endif
  201. /*
  202. * extents on the btree inode are pretty simple, there's one extent
  203. * that covers the entire device
  204. */
  205. struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  206. struct page *page, size_t pg_offset, u64 start, u64 len,
  207. int create)
  208. {
  209. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  210. struct extent_map_tree *em_tree = &inode->extent_tree;
  211. struct extent_map *em;
  212. int ret;
  213. read_lock(&em_tree->lock);
  214. em = lookup_extent_mapping(em_tree, start, len);
  215. if (em) {
  216. em->bdev = fs_info->fs_devices->latest_bdev;
  217. read_unlock(&em_tree->lock);
  218. goto out;
  219. }
  220. read_unlock(&em_tree->lock);
  221. em = alloc_extent_map();
  222. if (!em) {
  223. em = ERR_PTR(-ENOMEM);
  224. goto out;
  225. }
  226. em->start = 0;
  227. em->len = (u64)-1;
  228. em->block_len = (u64)-1;
  229. em->block_start = 0;
  230. em->bdev = fs_info->fs_devices->latest_bdev;
  231. write_lock(&em_tree->lock);
  232. ret = add_extent_mapping(em_tree, em, 0);
  233. if (ret == -EEXIST) {
  234. free_extent_map(em);
  235. em = lookup_extent_mapping(em_tree, start, len);
  236. if (!em)
  237. em = ERR_PTR(-EIO);
  238. } else if (ret) {
  239. free_extent_map(em);
  240. em = ERR_PTR(ret);
  241. }
  242. write_unlock(&em_tree->lock);
  243. out:
  244. return em;
  245. }
  246. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  247. {
  248. return crc32c(seed, data, len);
  249. }
  250. void btrfs_csum_final(u32 crc, u8 *result)
  251. {
  252. put_unaligned_le32(~crc, result);
  253. }
  254. /*
  255. * compute the csum for a btree block, and either verify it or write it
  256. * into the csum field of the block.
  257. */
  258. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  259. struct extent_buffer *buf,
  260. int verify)
  261. {
  262. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  263. char result[BTRFS_CSUM_SIZE];
  264. unsigned long len;
  265. unsigned long cur_len;
  266. unsigned long offset = BTRFS_CSUM_SIZE;
  267. char *kaddr;
  268. unsigned long map_start;
  269. unsigned long map_len;
  270. int err;
  271. u32 crc = ~(u32)0;
  272. len = buf->len - offset;
  273. while (len > 0) {
  274. err = map_private_extent_buffer(buf, offset, 32,
  275. &kaddr, &map_start, &map_len);
  276. if (err)
  277. return err;
  278. cur_len = min(len, map_len - (offset - map_start));
  279. crc = btrfs_csum_data(kaddr + offset - map_start,
  280. crc, cur_len);
  281. len -= cur_len;
  282. offset += cur_len;
  283. }
  284. memset(result, 0, BTRFS_CSUM_SIZE);
  285. btrfs_csum_final(crc, result);
  286. if (verify) {
  287. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  288. u32 val;
  289. u32 found = 0;
  290. memcpy(&found, result, csum_size);
  291. read_extent_buffer(buf, &val, 0, csum_size);
  292. btrfs_warn_rl(fs_info,
  293. "%s checksum verify failed on %llu wanted %X found %X level %d",
  294. fs_info->sb->s_id, buf->start,
  295. val, found, btrfs_header_level(buf));
  296. return -EUCLEAN;
  297. }
  298. } else {
  299. write_extent_buffer(buf, result, 0, csum_size);
  300. }
  301. return 0;
  302. }
  303. /*
  304. * we can't consider a given block up to date unless the transid of the
  305. * block matches the transid in the parent node's pointer. This is how we
  306. * detect blocks that either didn't get written at all or got written
  307. * in the wrong place.
  308. */
  309. static int verify_parent_transid(struct extent_io_tree *io_tree,
  310. struct extent_buffer *eb, u64 parent_transid,
  311. int atomic)
  312. {
  313. struct extent_state *cached_state = NULL;
  314. int ret;
  315. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  316. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  317. return 0;
  318. if (atomic)
  319. return -EAGAIN;
  320. if (need_lock) {
  321. btrfs_tree_read_lock(eb);
  322. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  323. }
  324. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  325. &cached_state);
  326. if (extent_buffer_uptodate(eb) &&
  327. btrfs_header_generation(eb) == parent_transid) {
  328. ret = 0;
  329. goto out;
  330. }
  331. btrfs_err_rl(eb->fs_info,
  332. "parent transid verify failed on %llu wanted %llu found %llu",
  333. eb->start,
  334. parent_transid, btrfs_header_generation(eb));
  335. ret = 1;
  336. /*
  337. * Things reading via commit roots that don't have normal protection,
  338. * like send, can have a really old block in cache that may point at a
  339. * block that has been freed and re-allocated. So don't clear uptodate
  340. * if we find an eb that is under IO (dirty/writeback) because we could
  341. * end up reading in the stale data and then writing it back out and
  342. * making everybody very sad.
  343. */
  344. if (!extent_buffer_under_io(eb))
  345. clear_extent_buffer_uptodate(eb);
  346. out:
  347. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  348. &cached_state);
  349. if (need_lock)
  350. btrfs_tree_read_unlock_blocking(eb);
  351. return ret;
  352. }
  353. /*
  354. * Return 0 if the superblock checksum type matches the checksum value of that
  355. * algorithm. Pass the raw disk superblock data.
  356. */
  357. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  358. char *raw_disk_sb)
  359. {
  360. struct btrfs_super_block *disk_sb =
  361. (struct btrfs_super_block *)raw_disk_sb;
  362. u16 csum_type = btrfs_super_csum_type(disk_sb);
  363. int ret = 0;
  364. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  365. u32 crc = ~(u32)0;
  366. char result[sizeof(crc)];
  367. /*
  368. * The super_block structure does not span the whole
  369. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  370. * is filled with zeros and is included in the checksum.
  371. */
  372. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  373. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  374. btrfs_csum_final(crc, result);
  375. if (memcmp(raw_disk_sb, result, sizeof(result)))
  376. ret = 1;
  377. }
  378. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  379. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  380. csum_type);
  381. ret = 1;
  382. }
  383. return ret;
  384. }
  385. static int verify_level_key(struct btrfs_fs_info *fs_info,
  386. struct extent_buffer *eb, int level,
  387. struct btrfs_key *first_key)
  388. {
  389. int found_level;
  390. struct btrfs_key found_key;
  391. int ret;
  392. found_level = btrfs_header_level(eb);
  393. if (found_level != level) {
  394. #ifdef CONFIG_BTRFS_DEBUG
  395. WARN_ON(1);
  396. btrfs_err(fs_info,
  397. "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
  398. eb->start, level, found_level);
  399. #endif
  400. return -EIO;
  401. }
  402. if (!first_key)
  403. return 0;
  404. if (found_level)
  405. btrfs_node_key_to_cpu(eb, &found_key, 0);
  406. else
  407. btrfs_item_key_to_cpu(eb, &found_key, 0);
  408. ret = btrfs_comp_cpu_keys(first_key, &found_key);
  409. #ifdef CONFIG_BTRFS_DEBUG
  410. if (ret) {
  411. WARN_ON(1);
  412. btrfs_err(fs_info,
  413. "tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
  414. eb->start, first_key->objectid, first_key->type,
  415. first_key->offset, found_key.objectid,
  416. found_key.type, found_key.offset);
  417. }
  418. #endif
  419. return ret;
  420. }
  421. /*
  422. * helper to read a given tree block, doing retries as required when
  423. * the checksums don't match and we have alternate mirrors to try.
  424. *
  425. * @parent_transid: expected transid, skip check if 0
  426. * @level: expected level, mandatory check
  427. * @first_key: expected key of first slot, skip check if NULL
  428. */
  429. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  430. struct extent_buffer *eb,
  431. u64 parent_transid, int level,
  432. struct btrfs_key *first_key)
  433. {
  434. struct extent_io_tree *io_tree;
  435. int failed = 0;
  436. int ret;
  437. int num_copies = 0;
  438. int mirror_num = 0;
  439. int failed_mirror = 0;
  440. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  441. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  442. while (1) {
  443. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  444. mirror_num);
  445. if (!ret) {
  446. if (verify_parent_transid(io_tree, eb,
  447. parent_transid, 0))
  448. ret = -EIO;
  449. else if (verify_level_key(fs_info, eb, level,
  450. first_key))
  451. ret = -EUCLEAN;
  452. else
  453. break;
  454. }
  455. /*
  456. * This buffer's crc is fine, but its contents are corrupted, so
  457. * there is no reason to read the other copies, they won't be
  458. * any less wrong.
  459. */
  460. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
  461. ret == -EUCLEAN)
  462. break;
  463. num_copies = btrfs_num_copies(fs_info,
  464. eb->start, eb->len);
  465. if (num_copies == 1)
  466. break;
  467. if (!failed_mirror) {
  468. failed = 1;
  469. failed_mirror = eb->read_mirror;
  470. }
  471. mirror_num++;
  472. if (mirror_num == failed_mirror)
  473. mirror_num++;
  474. if (mirror_num > num_copies)
  475. break;
  476. }
  477. if (failed && !ret && failed_mirror)
  478. repair_eb_io_failure(fs_info, eb, failed_mirror);
  479. return ret;
  480. }
  481. /*
  482. * checksum a dirty tree block before IO. This has extra checks to make sure
  483. * we only fill in the checksum field in the first page of a multi-page block
  484. */
  485. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  486. {
  487. u64 start = page_offset(page);
  488. u64 found_start;
  489. struct extent_buffer *eb;
  490. eb = (struct extent_buffer *)page->private;
  491. if (page != eb->pages[0])
  492. return 0;
  493. found_start = btrfs_header_bytenr(eb);
  494. /*
  495. * Please do not consolidate these warnings into a single if.
  496. * It is useful to know what went wrong.
  497. */
  498. if (WARN_ON(found_start != start))
  499. return -EUCLEAN;
  500. if (WARN_ON(!PageUptodate(page)))
  501. return -EUCLEAN;
  502. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  503. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  504. return csum_tree_block(fs_info, eb, 0);
  505. }
  506. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  507. struct extent_buffer *eb)
  508. {
  509. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  510. u8 fsid[BTRFS_FSID_SIZE];
  511. int ret = 1;
  512. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  513. while (fs_devices) {
  514. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  515. ret = 0;
  516. break;
  517. }
  518. fs_devices = fs_devices->seed;
  519. }
  520. return ret;
  521. }
  522. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  523. u64 phy_offset, struct page *page,
  524. u64 start, u64 end, int mirror)
  525. {
  526. u64 found_start;
  527. int found_level;
  528. struct extent_buffer *eb;
  529. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  530. struct btrfs_fs_info *fs_info = root->fs_info;
  531. int ret = 0;
  532. int reads_done;
  533. if (!page->private)
  534. goto out;
  535. eb = (struct extent_buffer *)page->private;
  536. /* the pending IO might have been the only thing that kept this buffer
  537. * in memory. Make sure we have a ref for all this other checks
  538. */
  539. extent_buffer_get(eb);
  540. reads_done = atomic_dec_and_test(&eb->io_pages);
  541. if (!reads_done)
  542. goto err;
  543. eb->read_mirror = mirror;
  544. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  545. ret = -EIO;
  546. goto err;
  547. }
  548. found_start = btrfs_header_bytenr(eb);
  549. if (found_start != eb->start) {
  550. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  551. found_start, eb->start);
  552. ret = -EIO;
  553. goto err;
  554. }
  555. if (check_tree_block_fsid(fs_info, eb)) {
  556. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  557. eb->start);
  558. ret = -EIO;
  559. goto err;
  560. }
  561. found_level = btrfs_header_level(eb);
  562. if (found_level >= BTRFS_MAX_LEVEL) {
  563. btrfs_err(fs_info, "bad tree block level %d",
  564. (int)btrfs_header_level(eb));
  565. ret = -EIO;
  566. goto err;
  567. }
  568. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  569. eb, found_level);
  570. ret = csum_tree_block(fs_info, eb, 1);
  571. if (ret)
  572. goto err;
  573. /*
  574. * If this is a leaf block and it is corrupt, set the corrupt bit so
  575. * that we don't try and read the other copies of this block, just
  576. * return -EIO.
  577. */
  578. if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
  579. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  580. ret = -EIO;
  581. }
  582. if (found_level > 0 && btrfs_check_node(fs_info, eb))
  583. ret = -EIO;
  584. if (!ret)
  585. set_extent_buffer_uptodate(eb);
  586. err:
  587. if (reads_done &&
  588. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  589. btree_readahead_hook(eb, ret);
  590. if (ret) {
  591. /*
  592. * our io error hook is going to dec the io pages
  593. * again, we have to make sure it has something
  594. * to decrement
  595. */
  596. atomic_inc(&eb->io_pages);
  597. clear_extent_buffer_uptodate(eb);
  598. }
  599. free_extent_buffer(eb);
  600. out:
  601. return ret;
  602. }
  603. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  604. {
  605. struct extent_buffer *eb;
  606. eb = (struct extent_buffer *)page->private;
  607. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  608. eb->read_mirror = failed_mirror;
  609. atomic_dec(&eb->io_pages);
  610. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  611. btree_readahead_hook(eb, -EIO);
  612. return -EIO; /* we fixed nothing */
  613. }
  614. static void end_workqueue_bio(struct bio *bio)
  615. {
  616. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  617. struct btrfs_fs_info *fs_info;
  618. struct btrfs_workqueue *wq;
  619. btrfs_work_func_t func;
  620. fs_info = end_io_wq->info;
  621. end_io_wq->status = bio->bi_status;
  622. if (bio_op(bio) == REQ_OP_WRITE) {
  623. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  624. wq = fs_info->endio_meta_write_workers;
  625. func = btrfs_endio_meta_write_helper;
  626. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  627. wq = fs_info->endio_freespace_worker;
  628. func = btrfs_freespace_write_helper;
  629. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  630. wq = fs_info->endio_raid56_workers;
  631. func = btrfs_endio_raid56_helper;
  632. } else {
  633. wq = fs_info->endio_write_workers;
  634. func = btrfs_endio_write_helper;
  635. }
  636. } else {
  637. if (unlikely(end_io_wq->metadata ==
  638. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  639. wq = fs_info->endio_repair_workers;
  640. func = btrfs_endio_repair_helper;
  641. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  642. wq = fs_info->endio_raid56_workers;
  643. func = btrfs_endio_raid56_helper;
  644. } else if (end_io_wq->metadata) {
  645. wq = fs_info->endio_meta_workers;
  646. func = btrfs_endio_meta_helper;
  647. } else {
  648. wq = fs_info->endio_workers;
  649. func = btrfs_endio_helper;
  650. }
  651. }
  652. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  653. btrfs_queue_work(wq, &end_io_wq->work);
  654. }
  655. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  656. enum btrfs_wq_endio_type metadata)
  657. {
  658. struct btrfs_end_io_wq *end_io_wq;
  659. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  660. if (!end_io_wq)
  661. return BLK_STS_RESOURCE;
  662. end_io_wq->private = bio->bi_private;
  663. end_io_wq->end_io = bio->bi_end_io;
  664. end_io_wq->info = info;
  665. end_io_wq->status = 0;
  666. end_io_wq->bio = bio;
  667. end_io_wq->metadata = metadata;
  668. bio->bi_private = end_io_wq;
  669. bio->bi_end_io = end_workqueue_bio;
  670. return 0;
  671. }
  672. static void run_one_async_start(struct btrfs_work *work)
  673. {
  674. struct async_submit_bio *async;
  675. blk_status_t ret;
  676. async = container_of(work, struct async_submit_bio, work);
  677. ret = async->submit_bio_start(async->private_data, async->bio,
  678. async->bio_offset);
  679. if (ret)
  680. async->status = ret;
  681. }
  682. static void run_one_async_done(struct btrfs_work *work)
  683. {
  684. struct async_submit_bio *async;
  685. async = container_of(work, struct async_submit_bio, work);
  686. /* If an error occurred we just want to clean up the bio and move on */
  687. if (async->status) {
  688. async->bio->bi_status = async->status;
  689. bio_endio(async->bio);
  690. return;
  691. }
  692. async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
  693. }
  694. static void run_one_async_free(struct btrfs_work *work)
  695. {
  696. struct async_submit_bio *async;
  697. async = container_of(work, struct async_submit_bio, work);
  698. kfree(async);
  699. }
  700. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  701. int mirror_num, unsigned long bio_flags,
  702. u64 bio_offset, void *private_data,
  703. extent_submit_bio_start_t *submit_bio_start,
  704. extent_submit_bio_done_t *submit_bio_done)
  705. {
  706. struct async_submit_bio *async;
  707. async = kmalloc(sizeof(*async), GFP_NOFS);
  708. if (!async)
  709. return BLK_STS_RESOURCE;
  710. async->private_data = private_data;
  711. async->fs_info = fs_info;
  712. async->bio = bio;
  713. async->mirror_num = mirror_num;
  714. async->submit_bio_start = submit_bio_start;
  715. async->submit_bio_done = submit_bio_done;
  716. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  717. run_one_async_done, run_one_async_free);
  718. async->bio_flags = bio_flags;
  719. async->bio_offset = bio_offset;
  720. async->status = 0;
  721. if (op_is_sync(bio->bi_opf))
  722. btrfs_set_work_high_priority(&async->work);
  723. btrfs_queue_work(fs_info->workers, &async->work);
  724. return 0;
  725. }
  726. static blk_status_t btree_csum_one_bio(struct bio *bio)
  727. {
  728. struct bio_vec *bvec;
  729. struct btrfs_root *root;
  730. int i, ret = 0;
  731. ASSERT(!bio_flagged(bio, BIO_CLONED));
  732. bio_for_each_segment_all(bvec, bio, i) {
  733. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  734. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  735. if (ret)
  736. break;
  737. }
  738. return errno_to_blk_status(ret);
  739. }
  740. static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
  741. u64 bio_offset)
  742. {
  743. /*
  744. * when we're called for a write, we're already in the async
  745. * submission context. Just jump into btrfs_map_bio
  746. */
  747. return btree_csum_one_bio(bio);
  748. }
  749. static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
  750. int mirror_num)
  751. {
  752. struct inode *inode = private_data;
  753. blk_status_t ret;
  754. /*
  755. * when we're called for a write, we're already in the async
  756. * submission context. Just jump into btrfs_map_bio
  757. */
  758. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  759. if (ret) {
  760. bio->bi_status = ret;
  761. bio_endio(bio);
  762. }
  763. return ret;
  764. }
  765. static int check_async_write(struct btrfs_inode *bi)
  766. {
  767. if (atomic_read(&bi->sync_writers))
  768. return 0;
  769. #ifdef CONFIG_X86
  770. if (static_cpu_has(X86_FEATURE_XMM4_2))
  771. return 0;
  772. #endif
  773. return 1;
  774. }
  775. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  776. int mirror_num, unsigned long bio_flags,
  777. u64 bio_offset)
  778. {
  779. struct inode *inode = private_data;
  780. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  781. int async = check_async_write(BTRFS_I(inode));
  782. blk_status_t ret;
  783. if (bio_op(bio) != REQ_OP_WRITE) {
  784. /*
  785. * called for a read, do the setup so that checksum validation
  786. * can happen in the async kernel threads
  787. */
  788. ret = btrfs_bio_wq_end_io(fs_info, bio,
  789. BTRFS_WQ_ENDIO_METADATA);
  790. if (ret)
  791. goto out_w_error;
  792. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  793. } else if (!async) {
  794. ret = btree_csum_one_bio(bio);
  795. if (ret)
  796. goto out_w_error;
  797. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  798. } else {
  799. /*
  800. * kthread helpers are used to submit writes so that
  801. * checksumming can happen in parallel across all CPUs
  802. */
  803. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  804. bio_offset, private_data,
  805. btree_submit_bio_start,
  806. btree_submit_bio_done);
  807. }
  808. if (ret)
  809. goto out_w_error;
  810. return 0;
  811. out_w_error:
  812. bio->bi_status = ret;
  813. bio_endio(bio);
  814. return ret;
  815. }
  816. #ifdef CONFIG_MIGRATION
  817. static int btree_migratepage(struct address_space *mapping,
  818. struct page *newpage, struct page *page,
  819. enum migrate_mode mode)
  820. {
  821. /*
  822. * we can't safely write a btree page from here,
  823. * we haven't done the locking hook
  824. */
  825. if (PageDirty(page))
  826. return -EAGAIN;
  827. /*
  828. * Buffers may be managed in a filesystem specific way.
  829. * We must have no buffers or drop them.
  830. */
  831. if (page_has_private(page) &&
  832. !try_to_release_page(page, GFP_KERNEL))
  833. return -EAGAIN;
  834. return migrate_page(mapping, newpage, page, mode);
  835. }
  836. #endif
  837. static int btree_writepages(struct address_space *mapping,
  838. struct writeback_control *wbc)
  839. {
  840. struct btrfs_fs_info *fs_info;
  841. int ret;
  842. if (wbc->sync_mode == WB_SYNC_NONE) {
  843. if (wbc->for_kupdate)
  844. return 0;
  845. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  846. /* this is a bit racy, but that's ok */
  847. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  848. BTRFS_DIRTY_METADATA_THRESH);
  849. if (ret < 0)
  850. return 0;
  851. }
  852. return btree_write_cache_pages(mapping, wbc);
  853. }
  854. static int btree_readpage(struct file *file, struct page *page)
  855. {
  856. struct extent_io_tree *tree;
  857. tree = &BTRFS_I(page->mapping->host)->io_tree;
  858. return extent_read_full_page(tree, page, btree_get_extent, 0);
  859. }
  860. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  861. {
  862. if (PageWriteback(page) || PageDirty(page))
  863. return 0;
  864. return try_release_extent_buffer(page);
  865. }
  866. static void btree_invalidatepage(struct page *page, unsigned int offset,
  867. unsigned int length)
  868. {
  869. struct extent_io_tree *tree;
  870. tree = &BTRFS_I(page->mapping->host)->io_tree;
  871. extent_invalidatepage(tree, page, offset);
  872. btree_releasepage(page, GFP_NOFS);
  873. if (PagePrivate(page)) {
  874. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  875. "page private not zero on page %llu",
  876. (unsigned long long)page_offset(page));
  877. ClearPagePrivate(page);
  878. set_page_private(page, 0);
  879. put_page(page);
  880. }
  881. }
  882. static int btree_set_page_dirty(struct page *page)
  883. {
  884. #ifdef DEBUG
  885. struct extent_buffer *eb;
  886. BUG_ON(!PagePrivate(page));
  887. eb = (struct extent_buffer *)page->private;
  888. BUG_ON(!eb);
  889. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  890. BUG_ON(!atomic_read(&eb->refs));
  891. btrfs_assert_tree_locked(eb);
  892. #endif
  893. return __set_page_dirty_nobuffers(page);
  894. }
  895. static const struct address_space_operations btree_aops = {
  896. .readpage = btree_readpage,
  897. .writepages = btree_writepages,
  898. .releasepage = btree_releasepage,
  899. .invalidatepage = btree_invalidatepage,
  900. #ifdef CONFIG_MIGRATION
  901. .migratepage = btree_migratepage,
  902. #endif
  903. .set_page_dirty = btree_set_page_dirty,
  904. };
  905. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  906. {
  907. struct extent_buffer *buf = NULL;
  908. struct inode *btree_inode = fs_info->btree_inode;
  909. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  910. if (IS_ERR(buf))
  911. return;
  912. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  913. buf, WAIT_NONE, 0);
  914. free_extent_buffer(buf);
  915. }
  916. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  917. int mirror_num, struct extent_buffer **eb)
  918. {
  919. struct extent_buffer *buf = NULL;
  920. struct inode *btree_inode = fs_info->btree_inode;
  921. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  922. int ret;
  923. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  924. if (IS_ERR(buf))
  925. return 0;
  926. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  927. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  928. mirror_num);
  929. if (ret) {
  930. free_extent_buffer(buf);
  931. return ret;
  932. }
  933. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  934. free_extent_buffer(buf);
  935. return -EIO;
  936. } else if (extent_buffer_uptodate(buf)) {
  937. *eb = buf;
  938. } else {
  939. free_extent_buffer(buf);
  940. }
  941. return 0;
  942. }
  943. struct extent_buffer *btrfs_find_create_tree_block(
  944. struct btrfs_fs_info *fs_info,
  945. u64 bytenr)
  946. {
  947. if (btrfs_is_testing(fs_info))
  948. return alloc_test_extent_buffer(fs_info, bytenr);
  949. return alloc_extent_buffer(fs_info, bytenr);
  950. }
  951. int btrfs_write_tree_block(struct extent_buffer *buf)
  952. {
  953. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  954. buf->start + buf->len - 1);
  955. }
  956. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  957. {
  958. filemap_fdatawait_range(buf->pages[0]->mapping,
  959. buf->start, buf->start + buf->len - 1);
  960. }
  961. /*
  962. * Read tree block at logical address @bytenr and do variant basic but critical
  963. * verification.
  964. *
  965. * @parent_transid: expected transid of this tree block, skip check if 0
  966. * @level: expected level, mandatory check
  967. * @first_key: expected key in slot 0, skip check if NULL
  968. */
  969. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  970. u64 parent_transid, int level,
  971. struct btrfs_key *first_key)
  972. {
  973. struct extent_buffer *buf = NULL;
  974. int ret;
  975. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  976. if (IS_ERR(buf))
  977. return buf;
  978. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
  979. level, first_key);
  980. if (ret) {
  981. free_extent_buffer(buf);
  982. return ERR_PTR(ret);
  983. }
  984. return buf;
  985. }
  986. void clean_tree_block(struct btrfs_fs_info *fs_info,
  987. struct extent_buffer *buf)
  988. {
  989. if (btrfs_header_generation(buf) ==
  990. fs_info->running_transaction->transid) {
  991. btrfs_assert_tree_locked(buf);
  992. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  993. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  994. -buf->len,
  995. fs_info->dirty_metadata_batch);
  996. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  997. btrfs_set_lock_blocking(buf);
  998. clear_extent_buffer_dirty(buf);
  999. }
  1000. }
  1001. }
  1002. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1003. {
  1004. struct btrfs_subvolume_writers *writers;
  1005. int ret;
  1006. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1007. if (!writers)
  1008. return ERR_PTR(-ENOMEM);
  1009. ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
  1010. if (ret < 0) {
  1011. kfree(writers);
  1012. return ERR_PTR(ret);
  1013. }
  1014. init_waitqueue_head(&writers->wait);
  1015. return writers;
  1016. }
  1017. static void
  1018. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1019. {
  1020. percpu_counter_destroy(&writers->counter);
  1021. kfree(writers);
  1022. }
  1023. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1024. u64 objectid)
  1025. {
  1026. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1027. root->node = NULL;
  1028. root->commit_root = NULL;
  1029. root->state = 0;
  1030. root->orphan_cleanup_state = 0;
  1031. root->objectid = objectid;
  1032. root->last_trans = 0;
  1033. root->highest_objectid = 0;
  1034. root->nr_delalloc_inodes = 0;
  1035. root->nr_ordered_extents = 0;
  1036. root->name = NULL;
  1037. root->inode_tree = RB_ROOT;
  1038. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1039. root->block_rsv = NULL;
  1040. root->orphan_block_rsv = NULL;
  1041. INIT_LIST_HEAD(&root->dirty_list);
  1042. INIT_LIST_HEAD(&root->root_list);
  1043. INIT_LIST_HEAD(&root->delalloc_inodes);
  1044. INIT_LIST_HEAD(&root->delalloc_root);
  1045. INIT_LIST_HEAD(&root->ordered_extents);
  1046. INIT_LIST_HEAD(&root->ordered_root);
  1047. INIT_LIST_HEAD(&root->logged_list[0]);
  1048. INIT_LIST_HEAD(&root->logged_list[1]);
  1049. spin_lock_init(&root->orphan_lock);
  1050. spin_lock_init(&root->inode_lock);
  1051. spin_lock_init(&root->delalloc_lock);
  1052. spin_lock_init(&root->ordered_extent_lock);
  1053. spin_lock_init(&root->accounting_lock);
  1054. spin_lock_init(&root->log_extents_lock[0]);
  1055. spin_lock_init(&root->log_extents_lock[1]);
  1056. spin_lock_init(&root->qgroup_meta_rsv_lock);
  1057. mutex_init(&root->objectid_mutex);
  1058. mutex_init(&root->log_mutex);
  1059. mutex_init(&root->ordered_extent_mutex);
  1060. mutex_init(&root->delalloc_mutex);
  1061. init_waitqueue_head(&root->log_writer_wait);
  1062. init_waitqueue_head(&root->log_commit_wait[0]);
  1063. init_waitqueue_head(&root->log_commit_wait[1]);
  1064. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1065. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1066. atomic_set(&root->log_commit[0], 0);
  1067. atomic_set(&root->log_commit[1], 0);
  1068. atomic_set(&root->log_writers, 0);
  1069. atomic_set(&root->log_batch, 0);
  1070. atomic_set(&root->orphan_inodes, 0);
  1071. refcount_set(&root->refs, 1);
  1072. atomic_set(&root->will_be_snapshotted, 0);
  1073. root->log_transid = 0;
  1074. root->log_transid_committed = -1;
  1075. root->last_log_commit = 0;
  1076. if (!dummy)
  1077. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1078. memset(&root->root_key, 0, sizeof(root->root_key));
  1079. memset(&root->root_item, 0, sizeof(root->root_item));
  1080. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1081. if (!dummy)
  1082. root->defrag_trans_start = fs_info->generation;
  1083. else
  1084. root->defrag_trans_start = 0;
  1085. root->root_key.objectid = objectid;
  1086. root->anon_dev = 0;
  1087. spin_lock_init(&root->root_item_lock);
  1088. }
  1089. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1090. gfp_t flags)
  1091. {
  1092. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1093. if (root)
  1094. root->fs_info = fs_info;
  1095. return root;
  1096. }
  1097. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1098. /* Should only be used by the testing infrastructure */
  1099. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1100. {
  1101. struct btrfs_root *root;
  1102. if (!fs_info)
  1103. return ERR_PTR(-EINVAL);
  1104. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1105. if (!root)
  1106. return ERR_PTR(-ENOMEM);
  1107. /* We don't use the stripesize in selftest, set it as sectorsize */
  1108. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1109. root->alloc_bytenr = 0;
  1110. return root;
  1111. }
  1112. #endif
  1113. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1114. struct btrfs_fs_info *fs_info,
  1115. u64 objectid)
  1116. {
  1117. struct extent_buffer *leaf;
  1118. struct btrfs_root *tree_root = fs_info->tree_root;
  1119. struct btrfs_root *root;
  1120. struct btrfs_key key;
  1121. int ret = 0;
  1122. uuid_le uuid = NULL_UUID_LE;
  1123. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1124. if (!root)
  1125. return ERR_PTR(-ENOMEM);
  1126. __setup_root(root, fs_info, objectid);
  1127. root->root_key.objectid = objectid;
  1128. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1129. root->root_key.offset = 0;
  1130. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1131. if (IS_ERR(leaf)) {
  1132. ret = PTR_ERR(leaf);
  1133. leaf = NULL;
  1134. goto fail;
  1135. }
  1136. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1137. btrfs_set_header_bytenr(leaf, leaf->start);
  1138. btrfs_set_header_generation(leaf, trans->transid);
  1139. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1140. btrfs_set_header_owner(leaf, objectid);
  1141. root->node = leaf;
  1142. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1143. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1144. btrfs_mark_buffer_dirty(leaf);
  1145. root->commit_root = btrfs_root_node(root);
  1146. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1147. root->root_item.flags = 0;
  1148. root->root_item.byte_limit = 0;
  1149. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1150. btrfs_set_root_generation(&root->root_item, trans->transid);
  1151. btrfs_set_root_level(&root->root_item, 0);
  1152. btrfs_set_root_refs(&root->root_item, 1);
  1153. btrfs_set_root_used(&root->root_item, leaf->len);
  1154. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1155. btrfs_set_root_dirid(&root->root_item, 0);
  1156. if (is_fstree(objectid))
  1157. uuid_le_gen(&uuid);
  1158. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1159. root->root_item.drop_level = 0;
  1160. key.objectid = objectid;
  1161. key.type = BTRFS_ROOT_ITEM_KEY;
  1162. key.offset = 0;
  1163. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1164. if (ret)
  1165. goto fail;
  1166. btrfs_tree_unlock(leaf);
  1167. return root;
  1168. fail:
  1169. if (leaf) {
  1170. btrfs_tree_unlock(leaf);
  1171. free_extent_buffer(root->commit_root);
  1172. free_extent_buffer(leaf);
  1173. }
  1174. kfree(root);
  1175. return ERR_PTR(ret);
  1176. }
  1177. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1178. struct btrfs_fs_info *fs_info)
  1179. {
  1180. struct btrfs_root *root;
  1181. struct extent_buffer *leaf;
  1182. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1183. if (!root)
  1184. return ERR_PTR(-ENOMEM);
  1185. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1186. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1187. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1188. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1189. /*
  1190. * DON'T set REF_COWS for log trees
  1191. *
  1192. * log trees do not get reference counted because they go away
  1193. * before a real commit is actually done. They do store pointers
  1194. * to file data extents, and those reference counts still get
  1195. * updated (along with back refs to the log tree).
  1196. */
  1197. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1198. NULL, 0, 0, 0);
  1199. if (IS_ERR(leaf)) {
  1200. kfree(root);
  1201. return ERR_CAST(leaf);
  1202. }
  1203. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1204. btrfs_set_header_bytenr(leaf, leaf->start);
  1205. btrfs_set_header_generation(leaf, trans->transid);
  1206. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1207. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1208. root->node = leaf;
  1209. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1210. btrfs_mark_buffer_dirty(root->node);
  1211. btrfs_tree_unlock(root->node);
  1212. return root;
  1213. }
  1214. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_fs_info *fs_info)
  1216. {
  1217. struct btrfs_root *log_root;
  1218. log_root = alloc_log_tree(trans, fs_info);
  1219. if (IS_ERR(log_root))
  1220. return PTR_ERR(log_root);
  1221. WARN_ON(fs_info->log_root_tree);
  1222. fs_info->log_root_tree = log_root;
  1223. return 0;
  1224. }
  1225. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1226. struct btrfs_root *root)
  1227. {
  1228. struct btrfs_fs_info *fs_info = root->fs_info;
  1229. struct btrfs_root *log_root;
  1230. struct btrfs_inode_item *inode_item;
  1231. log_root = alloc_log_tree(trans, fs_info);
  1232. if (IS_ERR(log_root))
  1233. return PTR_ERR(log_root);
  1234. log_root->last_trans = trans->transid;
  1235. log_root->root_key.offset = root->root_key.objectid;
  1236. inode_item = &log_root->root_item.inode;
  1237. btrfs_set_stack_inode_generation(inode_item, 1);
  1238. btrfs_set_stack_inode_size(inode_item, 3);
  1239. btrfs_set_stack_inode_nlink(inode_item, 1);
  1240. btrfs_set_stack_inode_nbytes(inode_item,
  1241. fs_info->nodesize);
  1242. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1243. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1244. WARN_ON(root->log_root);
  1245. root->log_root = log_root;
  1246. root->log_transid = 0;
  1247. root->log_transid_committed = -1;
  1248. root->last_log_commit = 0;
  1249. return 0;
  1250. }
  1251. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1252. struct btrfs_key *key)
  1253. {
  1254. struct btrfs_root *root;
  1255. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1256. struct btrfs_path *path;
  1257. u64 generation;
  1258. int ret;
  1259. int level;
  1260. path = btrfs_alloc_path();
  1261. if (!path)
  1262. return ERR_PTR(-ENOMEM);
  1263. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1264. if (!root) {
  1265. ret = -ENOMEM;
  1266. goto alloc_fail;
  1267. }
  1268. __setup_root(root, fs_info, key->objectid);
  1269. ret = btrfs_find_root(tree_root, key, path,
  1270. &root->root_item, &root->root_key);
  1271. if (ret) {
  1272. if (ret > 0)
  1273. ret = -ENOENT;
  1274. goto find_fail;
  1275. }
  1276. generation = btrfs_root_generation(&root->root_item);
  1277. level = btrfs_root_level(&root->root_item);
  1278. root->node = read_tree_block(fs_info,
  1279. btrfs_root_bytenr(&root->root_item),
  1280. generation, level, NULL);
  1281. if (IS_ERR(root->node)) {
  1282. ret = PTR_ERR(root->node);
  1283. goto find_fail;
  1284. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1285. ret = -EIO;
  1286. free_extent_buffer(root->node);
  1287. goto find_fail;
  1288. }
  1289. root->commit_root = btrfs_root_node(root);
  1290. out:
  1291. btrfs_free_path(path);
  1292. return root;
  1293. find_fail:
  1294. kfree(root);
  1295. alloc_fail:
  1296. root = ERR_PTR(ret);
  1297. goto out;
  1298. }
  1299. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1300. struct btrfs_key *location)
  1301. {
  1302. struct btrfs_root *root;
  1303. root = btrfs_read_tree_root(tree_root, location);
  1304. if (IS_ERR(root))
  1305. return root;
  1306. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1307. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1308. btrfs_check_and_init_root_item(&root->root_item);
  1309. }
  1310. return root;
  1311. }
  1312. int btrfs_init_fs_root(struct btrfs_root *root)
  1313. {
  1314. int ret;
  1315. struct btrfs_subvolume_writers *writers;
  1316. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1317. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1318. GFP_NOFS);
  1319. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1320. ret = -ENOMEM;
  1321. goto fail;
  1322. }
  1323. writers = btrfs_alloc_subvolume_writers();
  1324. if (IS_ERR(writers)) {
  1325. ret = PTR_ERR(writers);
  1326. goto fail;
  1327. }
  1328. root->subv_writers = writers;
  1329. btrfs_init_free_ino_ctl(root);
  1330. spin_lock_init(&root->ino_cache_lock);
  1331. init_waitqueue_head(&root->ino_cache_wait);
  1332. ret = get_anon_bdev(&root->anon_dev);
  1333. if (ret)
  1334. goto fail;
  1335. mutex_lock(&root->objectid_mutex);
  1336. ret = btrfs_find_highest_objectid(root,
  1337. &root->highest_objectid);
  1338. if (ret) {
  1339. mutex_unlock(&root->objectid_mutex);
  1340. goto fail;
  1341. }
  1342. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1343. mutex_unlock(&root->objectid_mutex);
  1344. return 0;
  1345. fail:
  1346. /* the caller is responsible to call free_fs_root */
  1347. return ret;
  1348. }
  1349. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1350. u64 root_id)
  1351. {
  1352. struct btrfs_root *root;
  1353. spin_lock(&fs_info->fs_roots_radix_lock);
  1354. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1355. (unsigned long)root_id);
  1356. spin_unlock(&fs_info->fs_roots_radix_lock);
  1357. return root;
  1358. }
  1359. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1360. struct btrfs_root *root)
  1361. {
  1362. int ret;
  1363. ret = radix_tree_preload(GFP_NOFS);
  1364. if (ret)
  1365. return ret;
  1366. spin_lock(&fs_info->fs_roots_radix_lock);
  1367. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1368. (unsigned long)root->root_key.objectid,
  1369. root);
  1370. if (ret == 0)
  1371. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1372. spin_unlock(&fs_info->fs_roots_radix_lock);
  1373. radix_tree_preload_end();
  1374. return ret;
  1375. }
  1376. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1377. struct btrfs_key *location,
  1378. bool check_ref)
  1379. {
  1380. struct btrfs_root *root;
  1381. struct btrfs_path *path;
  1382. struct btrfs_key key;
  1383. int ret;
  1384. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1385. return fs_info->tree_root;
  1386. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1387. return fs_info->extent_root;
  1388. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1389. return fs_info->chunk_root;
  1390. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1391. return fs_info->dev_root;
  1392. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1393. return fs_info->csum_root;
  1394. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1395. return fs_info->quota_root ? fs_info->quota_root :
  1396. ERR_PTR(-ENOENT);
  1397. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1398. return fs_info->uuid_root ? fs_info->uuid_root :
  1399. ERR_PTR(-ENOENT);
  1400. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1401. return fs_info->free_space_root ? fs_info->free_space_root :
  1402. ERR_PTR(-ENOENT);
  1403. again:
  1404. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1405. if (root) {
  1406. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1407. return ERR_PTR(-ENOENT);
  1408. return root;
  1409. }
  1410. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1411. if (IS_ERR(root))
  1412. return root;
  1413. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1414. ret = -ENOENT;
  1415. goto fail;
  1416. }
  1417. ret = btrfs_init_fs_root(root);
  1418. if (ret)
  1419. goto fail;
  1420. path = btrfs_alloc_path();
  1421. if (!path) {
  1422. ret = -ENOMEM;
  1423. goto fail;
  1424. }
  1425. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1426. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1427. key.offset = location->objectid;
  1428. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1429. btrfs_free_path(path);
  1430. if (ret < 0)
  1431. goto fail;
  1432. if (ret == 0)
  1433. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1434. ret = btrfs_insert_fs_root(fs_info, root);
  1435. if (ret) {
  1436. if (ret == -EEXIST) {
  1437. free_fs_root(root);
  1438. goto again;
  1439. }
  1440. goto fail;
  1441. }
  1442. return root;
  1443. fail:
  1444. free_fs_root(root);
  1445. return ERR_PTR(ret);
  1446. }
  1447. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1448. {
  1449. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1450. int ret = 0;
  1451. struct btrfs_device *device;
  1452. struct backing_dev_info *bdi;
  1453. rcu_read_lock();
  1454. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1455. if (!device->bdev)
  1456. continue;
  1457. bdi = device->bdev->bd_bdi;
  1458. if (bdi_congested(bdi, bdi_bits)) {
  1459. ret = 1;
  1460. break;
  1461. }
  1462. }
  1463. rcu_read_unlock();
  1464. return ret;
  1465. }
  1466. /*
  1467. * called by the kthread helper functions to finally call the bio end_io
  1468. * functions. This is where read checksum verification actually happens
  1469. */
  1470. static void end_workqueue_fn(struct btrfs_work *work)
  1471. {
  1472. struct bio *bio;
  1473. struct btrfs_end_io_wq *end_io_wq;
  1474. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1475. bio = end_io_wq->bio;
  1476. bio->bi_status = end_io_wq->status;
  1477. bio->bi_private = end_io_wq->private;
  1478. bio->bi_end_io = end_io_wq->end_io;
  1479. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1480. bio_endio(bio);
  1481. }
  1482. static int cleaner_kthread(void *arg)
  1483. {
  1484. struct btrfs_root *root = arg;
  1485. struct btrfs_fs_info *fs_info = root->fs_info;
  1486. int again;
  1487. struct btrfs_trans_handle *trans;
  1488. do {
  1489. again = 0;
  1490. /* Make the cleaner go to sleep early. */
  1491. if (btrfs_need_cleaner_sleep(fs_info))
  1492. goto sleep;
  1493. /*
  1494. * Do not do anything if we might cause open_ctree() to block
  1495. * before we have finished mounting the filesystem.
  1496. */
  1497. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1498. goto sleep;
  1499. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1500. goto sleep;
  1501. /*
  1502. * Avoid the problem that we change the status of the fs
  1503. * during the above check and trylock.
  1504. */
  1505. if (btrfs_need_cleaner_sleep(fs_info)) {
  1506. mutex_unlock(&fs_info->cleaner_mutex);
  1507. goto sleep;
  1508. }
  1509. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1510. btrfs_run_delayed_iputs(fs_info);
  1511. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1512. again = btrfs_clean_one_deleted_snapshot(root);
  1513. mutex_unlock(&fs_info->cleaner_mutex);
  1514. /*
  1515. * The defragger has dealt with the R/O remount and umount,
  1516. * needn't do anything special here.
  1517. */
  1518. btrfs_run_defrag_inodes(fs_info);
  1519. /*
  1520. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1521. * with relocation (btrfs_relocate_chunk) and relocation
  1522. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1523. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1524. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1525. * unused block groups.
  1526. */
  1527. btrfs_delete_unused_bgs(fs_info);
  1528. sleep:
  1529. if (!again) {
  1530. set_current_state(TASK_INTERRUPTIBLE);
  1531. if (!kthread_should_stop())
  1532. schedule();
  1533. __set_current_state(TASK_RUNNING);
  1534. }
  1535. } while (!kthread_should_stop());
  1536. /*
  1537. * Transaction kthread is stopped before us and wakes us up.
  1538. * However we might have started a new transaction and COWed some
  1539. * tree blocks when deleting unused block groups for example. So
  1540. * make sure we commit the transaction we started to have a clean
  1541. * shutdown when evicting the btree inode - if it has dirty pages
  1542. * when we do the final iput() on it, eviction will trigger a
  1543. * writeback for it which will fail with null pointer dereferences
  1544. * since work queues and other resources were already released and
  1545. * destroyed by the time the iput/eviction/writeback is made.
  1546. */
  1547. trans = btrfs_attach_transaction(root);
  1548. if (IS_ERR(trans)) {
  1549. if (PTR_ERR(trans) != -ENOENT)
  1550. btrfs_err(fs_info,
  1551. "cleaner transaction attach returned %ld",
  1552. PTR_ERR(trans));
  1553. } else {
  1554. int ret;
  1555. ret = btrfs_commit_transaction(trans);
  1556. if (ret)
  1557. btrfs_err(fs_info,
  1558. "cleaner open transaction commit returned %d",
  1559. ret);
  1560. }
  1561. return 0;
  1562. }
  1563. static int transaction_kthread(void *arg)
  1564. {
  1565. struct btrfs_root *root = arg;
  1566. struct btrfs_fs_info *fs_info = root->fs_info;
  1567. struct btrfs_trans_handle *trans;
  1568. struct btrfs_transaction *cur;
  1569. u64 transid;
  1570. unsigned long now;
  1571. unsigned long delay;
  1572. bool cannot_commit;
  1573. do {
  1574. cannot_commit = false;
  1575. delay = HZ * fs_info->commit_interval;
  1576. mutex_lock(&fs_info->transaction_kthread_mutex);
  1577. spin_lock(&fs_info->trans_lock);
  1578. cur = fs_info->running_transaction;
  1579. if (!cur) {
  1580. spin_unlock(&fs_info->trans_lock);
  1581. goto sleep;
  1582. }
  1583. now = get_seconds();
  1584. if (cur->state < TRANS_STATE_BLOCKED &&
  1585. (now < cur->start_time ||
  1586. now - cur->start_time < fs_info->commit_interval)) {
  1587. spin_unlock(&fs_info->trans_lock);
  1588. delay = HZ * 5;
  1589. goto sleep;
  1590. }
  1591. transid = cur->transid;
  1592. spin_unlock(&fs_info->trans_lock);
  1593. /* If the file system is aborted, this will always fail. */
  1594. trans = btrfs_attach_transaction(root);
  1595. if (IS_ERR(trans)) {
  1596. if (PTR_ERR(trans) != -ENOENT)
  1597. cannot_commit = true;
  1598. goto sleep;
  1599. }
  1600. if (transid == trans->transid) {
  1601. btrfs_commit_transaction(trans);
  1602. } else {
  1603. btrfs_end_transaction(trans);
  1604. }
  1605. sleep:
  1606. wake_up_process(fs_info->cleaner_kthread);
  1607. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1608. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1609. &fs_info->fs_state)))
  1610. btrfs_cleanup_transaction(fs_info);
  1611. if (!kthread_should_stop() &&
  1612. (!btrfs_transaction_blocked(fs_info) ||
  1613. cannot_commit))
  1614. schedule_timeout_interruptible(delay);
  1615. } while (!kthread_should_stop());
  1616. return 0;
  1617. }
  1618. /*
  1619. * this will find the highest generation in the array of
  1620. * root backups. The index of the highest array is returned,
  1621. * or -1 if we can't find anything.
  1622. *
  1623. * We check to make sure the array is valid by comparing the
  1624. * generation of the latest root in the array with the generation
  1625. * in the super block. If they don't match we pitch it.
  1626. */
  1627. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1628. {
  1629. u64 cur;
  1630. int newest_index = -1;
  1631. struct btrfs_root_backup *root_backup;
  1632. int i;
  1633. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1634. root_backup = info->super_copy->super_roots + i;
  1635. cur = btrfs_backup_tree_root_gen(root_backup);
  1636. if (cur == newest_gen)
  1637. newest_index = i;
  1638. }
  1639. /* check to see if we actually wrapped around */
  1640. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1641. root_backup = info->super_copy->super_roots;
  1642. cur = btrfs_backup_tree_root_gen(root_backup);
  1643. if (cur == newest_gen)
  1644. newest_index = 0;
  1645. }
  1646. return newest_index;
  1647. }
  1648. /*
  1649. * find the oldest backup so we know where to store new entries
  1650. * in the backup array. This will set the backup_root_index
  1651. * field in the fs_info struct
  1652. */
  1653. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1654. u64 newest_gen)
  1655. {
  1656. int newest_index = -1;
  1657. newest_index = find_newest_super_backup(info, newest_gen);
  1658. /* if there was garbage in there, just move along */
  1659. if (newest_index == -1) {
  1660. info->backup_root_index = 0;
  1661. } else {
  1662. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1663. }
  1664. }
  1665. /*
  1666. * copy all the root pointers into the super backup array.
  1667. * this will bump the backup pointer by one when it is
  1668. * done
  1669. */
  1670. static void backup_super_roots(struct btrfs_fs_info *info)
  1671. {
  1672. int next_backup;
  1673. struct btrfs_root_backup *root_backup;
  1674. int last_backup;
  1675. next_backup = info->backup_root_index;
  1676. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1677. BTRFS_NUM_BACKUP_ROOTS;
  1678. /*
  1679. * just overwrite the last backup if we're at the same generation
  1680. * this happens only at umount
  1681. */
  1682. root_backup = info->super_for_commit->super_roots + last_backup;
  1683. if (btrfs_backup_tree_root_gen(root_backup) ==
  1684. btrfs_header_generation(info->tree_root->node))
  1685. next_backup = last_backup;
  1686. root_backup = info->super_for_commit->super_roots + next_backup;
  1687. /*
  1688. * make sure all of our padding and empty slots get zero filled
  1689. * regardless of which ones we use today
  1690. */
  1691. memset(root_backup, 0, sizeof(*root_backup));
  1692. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1693. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1694. btrfs_set_backup_tree_root_gen(root_backup,
  1695. btrfs_header_generation(info->tree_root->node));
  1696. btrfs_set_backup_tree_root_level(root_backup,
  1697. btrfs_header_level(info->tree_root->node));
  1698. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1699. btrfs_set_backup_chunk_root_gen(root_backup,
  1700. btrfs_header_generation(info->chunk_root->node));
  1701. btrfs_set_backup_chunk_root_level(root_backup,
  1702. btrfs_header_level(info->chunk_root->node));
  1703. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1704. btrfs_set_backup_extent_root_gen(root_backup,
  1705. btrfs_header_generation(info->extent_root->node));
  1706. btrfs_set_backup_extent_root_level(root_backup,
  1707. btrfs_header_level(info->extent_root->node));
  1708. /*
  1709. * we might commit during log recovery, which happens before we set
  1710. * the fs_root. Make sure it is valid before we fill it in.
  1711. */
  1712. if (info->fs_root && info->fs_root->node) {
  1713. btrfs_set_backup_fs_root(root_backup,
  1714. info->fs_root->node->start);
  1715. btrfs_set_backup_fs_root_gen(root_backup,
  1716. btrfs_header_generation(info->fs_root->node));
  1717. btrfs_set_backup_fs_root_level(root_backup,
  1718. btrfs_header_level(info->fs_root->node));
  1719. }
  1720. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1721. btrfs_set_backup_dev_root_gen(root_backup,
  1722. btrfs_header_generation(info->dev_root->node));
  1723. btrfs_set_backup_dev_root_level(root_backup,
  1724. btrfs_header_level(info->dev_root->node));
  1725. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1726. btrfs_set_backup_csum_root_gen(root_backup,
  1727. btrfs_header_generation(info->csum_root->node));
  1728. btrfs_set_backup_csum_root_level(root_backup,
  1729. btrfs_header_level(info->csum_root->node));
  1730. btrfs_set_backup_total_bytes(root_backup,
  1731. btrfs_super_total_bytes(info->super_copy));
  1732. btrfs_set_backup_bytes_used(root_backup,
  1733. btrfs_super_bytes_used(info->super_copy));
  1734. btrfs_set_backup_num_devices(root_backup,
  1735. btrfs_super_num_devices(info->super_copy));
  1736. /*
  1737. * if we don't copy this out to the super_copy, it won't get remembered
  1738. * for the next commit
  1739. */
  1740. memcpy(&info->super_copy->super_roots,
  1741. &info->super_for_commit->super_roots,
  1742. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1743. }
  1744. /*
  1745. * this copies info out of the root backup array and back into
  1746. * the in-memory super block. It is meant to help iterate through
  1747. * the array, so you send it the number of backups you've already
  1748. * tried and the last backup index you used.
  1749. *
  1750. * this returns -1 when it has tried all the backups
  1751. */
  1752. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1753. struct btrfs_super_block *super,
  1754. int *num_backups_tried, int *backup_index)
  1755. {
  1756. struct btrfs_root_backup *root_backup;
  1757. int newest = *backup_index;
  1758. if (*num_backups_tried == 0) {
  1759. u64 gen = btrfs_super_generation(super);
  1760. newest = find_newest_super_backup(info, gen);
  1761. if (newest == -1)
  1762. return -1;
  1763. *backup_index = newest;
  1764. *num_backups_tried = 1;
  1765. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1766. /* we've tried all the backups, all done */
  1767. return -1;
  1768. } else {
  1769. /* jump to the next oldest backup */
  1770. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1771. BTRFS_NUM_BACKUP_ROOTS;
  1772. *backup_index = newest;
  1773. *num_backups_tried += 1;
  1774. }
  1775. root_backup = super->super_roots + newest;
  1776. btrfs_set_super_generation(super,
  1777. btrfs_backup_tree_root_gen(root_backup));
  1778. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1779. btrfs_set_super_root_level(super,
  1780. btrfs_backup_tree_root_level(root_backup));
  1781. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1782. /*
  1783. * fixme: the total bytes and num_devices need to match or we should
  1784. * need a fsck
  1785. */
  1786. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1787. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1788. return 0;
  1789. }
  1790. /* helper to cleanup workers */
  1791. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1792. {
  1793. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1794. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1795. btrfs_destroy_workqueue(fs_info->workers);
  1796. btrfs_destroy_workqueue(fs_info->endio_workers);
  1797. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1798. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1799. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1800. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1801. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1802. btrfs_destroy_workqueue(fs_info->submit_workers);
  1803. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1804. btrfs_destroy_workqueue(fs_info->caching_workers);
  1805. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1806. btrfs_destroy_workqueue(fs_info->flush_workers);
  1807. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1808. btrfs_destroy_workqueue(fs_info->extent_workers);
  1809. /*
  1810. * Now that all other work queues are destroyed, we can safely destroy
  1811. * the queues used for metadata I/O, since tasks from those other work
  1812. * queues can do metadata I/O operations.
  1813. */
  1814. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1815. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1816. }
  1817. static void free_root_extent_buffers(struct btrfs_root *root)
  1818. {
  1819. if (root) {
  1820. free_extent_buffer(root->node);
  1821. free_extent_buffer(root->commit_root);
  1822. root->node = NULL;
  1823. root->commit_root = NULL;
  1824. }
  1825. }
  1826. /* helper to cleanup tree roots */
  1827. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1828. {
  1829. free_root_extent_buffers(info->tree_root);
  1830. free_root_extent_buffers(info->dev_root);
  1831. free_root_extent_buffers(info->extent_root);
  1832. free_root_extent_buffers(info->csum_root);
  1833. free_root_extent_buffers(info->quota_root);
  1834. free_root_extent_buffers(info->uuid_root);
  1835. if (chunk_root)
  1836. free_root_extent_buffers(info->chunk_root);
  1837. free_root_extent_buffers(info->free_space_root);
  1838. }
  1839. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1840. {
  1841. int ret;
  1842. struct btrfs_root *gang[8];
  1843. int i;
  1844. while (!list_empty(&fs_info->dead_roots)) {
  1845. gang[0] = list_entry(fs_info->dead_roots.next,
  1846. struct btrfs_root, root_list);
  1847. list_del(&gang[0]->root_list);
  1848. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1849. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1850. } else {
  1851. free_extent_buffer(gang[0]->node);
  1852. free_extent_buffer(gang[0]->commit_root);
  1853. btrfs_put_fs_root(gang[0]);
  1854. }
  1855. }
  1856. while (1) {
  1857. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1858. (void **)gang, 0,
  1859. ARRAY_SIZE(gang));
  1860. if (!ret)
  1861. break;
  1862. for (i = 0; i < ret; i++)
  1863. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1864. }
  1865. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1866. btrfs_free_log_root_tree(NULL, fs_info);
  1867. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1868. }
  1869. }
  1870. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1871. {
  1872. mutex_init(&fs_info->scrub_lock);
  1873. atomic_set(&fs_info->scrubs_running, 0);
  1874. atomic_set(&fs_info->scrub_pause_req, 0);
  1875. atomic_set(&fs_info->scrubs_paused, 0);
  1876. atomic_set(&fs_info->scrub_cancel_req, 0);
  1877. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1878. fs_info->scrub_workers_refcnt = 0;
  1879. }
  1880. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1881. {
  1882. spin_lock_init(&fs_info->balance_lock);
  1883. mutex_init(&fs_info->balance_mutex);
  1884. atomic_set(&fs_info->balance_running, 0);
  1885. atomic_set(&fs_info->balance_pause_req, 0);
  1886. atomic_set(&fs_info->balance_cancel_req, 0);
  1887. fs_info->balance_ctl = NULL;
  1888. init_waitqueue_head(&fs_info->balance_wait_q);
  1889. }
  1890. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1891. {
  1892. struct inode *inode = fs_info->btree_inode;
  1893. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1894. set_nlink(inode, 1);
  1895. /*
  1896. * we set the i_size on the btree inode to the max possible int.
  1897. * the real end of the address space is determined by all of
  1898. * the devices in the system
  1899. */
  1900. inode->i_size = OFFSET_MAX;
  1901. inode->i_mapping->a_ops = &btree_aops;
  1902. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  1903. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  1904. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  1905. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  1906. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  1907. BTRFS_I(inode)->root = fs_info->tree_root;
  1908. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  1909. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  1910. btrfs_insert_inode_hash(inode);
  1911. }
  1912. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1913. {
  1914. fs_info->dev_replace.lock_owner = 0;
  1915. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1916. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1917. rwlock_init(&fs_info->dev_replace.lock);
  1918. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1919. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1920. init_waitqueue_head(&fs_info->replace_wait);
  1921. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1922. }
  1923. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1924. {
  1925. spin_lock_init(&fs_info->qgroup_lock);
  1926. mutex_init(&fs_info->qgroup_ioctl_lock);
  1927. fs_info->qgroup_tree = RB_ROOT;
  1928. fs_info->qgroup_op_tree = RB_ROOT;
  1929. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1930. fs_info->qgroup_seq = 1;
  1931. fs_info->qgroup_ulist = NULL;
  1932. fs_info->qgroup_rescan_running = false;
  1933. mutex_init(&fs_info->qgroup_rescan_lock);
  1934. }
  1935. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1936. struct btrfs_fs_devices *fs_devices)
  1937. {
  1938. u32 max_active = fs_info->thread_pool_size;
  1939. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1940. fs_info->workers =
  1941. btrfs_alloc_workqueue(fs_info, "worker",
  1942. flags | WQ_HIGHPRI, max_active, 16);
  1943. fs_info->delalloc_workers =
  1944. btrfs_alloc_workqueue(fs_info, "delalloc",
  1945. flags, max_active, 2);
  1946. fs_info->flush_workers =
  1947. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  1948. flags, max_active, 0);
  1949. fs_info->caching_workers =
  1950. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  1951. /*
  1952. * a higher idle thresh on the submit workers makes it much more
  1953. * likely that bios will be send down in a sane order to the
  1954. * devices
  1955. */
  1956. fs_info->submit_workers =
  1957. btrfs_alloc_workqueue(fs_info, "submit", flags,
  1958. min_t(u64, fs_devices->num_devices,
  1959. max_active), 64);
  1960. fs_info->fixup_workers =
  1961. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  1962. /*
  1963. * endios are largely parallel and should have a very
  1964. * low idle thresh
  1965. */
  1966. fs_info->endio_workers =
  1967. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  1968. fs_info->endio_meta_workers =
  1969. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  1970. max_active, 4);
  1971. fs_info->endio_meta_write_workers =
  1972. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  1973. max_active, 2);
  1974. fs_info->endio_raid56_workers =
  1975. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  1976. max_active, 4);
  1977. fs_info->endio_repair_workers =
  1978. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  1979. fs_info->rmw_workers =
  1980. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  1981. fs_info->endio_write_workers =
  1982. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  1983. max_active, 2);
  1984. fs_info->endio_freespace_worker =
  1985. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  1986. max_active, 0);
  1987. fs_info->delayed_workers =
  1988. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  1989. max_active, 0);
  1990. fs_info->readahead_workers =
  1991. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  1992. max_active, 2);
  1993. fs_info->qgroup_rescan_workers =
  1994. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  1995. fs_info->extent_workers =
  1996. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  1997. min_t(u64, fs_devices->num_devices,
  1998. max_active), 8);
  1999. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2000. fs_info->submit_workers && fs_info->flush_workers &&
  2001. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2002. fs_info->endio_meta_write_workers &&
  2003. fs_info->endio_repair_workers &&
  2004. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2005. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2006. fs_info->caching_workers && fs_info->readahead_workers &&
  2007. fs_info->fixup_workers && fs_info->delayed_workers &&
  2008. fs_info->extent_workers &&
  2009. fs_info->qgroup_rescan_workers)) {
  2010. return -ENOMEM;
  2011. }
  2012. return 0;
  2013. }
  2014. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2015. struct btrfs_fs_devices *fs_devices)
  2016. {
  2017. int ret;
  2018. struct btrfs_root *log_tree_root;
  2019. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2020. u64 bytenr = btrfs_super_log_root(disk_super);
  2021. int level = btrfs_super_log_root_level(disk_super);
  2022. if (fs_devices->rw_devices == 0) {
  2023. btrfs_warn(fs_info, "log replay required on RO media");
  2024. return -EIO;
  2025. }
  2026. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2027. if (!log_tree_root)
  2028. return -ENOMEM;
  2029. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2030. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2031. fs_info->generation + 1,
  2032. level, NULL);
  2033. if (IS_ERR(log_tree_root->node)) {
  2034. btrfs_warn(fs_info, "failed to read log tree");
  2035. ret = PTR_ERR(log_tree_root->node);
  2036. kfree(log_tree_root);
  2037. return ret;
  2038. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2039. btrfs_err(fs_info, "failed to read log tree");
  2040. free_extent_buffer(log_tree_root->node);
  2041. kfree(log_tree_root);
  2042. return -EIO;
  2043. }
  2044. /* returns with log_tree_root freed on success */
  2045. ret = btrfs_recover_log_trees(log_tree_root);
  2046. if (ret) {
  2047. btrfs_handle_fs_error(fs_info, ret,
  2048. "Failed to recover log tree");
  2049. free_extent_buffer(log_tree_root->node);
  2050. kfree(log_tree_root);
  2051. return ret;
  2052. }
  2053. if (sb_rdonly(fs_info->sb)) {
  2054. ret = btrfs_commit_super(fs_info);
  2055. if (ret)
  2056. return ret;
  2057. }
  2058. return 0;
  2059. }
  2060. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2061. {
  2062. struct btrfs_root *tree_root = fs_info->tree_root;
  2063. struct btrfs_root *root;
  2064. struct btrfs_key location;
  2065. int ret;
  2066. BUG_ON(!fs_info->tree_root);
  2067. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2068. location.type = BTRFS_ROOT_ITEM_KEY;
  2069. location.offset = 0;
  2070. root = btrfs_read_tree_root(tree_root, &location);
  2071. if (IS_ERR(root))
  2072. return PTR_ERR(root);
  2073. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2074. fs_info->extent_root = root;
  2075. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2076. root = btrfs_read_tree_root(tree_root, &location);
  2077. if (IS_ERR(root))
  2078. return PTR_ERR(root);
  2079. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2080. fs_info->dev_root = root;
  2081. btrfs_init_devices_late(fs_info);
  2082. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2083. root = btrfs_read_tree_root(tree_root, &location);
  2084. if (IS_ERR(root))
  2085. return PTR_ERR(root);
  2086. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2087. fs_info->csum_root = root;
  2088. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2089. root = btrfs_read_tree_root(tree_root, &location);
  2090. if (!IS_ERR(root)) {
  2091. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2092. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2093. fs_info->quota_root = root;
  2094. }
  2095. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2096. root = btrfs_read_tree_root(tree_root, &location);
  2097. if (IS_ERR(root)) {
  2098. ret = PTR_ERR(root);
  2099. if (ret != -ENOENT)
  2100. return ret;
  2101. } else {
  2102. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2103. fs_info->uuid_root = root;
  2104. }
  2105. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2106. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2107. root = btrfs_read_tree_root(tree_root, &location);
  2108. if (IS_ERR(root))
  2109. return PTR_ERR(root);
  2110. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2111. fs_info->free_space_root = root;
  2112. }
  2113. return 0;
  2114. }
  2115. int open_ctree(struct super_block *sb,
  2116. struct btrfs_fs_devices *fs_devices,
  2117. char *options)
  2118. {
  2119. u32 sectorsize;
  2120. u32 nodesize;
  2121. u32 stripesize;
  2122. u64 generation;
  2123. u64 features;
  2124. struct btrfs_key location;
  2125. struct buffer_head *bh;
  2126. struct btrfs_super_block *disk_super;
  2127. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2128. struct btrfs_root *tree_root;
  2129. struct btrfs_root *chunk_root;
  2130. int ret;
  2131. int err = -EINVAL;
  2132. int num_backups_tried = 0;
  2133. int backup_index = 0;
  2134. int clear_free_space_tree = 0;
  2135. int level;
  2136. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2137. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2138. if (!tree_root || !chunk_root) {
  2139. err = -ENOMEM;
  2140. goto fail;
  2141. }
  2142. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2143. if (ret) {
  2144. err = ret;
  2145. goto fail;
  2146. }
  2147. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2148. if (ret) {
  2149. err = ret;
  2150. goto fail_srcu;
  2151. }
  2152. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2153. (1 + ilog2(nr_cpu_ids));
  2154. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2155. if (ret) {
  2156. err = ret;
  2157. goto fail_dirty_metadata_bytes;
  2158. }
  2159. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2160. if (ret) {
  2161. err = ret;
  2162. goto fail_delalloc_bytes;
  2163. }
  2164. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2165. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2166. INIT_LIST_HEAD(&fs_info->trans_list);
  2167. INIT_LIST_HEAD(&fs_info->dead_roots);
  2168. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2169. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2170. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2171. INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
  2172. spin_lock_init(&fs_info->pending_raid_kobjs_lock);
  2173. spin_lock_init(&fs_info->delalloc_root_lock);
  2174. spin_lock_init(&fs_info->trans_lock);
  2175. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2176. spin_lock_init(&fs_info->delayed_iput_lock);
  2177. spin_lock_init(&fs_info->defrag_inodes_lock);
  2178. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2179. spin_lock_init(&fs_info->super_lock);
  2180. spin_lock_init(&fs_info->qgroup_op_lock);
  2181. spin_lock_init(&fs_info->buffer_lock);
  2182. spin_lock_init(&fs_info->unused_bgs_lock);
  2183. rwlock_init(&fs_info->tree_mod_log_lock);
  2184. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2185. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2186. mutex_init(&fs_info->reloc_mutex);
  2187. mutex_init(&fs_info->delalloc_root_mutex);
  2188. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2189. seqlock_init(&fs_info->profiles_lock);
  2190. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2191. INIT_LIST_HEAD(&fs_info->space_info);
  2192. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2193. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2194. btrfs_mapping_init(&fs_info->mapping_tree);
  2195. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2196. BTRFS_BLOCK_RSV_GLOBAL);
  2197. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2198. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2199. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2200. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2201. BTRFS_BLOCK_RSV_DELOPS);
  2202. atomic_set(&fs_info->async_delalloc_pages, 0);
  2203. atomic_set(&fs_info->defrag_running, 0);
  2204. atomic_set(&fs_info->qgroup_op_seq, 0);
  2205. atomic_set(&fs_info->reada_works_cnt, 0);
  2206. atomic64_set(&fs_info->tree_mod_seq, 0);
  2207. fs_info->sb = sb;
  2208. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2209. fs_info->metadata_ratio = 0;
  2210. fs_info->defrag_inodes = RB_ROOT;
  2211. atomic64_set(&fs_info->free_chunk_space, 0);
  2212. fs_info->tree_mod_log = RB_ROOT;
  2213. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2214. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2215. /* readahead state */
  2216. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2217. spin_lock_init(&fs_info->reada_lock);
  2218. btrfs_init_ref_verify(fs_info);
  2219. fs_info->thread_pool_size = min_t(unsigned long,
  2220. num_online_cpus() + 2, 8);
  2221. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2222. spin_lock_init(&fs_info->ordered_root_lock);
  2223. fs_info->btree_inode = new_inode(sb);
  2224. if (!fs_info->btree_inode) {
  2225. err = -ENOMEM;
  2226. goto fail_bio_counter;
  2227. }
  2228. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2229. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2230. GFP_KERNEL);
  2231. if (!fs_info->delayed_root) {
  2232. err = -ENOMEM;
  2233. goto fail_iput;
  2234. }
  2235. btrfs_init_delayed_root(fs_info->delayed_root);
  2236. btrfs_init_scrub(fs_info);
  2237. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2238. fs_info->check_integrity_print_mask = 0;
  2239. #endif
  2240. btrfs_init_balance(fs_info);
  2241. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2242. sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
  2243. sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
  2244. btrfs_init_btree_inode(fs_info);
  2245. spin_lock_init(&fs_info->block_group_cache_lock);
  2246. fs_info->block_group_cache_tree = RB_ROOT;
  2247. fs_info->first_logical_byte = (u64)-1;
  2248. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2249. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2250. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2251. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2252. mutex_init(&fs_info->ordered_operations_mutex);
  2253. mutex_init(&fs_info->tree_log_mutex);
  2254. mutex_init(&fs_info->chunk_mutex);
  2255. mutex_init(&fs_info->transaction_kthread_mutex);
  2256. mutex_init(&fs_info->cleaner_mutex);
  2257. mutex_init(&fs_info->volume_mutex);
  2258. mutex_init(&fs_info->ro_block_group_mutex);
  2259. init_rwsem(&fs_info->commit_root_sem);
  2260. init_rwsem(&fs_info->cleanup_work_sem);
  2261. init_rwsem(&fs_info->subvol_sem);
  2262. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2263. btrfs_init_dev_replace_locks(fs_info);
  2264. btrfs_init_qgroup(fs_info);
  2265. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2266. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2267. init_waitqueue_head(&fs_info->transaction_throttle);
  2268. init_waitqueue_head(&fs_info->transaction_wait);
  2269. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2270. init_waitqueue_head(&fs_info->async_submit_wait);
  2271. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2272. /* Usable values until the real ones are cached from the superblock */
  2273. fs_info->nodesize = 4096;
  2274. fs_info->sectorsize = 4096;
  2275. fs_info->stripesize = 4096;
  2276. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2277. if (ret) {
  2278. err = ret;
  2279. goto fail_alloc;
  2280. }
  2281. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2282. invalidate_bdev(fs_devices->latest_bdev);
  2283. /*
  2284. * Read super block and check the signature bytes only
  2285. */
  2286. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2287. if (IS_ERR(bh)) {
  2288. err = PTR_ERR(bh);
  2289. goto fail_alloc;
  2290. }
  2291. /*
  2292. * We want to check superblock checksum, the type is stored inside.
  2293. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2294. */
  2295. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2296. btrfs_err(fs_info, "superblock checksum mismatch");
  2297. err = -EINVAL;
  2298. brelse(bh);
  2299. goto fail_alloc;
  2300. }
  2301. /*
  2302. * super_copy is zeroed at allocation time and we never touch the
  2303. * following bytes up to INFO_SIZE, the checksum is calculated from
  2304. * the whole block of INFO_SIZE
  2305. */
  2306. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2307. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2308. sizeof(*fs_info->super_for_commit));
  2309. brelse(bh);
  2310. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2311. ret = btrfs_check_super_valid(fs_info);
  2312. if (ret) {
  2313. btrfs_err(fs_info, "superblock contains fatal errors");
  2314. err = -EINVAL;
  2315. goto fail_alloc;
  2316. }
  2317. disk_super = fs_info->super_copy;
  2318. if (!btrfs_super_root(disk_super))
  2319. goto fail_alloc;
  2320. /* check FS state, whether FS is broken. */
  2321. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2322. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2323. /*
  2324. * run through our array of backup supers and setup
  2325. * our ring pointer to the oldest one
  2326. */
  2327. generation = btrfs_super_generation(disk_super);
  2328. find_oldest_super_backup(fs_info, generation);
  2329. /*
  2330. * In the long term, we'll store the compression type in the super
  2331. * block, and it'll be used for per file compression control.
  2332. */
  2333. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2334. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2335. if (ret) {
  2336. err = ret;
  2337. goto fail_alloc;
  2338. }
  2339. features = btrfs_super_incompat_flags(disk_super) &
  2340. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2341. if (features) {
  2342. btrfs_err(fs_info,
  2343. "cannot mount because of unsupported optional features (%llx)",
  2344. features);
  2345. err = -EINVAL;
  2346. goto fail_alloc;
  2347. }
  2348. features = btrfs_super_incompat_flags(disk_super);
  2349. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2350. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2351. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2352. else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
  2353. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
  2354. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2355. btrfs_info(fs_info, "has skinny extents");
  2356. /*
  2357. * flag our filesystem as having big metadata blocks if
  2358. * they are bigger than the page size
  2359. */
  2360. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2361. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2362. btrfs_info(fs_info,
  2363. "flagging fs with big metadata feature");
  2364. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2365. }
  2366. nodesize = btrfs_super_nodesize(disk_super);
  2367. sectorsize = btrfs_super_sectorsize(disk_super);
  2368. stripesize = sectorsize;
  2369. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2370. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2371. /* Cache block sizes */
  2372. fs_info->nodesize = nodesize;
  2373. fs_info->sectorsize = sectorsize;
  2374. fs_info->stripesize = stripesize;
  2375. /*
  2376. * mixed block groups end up with duplicate but slightly offset
  2377. * extent buffers for the same range. It leads to corruptions
  2378. */
  2379. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2380. (sectorsize != nodesize)) {
  2381. btrfs_err(fs_info,
  2382. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2383. nodesize, sectorsize);
  2384. goto fail_alloc;
  2385. }
  2386. /*
  2387. * Needn't use the lock because there is no other task which will
  2388. * update the flag.
  2389. */
  2390. btrfs_set_super_incompat_flags(disk_super, features);
  2391. features = btrfs_super_compat_ro_flags(disk_super) &
  2392. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2393. if (!sb_rdonly(sb) && features) {
  2394. btrfs_err(fs_info,
  2395. "cannot mount read-write because of unsupported optional features (%llx)",
  2396. features);
  2397. err = -EINVAL;
  2398. goto fail_alloc;
  2399. }
  2400. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2401. if (ret) {
  2402. err = ret;
  2403. goto fail_sb_buffer;
  2404. }
  2405. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2406. sb->s_bdi->congested_data = fs_info;
  2407. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2408. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
  2409. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2410. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2411. sb->s_blocksize = sectorsize;
  2412. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2413. memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
  2414. mutex_lock(&fs_info->chunk_mutex);
  2415. ret = btrfs_read_sys_array(fs_info);
  2416. mutex_unlock(&fs_info->chunk_mutex);
  2417. if (ret) {
  2418. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2419. goto fail_sb_buffer;
  2420. }
  2421. generation = btrfs_super_chunk_root_generation(disk_super);
  2422. level = btrfs_super_chunk_root_level(disk_super);
  2423. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2424. chunk_root->node = read_tree_block(fs_info,
  2425. btrfs_super_chunk_root(disk_super),
  2426. generation, level, NULL);
  2427. if (IS_ERR(chunk_root->node) ||
  2428. !extent_buffer_uptodate(chunk_root->node)) {
  2429. btrfs_err(fs_info, "failed to read chunk root");
  2430. if (!IS_ERR(chunk_root->node))
  2431. free_extent_buffer(chunk_root->node);
  2432. chunk_root->node = NULL;
  2433. goto fail_tree_roots;
  2434. }
  2435. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2436. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2437. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2438. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2439. ret = btrfs_read_chunk_tree(fs_info);
  2440. if (ret) {
  2441. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2442. goto fail_tree_roots;
  2443. }
  2444. /*
  2445. * Keep the devid that is marked to be the target device for the
  2446. * device replace procedure
  2447. */
  2448. btrfs_free_extra_devids(fs_devices, 0);
  2449. if (!fs_devices->latest_bdev) {
  2450. btrfs_err(fs_info, "failed to read devices");
  2451. goto fail_tree_roots;
  2452. }
  2453. retry_root_backup:
  2454. generation = btrfs_super_generation(disk_super);
  2455. level = btrfs_super_root_level(disk_super);
  2456. tree_root->node = read_tree_block(fs_info,
  2457. btrfs_super_root(disk_super),
  2458. generation, level, NULL);
  2459. if (IS_ERR(tree_root->node) ||
  2460. !extent_buffer_uptodate(tree_root->node)) {
  2461. btrfs_warn(fs_info, "failed to read tree root");
  2462. if (!IS_ERR(tree_root->node))
  2463. free_extent_buffer(tree_root->node);
  2464. tree_root->node = NULL;
  2465. goto recovery_tree_root;
  2466. }
  2467. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2468. tree_root->commit_root = btrfs_root_node(tree_root);
  2469. btrfs_set_root_refs(&tree_root->root_item, 1);
  2470. mutex_lock(&tree_root->objectid_mutex);
  2471. ret = btrfs_find_highest_objectid(tree_root,
  2472. &tree_root->highest_objectid);
  2473. if (ret) {
  2474. mutex_unlock(&tree_root->objectid_mutex);
  2475. goto recovery_tree_root;
  2476. }
  2477. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2478. mutex_unlock(&tree_root->objectid_mutex);
  2479. ret = btrfs_read_roots(fs_info);
  2480. if (ret)
  2481. goto recovery_tree_root;
  2482. fs_info->generation = generation;
  2483. fs_info->last_trans_committed = generation;
  2484. ret = btrfs_recover_balance(fs_info);
  2485. if (ret) {
  2486. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2487. goto fail_block_groups;
  2488. }
  2489. ret = btrfs_init_dev_stats(fs_info);
  2490. if (ret) {
  2491. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2492. goto fail_block_groups;
  2493. }
  2494. ret = btrfs_init_dev_replace(fs_info);
  2495. if (ret) {
  2496. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2497. goto fail_block_groups;
  2498. }
  2499. btrfs_free_extra_devids(fs_devices, 1);
  2500. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2501. if (ret) {
  2502. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2503. ret);
  2504. goto fail_block_groups;
  2505. }
  2506. ret = btrfs_sysfs_add_device(fs_devices);
  2507. if (ret) {
  2508. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2509. ret);
  2510. goto fail_fsdev_sysfs;
  2511. }
  2512. ret = btrfs_sysfs_add_mounted(fs_info);
  2513. if (ret) {
  2514. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2515. goto fail_fsdev_sysfs;
  2516. }
  2517. ret = btrfs_init_space_info(fs_info);
  2518. if (ret) {
  2519. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2520. goto fail_sysfs;
  2521. }
  2522. ret = btrfs_read_block_groups(fs_info);
  2523. if (ret) {
  2524. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2525. goto fail_sysfs;
  2526. }
  2527. if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
  2528. btrfs_warn(fs_info,
  2529. "writeable mount is not allowed due to too many missing devices");
  2530. goto fail_sysfs;
  2531. }
  2532. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2533. "btrfs-cleaner");
  2534. if (IS_ERR(fs_info->cleaner_kthread))
  2535. goto fail_sysfs;
  2536. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2537. tree_root,
  2538. "btrfs-transaction");
  2539. if (IS_ERR(fs_info->transaction_kthread))
  2540. goto fail_cleaner;
  2541. if (!btrfs_test_opt(fs_info, NOSSD) &&
  2542. !fs_info->fs_devices->rotating) {
  2543. btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
  2544. }
  2545. /*
  2546. * Mount does not set all options immediately, we can do it now and do
  2547. * not have to wait for transaction commit
  2548. */
  2549. btrfs_apply_pending_changes(fs_info);
  2550. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2551. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2552. ret = btrfsic_mount(fs_info, fs_devices,
  2553. btrfs_test_opt(fs_info,
  2554. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2555. 1 : 0,
  2556. fs_info->check_integrity_print_mask);
  2557. if (ret)
  2558. btrfs_warn(fs_info,
  2559. "failed to initialize integrity check module: %d",
  2560. ret);
  2561. }
  2562. #endif
  2563. ret = btrfs_read_qgroup_config(fs_info);
  2564. if (ret)
  2565. goto fail_trans_kthread;
  2566. if (btrfs_build_ref_tree(fs_info))
  2567. btrfs_err(fs_info, "couldn't build ref tree");
  2568. /* do not make disk changes in broken FS or nologreplay is given */
  2569. if (btrfs_super_log_root(disk_super) != 0 &&
  2570. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2571. ret = btrfs_replay_log(fs_info, fs_devices);
  2572. if (ret) {
  2573. err = ret;
  2574. goto fail_qgroup;
  2575. }
  2576. }
  2577. ret = btrfs_find_orphan_roots(fs_info);
  2578. if (ret)
  2579. goto fail_qgroup;
  2580. if (!sb_rdonly(sb)) {
  2581. ret = btrfs_cleanup_fs_roots(fs_info);
  2582. if (ret)
  2583. goto fail_qgroup;
  2584. mutex_lock(&fs_info->cleaner_mutex);
  2585. ret = btrfs_recover_relocation(tree_root);
  2586. mutex_unlock(&fs_info->cleaner_mutex);
  2587. if (ret < 0) {
  2588. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2589. ret);
  2590. err = -EINVAL;
  2591. goto fail_qgroup;
  2592. }
  2593. }
  2594. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2595. location.type = BTRFS_ROOT_ITEM_KEY;
  2596. location.offset = 0;
  2597. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2598. if (IS_ERR(fs_info->fs_root)) {
  2599. err = PTR_ERR(fs_info->fs_root);
  2600. goto fail_qgroup;
  2601. }
  2602. if (sb_rdonly(sb))
  2603. return 0;
  2604. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2605. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2606. clear_free_space_tree = 1;
  2607. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2608. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2609. btrfs_warn(fs_info, "free space tree is invalid");
  2610. clear_free_space_tree = 1;
  2611. }
  2612. if (clear_free_space_tree) {
  2613. btrfs_info(fs_info, "clearing free space tree");
  2614. ret = btrfs_clear_free_space_tree(fs_info);
  2615. if (ret) {
  2616. btrfs_warn(fs_info,
  2617. "failed to clear free space tree: %d", ret);
  2618. close_ctree(fs_info);
  2619. return ret;
  2620. }
  2621. }
  2622. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2623. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2624. btrfs_info(fs_info, "creating free space tree");
  2625. ret = btrfs_create_free_space_tree(fs_info);
  2626. if (ret) {
  2627. btrfs_warn(fs_info,
  2628. "failed to create free space tree: %d", ret);
  2629. close_ctree(fs_info);
  2630. return ret;
  2631. }
  2632. }
  2633. down_read(&fs_info->cleanup_work_sem);
  2634. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2635. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2636. up_read(&fs_info->cleanup_work_sem);
  2637. close_ctree(fs_info);
  2638. return ret;
  2639. }
  2640. up_read(&fs_info->cleanup_work_sem);
  2641. ret = btrfs_resume_balance_async(fs_info);
  2642. if (ret) {
  2643. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2644. close_ctree(fs_info);
  2645. return ret;
  2646. }
  2647. ret = btrfs_resume_dev_replace_async(fs_info);
  2648. if (ret) {
  2649. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2650. close_ctree(fs_info);
  2651. return ret;
  2652. }
  2653. btrfs_qgroup_rescan_resume(fs_info);
  2654. if (!fs_info->uuid_root) {
  2655. btrfs_info(fs_info, "creating UUID tree");
  2656. ret = btrfs_create_uuid_tree(fs_info);
  2657. if (ret) {
  2658. btrfs_warn(fs_info,
  2659. "failed to create the UUID tree: %d", ret);
  2660. close_ctree(fs_info);
  2661. return ret;
  2662. }
  2663. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2664. fs_info->generation !=
  2665. btrfs_super_uuid_tree_generation(disk_super)) {
  2666. btrfs_info(fs_info, "checking UUID tree");
  2667. ret = btrfs_check_uuid_tree(fs_info);
  2668. if (ret) {
  2669. btrfs_warn(fs_info,
  2670. "failed to check the UUID tree: %d", ret);
  2671. close_ctree(fs_info);
  2672. return ret;
  2673. }
  2674. } else {
  2675. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2676. }
  2677. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2678. /*
  2679. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2680. * no need to keep the flag
  2681. */
  2682. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2683. return 0;
  2684. fail_qgroup:
  2685. btrfs_free_qgroup_config(fs_info);
  2686. fail_trans_kthread:
  2687. kthread_stop(fs_info->transaction_kthread);
  2688. btrfs_cleanup_transaction(fs_info);
  2689. btrfs_free_fs_roots(fs_info);
  2690. fail_cleaner:
  2691. kthread_stop(fs_info->cleaner_kthread);
  2692. /*
  2693. * make sure we're done with the btree inode before we stop our
  2694. * kthreads
  2695. */
  2696. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2697. fail_sysfs:
  2698. btrfs_sysfs_remove_mounted(fs_info);
  2699. fail_fsdev_sysfs:
  2700. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2701. fail_block_groups:
  2702. btrfs_put_block_group_cache(fs_info);
  2703. fail_tree_roots:
  2704. free_root_pointers(fs_info, 1);
  2705. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2706. fail_sb_buffer:
  2707. btrfs_stop_all_workers(fs_info);
  2708. btrfs_free_block_groups(fs_info);
  2709. fail_alloc:
  2710. fail_iput:
  2711. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2712. iput(fs_info->btree_inode);
  2713. fail_bio_counter:
  2714. percpu_counter_destroy(&fs_info->bio_counter);
  2715. fail_delalloc_bytes:
  2716. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2717. fail_dirty_metadata_bytes:
  2718. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2719. fail_srcu:
  2720. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2721. fail:
  2722. btrfs_free_stripe_hash_table(fs_info);
  2723. btrfs_close_devices(fs_info->fs_devices);
  2724. return err;
  2725. recovery_tree_root:
  2726. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2727. goto fail_tree_roots;
  2728. free_root_pointers(fs_info, 0);
  2729. /* don't use the log in recovery mode, it won't be valid */
  2730. btrfs_set_super_log_root(disk_super, 0);
  2731. /* we can't trust the free space cache either */
  2732. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2733. ret = next_root_backup(fs_info, fs_info->super_copy,
  2734. &num_backups_tried, &backup_index);
  2735. if (ret == -1)
  2736. goto fail_block_groups;
  2737. goto retry_root_backup;
  2738. }
  2739. ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
  2740. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2741. {
  2742. if (uptodate) {
  2743. set_buffer_uptodate(bh);
  2744. } else {
  2745. struct btrfs_device *device = (struct btrfs_device *)
  2746. bh->b_private;
  2747. btrfs_warn_rl_in_rcu(device->fs_info,
  2748. "lost page write due to IO error on %s",
  2749. rcu_str_deref(device->name));
  2750. /* note, we don't set_buffer_write_io_error because we have
  2751. * our own ways of dealing with the IO errors
  2752. */
  2753. clear_buffer_uptodate(bh);
  2754. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2755. }
  2756. unlock_buffer(bh);
  2757. put_bh(bh);
  2758. }
  2759. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2760. struct buffer_head **bh_ret)
  2761. {
  2762. struct buffer_head *bh;
  2763. struct btrfs_super_block *super;
  2764. u64 bytenr;
  2765. bytenr = btrfs_sb_offset(copy_num);
  2766. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2767. return -EINVAL;
  2768. bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
  2769. /*
  2770. * If we fail to read from the underlying devices, as of now
  2771. * the best option we have is to mark it EIO.
  2772. */
  2773. if (!bh)
  2774. return -EIO;
  2775. super = (struct btrfs_super_block *)bh->b_data;
  2776. if (btrfs_super_bytenr(super) != bytenr ||
  2777. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2778. brelse(bh);
  2779. return -EINVAL;
  2780. }
  2781. *bh_ret = bh;
  2782. return 0;
  2783. }
  2784. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2785. {
  2786. struct buffer_head *bh;
  2787. struct buffer_head *latest = NULL;
  2788. struct btrfs_super_block *super;
  2789. int i;
  2790. u64 transid = 0;
  2791. int ret = -EINVAL;
  2792. /* we would like to check all the supers, but that would make
  2793. * a btrfs mount succeed after a mkfs from a different FS.
  2794. * So, we need to add a special mount option to scan for
  2795. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2796. */
  2797. for (i = 0; i < 1; i++) {
  2798. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2799. if (ret)
  2800. continue;
  2801. super = (struct btrfs_super_block *)bh->b_data;
  2802. if (!latest || btrfs_super_generation(super) > transid) {
  2803. brelse(latest);
  2804. latest = bh;
  2805. transid = btrfs_super_generation(super);
  2806. } else {
  2807. brelse(bh);
  2808. }
  2809. }
  2810. if (!latest)
  2811. return ERR_PTR(ret);
  2812. return latest;
  2813. }
  2814. /*
  2815. * Write superblock @sb to the @device. Do not wait for completion, all the
  2816. * buffer heads we write are pinned.
  2817. *
  2818. * Write @max_mirrors copies of the superblock, where 0 means default that fit
  2819. * the expected device size at commit time. Note that max_mirrors must be
  2820. * same for write and wait phases.
  2821. *
  2822. * Return number of errors when buffer head is not found or submission fails.
  2823. */
  2824. static int write_dev_supers(struct btrfs_device *device,
  2825. struct btrfs_super_block *sb, int max_mirrors)
  2826. {
  2827. struct buffer_head *bh;
  2828. int i;
  2829. int ret;
  2830. int errors = 0;
  2831. u32 crc;
  2832. u64 bytenr;
  2833. int op_flags;
  2834. if (max_mirrors == 0)
  2835. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2836. for (i = 0; i < max_mirrors; i++) {
  2837. bytenr = btrfs_sb_offset(i);
  2838. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2839. device->commit_total_bytes)
  2840. break;
  2841. btrfs_set_super_bytenr(sb, bytenr);
  2842. crc = ~(u32)0;
  2843. crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
  2844. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  2845. btrfs_csum_final(crc, sb->csum);
  2846. /* One reference for us, and we leave it for the caller */
  2847. bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
  2848. BTRFS_SUPER_INFO_SIZE);
  2849. if (!bh) {
  2850. btrfs_err(device->fs_info,
  2851. "couldn't get super buffer head for bytenr %llu",
  2852. bytenr);
  2853. errors++;
  2854. continue;
  2855. }
  2856. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2857. /* one reference for submit_bh */
  2858. get_bh(bh);
  2859. set_buffer_uptodate(bh);
  2860. lock_buffer(bh);
  2861. bh->b_end_io = btrfs_end_buffer_write_sync;
  2862. bh->b_private = device;
  2863. /*
  2864. * we fua the first super. The others we allow
  2865. * to go down lazy.
  2866. */
  2867. op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
  2868. if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
  2869. op_flags |= REQ_FUA;
  2870. ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
  2871. if (ret)
  2872. errors++;
  2873. }
  2874. return errors < i ? 0 : -1;
  2875. }
  2876. /*
  2877. * Wait for write completion of superblocks done by write_dev_supers,
  2878. * @max_mirrors same for write and wait phases.
  2879. *
  2880. * Return number of errors when buffer head is not found or not marked up to
  2881. * date.
  2882. */
  2883. static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
  2884. {
  2885. struct buffer_head *bh;
  2886. int i;
  2887. int errors = 0;
  2888. bool primary_failed = false;
  2889. u64 bytenr;
  2890. if (max_mirrors == 0)
  2891. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2892. for (i = 0; i < max_mirrors; i++) {
  2893. bytenr = btrfs_sb_offset(i);
  2894. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2895. device->commit_total_bytes)
  2896. break;
  2897. bh = __find_get_block(device->bdev,
  2898. bytenr / BTRFS_BDEV_BLOCKSIZE,
  2899. BTRFS_SUPER_INFO_SIZE);
  2900. if (!bh) {
  2901. errors++;
  2902. if (i == 0)
  2903. primary_failed = true;
  2904. continue;
  2905. }
  2906. wait_on_buffer(bh);
  2907. if (!buffer_uptodate(bh)) {
  2908. errors++;
  2909. if (i == 0)
  2910. primary_failed = true;
  2911. }
  2912. /* drop our reference */
  2913. brelse(bh);
  2914. /* drop the reference from the writing run */
  2915. brelse(bh);
  2916. }
  2917. /* log error, force error return */
  2918. if (primary_failed) {
  2919. btrfs_err(device->fs_info, "error writing primary super block to device %llu",
  2920. device->devid);
  2921. return -1;
  2922. }
  2923. return errors < i ? 0 : -1;
  2924. }
  2925. /*
  2926. * endio for the write_dev_flush, this will wake anyone waiting
  2927. * for the barrier when it is done
  2928. */
  2929. static void btrfs_end_empty_barrier(struct bio *bio)
  2930. {
  2931. complete(bio->bi_private);
  2932. }
  2933. /*
  2934. * Submit a flush request to the device if it supports it. Error handling is
  2935. * done in the waiting counterpart.
  2936. */
  2937. static void write_dev_flush(struct btrfs_device *device)
  2938. {
  2939. struct request_queue *q = bdev_get_queue(device->bdev);
  2940. struct bio *bio = device->flush_bio;
  2941. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  2942. return;
  2943. bio_reset(bio);
  2944. bio->bi_end_io = btrfs_end_empty_barrier;
  2945. bio_set_dev(bio, device->bdev);
  2946. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  2947. init_completion(&device->flush_wait);
  2948. bio->bi_private = &device->flush_wait;
  2949. btrfsic_submit_bio(bio);
  2950. set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2951. }
  2952. /*
  2953. * If the flush bio has been submitted by write_dev_flush, wait for it.
  2954. */
  2955. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  2956. {
  2957. struct bio *bio = device->flush_bio;
  2958. if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
  2959. return BLK_STS_OK;
  2960. clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2961. wait_for_completion_io(&device->flush_wait);
  2962. return bio->bi_status;
  2963. }
  2964. static int check_barrier_error(struct btrfs_fs_info *fs_info)
  2965. {
  2966. if (!btrfs_check_rw_degradable(fs_info, NULL))
  2967. return -EIO;
  2968. return 0;
  2969. }
  2970. /*
  2971. * send an empty flush down to each device in parallel,
  2972. * then wait for them
  2973. */
  2974. static int barrier_all_devices(struct btrfs_fs_info *info)
  2975. {
  2976. struct list_head *head;
  2977. struct btrfs_device *dev;
  2978. int errors_wait = 0;
  2979. blk_status_t ret;
  2980. lockdep_assert_held(&info->fs_devices->device_list_mutex);
  2981. /* send down all the barriers */
  2982. head = &info->fs_devices->devices;
  2983. list_for_each_entry(dev, head, dev_list) {
  2984. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  2985. continue;
  2986. if (!dev->bdev)
  2987. continue;
  2988. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  2989. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  2990. continue;
  2991. write_dev_flush(dev);
  2992. dev->last_flush_error = BLK_STS_OK;
  2993. }
  2994. /* wait for all the barriers */
  2995. list_for_each_entry(dev, head, dev_list) {
  2996. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  2997. continue;
  2998. if (!dev->bdev) {
  2999. errors_wait++;
  3000. continue;
  3001. }
  3002. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3003. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3004. continue;
  3005. ret = wait_dev_flush(dev);
  3006. if (ret) {
  3007. dev->last_flush_error = ret;
  3008. btrfs_dev_stat_inc_and_print(dev,
  3009. BTRFS_DEV_STAT_FLUSH_ERRS);
  3010. errors_wait++;
  3011. }
  3012. }
  3013. if (errors_wait) {
  3014. /*
  3015. * At some point we need the status of all disks
  3016. * to arrive at the volume status. So error checking
  3017. * is being pushed to a separate loop.
  3018. */
  3019. return check_barrier_error(info);
  3020. }
  3021. return 0;
  3022. }
  3023. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3024. {
  3025. int raid_type;
  3026. int min_tolerated = INT_MAX;
  3027. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3028. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3029. min_tolerated = min(min_tolerated,
  3030. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3031. tolerated_failures);
  3032. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3033. if (raid_type == BTRFS_RAID_SINGLE)
  3034. continue;
  3035. if (!(flags & btrfs_raid_group[raid_type]))
  3036. continue;
  3037. min_tolerated = min(min_tolerated,
  3038. btrfs_raid_array[raid_type].
  3039. tolerated_failures);
  3040. }
  3041. if (min_tolerated == INT_MAX) {
  3042. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3043. min_tolerated = 0;
  3044. }
  3045. return min_tolerated;
  3046. }
  3047. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3048. {
  3049. struct list_head *head;
  3050. struct btrfs_device *dev;
  3051. struct btrfs_super_block *sb;
  3052. struct btrfs_dev_item *dev_item;
  3053. int ret;
  3054. int do_barriers;
  3055. int max_errors;
  3056. int total_errors = 0;
  3057. u64 flags;
  3058. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3059. /*
  3060. * max_mirrors == 0 indicates we're from commit_transaction,
  3061. * not from fsync where the tree roots in fs_info have not
  3062. * been consistent on disk.
  3063. */
  3064. if (max_mirrors == 0)
  3065. backup_super_roots(fs_info);
  3066. sb = fs_info->super_for_commit;
  3067. dev_item = &sb->dev_item;
  3068. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3069. head = &fs_info->fs_devices->devices;
  3070. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3071. if (do_barriers) {
  3072. ret = barrier_all_devices(fs_info);
  3073. if (ret) {
  3074. mutex_unlock(
  3075. &fs_info->fs_devices->device_list_mutex);
  3076. btrfs_handle_fs_error(fs_info, ret,
  3077. "errors while submitting device barriers.");
  3078. return ret;
  3079. }
  3080. }
  3081. list_for_each_entry(dev, head, dev_list) {
  3082. if (!dev->bdev) {
  3083. total_errors++;
  3084. continue;
  3085. }
  3086. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3087. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3088. continue;
  3089. btrfs_set_stack_device_generation(dev_item, 0);
  3090. btrfs_set_stack_device_type(dev_item, dev->type);
  3091. btrfs_set_stack_device_id(dev_item, dev->devid);
  3092. btrfs_set_stack_device_total_bytes(dev_item,
  3093. dev->commit_total_bytes);
  3094. btrfs_set_stack_device_bytes_used(dev_item,
  3095. dev->commit_bytes_used);
  3096. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3097. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3098. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3099. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3100. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
  3101. flags = btrfs_super_flags(sb);
  3102. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3103. ret = write_dev_supers(dev, sb, max_mirrors);
  3104. if (ret)
  3105. total_errors++;
  3106. }
  3107. if (total_errors > max_errors) {
  3108. btrfs_err(fs_info, "%d errors while writing supers",
  3109. total_errors);
  3110. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3111. /* FUA is masked off if unsupported and can't be the reason */
  3112. btrfs_handle_fs_error(fs_info, -EIO,
  3113. "%d errors while writing supers",
  3114. total_errors);
  3115. return -EIO;
  3116. }
  3117. total_errors = 0;
  3118. list_for_each_entry(dev, head, dev_list) {
  3119. if (!dev->bdev)
  3120. continue;
  3121. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3122. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3123. continue;
  3124. ret = wait_dev_supers(dev, max_mirrors);
  3125. if (ret)
  3126. total_errors++;
  3127. }
  3128. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3129. if (total_errors > max_errors) {
  3130. btrfs_handle_fs_error(fs_info, -EIO,
  3131. "%d errors while writing supers",
  3132. total_errors);
  3133. return -EIO;
  3134. }
  3135. return 0;
  3136. }
  3137. /* Drop a fs root from the radix tree and free it. */
  3138. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3139. struct btrfs_root *root)
  3140. {
  3141. spin_lock(&fs_info->fs_roots_radix_lock);
  3142. radix_tree_delete(&fs_info->fs_roots_radix,
  3143. (unsigned long)root->root_key.objectid);
  3144. spin_unlock(&fs_info->fs_roots_radix_lock);
  3145. if (btrfs_root_refs(&root->root_item) == 0)
  3146. synchronize_srcu(&fs_info->subvol_srcu);
  3147. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3148. btrfs_free_log(NULL, root);
  3149. if (root->reloc_root) {
  3150. free_extent_buffer(root->reloc_root->node);
  3151. free_extent_buffer(root->reloc_root->commit_root);
  3152. btrfs_put_fs_root(root->reloc_root);
  3153. root->reloc_root = NULL;
  3154. }
  3155. }
  3156. if (root->free_ino_pinned)
  3157. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3158. if (root->free_ino_ctl)
  3159. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3160. free_fs_root(root);
  3161. }
  3162. static void free_fs_root(struct btrfs_root *root)
  3163. {
  3164. iput(root->ino_cache_inode);
  3165. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3166. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3167. root->orphan_block_rsv = NULL;
  3168. if (root->anon_dev)
  3169. free_anon_bdev(root->anon_dev);
  3170. if (root->subv_writers)
  3171. btrfs_free_subvolume_writers(root->subv_writers);
  3172. free_extent_buffer(root->node);
  3173. free_extent_buffer(root->commit_root);
  3174. kfree(root->free_ino_ctl);
  3175. kfree(root->free_ino_pinned);
  3176. kfree(root->name);
  3177. btrfs_put_fs_root(root);
  3178. }
  3179. void btrfs_free_fs_root(struct btrfs_root *root)
  3180. {
  3181. free_fs_root(root);
  3182. }
  3183. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3184. {
  3185. u64 root_objectid = 0;
  3186. struct btrfs_root *gang[8];
  3187. int i = 0;
  3188. int err = 0;
  3189. unsigned int ret = 0;
  3190. int index;
  3191. while (1) {
  3192. index = srcu_read_lock(&fs_info->subvol_srcu);
  3193. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3194. (void **)gang, root_objectid,
  3195. ARRAY_SIZE(gang));
  3196. if (!ret) {
  3197. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3198. break;
  3199. }
  3200. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3201. for (i = 0; i < ret; i++) {
  3202. /* Avoid to grab roots in dead_roots */
  3203. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3204. gang[i] = NULL;
  3205. continue;
  3206. }
  3207. /* grab all the search result for later use */
  3208. gang[i] = btrfs_grab_fs_root(gang[i]);
  3209. }
  3210. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3211. for (i = 0; i < ret; i++) {
  3212. if (!gang[i])
  3213. continue;
  3214. root_objectid = gang[i]->root_key.objectid;
  3215. err = btrfs_orphan_cleanup(gang[i]);
  3216. if (err)
  3217. break;
  3218. btrfs_put_fs_root(gang[i]);
  3219. }
  3220. root_objectid++;
  3221. }
  3222. /* release the uncleaned roots due to error */
  3223. for (; i < ret; i++) {
  3224. if (gang[i])
  3225. btrfs_put_fs_root(gang[i]);
  3226. }
  3227. return err;
  3228. }
  3229. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3230. {
  3231. struct btrfs_root *root = fs_info->tree_root;
  3232. struct btrfs_trans_handle *trans;
  3233. mutex_lock(&fs_info->cleaner_mutex);
  3234. btrfs_run_delayed_iputs(fs_info);
  3235. mutex_unlock(&fs_info->cleaner_mutex);
  3236. wake_up_process(fs_info->cleaner_kthread);
  3237. /* wait until ongoing cleanup work done */
  3238. down_write(&fs_info->cleanup_work_sem);
  3239. up_write(&fs_info->cleanup_work_sem);
  3240. trans = btrfs_join_transaction(root);
  3241. if (IS_ERR(trans))
  3242. return PTR_ERR(trans);
  3243. return btrfs_commit_transaction(trans);
  3244. }
  3245. void close_ctree(struct btrfs_fs_info *fs_info)
  3246. {
  3247. struct btrfs_root *root = fs_info->tree_root;
  3248. int ret;
  3249. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3250. /* wait for the qgroup rescan worker to stop */
  3251. btrfs_qgroup_wait_for_completion(fs_info, false);
  3252. /* wait for the uuid_scan task to finish */
  3253. down(&fs_info->uuid_tree_rescan_sem);
  3254. /* avoid complains from lockdep et al., set sem back to initial state */
  3255. up(&fs_info->uuid_tree_rescan_sem);
  3256. /* pause restriper - we want to resume on mount */
  3257. btrfs_pause_balance(fs_info);
  3258. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3259. btrfs_scrub_cancel(fs_info);
  3260. /* wait for any defraggers to finish */
  3261. wait_event(fs_info->transaction_wait,
  3262. (atomic_read(&fs_info->defrag_running) == 0));
  3263. /* clear out the rbtree of defraggable inodes */
  3264. btrfs_cleanup_defrag_inodes(fs_info);
  3265. cancel_work_sync(&fs_info->async_reclaim_work);
  3266. if (!sb_rdonly(fs_info->sb)) {
  3267. /*
  3268. * If the cleaner thread is stopped and there are
  3269. * block groups queued for removal, the deletion will be
  3270. * skipped when we quit the cleaner thread.
  3271. */
  3272. btrfs_delete_unused_bgs(fs_info);
  3273. ret = btrfs_commit_super(fs_info);
  3274. if (ret)
  3275. btrfs_err(fs_info, "commit super ret %d", ret);
  3276. }
  3277. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3278. btrfs_error_commit_super(fs_info);
  3279. kthread_stop(fs_info->transaction_kthread);
  3280. kthread_stop(fs_info->cleaner_kthread);
  3281. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3282. btrfs_free_qgroup_config(fs_info);
  3283. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3284. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3285. percpu_counter_sum(&fs_info->delalloc_bytes));
  3286. }
  3287. btrfs_sysfs_remove_mounted(fs_info);
  3288. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3289. btrfs_free_fs_roots(fs_info);
  3290. btrfs_put_block_group_cache(fs_info);
  3291. /*
  3292. * we must make sure there is not any read request to
  3293. * submit after we stopping all workers.
  3294. */
  3295. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3296. btrfs_stop_all_workers(fs_info);
  3297. btrfs_free_block_groups(fs_info);
  3298. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3299. free_root_pointers(fs_info, 1);
  3300. iput(fs_info->btree_inode);
  3301. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3302. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3303. btrfsic_unmount(fs_info->fs_devices);
  3304. #endif
  3305. btrfs_close_devices(fs_info->fs_devices);
  3306. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3307. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3308. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3309. percpu_counter_destroy(&fs_info->bio_counter);
  3310. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3311. btrfs_free_stripe_hash_table(fs_info);
  3312. btrfs_free_ref_cache(fs_info);
  3313. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3314. root->orphan_block_rsv = NULL;
  3315. while (!list_empty(&fs_info->pinned_chunks)) {
  3316. struct extent_map *em;
  3317. em = list_first_entry(&fs_info->pinned_chunks,
  3318. struct extent_map, list);
  3319. list_del_init(&em->list);
  3320. free_extent_map(em);
  3321. }
  3322. }
  3323. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3324. int atomic)
  3325. {
  3326. int ret;
  3327. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3328. ret = extent_buffer_uptodate(buf);
  3329. if (!ret)
  3330. return ret;
  3331. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3332. parent_transid, atomic);
  3333. if (ret == -EAGAIN)
  3334. return ret;
  3335. return !ret;
  3336. }
  3337. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3338. {
  3339. struct btrfs_fs_info *fs_info;
  3340. struct btrfs_root *root;
  3341. u64 transid = btrfs_header_generation(buf);
  3342. int was_dirty;
  3343. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3344. /*
  3345. * This is a fast path so only do this check if we have sanity tests
  3346. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3347. * outside of the sanity tests.
  3348. */
  3349. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3350. return;
  3351. #endif
  3352. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3353. fs_info = root->fs_info;
  3354. btrfs_assert_tree_locked(buf);
  3355. if (transid != fs_info->generation)
  3356. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3357. buf->start, transid, fs_info->generation);
  3358. was_dirty = set_extent_buffer_dirty(buf);
  3359. if (!was_dirty)
  3360. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3361. buf->len,
  3362. fs_info->dirty_metadata_batch);
  3363. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3364. /*
  3365. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3366. * but item data not updated.
  3367. * So here we should only check item pointers, not item data.
  3368. */
  3369. if (btrfs_header_level(buf) == 0 &&
  3370. btrfs_check_leaf_relaxed(fs_info, buf)) {
  3371. btrfs_print_leaf(buf);
  3372. ASSERT(0);
  3373. }
  3374. #endif
  3375. }
  3376. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3377. int flush_delayed)
  3378. {
  3379. /*
  3380. * looks as though older kernels can get into trouble with
  3381. * this code, they end up stuck in balance_dirty_pages forever
  3382. */
  3383. int ret;
  3384. if (current->flags & PF_MEMALLOC)
  3385. return;
  3386. if (flush_delayed)
  3387. btrfs_balance_delayed_items(fs_info);
  3388. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3389. BTRFS_DIRTY_METADATA_THRESH);
  3390. if (ret > 0) {
  3391. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3392. }
  3393. }
  3394. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3395. {
  3396. __btrfs_btree_balance_dirty(fs_info, 1);
  3397. }
  3398. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3399. {
  3400. __btrfs_btree_balance_dirty(fs_info, 0);
  3401. }
  3402. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
  3403. struct btrfs_key *first_key)
  3404. {
  3405. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3406. struct btrfs_fs_info *fs_info = root->fs_info;
  3407. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
  3408. level, first_key);
  3409. }
  3410. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3411. {
  3412. struct btrfs_super_block *sb = fs_info->super_copy;
  3413. u64 nodesize = btrfs_super_nodesize(sb);
  3414. u64 sectorsize = btrfs_super_sectorsize(sb);
  3415. int ret = 0;
  3416. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3417. btrfs_err(fs_info, "no valid FS found");
  3418. ret = -EINVAL;
  3419. }
  3420. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
  3421. btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
  3422. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3423. ret = -EINVAL;
  3424. }
  3425. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3426. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3427. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3428. ret = -EINVAL;
  3429. }
  3430. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3431. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3432. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3433. ret = -EINVAL;
  3434. }
  3435. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3436. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3437. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3438. ret = -EINVAL;
  3439. }
  3440. /*
  3441. * Check sectorsize and nodesize first, other check will need it.
  3442. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3443. */
  3444. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3445. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3446. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3447. ret = -EINVAL;
  3448. }
  3449. /* Only PAGE SIZE is supported yet */
  3450. if (sectorsize != PAGE_SIZE) {
  3451. btrfs_err(fs_info,
  3452. "sectorsize %llu not supported yet, only support %lu",
  3453. sectorsize, PAGE_SIZE);
  3454. ret = -EINVAL;
  3455. }
  3456. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3457. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3458. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3459. ret = -EINVAL;
  3460. }
  3461. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3462. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3463. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3464. ret = -EINVAL;
  3465. }
  3466. /* Root alignment check */
  3467. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3468. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3469. btrfs_super_root(sb));
  3470. ret = -EINVAL;
  3471. }
  3472. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3473. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3474. btrfs_super_chunk_root(sb));
  3475. ret = -EINVAL;
  3476. }
  3477. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3478. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3479. btrfs_super_log_root(sb));
  3480. ret = -EINVAL;
  3481. }
  3482. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
  3483. btrfs_err(fs_info,
  3484. "dev_item UUID does not match fsid: %pU != %pU",
  3485. fs_info->fsid, sb->dev_item.fsid);
  3486. ret = -EINVAL;
  3487. }
  3488. /*
  3489. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3490. * done later
  3491. */
  3492. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3493. btrfs_err(fs_info, "bytes_used is too small %llu",
  3494. btrfs_super_bytes_used(sb));
  3495. ret = -EINVAL;
  3496. }
  3497. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3498. btrfs_err(fs_info, "invalid stripesize %u",
  3499. btrfs_super_stripesize(sb));
  3500. ret = -EINVAL;
  3501. }
  3502. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3503. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3504. btrfs_super_num_devices(sb));
  3505. if (btrfs_super_num_devices(sb) == 0) {
  3506. btrfs_err(fs_info, "number of devices is 0");
  3507. ret = -EINVAL;
  3508. }
  3509. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3510. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3511. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3512. ret = -EINVAL;
  3513. }
  3514. /*
  3515. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3516. * and one chunk
  3517. */
  3518. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3519. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3520. btrfs_super_sys_array_size(sb),
  3521. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3522. ret = -EINVAL;
  3523. }
  3524. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3525. + sizeof(struct btrfs_chunk)) {
  3526. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3527. btrfs_super_sys_array_size(sb),
  3528. sizeof(struct btrfs_disk_key)
  3529. + sizeof(struct btrfs_chunk));
  3530. ret = -EINVAL;
  3531. }
  3532. /*
  3533. * The generation is a global counter, we'll trust it more than the others
  3534. * but it's still possible that it's the one that's wrong.
  3535. */
  3536. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3537. btrfs_warn(fs_info,
  3538. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3539. btrfs_super_generation(sb),
  3540. btrfs_super_chunk_root_generation(sb));
  3541. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3542. && btrfs_super_cache_generation(sb) != (u64)-1)
  3543. btrfs_warn(fs_info,
  3544. "suspicious: generation < cache_generation: %llu < %llu",
  3545. btrfs_super_generation(sb),
  3546. btrfs_super_cache_generation(sb));
  3547. return ret;
  3548. }
  3549. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3550. {
  3551. mutex_lock(&fs_info->cleaner_mutex);
  3552. btrfs_run_delayed_iputs(fs_info);
  3553. mutex_unlock(&fs_info->cleaner_mutex);
  3554. down_write(&fs_info->cleanup_work_sem);
  3555. up_write(&fs_info->cleanup_work_sem);
  3556. /* cleanup FS via transaction */
  3557. btrfs_cleanup_transaction(fs_info);
  3558. }
  3559. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3560. {
  3561. struct btrfs_ordered_extent *ordered;
  3562. spin_lock(&root->ordered_extent_lock);
  3563. /*
  3564. * This will just short circuit the ordered completion stuff which will
  3565. * make sure the ordered extent gets properly cleaned up.
  3566. */
  3567. list_for_each_entry(ordered, &root->ordered_extents,
  3568. root_extent_list)
  3569. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3570. spin_unlock(&root->ordered_extent_lock);
  3571. }
  3572. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3573. {
  3574. struct btrfs_root *root;
  3575. struct list_head splice;
  3576. INIT_LIST_HEAD(&splice);
  3577. spin_lock(&fs_info->ordered_root_lock);
  3578. list_splice_init(&fs_info->ordered_roots, &splice);
  3579. while (!list_empty(&splice)) {
  3580. root = list_first_entry(&splice, struct btrfs_root,
  3581. ordered_root);
  3582. list_move_tail(&root->ordered_root,
  3583. &fs_info->ordered_roots);
  3584. spin_unlock(&fs_info->ordered_root_lock);
  3585. btrfs_destroy_ordered_extents(root);
  3586. cond_resched();
  3587. spin_lock(&fs_info->ordered_root_lock);
  3588. }
  3589. spin_unlock(&fs_info->ordered_root_lock);
  3590. }
  3591. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3592. struct btrfs_fs_info *fs_info)
  3593. {
  3594. struct rb_node *node;
  3595. struct btrfs_delayed_ref_root *delayed_refs;
  3596. struct btrfs_delayed_ref_node *ref;
  3597. int ret = 0;
  3598. delayed_refs = &trans->delayed_refs;
  3599. spin_lock(&delayed_refs->lock);
  3600. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3601. spin_unlock(&delayed_refs->lock);
  3602. btrfs_info(fs_info, "delayed_refs has NO entry");
  3603. return ret;
  3604. }
  3605. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3606. struct btrfs_delayed_ref_head *head;
  3607. struct rb_node *n;
  3608. bool pin_bytes = false;
  3609. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3610. href_node);
  3611. if (!mutex_trylock(&head->mutex)) {
  3612. refcount_inc(&head->refs);
  3613. spin_unlock(&delayed_refs->lock);
  3614. mutex_lock(&head->mutex);
  3615. mutex_unlock(&head->mutex);
  3616. btrfs_put_delayed_ref_head(head);
  3617. spin_lock(&delayed_refs->lock);
  3618. continue;
  3619. }
  3620. spin_lock(&head->lock);
  3621. while ((n = rb_first(&head->ref_tree)) != NULL) {
  3622. ref = rb_entry(n, struct btrfs_delayed_ref_node,
  3623. ref_node);
  3624. ref->in_tree = 0;
  3625. rb_erase(&ref->ref_node, &head->ref_tree);
  3626. RB_CLEAR_NODE(&ref->ref_node);
  3627. if (!list_empty(&ref->add_list))
  3628. list_del(&ref->add_list);
  3629. atomic_dec(&delayed_refs->num_entries);
  3630. btrfs_put_delayed_ref(ref);
  3631. }
  3632. if (head->must_insert_reserved)
  3633. pin_bytes = true;
  3634. btrfs_free_delayed_extent_op(head->extent_op);
  3635. delayed_refs->num_heads--;
  3636. if (head->processing == 0)
  3637. delayed_refs->num_heads_ready--;
  3638. atomic_dec(&delayed_refs->num_entries);
  3639. rb_erase(&head->href_node, &delayed_refs->href_root);
  3640. RB_CLEAR_NODE(&head->href_node);
  3641. spin_unlock(&head->lock);
  3642. spin_unlock(&delayed_refs->lock);
  3643. mutex_unlock(&head->mutex);
  3644. if (pin_bytes)
  3645. btrfs_pin_extent(fs_info, head->bytenr,
  3646. head->num_bytes, 1);
  3647. btrfs_put_delayed_ref_head(head);
  3648. cond_resched();
  3649. spin_lock(&delayed_refs->lock);
  3650. }
  3651. spin_unlock(&delayed_refs->lock);
  3652. return ret;
  3653. }
  3654. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3655. {
  3656. struct btrfs_inode *btrfs_inode;
  3657. struct list_head splice;
  3658. INIT_LIST_HEAD(&splice);
  3659. spin_lock(&root->delalloc_lock);
  3660. list_splice_init(&root->delalloc_inodes, &splice);
  3661. while (!list_empty(&splice)) {
  3662. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3663. delalloc_inodes);
  3664. list_del_init(&btrfs_inode->delalloc_inodes);
  3665. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3666. &btrfs_inode->runtime_flags);
  3667. spin_unlock(&root->delalloc_lock);
  3668. btrfs_invalidate_inodes(btrfs_inode->root);
  3669. spin_lock(&root->delalloc_lock);
  3670. }
  3671. spin_unlock(&root->delalloc_lock);
  3672. }
  3673. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3674. {
  3675. struct btrfs_root *root;
  3676. struct list_head splice;
  3677. INIT_LIST_HEAD(&splice);
  3678. spin_lock(&fs_info->delalloc_root_lock);
  3679. list_splice_init(&fs_info->delalloc_roots, &splice);
  3680. while (!list_empty(&splice)) {
  3681. root = list_first_entry(&splice, struct btrfs_root,
  3682. delalloc_root);
  3683. list_del_init(&root->delalloc_root);
  3684. root = btrfs_grab_fs_root(root);
  3685. BUG_ON(!root);
  3686. spin_unlock(&fs_info->delalloc_root_lock);
  3687. btrfs_destroy_delalloc_inodes(root);
  3688. btrfs_put_fs_root(root);
  3689. spin_lock(&fs_info->delalloc_root_lock);
  3690. }
  3691. spin_unlock(&fs_info->delalloc_root_lock);
  3692. }
  3693. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3694. struct extent_io_tree *dirty_pages,
  3695. int mark)
  3696. {
  3697. int ret;
  3698. struct extent_buffer *eb;
  3699. u64 start = 0;
  3700. u64 end;
  3701. while (1) {
  3702. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3703. mark, NULL);
  3704. if (ret)
  3705. break;
  3706. clear_extent_bits(dirty_pages, start, end, mark);
  3707. while (start <= end) {
  3708. eb = find_extent_buffer(fs_info, start);
  3709. start += fs_info->nodesize;
  3710. if (!eb)
  3711. continue;
  3712. wait_on_extent_buffer_writeback(eb);
  3713. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3714. &eb->bflags))
  3715. clear_extent_buffer_dirty(eb);
  3716. free_extent_buffer_stale(eb);
  3717. }
  3718. }
  3719. return ret;
  3720. }
  3721. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3722. struct extent_io_tree *pinned_extents)
  3723. {
  3724. struct extent_io_tree *unpin;
  3725. u64 start;
  3726. u64 end;
  3727. int ret;
  3728. bool loop = true;
  3729. unpin = pinned_extents;
  3730. again:
  3731. while (1) {
  3732. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3733. EXTENT_DIRTY, NULL);
  3734. if (ret)
  3735. break;
  3736. clear_extent_dirty(unpin, start, end);
  3737. btrfs_error_unpin_extent_range(fs_info, start, end);
  3738. cond_resched();
  3739. }
  3740. if (loop) {
  3741. if (unpin == &fs_info->freed_extents[0])
  3742. unpin = &fs_info->freed_extents[1];
  3743. else
  3744. unpin = &fs_info->freed_extents[0];
  3745. loop = false;
  3746. goto again;
  3747. }
  3748. return 0;
  3749. }
  3750. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3751. {
  3752. struct inode *inode;
  3753. inode = cache->io_ctl.inode;
  3754. if (inode) {
  3755. invalidate_inode_pages2(inode->i_mapping);
  3756. BTRFS_I(inode)->generation = 0;
  3757. cache->io_ctl.inode = NULL;
  3758. iput(inode);
  3759. }
  3760. btrfs_put_block_group(cache);
  3761. }
  3762. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3763. struct btrfs_fs_info *fs_info)
  3764. {
  3765. struct btrfs_block_group_cache *cache;
  3766. spin_lock(&cur_trans->dirty_bgs_lock);
  3767. while (!list_empty(&cur_trans->dirty_bgs)) {
  3768. cache = list_first_entry(&cur_trans->dirty_bgs,
  3769. struct btrfs_block_group_cache,
  3770. dirty_list);
  3771. if (!list_empty(&cache->io_list)) {
  3772. spin_unlock(&cur_trans->dirty_bgs_lock);
  3773. list_del_init(&cache->io_list);
  3774. btrfs_cleanup_bg_io(cache);
  3775. spin_lock(&cur_trans->dirty_bgs_lock);
  3776. }
  3777. list_del_init(&cache->dirty_list);
  3778. spin_lock(&cache->lock);
  3779. cache->disk_cache_state = BTRFS_DC_ERROR;
  3780. spin_unlock(&cache->lock);
  3781. spin_unlock(&cur_trans->dirty_bgs_lock);
  3782. btrfs_put_block_group(cache);
  3783. spin_lock(&cur_trans->dirty_bgs_lock);
  3784. }
  3785. spin_unlock(&cur_trans->dirty_bgs_lock);
  3786. /*
  3787. * Refer to the definition of io_bgs member for details why it's safe
  3788. * to use it without any locking
  3789. */
  3790. while (!list_empty(&cur_trans->io_bgs)) {
  3791. cache = list_first_entry(&cur_trans->io_bgs,
  3792. struct btrfs_block_group_cache,
  3793. io_list);
  3794. list_del_init(&cache->io_list);
  3795. spin_lock(&cache->lock);
  3796. cache->disk_cache_state = BTRFS_DC_ERROR;
  3797. spin_unlock(&cache->lock);
  3798. btrfs_cleanup_bg_io(cache);
  3799. }
  3800. }
  3801. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3802. struct btrfs_fs_info *fs_info)
  3803. {
  3804. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3805. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3806. ASSERT(list_empty(&cur_trans->io_bgs));
  3807. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3808. cur_trans->state = TRANS_STATE_COMMIT_START;
  3809. wake_up(&fs_info->transaction_blocked_wait);
  3810. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3811. wake_up(&fs_info->transaction_wait);
  3812. btrfs_destroy_delayed_inodes(fs_info);
  3813. btrfs_assert_delayed_root_empty(fs_info);
  3814. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3815. EXTENT_DIRTY);
  3816. btrfs_destroy_pinned_extent(fs_info,
  3817. fs_info->pinned_extents);
  3818. cur_trans->state =TRANS_STATE_COMPLETED;
  3819. wake_up(&cur_trans->commit_wait);
  3820. }
  3821. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3822. {
  3823. struct btrfs_transaction *t;
  3824. mutex_lock(&fs_info->transaction_kthread_mutex);
  3825. spin_lock(&fs_info->trans_lock);
  3826. while (!list_empty(&fs_info->trans_list)) {
  3827. t = list_first_entry(&fs_info->trans_list,
  3828. struct btrfs_transaction, list);
  3829. if (t->state >= TRANS_STATE_COMMIT_START) {
  3830. refcount_inc(&t->use_count);
  3831. spin_unlock(&fs_info->trans_lock);
  3832. btrfs_wait_for_commit(fs_info, t->transid);
  3833. btrfs_put_transaction(t);
  3834. spin_lock(&fs_info->trans_lock);
  3835. continue;
  3836. }
  3837. if (t == fs_info->running_transaction) {
  3838. t->state = TRANS_STATE_COMMIT_DOING;
  3839. spin_unlock(&fs_info->trans_lock);
  3840. /*
  3841. * We wait for 0 num_writers since we don't hold a trans
  3842. * handle open currently for this transaction.
  3843. */
  3844. wait_event(t->writer_wait,
  3845. atomic_read(&t->num_writers) == 0);
  3846. } else {
  3847. spin_unlock(&fs_info->trans_lock);
  3848. }
  3849. btrfs_cleanup_one_transaction(t, fs_info);
  3850. spin_lock(&fs_info->trans_lock);
  3851. if (t == fs_info->running_transaction)
  3852. fs_info->running_transaction = NULL;
  3853. list_del_init(&t->list);
  3854. spin_unlock(&fs_info->trans_lock);
  3855. btrfs_put_transaction(t);
  3856. trace_btrfs_transaction_commit(fs_info->tree_root);
  3857. spin_lock(&fs_info->trans_lock);
  3858. }
  3859. spin_unlock(&fs_info->trans_lock);
  3860. btrfs_destroy_all_ordered_extents(fs_info);
  3861. btrfs_destroy_delayed_inodes(fs_info);
  3862. btrfs_assert_delayed_root_empty(fs_info);
  3863. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3864. btrfs_destroy_all_delalloc_inodes(fs_info);
  3865. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3866. return 0;
  3867. }
  3868. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3869. {
  3870. struct inode *inode = private_data;
  3871. return btrfs_sb(inode->i_sb);
  3872. }
  3873. static const struct extent_io_ops btree_extent_io_ops = {
  3874. /* mandatory callbacks */
  3875. .submit_bio_hook = btree_submit_bio_hook,
  3876. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3877. /* note we're sharing with inode.c for the merge bio hook */
  3878. .merge_bio_hook = btrfs_merge_bio_hook,
  3879. .readpage_io_failed_hook = btree_io_failed_hook,
  3880. .set_range_writeback = btrfs_set_range_writeback,
  3881. .tree_fs_info = btree_fs_info,
  3882. /* optional callbacks */
  3883. };