slub.c 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kasan.h>
  23. #include <linux/kmemcheck.h>
  24. #include <linux/cpu.h>
  25. #include <linux/cpuset.h>
  26. #include <linux/mempolicy.h>
  27. #include <linux/ctype.h>
  28. #include <linux/debugobjects.h>
  29. #include <linux/kallsyms.h>
  30. #include <linux/memory.h>
  31. #include <linux/math64.h>
  32. #include <linux/fault-inject.h>
  33. #include <linux/stacktrace.h>
  34. #include <linux/prefetch.h>
  35. #include <linux/memcontrol.h>
  36. #include <trace/events/kmem.h>
  37. #include "internal.h"
  38. /*
  39. * Lock order:
  40. * 1. slab_mutex (Global Mutex)
  41. * 2. node->list_lock
  42. * 3. slab_lock(page) (Only on some arches and for debugging)
  43. *
  44. * slab_mutex
  45. *
  46. * The role of the slab_mutex is to protect the list of all the slabs
  47. * and to synchronize major metadata changes to slab cache structures.
  48. *
  49. * The slab_lock is only used for debugging and on arches that do not
  50. * have the ability to do a cmpxchg_double. It only protects the second
  51. * double word in the page struct. Meaning
  52. * A. page->freelist -> List of object free in a page
  53. * B. page->counters -> Counters of objects
  54. * C. page->frozen -> frozen state
  55. *
  56. * If a slab is frozen then it is exempt from list management. It is not
  57. * on any list. The processor that froze the slab is the one who can
  58. * perform list operations on the page. Other processors may put objects
  59. * onto the freelist but the processor that froze the slab is the only
  60. * one that can retrieve the objects from the page's freelist.
  61. *
  62. * The list_lock protects the partial and full list on each node and
  63. * the partial slab counter. If taken then no new slabs may be added or
  64. * removed from the lists nor make the number of partial slabs be modified.
  65. * (Note that the total number of slabs is an atomic value that may be
  66. * modified without taking the list lock).
  67. *
  68. * The list_lock is a centralized lock and thus we avoid taking it as
  69. * much as possible. As long as SLUB does not have to handle partial
  70. * slabs, operations can continue without any centralized lock. F.e.
  71. * allocating a long series of objects that fill up slabs does not require
  72. * the list lock.
  73. * Interrupts are disabled during allocation and deallocation in order to
  74. * make the slab allocator safe to use in the context of an irq. In addition
  75. * interrupts are disabled to ensure that the processor does not change
  76. * while handling per_cpu slabs, due to kernel preemption.
  77. *
  78. * SLUB assigns one slab for allocation to each processor.
  79. * Allocations only occur from these slabs called cpu slabs.
  80. *
  81. * Slabs with free elements are kept on a partial list and during regular
  82. * operations no list for full slabs is used. If an object in a full slab is
  83. * freed then the slab will show up again on the partial lists.
  84. * We track full slabs for debugging purposes though because otherwise we
  85. * cannot scan all objects.
  86. *
  87. * Slabs are freed when they become empty. Teardown and setup is
  88. * minimal so we rely on the page allocators per cpu caches for
  89. * fast frees and allocs.
  90. *
  91. * Overloading of page flags that are otherwise used for LRU management.
  92. *
  93. * PageActive The slab is frozen and exempt from list processing.
  94. * This means that the slab is dedicated to a purpose
  95. * such as satisfying allocations for a specific
  96. * processor. Objects may be freed in the slab while
  97. * it is frozen but slab_free will then skip the usual
  98. * list operations. It is up to the processor holding
  99. * the slab to integrate the slab into the slab lists
  100. * when the slab is no longer needed.
  101. *
  102. * One use of this flag is to mark slabs that are
  103. * used for allocations. Then such a slab becomes a cpu
  104. * slab. The cpu slab may be equipped with an additional
  105. * freelist that allows lockless access to
  106. * free objects in addition to the regular freelist
  107. * that requires the slab lock.
  108. *
  109. * PageError Slab requires special handling due to debug
  110. * options set. This moves slab handling out of
  111. * the fast path and disables lockless freelists.
  112. */
  113. static inline int kmem_cache_debug(struct kmem_cache *s)
  114. {
  115. #ifdef CONFIG_SLUB_DEBUG
  116. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  117. #else
  118. return 0;
  119. #endif
  120. }
  121. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  122. {
  123. #ifdef CONFIG_SLUB_CPU_PARTIAL
  124. return !kmem_cache_debug(s);
  125. #else
  126. return false;
  127. #endif
  128. }
  129. /*
  130. * Issues still to be resolved:
  131. *
  132. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  133. *
  134. * - Variable sizing of the per node arrays
  135. */
  136. /* Enable to test recovery from slab corruption on boot */
  137. #undef SLUB_RESILIENCY_TEST
  138. /* Enable to log cmpxchg failures */
  139. #undef SLUB_DEBUG_CMPXCHG
  140. /*
  141. * Mininum number of partial slabs. These will be left on the partial
  142. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  143. */
  144. #define MIN_PARTIAL 5
  145. /*
  146. * Maximum number of desirable partial slabs.
  147. * The existence of more partial slabs makes kmem_cache_shrink
  148. * sort the partial list by the number of objects in use.
  149. */
  150. #define MAX_PARTIAL 10
  151. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  152. SLAB_POISON | SLAB_STORE_USER)
  153. /*
  154. * Debugging flags that require metadata to be stored in the slab. These get
  155. * disabled when slub_debug=O is used and a cache's min order increases with
  156. * metadata.
  157. */
  158. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  159. #define OO_SHIFT 16
  160. #define OO_MASK ((1 << OO_SHIFT) - 1)
  161. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  162. /* Internal SLUB flags */
  163. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  164. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  191. #endif
  192. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  193. {
  194. #ifdef CONFIG_SLUB_STATS
  195. /*
  196. * The rmw is racy on a preemptible kernel but this is acceptable, so
  197. * avoid this_cpu_add()'s irq-disable overhead.
  198. */
  199. raw_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. /* Verify that a pointer has an address that is valid within a slab page */
  206. static inline int check_valid_pointer(struct kmem_cache *s,
  207. struct page *page, const void *object)
  208. {
  209. void *base;
  210. if (!object)
  211. return 1;
  212. base = page_address(page);
  213. if (object < base || object >= base + page->objects * s->size ||
  214. (object - base) % s->size) {
  215. return 0;
  216. }
  217. return 1;
  218. }
  219. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  220. {
  221. return *(void **)(object + s->offset);
  222. }
  223. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  224. {
  225. prefetch(object + s->offset);
  226. }
  227. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  228. {
  229. void *p;
  230. #ifdef CONFIG_DEBUG_PAGEALLOC
  231. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  232. #else
  233. p = get_freepointer(s, object);
  234. #endif
  235. return p;
  236. }
  237. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  238. {
  239. *(void **)(object + s->offset) = fp;
  240. }
  241. /* Loop over all objects in a slab */
  242. #define for_each_object(__p, __s, __addr, __objects) \
  243. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  244. __p += (__s)->size)
  245. #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
  246. for (__p = (__addr), __idx = 1; __idx <= __objects;\
  247. __p += (__s)->size, __idx++)
  248. /* Determine object index from a given position */
  249. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  250. {
  251. return (p - addr) / s->size;
  252. }
  253. static inline size_t slab_ksize(const struct kmem_cache *s)
  254. {
  255. #ifdef CONFIG_SLUB_DEBUG
  256. /*
  257. * Debugging requires use of the padding between object
  258. * and whatever may come after it.
  259. */
  260. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  261. return s->object_size;
  262. #endif
  263. /*
  264. * If we have the need to store the freelist pointer
  265. * back there or track user information then we can
  266. * only use the space before that information.
  267. */
  268. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  269. return s->inuse;
  270. /*
  271. * Else we can use all the padding etc for the allocation
  272. */
  273. return s->size;
  274. }
  275. static inline int order_objects(int order, unsigned long size, int reserved)
  276. {
  277. return ((PAGE_SIZE << order) - reserved) / size;
  278. }
  279. static inline struct kmem_cache_order_objects oo_make(int order,
  280. unsigned long size, int reserved)
  281. {
  282. struct kmem_cache_order_objects x = {
  283. (order << OO_SHIFT) + order_objects(order, size, reserved)
  284. };
  285. return x;
  286. }
  287. static inline int oo_order(struct kmem_cache_order_objects x)
  288. {
  289. return x.x >> OO_SHIFT;
  290. }
  291. static inline int oo_objects(struct kmem_cache_order_objects x)
  292. {
  293. return x.x & OO_MASK;
  294. }
  295. /*
  296. * Per slab locking using the pagelock
  297. */
  298. static __always_inline void slab_lock(struct page *page)
  299. {
  300. bit_spin_lock(PG_locked, &page->flags);
  301. }
  302. static __always_inline void slab_unlock(struct page *page)
  303. {
  304. __bit_spin_unlock(PG_locked, &page->flags);
  305. }
  306. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  307. {
  308. struct page tmp;
  309. tmp.counters = counters_new;
  310. /*
  311. * page->counters can cover frozen/inuse/objects as well
  312. * as page->_count. If we assign to ->counters directly
  313. * we run the risk of losing updates to page->_count, so
  314. * be careful and only assign to the fields we need.
  315. */
  316. page->frozen = tmp.frozen;
  317. page->inuse = tmp.inuse;
  318. page->objects = tmp.objects;
  319. }
  320. /* Interrupts must be disabled (for the fallback code to work right) */
  321. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  322. void *freelist_old, unsigned long counters_old,
  323. void *freelist_new, unsigned long counters_new,
  324. const char *n)
  325. {
  326. VM_BUG_ON(!irqs_disabled());
  327. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  328. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  329. if (s->flags & __CMPXCHG_DOUBLE) {
  330. if (cmpxchg_double(&page->freelist, &page->counters,
  331. freelist_old, counters_old,
  332. freelist_new, counters_new))
  333. return true;
  334. } else
  335. #endif
  336. {
  337. slab_lock(page);
  338. if (page->freelist == freelist_old &&
  339. page->counters == counters_old) {
  340. page->freelist = freelist_new;
  341. set_page_slub_counters(page, counters_new);
  342. slab_unlock(page);
  343. return true;
  344. }
  345. slab_unlock(page);
  346. }
  347. cpu_relax();
  348. stat(s, CMPXCHG_DOUBLE_FAIL);
  349. #ifdef SLUB_DEBUG_CMPXCHG
  350. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  351. #endif
  352. return false;
  353. }
  354. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  355. void *freelist_old, unsigned long counters_old,
  356. void *freelist_new, unsigned long counters_new,
  357. const char *n)
  358. {
  359. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  360. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  361. if (s->flags & __CMPXCHG_DOUBLE) {
  362. if (cmpxchg_double(&page->freelist, &page->counters,
  363. freelist_old, counters_old,
  364. freelist_new, counters_new))
  365. return true;
  366. } else
  367. #endif
  368. {
  369. unsigned long flags;
  370. local_irq_save(flags);
  371. slab_lock(page);
  372. if (page->freelist == freelist_old &&
  373. page->counters == counters_old) {
  374. page->freelist = freelist_new;
  375. set_page_slub_counters(page, counters_new);
  376. slab_unlock(page);
  377. local_irq_restore(flags);
  378. return true;
  379. }
  380. slab_unlock(page);
  381. local_irq_restore(flags);
  382. }
  383. cpu_relax();
  384. stat(s, CMPXCHG_DOUBLE_FAIL);
  385. #ifdef SLUB_DEBUG_CMPXCHG
  386. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  387. #endif
  388. return false;
  389. }
  390. #ifdef CONFIG_SLUB_DEBUG
  391. /*
  392. * Determine a map of object in use on a page.
  393. *
  394. * Node listlock must be held to guarantee that the page does
  395. * not vanish from under us.
  396. */
  397. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  398. {
  399. void *p;
  400. void *addr = page_address(page);
  401. for (p = page->freelist; p; p = get_freepointer(s, p))
  402. set_bit(slab_index(p, s, addr), map);
  403. }
  404. /*
  405. * Debug settings:
  406. */
  407. #ifdef CONFIG_SLUB_DEBUG_ON
  408. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  409. #else
  410. static int slub_debug;
  411. #endif
  412. static char *slub_debug_slabs;
  413. static int disable_higher_order_debug;
  414. /*
  415. * slub is about to manipulate internal object metadata. This memory lies
  416. * outside the range of the allocated object, so accessing it would normally
  417. * be reported by kasan as a bounds error. metadata_access_enable() is used
  418. * to tell kasan that these accesses are OK.
  419. */
  420. static inline void metadata_access_enable(void)
  421. {
  422. kasan_disable_current();
  423. }
  424. static inline void metadata_access_disable(void)
  425. {
  426. kasan_enable_current();
  427. }
  428. /*
  429. * Object debugging
  430. */
  431. static void print_section(char *text, u8 *addr, unsigned int length)
  432. {
  433. metadata_access_enable();
  434. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  435. length, 1);
  436. metadata_access_disable();
  437. }
  438. static struct track *get_track(struct kmem_cache *s, void *object,
  439. enum track_item alloc)
  440. {
  441. struct track *p;
  442. if (s->offset)
  443. p = object + s->offset + sizeof(void *);
  444. else
  445. p = object + s->inuse;
  446. return p + alloc;
  447. }
  448. static void set_track(struct kmem_cache *s, void *object,
  449. enum track_item alloc, unsigned long addr)
  450. {
  451. struct track *p = get_track(s, object, alloc);
  452. if (addr) {
  453. #ifdef CONFIG_STACKTRACE
  454. struct stack_trace trace;
  455. int i;
  456. trace.nr_entries = 0;
  457. trace.max_entries = TRACK_ADDRS_COUNT;
  458. trace.entries = p->addrs;
  459. trace.skip = 3;
  460. metadata_access_enable();
  461. save_stack_trace(&trace);
  462. metadata_access_disable();
  463. /* See rant in lockdep.c */
  464. if (trace.nr_entries != 0 &&
  465. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  466. trace.nr_entries--;
  467. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  468. p->addrs[i] = 0;
  469. #endif
  470. p->addr = addr;
  471. p->cpu = smp_processor_id();
  472. p->pid = current->pid;
  473. p->when = jiffies;
  474. } else
  475. memset(p, 0, sizeof(struct track));
  476. }
  477. static void init_tracking(struct kmem_cache *s, void *object)
  478. {
  479. if (!(s->flags & SLAB_STORE_USER))
  480. return;
  481. set_track(s, object, TRACK_FREE, 0UL);
  482. set_track(s, object, TRACK_ALLOC, 0UL);
  483. }
  484. static void print_track(const char *s, struct track *t)
  485. {
  486. if (!t->addr)
  487. return;
  488. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  489. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  490. #ifdef CONFIG_STACKTRACE
  491. {
  492. int i;
  493. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  494. if (t->addrs[i])
  495. pr_err("\t%pS\n", (void *)t->addrs[i]);
  496. else
  497. break;
  498. }
  499. #endif
  500. }
  501. static void print_tracking(struct kmem_cache *s, void *object)
  502. {
  503. if (!(s->flags & SLAB_STORE_USER))
  504. return;
  505. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  506. print_track("Freed", get_track(s, object, TRACK_FREE));
  507. }
  508. static void print_page_info(struct page *page)
  509. {
  510. pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  511. page, page->objects, page->inuse, page->freelist, page->flags);
  512. }
  513. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  514. {
  515. struct va_format vaf;
  516. va_list args;
  517. va_start(args, fmt);
  518. vaf.fmt = fmt;
  519. vaf.va = &args;
  520. pr_err("=============================================================================\n");
  521. pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
  522. pr_err("-----------------------------------------------------------------------------\n\n");
  523. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  524. va_end(args);
  525. }
  526. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  527. {
  528. struct va_format vaf;
  529. va_list args;
  530. va_start(args, fmt);
  531. vaf.fmt = fmt;
  532. vaf.va = &args;
  533. pr_err("FIX %s: %pV\n", s->name, &vaf);
  534. va_end(args);
  535. }
  536. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  537. {
  538. unsigned int off; /* Offset of last byte */
  539. u8 *addr = page_address(page);
  540. print_tracking(s, p);
  541. print_page_info(page);
  542. pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  543. p, p - addr, get_freepointer(s, p));
  544. if (p > addr + 16)
  545. print_section("Bytes b4 ", p - 16, 16);
  546. print_section("Object ", p, min_t(unsigned long, s->object_size,
  547. PAGE_SIZE));
  548. if (s->flags & SLAB_RED_ZONE)
  549. print_section("Redzone ", p + s->object_size,
  550. s->inuse - s->object_size);
  551. if (s->offset)
  552. off = s->offset + sizeof(void *);
  553. else
  554. off = s->inuse;
  555. if (s->flags & SLAB_STORE_USER)
  556. off += 2 * sizeof(struct track);
  557. if (off != s->size)
  558. /* Beginning of the filler is the free pointer */
  559. print_section("Padding ", p + off, s->size - off);
  560. dump_stack();
  561. }
  562. void object_err(struct kmem_cache *s, struct page *page,
  563. u8 *object, char *reason)
  564. {
  565. slab_bug(s, "%s", reason);
  566. print_trailer(s, page, object);
  567. }
  568. static void slab_err(struct kmem_cache *s, struct page *page,
  569. const char *fmt, ...)
  570. {
  571. va_list args;
  572. char buf[100];
  573. va_start(args, fmt);
  574. vsnprintf(buf, sizeof(buf), fmt, args);
  575. va_end(args);
  576. slab_bug(s, "%s", buf);
  577. print_page_info(page);
  578. dump_stack();
  579. }
  580. static void init_object(struct kmem_cache *s, void *object, u8 val)
  581. {
  582. u8 *p = object;
  583. if (s->flags & __OBJECT_POISON) {
  584. memset(p, POISON_FREE, s->object_size - 1);
  585. p[s->object_size - 1] = POISON_END;
  586. }
  587. if (s->flags & SLAB_RED_ZONE)
  588. memset(p + s->object_size, val, s->inuse - s->object_size);
  589. }
  590. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  591. void *from, void *to)
  592. {
  593. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  594. memset(from, data, to - from);
  595. }
  596. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  597. u8 *object, char *what,
  598. u8 *start, unsigned int value, unsigned int bytes)
  599. {
  600. u8 *fault;
  601. u8 *end;
  602. metadata_access_enable();
  603. fault = memchr_inv(start, value, bytes);
  604. metadata_access_disable();
  605. if (!fault)
  606. return 1;
  607. end = start + bytes;
  608. while (end > fault && end[-1] == value)
  609. end--;
  610. slab_bug(s, "%s overwritten", what);
  611. pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  612. fault, end - 1, fault[0], value);
  613. print_trailer(s, page, object);
  614. restore_bytes(s, what, value, fault, end);
  615. return 0;
  616. }
  617. /*
  618. * Object layout:
  619. *
  620. * object address
  621. * Bytes of the object to be managed.
  622. * If the freepointer may overlay the object then the free
  623. * pointer is the first word of the object.
  624. *
  625. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  626. * 0xa5 (POISON_END)
  627. *
  628. * object + s->object_size
  629. * Padding to reach word boundary. This is also used for Redzoning.
  630. * Padding is extended by another word if Redzoning is enabled and
  631. * object_size == inuse.
  632. *
  633. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  634. * 0xcc (RED_ACTIVE) for objects in use.
  635. *
  636. * object + s->inuse
  637. * Meta data starts here.
  638. *
  639. * A. Free pointer (if we cannot overwrite object on free)
  640. * B. Tracking data for SLAB_STORE_USER
  641. * C. Padding to reach required alignment boundary or at mininum
  642. * one word if debugging is on to be able to detect writes
  643. * before the word boundary.
  644. *
  645. * Padding is done using 0x5a (POISON_INUSE)
  646. *
  647. * object + s->size
  648. * Nothing is used beyond s->size.
  649. *
  650. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  651. * ignored. And therefore no slab options that rely on these boundaries
  652. * may be used with merged slabcaches.
  653. */
  654. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  655. {
  656. unsigned long off = s->inuse; /* The end of info */
  657. if (s->offset)
  658. /* Freepointer is placed after the object. */
  659. off += sizeof(void *);
  660. if (s->flags & SLAB_STORE_USER)
  661. /* We also have user information there */
  662. off += 2 * sizeof(struct track);
  663. if (s->size == off)
  664. return 1;
  665. return check_bytes_and_report(s, page, p, "Object padding",
  666. p + off, POISON_INUSE, s->size - off);
  667. }
  668. /* Check the pad bytes at the end of a slab page */
  669. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  670. {
  671. u8 *start;
  672. u8 *fault;
  673. u8 *end;
  674. int length;
  675. int remainder;
  676. if (!(s->flags & SLAB_POISON))
  677. return 1;
  678. start = page_address(page);
  679. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  680. end = start + length;
  681. remainder = length % s->size;
  682. if (!remainder)
  683. return 1;
  684. metadata_access_enable();
  685. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  686. metadata_access_disable();
  687. if (!fault)
  688. return 1;
  689. while (end > fault && end[-1] == POISON_INUSE)
  690. end--;
  691. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  692. print_section("Padding ", end - remainder, remainder);
  693. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  694. return 0;
  695. }
  696. static int check_object(struct kmem_cache *s, struct page *page,
  697. void *object, u8 val)
  698. {
  699. u8 *p = object;
  700. u8 *endobject = object + s->object_size;
  701. if (s->flags & SLAB_RED_ZONE) {
  702. if (!check_bytes_and_report(s, page, object, "Redzone",
  703. endobject, val, s->inuse - s->object_size))
  704. return 0;
  705. } else {
  706. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  707. check_bytes_and_report(s, page, p, "Alignment padding",
  708. endobject, POISON_INUSE,
  709. s->inuse - s->object_size);
  710. }
  711. }
  712. if (s->flags & SLAB_POISON) {
  713. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  714. (!check_bytes_and_report(s, page, p, "Poison", p,
  715. POISON_FREE, s->object_size - 1) ||
  716. !check_bytes_and_report(s, page, p, "Poison",
  717. p + s->object_size - 1, POISON_END, 1)))
  718. return 0;
  719. /*
  720. * check_pad_bytes cleans up on its own.
  721. */
  722. check_pad_bytes(s, page, p);
  723. }
  724. if (!s->offset && val == SLUB_RED_ACTIVE)
  725. /*
  726. * Object and freepointer overlap. Cannot check
  727. * freepointer while object is allocated.
  728. */
  729. return 1;
  730. /* Check free pointer validity */
  731. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  732. object_err(s, page, p, "Freepointer corrupt");
  733. /*
  734. * No choice but to zap it and thus lose the remainder
  735. * of the free objects in this slab. May cause
  736. * another error because the object count is now wrong.
  737. */
  738. set_freepointer(s, p, NULL);
  739. return 0;
  740. }
  741. return 1;
  742. }
  743. static int check_slab(struct kmem_cache *s, struct page *page)
  744. {
  745. int maxobj;
  746. VM_BUG_ON(!irqs_disabled());
  747. if (!PageSlab(page)) {
  748. slab_err(s, page, "Not a valid slab page");
  749. return 0;
  750. }
  751. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  752. if (page->objects > maxobj) {
  753. slab_err(s, page, "objects %u > max %u",
  754. page->objects, maxobj);
  755. return 0;
  756. }
  757. if (page->inuse > page->objects) {
  758. slab_err(s, page, "inuse %u > max %u",
  759. page->inuse, page->objects);
  760. return 0;
  761. }
  762. /* Slab_pad_check fixes things up after itself */
  763. slab_pad_check(s, page);
  764. return 1;
  765. }
  766. /*
  767. * Determine if a certain object on a page is on the freelist. Must hold the
  768. * slab lock to guarantee that the chains are in a consistent state.
  769. */
  770. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  771. {
  772. int nr = 0;
  773. void *fp;
  774. void *object = NULL;
  775. int max_objects;
  776. fp = page->freelist;
  777. while (fp && nr <= page->objects) {
  778. if (fp == search)
  779. return 1;
  780. if (!check_valid_pointer(s, page, fp)) {
  781. if (object) {
  782. object_err(s, page, object,
  783. "Freechain corrupt");
  784. set_freepointer(s, object, NULL);
  785. } else {
  786. slab_err(s, page, "Freepointer corrupt");
  787. page->freelist = NULL;
  788. page->inuse = page->objects;
  789. slab_fix(s, "Freelist cleared");
  790. return 0;
  791. }
  792. break;
  793. }
  794. object = fp;
  795. fp = get_freepointer(s, object);
  796. nr++;
  797. }
  798. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  799. if (max_objects > MAX_OBJS_PER_PAGE)
  800. max_objects = MAX_OBJS_PER_PAGE;
  801. if (page->objects != max_objects) {
  802. slab_err(s, page, "Wrong number of objects. Found %d but "
  803. "should be %d", page->objects, max_objects);
  804. page->objects = max_objects;
  805. slab_fix(s, "Number of objects adjusted.");
  806. }
  807. if (page->inuse != page->objects - nr) {
  808. slab_err(s, page, "Wrong object count. Counter is %d but "
  809. "counted were %d", page->inuse, page->objects - nr);
  810. page->inuse = page->objects - nr;
  811. slab_fix(s, "Object count adjusted.");
  812. }
  813. return search == NULL;
  814. }
  815. static void trace(struct kmem_cache *s, struct page *page, void *object,
  816. int alloc)
  817. {
  818. if (s->flags & SLAB_TRACE) {
  819. pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  820. s->name,
  821. alloc ? "alloc" : "free",
  822. object, page->inuse,
  823. page->freelist);
  824. if (!alloc)
  825. print_section("Object ", (void *)object,
  826. s->object_size);
  827. dump_stack();
  828. }
  829. }
  830. /*
  831. * Tracking of fully allocated slabs for debugging purposes.
  832. */
  833. static void add_full(struct kmem_cache *s,
  834. struct kmem_cache_node *n, struct page *page)
  835. {
  836. if (!(s->flags & SLAB_STORE_USER))
  837. return;
  838. lockdep_assert_held(&n->list_lock);
  839. list_add(&page->lru, &n->full);
  840. }
  841. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  842. {
  843. if (!(s->flags & SLAB_STORE_USER))
  844. return;
  845. lockdep_assert_held(&n->list_lock);
  846. list_del(&page->lru);
  847. }
  848. /* Tracking of the number of slabs for debugging purposes */
  849. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  850. {
  851. struct kmem_cache_node *n = get_node(s, node);
  852. return atomic_long_read(&n->nr_slabs);
  853. }
  854. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  855. {
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  859. {
  860. struct kmem_cache_node *n = get_node(s, node);
  861. /*
  862. * May be called early in order to allocate a slab for the
  863. * kmem_cache_node structure. Solve the chicken-egg
  864. * dilemma by deferring the increment of the count during
  865. * bootstrap (see early_kmem_cache_node_alloc).
  866. */
  867. if (likely(n)) {
  868. atomic_long_inc(&n->nr_slabs);
  869. atomic_long_add(objects, &n->total_objects);
  870. }
  871. }
  872. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  873. {
  874. struct kmem_cache_node *n = get_node(s, node);
  875. atomic_long_dec(&n->nr_slabs);
  876. atomic_long_sub(objects, &n->total_objects);
  877. }
  878. /* Object debug checks for alloc/free paths */
  879. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  880. void *object)
  881. {
  882. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  883. return;
  884. init_object(s, object, SLUB_RED_INACTIVE);
  885. init_tracking(s, object);
  886. }
  887. static noinline int alloc_debug_processing(struct kmem_cache *s,
  888. struct page *page,
  889. void *object, unsigned long addr)
  890. {
  891. if (!check_slab(s, page))
  892. goto bad;
  893. if (!check_valid_pointer(s, page, object)) {
  894. object_err(s, page, object, "Freelist Pointer check fails");
  895. goto bad;
  896. }
  897. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  898. goto bad;
  899. /* Success perform special debug activities for allocs */
  900. if (s->flags & SLAB_STORE_USER)
  901. set_track(s, object, TRACK_ALLOC, addr);
  902. trace(s, page, object, 1);
  903. init_object(s, object, SLUB_RED_ACTIVE);
  904. return 1;
  905. bad:
  906. if (PageSlab(page)) {
  907. /*
  908. * If this is a slab page then lets do the best we can
  909. * to avoid issues in the future. Marking all objects
  910. * as used avoids touching the remaining objects.
  911. */
  912. slab_fix(s, "Marking all objects used");
  913. page->inuse = page->objects;
  914. page->freelist = NULL;
  915. }
  916. return 0;
  917. }
  918. static noinline struct kmem_cache_node *free_debug_processing(
  919. struct kmem_cache *s, struct page *page, void *object,
  920. unsigned long addr, unsigned long *flags)
  921. {
  922. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  923. spin_lock_irqsave(&n->list_lock, *flags);
  924. slab_lock(page);
  925. if (!check_slab(s, page))
  926. goto fail;
  927. if (!check_valid_pointer(s, page, object)) {
  928. slab_err(s, page, "Invalid object pointer 0x%p", object);
  929. goto fail;
  930. }
  931. if (on_freelist(s, page, object)) {
  932. object_err(s, page, object, "Object already free");
  933. goto fail;
  934. }
  935. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  936. goto out;
  937. if (unlikely(s != page->slab_cache)) {
  938. if (!PageSlab(page)) {
  939. slab_err(s, page, "Attempt to free object(0x%p) "
  940. "outside of slab", object);
  941. } else if (!page->slab_cache) {
  942. pr_err("SLUB <none>: no slab for object 0x%p.\n",
  943. object);
  944. dump_stack();
  945. } else
  946. object_err(s, page, object,
  947. "page slab pointer corrupt.");
  948. goto fail;
  949. }
  950. if (s->flags & SLAB_STORE_USER)
  951. set_track(s, object, TRACK_FREE, addr);
  952. trace(s, page, object, 0);
  953. init_object(s, object, SLUB_RED_INACTIVE);
  954. out:
  955. slab_unlock(page);
  956. /*
  957. * Keep node_lock to preserve integrity
  958. * until the object is actually freed
  959. */
  960. return n;
  961. fail:
  962. slab_unlock(page);
  963. spin_unlock_irqrestore(&n->list_lock, *flags);
  964. slab_fix(s, "Object at 0x%p not freed", object);
  965. return NULL;
  966. }
  967. static int __init setup_slub_debug(char *str)
  968. {
  969. slub_debug = DEBUG_DEFAULT_FLAGS;
  970. if (*str++ != '=' || !*str)
  971. /*
  972. * No options specified. Switch on full debugging.
  973. */
  974. goto out;
  975. if (*str == ',')
  976. /*
  977. * No options but restriction on slabs. This means full
  978. * debugging for slabs matching a pattern.
  979. */
  980. goto check_slabs;
  981. slub_debug = 0;
  982. if (*str == '-')
  983. /*
  984. * Switch off all debugging measures.
  985. */
  986. goto out;
  987. /*
  988. * Determine which debug features should be switched on
  989. */
  990. for (; *str && *str != ','; str++) {
  991. switch (tolower(*str)) {
  992. case 'f':
  993. slub_debug |= SLAB_DEBUG_FREE;
  994. break;
  995. case 'z':
  996. slub_debug |= SLAB_RED_ZONE;
  997. break;
  998. case 'p':
  999. slub_debug |= SLAB_POISON;
  1000. break;
  1001. case 'u':
  1002. slub_debug |= SLAB_STORE_USER;
  1003. break;
  1004. case 't':
  1005. slub_debug |= SLAB_TRACE;
  1006. break;
  1007. case 'a':
  1008. slub_debug |= SLAB_FAILSLAB;
  1009. break;
  1010. case 'o':
  1011. /*
  1012. * Avoid enabling debugging on caches if its minimum
  1013. * order would increase as a result.
  1014. */
  1015. disable_higher_order_debug = 1;
  1016. break;
  1017. default:
  1018. pr_err("slub_debug option '%c' unknown. skipped\n",
  1019. *str);
  1020. }
  1021. }
  1022. check_slabs:
  1023. if (*str == ',')
  1024. slub_debug_slabs = str + 1;
  1025. out:
  1026. return 1;
  1027. }
  1028. __setup("slub_debug", setup_slub_debug);
  1029. unsigned long kmem_cache_flags(unsigned long object_size,
  1030. unsigned long flags, const char *name,
  1031. void (*ctor)(void *))
  1032. {
  1033. /*
  1034. * Enable debugging if selected on the kernel commandline.
  1035. */
  1036. if (slub_debug && (!slub_debug_slabs || (name &&
  1037. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1038. flags |= slub_debug;
  1039. return flags;
  1040. }
  1041. #else
  1042. static inline void setup_object_debug(struct kmem_cache *s,
  1043. struct page *page, void *object) {}
  1044. static inline int alloc_debug_processing(struct kmem_cache *s,
  1045. struct page *page, void *object, unsigned long addr) { return 0; }
  1046. static inline struct kmem_cache_node *free_debug_processing(
  1047. struct kmem_cache *s, struct page *page, void *object,
  1048. unsigned long addr, unsigned long *flags) { return NULL; }
  1049. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1050. { return 1; }
  1051. static inline int check_object(struct kmem_cache *s, struct page *page,
  1052. void *object, u8 val) { return 1; }
  1053. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1054. struct page *page) {}
  1055. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1056. struct page *page) {}
  1057. unsigned long kmem_cache_flags(unsigned long object_size,
  1058. unsigned long flags, const char *name,
  1059. void (*ctor)(void *))
  1060. {
  1061. return flags;
  1062. }
  1063. #define slub_debug 0
  1064. #define disable_higher_order_debug 0
  1065. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1066. { return 0; }
  1067. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1068. { return 0; }
  1069. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1070. int objects) {}
  1071. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1072. int objects) {}
  1073. #endif /* CONFIG_SLUB_DEBUG */
  1074. /*
  1075. * Hooks for other subsystems that check memory allocations. In a typical
  1076. * production configuration these hooks all should produce no code at all.
  1077. */
  1078. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1079. {
  1080. kmemleak_alloc(ptr, size, 1, flags);
  1081. kasan_kmalloc_large(ptr, size);
  1082. }
  1083. static inline void kfree_hook(const void *x)
  1084. {
  1085. kmemleak_free(x);
  1086. kasan_kfree_large(x);
  1087. }
  1088. static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
  1089. gfp_t flags)
  1090. {
  1091. flags &= gfp_allowed_mask;
  1092. lockdep_trace_alloc(flags);
  1093. might_sleep_if(flags & __GFP_WAIT);
  1094. if (should_failslab(s->object_size, flags, s->flags))
  1095. return NULL;
  1096. return memcg_kmem_get_cache(s, flags);
  1097. }
  1098. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  1099. gfp_t flags, void *object)
  1100. {
  1101. flags &= gfp_allowed_mask;
  1102. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  1103. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  1104. memcg_kmem_put_cache(s);
  1105. kasan_slab_alloc(s, object);
  1106. }
  1107. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1108. {
  1109. kmemleak_free_recursive(x, s->flags);
  1110. /*
  1111. * Trouble is that we may no longer disable interrupts in the fast path
  1112. * So in order to make the debug calls that expect irqs to be
  1113. * disabled we need to disable interrupts temporarily.
  1114. */
  1115. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  1116. {
  1117. unsigned long flags;
  1118. local_irq_save(flags);
  1119. kmemcheck_slab_free(s, x, s->object_size);
  1120. debug_check_no_locks_freed(x, s->object_size);
  1121. local_irq_restore(flags);
  1122. }
  1123. #endif
  1124. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1125. debug_check_no_obj_freed(x, s->object_size);
  1126. kasan_slab_free(s, x);
  1127. }
  1128. /*
  1129. * Slab allocation and freeing
  1130. */
  1131. static inline struct page *alloc_slab_page(struct kmem_cache *s,
  1132. gfp_t flags, int node, struct kmem_cache_order_objects oo)
  1133. {
  1134. struct page *page;
  1135. int order = oo_order(oo);
  1136. flags |= __GFP_NOTRACK;
  1137. if (memcg_charge_slab(s, flags, order))
  1138. return NULL;
  1139. if (node == NUMA_NO_NODE)
  1140. page = alloc_pages(flags, order);
  1141. else
  1142. page = alloc_pages_exact_node(node, flags, order);
  1143. if (!page)
  1144. memcg_uncharge_slab(s, order);
  1145. return page;
  1146. }
  1147. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1148. {
  1149. struct page *page;
  1150. struct kmem_cache_order_objects oo = s->oo;
  1151. gfp_t alloc_gfp;
  1152. flags &= gfp_allowed_mask;
  1153. if (flags & __GFP_WAIT)
  1154. local_irq_enable();
  1155. flags |= s->allocflags;
  1156. /*
  1157. * Let the initial higher-order allocation fail under memory pressure
  1158. * so we fall-back to the minimum order allocation.
  1159. */
  1160. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1161. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1162. if (unlikely(!page)) {
  1163. oo = s->min;
  1164. alloc_gfp = flags;
  1165. /*
  1166. * Allocation may have failed due to fragmentation.
  1167. * Try a lower order alloc if possible
  1168. */
  1169. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1170. if (page)
  1171. stat(s, ORDER_FALLBACK);
  1172. }
  1173. if (kmemcheck_enabled && page
  1174. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1175. int pages = 1 << oo_order(oo);
  1176. kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
  1177. /*
  1178. * Objects from caches that have a constructor don't get
  1179. * cleared when they're allocated, so we need to do it here.
  1180. */
  1181. if (s->ctor)
  1182. kmemcheck_mark_uninitialized_pages(page, pages);
  1183. else
  1184. kmemcheck_mark_unallocated_pages(page, pages);
  1185. }
  1186. if (flags & __GFP_WAIT)
  1187. local_irq_disable();
  1188. if (!page)
  1189. return NULL;
  1190. page->objects = oo_objects(oo);
  1191. mod_zone_page_state(page_zone(page),
  1192. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1193. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1194. 1 << oo_order(oo));
  1195. return page;
  1196. }
  1197. static void setup_object(struct kmem_cache *s, struct page *page,
  1198. void *object)
  1199. {
  1200. setup_object_debug(s, page, object);
  1201. if (unlikely(s->ctor)) {
  1202. kasan_unpoison_object_data(s, object);
  1203. s->ctor(object);
  1204. kasan_poison_object_data(s, object);
  1205. }
  1206. }
  1207. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1208. {
  1209. struct page *page;
  1210. void *start;
  1211. void *p;
  1212. int order;
  1213. int idx;
  1214. if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
  1215. pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
  1216. BUG();
  1217. }
  1218. page = allocate_slab(s,
  1219. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1220. if (!page)
  1221. goto out;
  1222. order = compound_order(page);
  1223. inc_slabs_node(s, page_to_nid(page), page->objects);
  1224. page->slab_cache = s;
  1225. __SetPageSlab(page);
  1226. if (page->pfmemalloc)
  1227. SetPageSlabPfmemalloc(page);
  1228. start = page_address(page);
  1229. if (unlikely(s->flags & SLAB_POISON))
  1230. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1231. kasan_poison_slab(page);
  1232. for_each_object_idx(p, idx, s, start, page->objects) {
  1233. setup_object(s, page, p);
  1234. if (likely(idx < page->objects))
  1235. set_freepointer(s, p, p + s->size);
  1236. else
  1237. set_freepointer(s, p, NULL);
  1238. }
  1239. page->freelist = start;
  1240. page->inuse = page->objects;
  1241. page->frozen = 1;
  1242. out:
  1243. return page;
  1244. }
  1245. static void __free_slab(struct kmem_cache *s, struct page *page)
  1246. {
  1247. int order = compound_order(page);
  1248. int pages = 1 << order;
  1249. if (kmem_cache_debug(s)) {
  1250. void *p;
  1251. slab_pad_check(s, page);
  1252. for_each_object(p, s, page_address(page),
  1253. page->objects)
  1254. check_object(s, page, p, SLUB_RED_INACTIVE);
  1255. }
  1256. kmemcheck_free_shadow(page, compound_order(page));
  1257. mod_zone_page_state(page_zone(page),
  1258. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1259. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1260. -pages);
  1261. __ClearPageSlabPfmemalloc(page);
  1262. __ClearPageSlab(page);
  1263. page_mapcount_reset(page);
  1264. if (current->reclaim_state)
  1265. current->reclaim_state->reclaimed_slab += pages;
  1266. __free_pages(page, order);
  1267. memcg_uncharge_slab(s, order);
  1268. }
  1269. #define need_reserve_slab_rcu \
  1270. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1271. static void rcu_free_slab(struct rcu_head *h)
  1272. {
  1273. struct page *page;
  1274. if (need_reserve_slab_rcu)
  1275. page = virt_to_head_page(h);
  1276. else
  1277. page = container_of((struct list_head *)h, struct page, lru);
  1278. __free_slab(page->slab_cache, page);
  1279. }
  1280. static void free_slab(struct kmem_cache *s, struct page *page)
  1281. {
  1282. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1283. struct rcu_head *head;
  1284. if (need_reserve_slab_rcu) {
  1285. int order = compound_order(page);
  1286. int offset = (PAGE_SIZE << order) - s->reserved;
  1287. VM_BUG_ON(s->reserved != sizeof(*head));
  1288. head = page_address(page) + offset;
  1289. } else {
  1290. /*
  1291. * RCU free overloads the RCU head over the LRU
  1292. */
  1293. head = (void *)&page->lru;
  1294. }
  1295. call_rcu(head, rcu_free_slab);
  1296. } else
  1297. __free_slab(s, page);
  1298. }
  1299. static void discard_slab(struct kmem_cache *s, struct page *page)
  1300. {
  1301. dec_slabs_node(s, page_to_nid(page), page->objects);
  1302. free_slab(s, page);
  1303. }
  1304. /*
  1305. * Management of partially allocated slabs.
  1306. */
  1307. static inline void
  1308. __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
  1309. {
  1310. n->nr_partial++;
  1311. if (tail == DEACTIVATE_TO_TAIL)
  1312. list_add_tail(&page->lru, &n->partial);
  1313. else
  1314. list_add(&page->lru, &n->partial);
  1315. }
  1316. static inline void add_partial(struct kmem_cache_node *n,
  1317. struct page *page, int tail)
  1318. {
  1319. lockdep_assert_held(&n->list_lock);
  1320. __add_partial(n, page, tail);
  1321. }
  1322. static inline void
  1323. __remove_partial(struct kmem_cache_node *n, struct page *page)
  1324. {
  1325. list_del(&page->lru);
  1326. n->nr_partial--;
  1327. }
  1328. static inline void remove_partial(struct kmem_cache_node *n,
  1329. struct page *page)
  1330. {
  1331. lockdep_assert_held(&n->list_lock);
  1332. __remove_partial(n, page);
  1333. }
  1334. /*
  1335. * Remove slab from the partial list, freeze it and
  1336. * return the pointer to the freelist.
  1337. *
  1338. * Returns a list of objects or NULL if it fails.
  1339. */
  1340. static inline void *acquire_slab(struct kmem_cache *s,
  1341. struct kmem_cache_node *n, struct page *page,
  1342. int mode, int *objects)
  1343. {
  1344. void *freelist;
  1345. unsigned long counters;
  1346. struct page new;
  1347. lockdep_assert_held(&n->list_lock);
  1348. /*
  1349. * Zap the freelist and set the frozen bit.
  1350. * The old freelist is the list of objects for the
  1351. * per cpu allocation list.
  1352. */
  1353. freelist = page->freelist;
  1354. counters = page->counters;
  1355. new.counters = counters;
  1356. *objects = new.objects - new.inuse;
  1357. if (mode) {
  1358. new.inuse = page->objects;
  1359. new.freelist = NULL;
  1360. } else {
  1361. new.freelist = freelist;
  1362. }
  1363. VM_BUG_ON(new.frozen);
  1364. new.frozen = 1;
  1365. if (!__cmpxchg_double_slab(s, page,
  1366. freelist, counters,
  1367. new.freelist, new.counters,
  1368. "acquire_slab"))
  1369. return NULL;
  1370. remove_partial(n, page);
  1371. WARN_ON(!freelist);
  1372. return freelist;
  1373. }
  1374. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1375. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1376. /*
  1377. * Try to allocate a partial slab from a specific node.
  1378. */
  1379. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1380. struct kmem_cache_cpu *c, gfp_t flags)
  1381. {
  1382. struct page *page, *page2;
  1383. void *object = NULL;
  1384. int available = 0;
  1385. int objects;
  1386. /*
  1387. * Racy check. If we mistakenly see no partial slabs then we
  1388. * just allocate an empty slab. If we mistakenly try to get a
  1389. * partial slab and there is none available then get_partials()
  1390. * will return NULL.
  1391. */
  1392. if (!n || !n->nr_partial)
  1393. return NULL;
  1394. spin_lock(&n->list_lock);
  1395. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1396. void *t;
  1397. if (!pfmemalloc_match(page, flags))
  1398. continue;
  1399. t = acquire_slab(s, n, page, object == NULL, &objects);
  1400. if (!t)
  1401. break;
  1402. available += objects;
  1403. if (!object) {
  1404. c->page = page;
  1405. stat(s, ALLOC_FROM_PARTIAL);
  1406. object = t;
  1407. } else {
  1408. put_cpu_partial(s, page, 0);
  1409. stat(s, CPU_PARTIAL_NODE);
  1410. }
  1411. if (!kmem_cache_has_cpu_partial(s)
  1412. || available > s->cpu_partial / 2)
  1413. break;
  1414. }
  1415. spin_unlock(&n->list_lock);
  1416. return object;
  1417. }
  1418. /*
  1419. * Get a page from somewhere. Search in increasing NUMA distances.
  1420. */
  1421. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1422. struct kmem_cache_cpu *c)
  1423. {
  1424. #ifdef CONFIG_NUMA
  1425. struct zonelist *zonelist;
  1426. struct zoneref *z;
  1427. struct zone *zone;
  1428. enum zone_type high_zoneidx = gfp_zone(flags);
  1429. void *object;
  1430. unsigned int cpuset_mems_cookie;
  1431. /*
  1432. * The defrag ratio allows a configuration of the tradeoffs between
  1433. * inter node defragmentation and node local allocations. A lower
  1434. * defrag_ratio increases the tendency to do local allocations
  1435. * instead of attempting to obtain partial slabs from other nodes.
  1436. *
  1437. * If the defrag_ratio is set to 0 then kmalloc() always
  1438. * returns node local objects. If the ratio is higher then kmalloc()
  1439. * may return off node objects because partial slabs are obtained
  1440. * from other nodes and filled up.
  1441. *
  1442. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1443. * defrag_ratio = 1000) then every (well almost) allocation will
  1444. * first attempt to defrag slab caches on other nodes. This means
  1445. * scanning over all nodes to look for partial slabs which may be
  1446. * expensive if we do it every time we are trying to find a slab
  1447. * with available objects.
  1448. */
  1449. if (!s->remote_node_defrag_ratio ||
  1450. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1451. return NULL;
  1452. do {
  1453. cpuset_mems_cookie = read_mems_allowed_begin();
  1454. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  1455. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1456. struct kmem_cache_node *n;
  1457. n = get_node(s, zone_to_nid(zone));
  1458. if (n && cpuset_zone_allowed(zone, flags) &&
  1459. n->nr_partial > s->min_partial) {
  1460. object = get_partial_node(s, n, c, flags);
  1461. if (object) {
  1462. /*
  1463. * Don't check read_mems_allowed_retry()
  1464. * here - if mems_allowed was updated in
  1465. * parallel, that was a harmless race
  1466. * between allocation and the cpuset
  1467. * update
  1468. */
  1469. return object;
  1470. }
  1471. }
  1472. }
  1473. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1474. #endif
  1475. return NULL;
  1476. }
  1477. /*
  1478. * Get a partial page, lock it and return it.
  1479. */
  1480. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1481. struct kmem_cache_cpu *c)
  1482. {
  1483. void *object;
  1484. int searchnode = node;
  1485. if (node == NUMA_NO_NODE)
  1486. searchnode = numa_mem_id();
  1487. else if (!node_present_pages(node))
  1488. searchnode = node_to_mem_node(node);
  1489. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1490. if (object || node != NUMA_NO_NODE)
  1491. return object;
  1492. return get_any_partial(s, flags, c);
  1493. }
  1494. #ifdef CONFIG_PREEMPT
  1495. /*
  1496. * Calculate the next globally unique transaction for disambiguiation
  1497. * during cmpxchg. The transactions start with the cpu number and are then
  1498. * incremented by CONFIG_NR_CPUS.
  1499. */
  1500. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1501. #else
  1502. /*
  1503. * No preemption supported therefore also no need to check for
  1504. * different cpus.
  1505. */
  1506. #define TID_STEP 1
  1507. #endif
  1508. static inline unsigned long next_tid(unsigned long tid)
  1509. {
  1510. return tid + TID_STEP;
  1511. }
  1512. static inline unsigned int tid_to_cpu(unsigned long tid)
  1513. {
  1514. return tid % TID_STEP;
  1515. }
  1516. static inline unsigned long tid_to_event(unsigned long tid)
  1517. {
  1518. return tid / TID_STEP;
  1519. }
  1520. static inline unsigned int init_tid(int cpu)
  1521. {
  1522. return cpu;
  1523. }
  1524. static inline void note_cmpxchg_failure(const char *n,
  1525. const struct kmem_cache *s, unsigned long tid)
  1526. {
  1527. #ifdef SLUB_DEBUG_CMPXCHG
  1528. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1529. pr_info("%s %s: cmpxchg redo ", n, s->name);
  1530. #ifdef CONFIG_PREEMPT
  1531. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1532. pr_warn("due to cpu change %d -> %d\n",
  1533. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1534. else
  1535. #endif
  1536. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1537. pr_warn("due to cpu running other code. Event %ld->%ld\n",
  1538. tid_to_event(tid), tid_to_event(actual_tid));
  1539. else
  1540. pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1541. actual_tid, tid, next_tid(tid));
  1542. #endif
  1543. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1544. }
  1545. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1546. {
  1547. int cpu;
  1548. for_each_possible_cpu(cpu)
  1549. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1550. }
  1551. /*
  1552. * Remove the cpu slab
  1553. */
  1554. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1555. void *freelist)
  1556. {
  1557. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1558. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1559. int lock = 0;
  1560. enum slab_modes l = M_NONE, m = M_NONE;
  1561. void *nextfree;
  1562. int tail = DEACTIVATE_TO_HEAD;
  1563. struct page new;
  1564. struct page old;
  1565. if (page->freelist) {
  1566. stat(s, DEACTIVATE_REMOTE_FREES);
  1567. tail = DEACTIVATE_TO_TAIL;
  1568. }
  1569. /*
  1570. * Stage one: Free all available per cpu objects back
  1571. * to the page freelist while it is still frozen. Leave the
  1572. * last one.
  1573. *
  1574. * There is no need to take the list->lock because the page
  1575. * is still frozen.
  1576. */
  1577. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1578. void *prior;
  1579. unsigned long counters;
  1580. do {
  1581. prior = page->freelist;
  1582. counters = page->counters;
  1583. set_freepointer(s, freelist, prior);
  1584. new.counters = counters;
  1585. new.inuse--;
  1586. VM_BUG_ON(!new.frozen);
  1587. } while (!__cmpxchg_double_slab(s, page,
  1588. prior, counters,
  1589. freelist, new.counters,
  1590. "drain percpu freelist"));
  1591. freelist = nextfree;
  1592. }
  1593. /*
  1594. * Stage two: Ensure that the page is unfrozen while the
  1595. * list presence reflects the actual number of objects
  1596. * during unfreeze.
  1597. *
  1598. * We setup the list membership and then perform a cmpxchg
  1599. * with the count. If there is a mismatch then the page
  1600. * is not unfrozen but the page is on the wrong list.
  1601. *
  1602. * Then we restart the process which may have to remove
  1603. * the page from the list that we just put it on again
  1604. * because the number of objects in the slab may have
  1605. * changed.
  1606. */
  1607. redo:
  1608. old.freelist = page->freelist;
  1609. old.counters = page->counters;
  1610. VM_BUG_ON(!old.frozen);
  1611. /* Determine target state of the slab */
  1612. new.counters = old.counters;
  1613. if (freelist) {
  1614. new.inuse--;
  1615. set_freepointer(s, freelist, old.freelist);
  1616. new.freelist = freelist;
  1617. } else
  1618. new.freelist = old.freelist;
  1619. new.frozen = 0;
  1620. if (!new.inuse && n->nr_partial >= s->min_partial)
  1621. m = M_FREE;
  1622. else if (new.freelist) {
  1623. m = M_PARTIAL;
  1624. if (!lock) {
  1625. lock = 1;
  1626. /*
  1627. * Taking the spinlock removes the possiblity
  1628. * that acquire_slab() will see a slab page that
  1629. * is frozen
  1630. */
  1631. spin_lock(&n->list_lock);
  1632. }
  1633. } else {
  1634. m = M_FULL;
  1635. if (kmem_cache_debug(s) && !lock) {
  1636. lock = 1;
  1637. /*
  1638. * This also ensures that the scanning of full
  1639. * slabs from diagnostic functions will not see
  1640. * any frozen slabs.
  1641. */
  1642. spin_lock(&n->list_lock);
  1643. }
  1644. }
  1645. if (l != m) {
  1646. if (l == M_PARTIAL)
  1647. remove_partial(n, page);
  1648. else if (l == M_FULL)
  1649. remove_full(s, n, page);
  1650. if (m == M_PARTIAL) {
  1651. add_partial(n, page, tail);
  1652. stat(s, tail);
  1653. } else if (m == M_FULL) {
  1654. stat(s, DEACTIVATE_FULL);
  1655. add_full(s, n, page);
  1656. }
  1657. }
  1658. l = m;
  1659. if (!__cmpxchg_double_slab(s, page,
  1660. old.freelist, old.counters,
  1661. new.freelist, new.counters,
  1662. "unfreezing slab"))
  1663. goto redo;
  1664. if (lock)
  1665. spin_unlock(&n->list_lock);
  1666. if (m == M_FREE) {
  1667. stat(s, DEACTIVATE_EMPTY);
  1668. discard_slab(s, page);
  1669. stat(s, FREE_SLAB);
  1670. }
  1671. }
  1672. /*
  1673. * Unfreeze all the cpu partial slabs.
  1674. *
  1675. * This function must be called with interrupts disabled
  1676. * for the cpu using c (or some other guarantee must be there
  1677. * to guarantee no concurrent accesses).
  1678. */
  1679. static void unfreeze_partials(struct kmem_cache *s,
  1680. struct kmem_cache_cpu *c)
  1681. {
  1682. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1683. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1684. struct page *page, *discard_page = NULL;
  1685. while ((page = c->partial)) {
  1686. struct page new;
  1687. struct page old;
  1688. c->partial = page->next;
  1689. n2 = get_node(s, page_to_nid(page));
  1690. if (n != n2) {
  1691. if (n)
  1692. spin_unlock(&n->list_lock);
  1693. n = n2;
  1694. spin_lock(&n->list_lock);
  1695. }
  1696. do {
  1697. old.freelist = page->freelist;
  1698. old.counters = page->counters;
  1699. VM_BUG_ON(!old.frozen);
  1700. new.counters = old.counters;
  1701. new.freelist = old.freelist;
  1702. new.frozen = 0;
  1703. } while (!__cmpxchg_double_slab(s, page,
  1704. old.freelist, old.counters,
  1705. new.freelist, new.counters,
  1706. "unfreezing slab"));
  1707. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
  1708. page->next = discard_page;
  1709. discard_page = page;
  1710. } else {
  1711. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1712. stat(s, FREE_ADD_PARTIAL);
  1713. }
  1714. }
  1715. if (n)
  1716. spin_unlock(&n->list_lock);
  1717. while (discard_page) {
  1718. page = discard_page;
  1719. discard_page = discard_page->next;
  1720. stat(s, DEACTIVATE_EMPTY);
  1721. discard_slab(s, page);
  1722. stat(s, FREE_SLAB);
  1723. }
  1724. #endif
  1725. }
  1726. /*
  1727. * Put a page that was just frozen (in __slab_free) into a partial page
  1728. * slot if available. This is done without interrupts disabled and without
  1729. * preemption disabled. The cmpxchg is racy and may put the partial page
  1730. * onto a random cpus partial slot.
  1731. *
  1732. * If we did not find a slot then simply move all the partials to the
  1733. * per node partial list.
  1734. */
  1735. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1736. {
  1737. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1738. struct page *oldpage;
  1739. int pages;
  1740. int pobjects;
  1741. preempt_disable();
  1742. do {
  1743. pages = 0;
  1744. pobjects = 0;
  1745. oldpage = this_cpu_read(s->cpu_slab->partial);
  1746. if (oldpage) {
  1747. pobjects = oldpage->pobjects;
  1748. pages = oldpage->pages;
  1749. if (drain && pobjects > s->cpu_partial) {
  1750. unsigned long flags;
  1751. /*
  1752. * partial array is full. Move the existing
  1753. * set to the per node partial list.
  1754. */
  1755. local_irq_save(flags);
  1756. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1757. local_irq_restore(flags);
  1758. oldpage = NULL;
  1759. pobjects = 0;
  1760. pages = 0;
  1761. stat(s, CPU_PARTIAL_DRAIN);
  1762. }
  1763. }
  1764. pages++;
  1765. pobjects += page->objects - page->inuse;
  1766. page->pages = pages;
  1767. page->pobjects = pobjects;
  1768. page->next = oldpage;
  1769. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1770. != oldpage);
  1771. if (unlikely(!s->cpu_partial)) {
  1772. unsigned long flags;
  1773. local_irq_save(flags);
  1774. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1775. local_irq_restore(flags);
  1776. }
  1777. preempt_enable();
  1778. #endif
  1779. }
  1780. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1781. {
  1782. stat(s, CPUSLAB_FLUSH);
  1783. deactivate_slab(s, c->page, c->freelist);
  1784. c->tid = next_tid(c->tid);
  1785. c->page = NULL;
  1786. c->freelist = NULL;
  1787. }
  1788. /*
  1789. * Flush cpu slab.
  1790. *
  1791. * Called from IPI handler with interrupts disabled.
  1792. */
  1793. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1794. {
  1795. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1796. if (likely(c)) {
  1797. if (c->page)
  1798. flush_slab(s, c);
  1799. unfreeze_partials(s, c);
  1800. }
  1801. }
  1802. static void flush_cpu_slab(void *d)
  1803. {
  1804. struct kmem_cache *s = d;
  1805. __flush_cpu_slab(s, smp_processor_id());
  1806. }
  1807. static bool has_cpu_slab(int cpu, void *info)
  1808. {
  1809. struct kmem_cache *s = info;
  1810. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1811. return c->page || c->partial;
  1812. }
  1813. static void flush_all(struct kmem_cache *s)
  1814. {
  1815. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1816. }
  1817. /*
  1818. * Check if the objects in a per cpu structure fit numa
  1819. * locality expectations.
  1820. */
  1821. static inline int node_match(struct page *page, int node)
  1822. {
  1823. #ifdef CONFIG_NUMA
  1824. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1825. return 0;
  1826. #endif
  1827. return 1;
  1828. }
  1829. #ifdef CONFIG_SLUB_DEBUG
  1830. static int count_free(struct page *page)
  1831. {
  1832. return page->objects - page->inuse;
  1833. }
  1834. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1835. {
  1836. return atomic_long_read(&n->total_objects);
  1837. }
  1838. #endif /* CONFIG_SLUB_DEBUG */
  1839. #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
  1840. static unsigned long count_partial(struct kmem_cache_node *n,
  1841. int (*get_count)(struct page *))
  1842. {
  1843. unsigned long flags;
  1844. unsigned long x = 0;
  1845. struct page *page;
  1846. spin_lock_irqsave(&n->list_lock, flags);
  1847. list_for_each_entry(page, &n->partial, lru)
  1848. x += get_count(page);
  1849. spin_unlock_irqrestore(&n->list_lock, flags);
  1850. return x;
  1851. }
  1852. #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
  1853. static noinline void
  1854. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1855. {
  1856. #ifdef CONFIG_SLUB_DEBUG
  1857. static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1858. DEFAULT_RATELIMIT_BURST);
  1859. int node;
  1860. struct kmem_cache_node *n;
  1861. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
  1862. return;
  1863. pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1864. nid, gfpflags);
  1865. pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
  1866. s->name, s->object_size, s->size, oo_order(s->oo),
  1867. oo_order(s->min));
  1868. if (oo_order(s->min) > get_order(s->object_size))
  1869. pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
  1870. s->name);
  1871. for_each_kmem_cache_node(s, node, n) {
  1872. unsigned long nr_slabs;
  1873. unsigned long nr_objs;
  1874. unsigned long nr_free;
  1875. nr_free = count_partial(n, count_free);
  1876. nr_slabs = node_nr_slabs(n);
  1877. nr_objs = node_nr_objs(n);
  1878. pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1879. node, nr_slabs, nr_objs, nr_free);
  1880. }
  1881. #endif
  1882. }
  1883. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1884. int node, struct kmem_cache_cpu **pc)
  1885. {
  1886. void *freelist;
  1887. struct kmem_cache_cpu *c = *pc;
  1888. struct page *page;
  1889. freelist = get_partial(s, flags, node, c);
  1890. if (freelist)
  1891. return freelist;
  1892. page = new_slab(s, flags, node);
  1893. if (page) {
  1894. c = raw_cpu_ptr(s->cpu_slab);
  1895. if (c->page)
  1896. flush_slab(s, c);
  1897. /*
  1898. * No other reference to the page yet so we can
  1899. * muck around with it freely without cmpxchg
  1900. */
  1901. freelist = page->freelist;
  1902. page->freelist = NULL;
  1903. stat(s, ALLOC_SLAB);
  1904. c->page = page;
  1905. *pc = c;
  1906. } else
  1907. freelist = NULL;
  1908. return freelist;
  1909. }
  1910. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1911. {
  1912. if (unlikely(PageSlabPfmemalloc(page)))
  1913. return gfp_pfmemalloc_allowed(gfpflags);
  1914. return true;
  1915. }
  1916. /*
  1917. * Check the page->freelist of a page and either transfer the freelist to the
  1918. * per cpu freelist or deactivate the page.
  1919. *
  1920. * The page is still frozen if the return value is not NULL.
  1921. *
  1922. * If this function returns NULL then the page has been unfrozen.
  1923. *
  1924. * This function must be called with interrupt disabled.
  1925. */
  1926. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1927. {
  1928. struct page new;
  1929. unsigned long counters;
  1930. void *freelist;
  1931. do {
  1932. freelist = page->freelist;
  1933. counters = page->counters;
  1934. new.counters = counters;
  1935. VM_BUG_ON(!new.frozen);
  1936. new.inuse = page->objects;
  1937. new.frozen = freelist != NULL;
  1938. } while (!__cmpxchg_double_slab(s, page,
  1939. freelist, counters,
  1940. NULL, new.counters,
  1941. "get_freelist"));
  1942. return freelist;
  1943. }
  1944. /*
  1945. * Slow path. The lockless freelist is empty or we need to perform
  1946. * debugging duties.
  1947. *
  1948. * Processing is still very fast if new objects have been freed to the
  1949. * regular freelist. In that case we simply take over the regular freelist
  1950. * as the lockless freelist and zap the regular freelist.
  1951. *
  1952. * If that is not working then we fall back to the partial lists. We take the
  1953. * first element of the freelist as the object to allocate now and move the
  1954. * rest of the freelist to the lockless freelist.
  1955. *
  1956. * And if we were unable to get a new slab from the partial slab lists then
  1957. * we need to allocate a new slab. This is the slowest path since it involves
  1958. * a call to the page allocator and the setup of a new slab.
  1959. */
  1960. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1961. unsigned long addr, struct kmem_cache_cpu *c)
  1962. {
  1963. void *freelist;
  1964. struct page *page;
  1965. unsigned long flags;
  1966. local_irq_save(flags);
  1967. #ifdef CONFIG_PREEMPT
  1968. /*
  1969. * We may have been preempted and rescheduled on a different
  1970. * cpu before disabling interrupts. Need to reload cpu area
  1971. * pointer.
  1972. */
  1973. c = this_cpu_ptr(s->cpu_slab);
  1974. #endif
  1975. page = c->page;
  1976. if (!page)
  1977. goto new_slab;
  1978. redo:
  1979. if (unlikely(!node_match(page, node))) {
  1980. int searchnode = node;
  1981. if (node != NUMA_NO_NODE && !node_present_pages(node))
  1982. searchnode = node_to_mem_node(node);
  1983. if (unlikely(!node_match(page, searchnode))) {
  1984. stat(s, ALLOC_NODE_MISMATCH);
  1985. deactivate_slab(s, page, c->freelist);
  1986. c->page = NULL;
  1987. c->freelist = NULL;
  1988. goto new_slab;
  1989. }
  1990. }
  1991. /*
  1992. * By rights, we should be searching for a slab page that was
  1993. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1994. * information when the page leaves the per-cpu allocator
  1995. */
  1996. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1997. deactivate_slab(s, page, c->freelist);
  1998. c->page = NULL;
  1999. c->freelist = NULL;
  2000. goto new_slab;
  2001. }
  2002. /* must check again c->freelist in case of cpu migration or IRQ */
  2003. freelist = c->freelist;
  2004. if (freelist)
  2005. goto load_freelist;
  2006. freelist = get_freelist(s, page);
  2007. if (!freelist) {
  2008. c->page = NULL;
  2009. stat(s, DEACTIVATE_BYPASS);
  2010. goto new_slab;
  2011. }
  2012. stat(s, ALLOC_REFILL);
  2013. load_freelist:
  2014. /*
  2015. * freelist is pointing to the list of objects to be used.
  2016. * page is pointing to the page from which the objects are obtained.
  2017. * That page must be frozen for per cpu allocations to work.
  2018. */
  2019. VM_BUG_ON(!c->page->frozen);
  2020. c->freelist = get_freepointer(s, freelist);
  2021. c->tid = next_tid(c->tid);
  2022. local_irq_restore(flags);
  2023. return freelist;
  2024. new_slab:
  2025. if (c->partial) {
  2026. page = c->page = c->partial;
  2027. c->partial = page->next;
  2028. stat(s, CPU_PARTIAL_ALLOC);
  2029. c->freelist = NULL;
  2030. goto redo;
  2031. }
  2032. freelist = new_slab_objects(s, gfpflags, node, &c);
  2033. if (unlikely(!freelist)) {
  2034. slab_out_of_memory(s, gfpflags, node);
  2035. local_irq_restore(flags);
  2036. return NULL;
  2037. }
  2038. page = c->page;
  2039. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  2040. goto load_freelist;
  2041. /* Only entered in the debug case */
  2042. if (kmem_cache_debug(s) &&
  2043. !alloc_debug_processing(s, page, freelist, addr))
  2044. goto new_slab; /* Slab failed checks. Next slab needed */
  2045. deactivate_slab(s, page, get_freepointer(s, freelist));
  2046. c->page = NULL;
  2047. c->freelist = NULL;
  2048. local_irq_restore(flags);
  2049. return freelist;
  2050. }
  2051. /*
  2052. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2053. * have the fastpath folded into their functions. So no function call
  2054. * overhead for requests that can be satisfied on the fastpath.
  2055. *
  2056. * The fastpath works by first checking if the lockless freelist can be used.
  2057. * If not then __slab_alloc is called for slow processing.
  2058. *
  2059. * Otherwise we can simply pick the next object from the lockless free list.
  2060. */
  2061. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2062. gfp_t gfpflags, int node, unsigned long addr)
  2063. {
  2064. void **object;
  2065. struct kmem_cache_cpu *c;
  2066. struct page *page;
  2067. unsigned long tid;
  2068. s = slab_pre_alloc_hook(s, gfpflags);
  2069. if (!s)
  2070. return NULL;
  2071. redo:
  2072. /*
  2073. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2074. * enabled. We may switch back and forth between cpus while
  2075. * reading from one cpu area. That does not matter as long
  2076. * as we end up on the original cpu again when doing the cmpxchg.
  2077. *
  2078. * We should guarantee that tid and kmem_cache are retrieved on
  2079. * the same cpu. It could be different if CONFIG_PREEMPT so we need
  2080. * to check if it is matched or not.
  2081. */
  2082. do {
  2083. tid = this_cpu_read(s->cpu_slab->tid);
  2084. c = raw_cpu_ptr(s->cpu_slab);
  2085. } while (IS_ENABLED(CONFIG_PREEMPT) &&
  2086. unlikely(tid != READ_ONCE(c->tid)));
  2087. /*
  2088. * Irqless object alloc/free algorithm used here depends on sequence
  2089. * of fetching cpu_slab's data. tid should be fetched before anything
  2090. * on c to guarantee that object and page associated with previous tid
  2091. * won't be used with current tid. If we fetch tid first, object and
  2092. * page could be one associated with next tid and our alloc/free
  2093. * request will be failed. In this case, we will retry. So, no problem.
  2094. */
  2095. barrier();
  2096. /*
  2097. * The transaction ids are globally unique per cpu and per operation on
  2098. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2099. * occurs on the right processor and that there was no operation on the
  2100. * linked list in between.
  2101. */
  2102. object = c->freelist;
  2103. page = c->page;
  2104. if (unlikely(!object || !node_match(page, node))) {
  2105. object = __slab_alloc(s, gfpflags, node, addr, c);
  2106. stat(s, ALLOC_SLOWPATH);
  2107. } else {
  2108. void *next_object = get_freepointer_safe(s, object);
  2109. /*
  2110. * The cmpxchg will only match if there was no additional
  2111. * operation and if we are on the right processor.
  2112. *
  2113. * The cmpxchg does the following atomically (without lock
  2114. * semantics!)
  2115. * 1. Relocate first pointer to the current per cpu area.
  2116. * 2. Verify that tid and freelist have not been changed
  2117. * 3. If they were not changed replace tid and freelist
  2118. *
  2119. * Since this is without lock semantics the protection is only
  2120. * against code executing on this cpu *not* from access by
  2121. * other cpus.
  2122. */
  2123. if (unlikely(!this_cpu_cmpxchg_double(
  2124. s->cpu_slab->freelist, s->cpu_slab->tid,
  2125. object, tid,
  2126. next_object, next_tid(tid)))) {
  2127. note_cmpxchg_failure("slab_alloc", s, tid);
  2128. goto redo;
  2129. }
  2130. prefetch_freepointer(s, next_object);
  2131. stat(s, ALLOC_FASTPATH);
  2132. }
  2133. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2134. memset(object, 0, s->object_size);
  2135. slab_post_alloc_hook(s, gfpflags, object);
  2136. return object;
  2137. }
  2138. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2139. gfp_t gfpflags, unsigned long addr)
  2140. {
  2141. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2142. }
  2143. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2144. {
  2145. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2146. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2147. s->size, gfpflags);
  2148. return ret;
  2149. }
  2150. EXPORT_SYMBOL(kmem_cache_alloc);
  2151. #ifdef CONFIG_TRACING
  2152. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2153. {
  2154. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2155. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2156. kasan_kmalloc(s, ret, size);
  2157. return ret;
  2158. }
  2159. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2160. #endif
  2161. #ifdef CONFIG_NUMA
  2162. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2163. {
  2164. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2165. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2166. s->object_size, s->size, gfpflags, node);
  2167. return ret;
  2168. }
  2169. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2170. #ifdef CONFIG_TRACING
  2171. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2172. gfp_t gfpflags,
  2173. int node, size_t size)
  2174. {
  2175. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2176. trace_kmalloc_node(_RET_IP_, ret,
  2177. size, s->size, gfpflags, node);
  2178. kasan_kmalloc(s, ret, size);
  2179. return ret;
  2180. }
  2181. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2182. #endif
  2183. #endif
  2184. /*
  2185. * Slow path handling. This may still be called frequently since objects
  2186. * have a longer lifetime than the cpu slabs in most processing loads.
  2187. *
  2188. * So we still attempt to reduce cache line usage. Just take the slab
  2189. * lock and free the item. If there is no additional partial page
  2190. * handling required then we can return immediately.
  2191. */
  2192. static void __slab_free(struct kmem_cache *s, struct page *page,
  2193. void *x, unsigned long addr)
  2194. {
  2195. void *prior;
  2196. void **object = (void *)x;
  2197. int was_frozen;
  2198. struct page new;
  2199. unsigned long counters;
  2200. struct kmem_cache_node *n = NULL;
  2201. unsigned long uninitialized_var(flags);
  2202. stat(s, FREE_SLOWPATH);
  2203. if (kmem_cache_debug(s) &&
  2204. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2205. return;
  2206. do {
  2207. if (unlikely(n)) {
  2208. spin_unlock_irqrestore(&n->list_lock, flags);
  2209. n = NULL;
  2210. }
  2211. prior = page->freelist;
  2212. counters = page->counters;
  2213. set_freepointer(s, object, prior);
  2214. new.counters = counters;
  2215. was_frozen = new.frozen;
  2216. new.inuse--;
  2217. if ((!new.inuse || !prior) && !was_frozen) {
  2218. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2219. /*
  2220. * Slab was on no list before and will be
  2221. * partially empty
  2222. * We can defer the list move and instead
  2223. * freeze it.
  2224. */
  2225. new.frozen = 1;
  2226. } else { /* Needs to be taken off a list */
  2227. n = get_node(s, page_to_nid(page));
  2228. /*
  2229. * Speculatively acquire the list_lock.
  2230. * If the cmpxchg does not succeed then we may
  2231. * drop the list_lock without any processing.
  2232. *
  2233. * Otherwise the list_lock will synchronize with
  2234. * other processors updating the list of slabs.
  2235. */
  2236. spin_lock_irqsave(&n->list_lock, flags);
  2237. }
  2238. }
  2239. } while (!cmpxchg_double_slab(s, page,
  2240. prior, counters,
  2241. object, new.counters,
  2242. "__slab_free"));
  2243. if (likely(!n)) {
  2244. /*
  2245. * If we just froze the page then put it onto the
  2246. * per cpu partial list.
  2247. */
  2248. if (new.frozen && !was_frozen) {
  2249. put_cpu_partial(s, page, 1);
  2250. stat(s, CPU_PARTIAL_FREE);
  2251. }
  2252. /*
  2253. * The list lock was not taken therefore no list
  2254. * activity can be necessary.
  2255. */
  2256. if (was_frozen)
  2257. stat(s, FREE_FROZEN);
  2258. return;
  2259. }
  2260. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
  2261. goto slab_empty;
  2262. /*
  2263. * Objects left in the slab. If it was not on the partial list before
  2264. * then add it.
  2265. */
  2266. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2267. if (kmem_cache_debug(s))
  2268. remove_full(s, n, page);
  2269. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2270. stat(s, FREE_ADD_PARTIAL);
  2271. }
  2272. spin_unlock_irqrestore(&n->list_lock, flags);
  2273. return;
  2274. slab_empty:
  2275. if (prior) {
  2276. /*
  2277. * Slab on the partial list.
  2278. */
  2279. remove_partial(n, page);
  2280. stat(s, FREE_REMOVE_PARTIAL);
  2281. } else {
  2282. /* Slab must be on the full list */
  2283. remove_full(s, n, page);
  2284. }
  2285. spin_unlock_irqrestore(&n->list_lock, flags);
  2286. stat(s, FREE_SLAB);
  2287. discard_slab(s, page);
  2288. }
  2289. /*
  2290. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2291. * can perform fastpath freeing without additional function calls.
  2292. *
  2293. * The fastpath is only possible if we are freeing to the current cpu slab
  2294. * of this processor. This typically the case if we have just allocated
  2295. * the item before.
  2296. *
  2297. * If fastpath is not possible then fall back to __slab_free where we deal
  2298. * with all sorts of special processing.
  2299. */
  2300. static __always_inline void slab_free(struct kmem_cache *s,
  2301. struct page *page, void *x, unsigned long addr)
  2302. {
  2303. void **object = (void *)x;
  2304. struct kmem_cache_cpu *c;
  2305. unsigned long tid;
  2306. slab_free_hook(s, x);
  2307. redo:
  2308. /*
  2309. * Determine the currently cpus per cpu slab.
  2310. * The cpu may change afterward. However that does not matter since
  2311. * data is retrieved via this pointer. If we are on the same cpu
  2312. * during the cmpxchg then the free will succedd.
  2313. */
  2314. do {
  2315. tid = this_cpu_read(s->cpu_slab->tid);
  2316. c = raw_cpu_ptr(s->cpu_slab);
  2317. } while (IS_ENABLED(CONFIG_PREEMPT) &&
  2318. unlikely(tid != READ_ONCE(c->tid)));
  2319. /* Same with comment on barrier() in slab_alloc_node() */
  2320. barrier();
  2321. if (likely(page == c->page)) {
  2322. set_freepointer(s, object, c->freelist);
  2323. if (unlikely(!this_cpu_cmpxchg_double(
  2324. s->cpu_slab->freelist, s->cpu_slab->tid,
  2325. c->freelist, tid,
  2326. object, next_tid(tid)))) {
  2327. note_cmpxchg_failure("slab_free", s, tid);
  2328. goto redo;
  2329. }
  2330. stat(s, FREE_FASTPATH);
  2331. } else
  2332. __slab_free(s, page, x, addr);
  2333. }
  2334. void kmem_cache_free(struct kmem_cache *s, void *x)
  2335. {
  2336. s = cache_from_obj(s, x);
  2337. if (!s)
  2338. return;
  2339. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2340. trace_kmem_cache_free(_RET_IP_, x);
  2341. }
  2342. EXPORT_SYMBOL(kmem_cache_free);
  2343. /*
  2344. * Object placement in a slab is made very easy because we always start at
  2345. * offset 0. If we tune the size of the object to the alignment then we can
  2346. * get the required alignment by putting one properly sized object after
  2347. * another.
  2348. *
  2349. * Notice that the allocation order determines the sizes of the per cpu
  2350. * caches. Each processor has always one slab available for allocations.
  2351. * Increasing the allocation order reduces the number of times that slabs
  2352. * must be moved on and off the partial lists and is therefore a factor in
  2353. * locking overhead.
  2354. */
  2355. /*
  2356. * Mininum / Maximum order of slab pages. This influences locking overhead
  2357. * and slab fragmentation. A higher order reduces the number of partial slabs
  2358. * and increases the number of allocations possible without having to
  2359. * take the list_lock.
  2360. */
  2361. static int slub_min_order;
  2362. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2363. static int slub_min_objects;
  2364. /*
  2365. * Calculate the order of allocation given an slab object size.
  2366. *
  2367. * The order of allocation has significant impact on performance and other
  2368. * system components. Generally order 0 allocations should be preferred since
  2369. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2370. * be problematic to put into order 0 slabs because there may be too much
  2371. * unused space left. We go to a higher order if more than 1/16th of the slab
  2372. * would be wasted.
  2373. *
  2374. * In order to reach satisfactory performance we must ensure that a minimum
  2375. * number of objects is in one slab. Otherwise we may generate too much
  2376. * activity on the partial lists which requires taking the list_lock. This is
  2377. * less a concern for large slabs though which are rarely used.
  2378. *
  2379. * slub_max_order specifies the order where we begin to stop considering the
  2380. * number of objects in a slab as critical. If we reach slub_max_order then
  2381. * we try to keep the page order as low as possible. So we accept more waste
  2382. * of space in favor of a small page order.
  2383. *
  2384. * Higher order allocations also allow the placement of more objects in a
  2385. * slab and thereby reduce object handling overhead. If the user has
  2386. * requested a higher mininum order then we start with that one instead of
  2387. * the smallest order which will fit the object.
  2388. */
  2389. static inline int slab_order(int size, int min_objects,
  2390. int max_order, int fract_leftover, int reserved)
  2391. {
  2392. int order;
  2393. int rem;
  2394. int min_order = slub_min_order;
  2395. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2396. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2397. for (order = max(min_order,
  2398. fls(min_objects * size - 1) - PAGE_SHIFT);
  2399. order <= max_order; order++) {
  2400. unsigned long slab_size = PAGE_SIZE << order;
  2401. if (slab_size < min_objects * size + reserved)
  2402. continue;
  2403. rem = (slab_size - reserved) % size;
  2404. if (rem <= slab_size / fract_leftover)
  2405. break;
  2406. }
  2407. return order;
  2408. }
  2409. static inline int calculate_order(int size, int reserved)
  2410. {
  2411. int order;
  2412. int min_objects;
  2413. int fraction;
  2414. int max_objects;
  2415. /*
  2416. * Attempt to find best configuration for a slab. This
  2417. * works by first attempting to generate a layout with
  2418. * the best configuration and backing off gradually.
  2419. *
  2420. * First we reduce the acceptable waste in a slab. Then
  2421. * we reduce the minimum objects required in a slab.
  2422. */
  2423. min_objects = slub_min_objects;
  2424. if (!min_objects)
  2425. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2426. max_objects = order_objects(slub_max_order, size, reserved);
  2427. min_objects = min(min_objects, max_objects);
  2428. while (min_objects > 1) {
  2429. fraction = 16;
  2430. while (fraction >= 4) {
  2431. order = slab_order(size, min_objects,
  2432. slub_max_order, fraction, reserved);
  2433. if (order <= slub_max_order)
  2434. return order;
  2435. fraction /= 2;
  2436. }
  2437. min_objects--;
  2438. }
  2439. /*
  2440. * We were unable to place multiple objects in a slab. Now
  2441. * lets see if we can place a single object there.
  2442. */
  2443. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2444. if (order <= slub_max_order)
  2445. return order;
  2446. /*
  2447. * Doh this slab cannot be placed using slub_max_order.
  2448. */
  2449. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2450. if (order < MAX_ORDER)
  2451. return order;
  2452. return -ENOSYS;
  2453. }
  2454. static void
  2455. init_kmem_cache_node(struct kmem_cache_node *n)
  2456. {
  2457. n->nr_partial = 0;
  2458. spin_lock_init(&n->list_lock);
  2459. INIT_LIST_HEAD(&n->partial);
  2460. #ifdef CONFIG_SLUB_DEBUG
  2461. atomic_long_set(&n->nr_slabs, 0);
  2462. atomic_long_set(&n->total_objects, 0);
  2463. INIT_LIST_HEAD(&n->full);
  2464. #endif
  2465. }
  2466. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2467. {
  2468. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2469. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2470. /*
  2471. * Must align to double word boundary for the double cmpxchg
  2472. * instructions to work; see __pcpu_double_call_return_bool().
  2473. */
  2474. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2475. 2 * sizeof(void *));
  2476. if (!s->cpu_slab)
  2477. return 0;
  2478. init_kmem_cache_cpus(s);
  2479. return 1;
  2480. }
  2481. static struct kmem_cache *kmem_cache_node;
  2482. /*
  2483. * No kmalloc_node yet so do it by hand. We know that this is the first
  2484. * slab on the node for this slabcache. There are no concurrent accesses
  2485. * possible.
  2486. *
  2487. * Note that this function only works on the kmem_cache_node
  2488. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2489. * memory on a fresh node that has no slab structures yet.
  2490. */
  2491. static void early_kmem_cache_node_alloc(int node)
  2492. {
  2493. struct page *page;
  2494. struct kmem_cache_node *n;
  2495. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2496. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2497. BUG_ON(!page);
  2498. if (page_to_nid(page) != node) {
  2499. pr_err("SLUB: Unable to allocate memory from node %d\n", node);
  2500. pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
  2501. }
  2502. n = page->freelist;
  2503. BUG_ON(!n);
  2504. page->freelist = get_freepointer(kmem_cache_node, n);
  2505. page->inuse = 1;
  2506. page->frozen = 0;
  2507. kmem_cache_node->node[node] = n;
  2508. #ifdef CONFIG_SLUB_DEBUG
  2509. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2510. init_tracking(kmem_cache_node, n);
  2511. #endif
  2512. kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
  2513. init_kmem_cache_node(n);
  2514. inc_slabs_node(kmem_cache_node, node, page->objects);
  2515. /*
  2516. * No locks need to be taken here as it has just been
  2517. * initialized and there is no concurrent access.
  2518. */
  2519. __add_partial(n, page, DEACTIVATE_TO_HEAD);
  2520. }
  2521. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2522. {
  2523. int node;
  2524. struct kmem_cache_node *n;
  2525. for_each_kmem_cache_node(s, node, n) {
  2526. kmem_cache_free(kmem_cache_node, n);
  2527. s->node[node] = NULL;
  2528. }
  2529. }
  2530. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2531. {
  2532. int node;
  2533. for_each_node_state(node, N_NORMAL_MEMORY) {
  2534. struct kmem_cache_node *n;
  2535. if (slab_state == DOWN) {
  2536. early_kmem_cache_node_alloc(node);
  2537. continue;
  2538. }
  2539. n = kmem_cache_alloc_node(kmem_cache_node,
  2540. GFP_KERNEL, node);
  2541. if (!n) {
  2542. free_kmem_cache_nodes(s);
  2543. return 0;
  2544. }
  2545. s->node[node] = n;
  2546. init_kmem_cache_node(n);
  2547. }
  2548. return 1;
  2549. }
  2550. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2551. {
  2552. if (min < MIN_PARTIAL)
  2553. min = MIN_PARTIAL;
  2554. else if (min > MAX_PARTIAL)
  2555. min = MAX_PARTIAL;
  2556. s->min_partial = min;
  2557. }
  2558. /*
  2559. * calculate_sizes() determines the order and the distribution of data within
  2560. * a slab object.
  2561. */
  2562. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2563. {
  2564. unsigned long flags = s->flags;
  2565. unsigned long size = s->object_size;
  2566. int order;
  2567. /*
  2568. * Round up object size to the next word boundary. We can only
  2569. * place the free pointer at word boundaries and this determines
  2570. * the possible location of the free pointer.
  2571. */
  2572. size = ALIGN(size, sizeof(void *));
  2573. #ifdef CONFIG_SLUB_DEBUG
  2574. /*
  2575. * Determine if we can poison the object itself. If the user of
  2576. * the slab may touch the object after free or before allocation
  2577. * then we should never poison the object itself.
  2578. */
  2579. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2580. !s->ctor)
  2581. s->flags |= __OBJECT_POISON;
  2582. else
  2583. s->flags &= ~__OBJECT_POISON;
  2584. /*
  2585. * If we are Redzoning then check if there is some space between the
  2586. * end of the object and the free pointer. If not then add an
  2587. * additional word to have some bytes to store Redzone information.
  2588. */
  2589. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2590. size += sizeof(void *);
  2591. #endif
  2592. /*
  2593. * With that we have determined the number of bytes in actual use
  2594. * by the object. This is the potential offset to the free pointer.
  2595. */
  2596. s->inuse = size;
  2597. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2598. s->ctor)) {
  2599. /*
  2600. * Relocate free pointer after the object if it is not
  2601. * permitted to overwrite the first word of the object on
  2602. * kmem_cache_free.
  2603. *
  2604. * This is the case if we do RCU, have a constructor or
  2605. * destructor or are poisoning the objects.
  2606. */
  2607. s->offset = size;
  2608. size += sizeof(void *);
  2609. }
  2610. #ifdef CONFIG_SLUB_DEBUG
  2611. if (flags & SLAB_STORE_USER)
  2612. /*
  2613. * Need to store information about allocs and frees after
  2614. * the object.
  2615. */
  2616. size += 2 * sizeof(struct track);
  2617. if (flags & SLAB_RED_ZONE)
  2618. /*
  2619. * Add some empty padding so that we can catch
  2620. * overwrites from earlier objects rather than let
  2621. * tracking information or the free pointer be
  2622. * corrupted if a user writes before the start
  2623. * of the object.
  2624. */
  2625. size += sizeof(void *);
  2626. #endif
  2627. /*
  2628. * SLUB stores one object immediately after another beginning from
  2629. * offset 0. In order to align the objects we have to simply size
  2630. * each object to conform to the alignment.
  2631. */
  2632. size = ALIGN(size, s->align);
  2633. s->size = size;
  2634. if (forced_order >= 0)
  2635. order = forced_order;
  2636. else
  2637. order = calculate_order(size, s->reserved);
  2638. if (order < 0)
  2639. return 0;
  2640. s->allocflags = 0;
  2641. if (order)
  2642. s->allocflags |= __GFP_COMP;
  2643. if (s->flags & SLAB_CACHE_DMA)
  2644. s->allocflags |= GFP_DMA;
  2645. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2646. s->allocflags |= __GFP_RECLAIMABLE;
  2647. /*
  2648. * Determine the number of objects per slab
  2649. */
  2650. s->oo = oo_make(order, size, s->reserved);
  2651. s->min = oo_make(get_order(size), size, s->reserved);
  2652. if (oo_objects(s->oo) > oo_objects(s->max))
  2653. s->max = s->oo;
  2654. return !!oo_objects(s->oo);
  2655. }
  2656. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2657. {
  2658. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2659. s->reserved = 0;
  2660. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2661. s->reserved = sizeof(struct rcu_head);
  2662. if (!calculate_sizes(s, -1))
  2663. goto error;
  2664. if (disable_higher_order_debug) {
  2665. /*
  2666. * Disable debugging flags that store metadata if the min slab
  2667. * order increased.
  2668. */
  2669. if (get_order(s->size) > get_order(s->object_size)) {
  2670. s->flags &= ~DEBUG_METADATA_FLAGS;
  2671. s->offset = 0;
  2672. if (!calculate_sizes(s, -1))
  2673. goto error;
  2674. }
  2675. }
  2676. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2677. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2678. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2679. /* Enable fast mode */
  2680. s->flags |= __CMPXCHG_DOUBLE;
  2681. #endif
  2682. /*
  2683. * The larger the object size is, the more pages we want on the partial
  2684. * list to avoid pounding the page allocator excessively.
  2685. */
  2686. set_min_partial(s, ilog2(s->size) / 2);
  2687. /*
  2688. * cpu_partial determined the maximum number of objects kept in the
  2689. * per cpu partial lists of a processor.
  2690. *
  2691. * Per cpu partial lists mainly contain slabs that just have one
  2692. * object freed. If they are used for allocation then they can be
  2693. * filled up again with minimal effort. The slab will never hit the
  2694. * per node partial lists and therefore no locking will be required.
  2695. *
  2696. * This setting also determines
  2697. *
  2698. * A) The number of objects from per cpu partial slabs dumped to the
  2699. * per node list when we reach the limit.
  2700. * B) The number of objects in cpu partial slabs to extract from the
  2701. * per node list when we run out of per cpu objects. We only fetch
  2702. * 50% to keep some capacity around for frees.
  2703. */
  2704. if (!kmem_cache_has_cpu_partial(s))
  2705. s->cpu_partial = 0;
  2706. else if (s->size >= PAGE_SIZE)
  2707. s->cpu_partial = 2;
  2708. else if (s->size >= 1024)
  2709. s->cpu_partial = 6;
  2710. else if (s->size >= 256)
  2711. s->cpu_partial = 13;
  2712. else
  2713. s->cpu_partial = 30;
  2714. #ifdef CONFIG_NUMA
  2715. s->remote_node_defrag_ratio = 1000;
  2716. #endif
  2717. if (!init_kmem_cache_nodes(s))
  2718. goto error;
  2719. if (alloc_kmem_cache_cpus(s))
  2720. return 0;
  2721. free_kmem_cache_nodes(s);
  2722. error:
  2723. if (flags & SLAB_PANIC)
  2724. panic("Cannot create slab %s size=%lu realsize=%u "
  2725. "order=%u offset=%u flags=%lx\n",
  2726. s->name, (unsigned long)s->size, s->size,
  2727. oo_order(s->oo), s->offset, flags);
  2728. return -EINVAL;
  2729. }
  2730. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2731. const char *text)
  2732. {
  2733. #ifdef CONFIG_SLUB_DEBUG
  2734. void *addr = page_address(page);
  2735. void *p;
  2736. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2737. sizeof(long), GFP_ATOMIC);
  2738. if (!map)
  2739. return;
  2740. slab_err(s, page, text, s->name);
  2741. slab_lock(page);
  2742. get_map(s, page, map);
  2743. for_each_object(p, s, addr, page->objects) {
  2744. if (!test_bit(slab_index(p, s, addr), map)) {
  2745. pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
  2746. print_tracking(s, p);
  2747. }
  2748. }
  2749. slab_unlock(page);
  2750. kfree(map);
  2751. #endif
  2752. }
  2753. /*
  2754. * Attempt to free all partial slabs on a node.
  2755. * This is called from kmem_cache_close(). We must be the last thread
  2756. * using the cache and therefore we do not need to lock anymore.
  2757. */
  2758. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2759. {
  2760. struct page *page, *h;
  2761. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2762. if (!page->inuse) {
  2763. __remove_partial(n, page);
  2764. discard_slab(s, page);
  2765. } else {
  2766. list_slab_objects(s, page,
  2767. "Objects remaining in %s on kmem_cache_close()");
  2768. }
  2769. }
  2770. }
  2771. /*
  2772. * Release all resources used by a slab cache.
  2773. */
  2774. static inline int kmem_cache_close(struct kmem_cache *s)
  2775. {
  2776. int node;
  2777. struct kmem_cache_node *n;
  2778. flush_all(s);
  2779. /* Attempt to free all objects */
  2780. for_each_kmem_cache_node(s, node, n) {
  2781. free_partial(s, n);
  2782. if (n->nr_partial || slabs_node(s, node))
  2783. return 1;
  2784. }
  2785. free_percpu(s->cpu_slab);
  2786. free_kmem_cache_nodes(s);
  2787. return 0;
  2788. }
  2789. int __kmem_cache_shutdown(struct kmem_cache *s)
  2790. {
  2791. return kmem_cache_close(s);
  2792. }
  2793. /********************************************************************
  2794. * Kmalloc subsystem
  2795. *******************************************************************/
  2796. static int __init setup_slub_min_order(char *str)
  2797. {
  2798. get_option(&str, &slub_min_order);
  2799. return 1;
  2800. }
  2801. __setup("slub_min_order=", setup_slub_min_order);
  2802. static int __init setup_slub_max_order(char *str)
  2803. {
  2804. get_option(&str, &slub_max_order);
  2805. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2806. return 1;
  2807. }
  2808. __setup("slub_max_order=", setup_slub_max_order);
  2809. static int __init setup_slub_min_objects(char *str)
  2810. {
  2811. get_option(&str, &slub_min_objects);
  2812. return 1;
  2813. }
  2814. __setup("slub_min_objects=", setup_slub_min_objects);
  2815. void *__kmalloc(size_t size, gfp_t flags)
  2816. {
  2817. struct kmem_cache *s;
  2818. void *ret;
  2819. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2820. return kmalloc_large(size, flags);
  2821. s = kmalloc_slab(size, flags);
  2822. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2823. return s;
  2824. ret = slab_alloc(s, flags, _RET_IP_);
  2825. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2826. kasan_kmalloc(s, ret, size);
  2827. return ret;
  2828. }
  2829. EXPORT_SYMBOL(__kmalloc);
  2830. #ifdef CONFIG_NUMA
  2831. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2832. {
  2833. struct page *page;
  2834. void *ptr = NULL;
  2835. flags |= __GFP_COMP | __GFP_NOTRACK;
  2836. page = alloc_kmem_pages_node(node, flags, get_order(size));
  2837. if (page)
  2838. ptr = page_address(page);
  2839. kmalloc_large_node_hook(ptr, size, flags);
  2840. return ptr;
  2841. }
  2842. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2843. {
  2844. struct kmem_cache *s;
  2845. void *ret;
  2846. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2847. ret = kmalloc_large_node(size, flags, node);
  2848. trace_kmalloc_node(_RET_IP_, ret,
  2849. size, PAGE_SIZE << get_order(size),
  2850. flags, node);
  2851. return ret;
  2852. }
  2853. s = kmalloc_slab(size, flags);
  2854. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2855. return s;
  2856. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2857. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2858. kasan_kmalloc(s, ret, size);
  2859. return ret;
  2860. }
  2861. EXPORT_SYMBOL(__kmalloc_node);
  2862. #endif
  2863. static size_t __ksize(const void *object)
  2864. {
  2865. struct page *page;
  2866. if (unlikely(object == ZERO_SIZE_PTR))
  2867. return 0;
  2868. page = virt_to_head_page(object);
  2869. if (unlikely(!PageSlab(page))) {
  2870. WARN_ON(!PageCompound(page));
  2871. return PAGE_SIZE << compound_order(page);
  2872. }
  2873. return slab_ksize(page->slab_cache);
  2874. }
  2875. size_t ksize(const void *object)
  2876. {
  2877. size_t size = __ksize(object);
  2878. /* We assume that ksize callers could use whole allocated area,
  2879. so we need unpoison this area. */
  2880. kasan_krealloc(object, size);
  2881. return size;
  2882. }
  2883. EXPORT_SYMBOL(ksize);
  2884. void kfree(const void *x)
  2885. {
  2886. struct page *page;
  2887. void *object = (void *)x;
  2888. trace_kfree(_RET_IP_, x);
  2889. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2890. return;
  2891. page = virt_to_head_page(x);
  2892. if (unlikely(!PageSlab(page))) {
  2893. BUG_ON(!PageCompound(page));
  2894. kfree_hook(x);
  2895. __free_kmem_pages(page, compound_order(page));
  2896. return;
  2897. }
  2898. slab_free(page->slab_cache, page, object, _RET_IP_);
  2899. }
  2900. EXPORT_SYMBOL(kfree);
  2901. #define SHRINK_PROMOTE_MAX 32
  2902. /*
  2903. * kmem_cache_shrink discards empty slabs and promotes the slabs filled
  2904. * up most to the head of the partial lists. New allocations will then
  2905. * fill those up and thus they can be removed from the partial lists.
  2906. *
  2907. * The slabs with the least items are placed last. This results in them
  2908. * being allocated from last increasing the chance that the last objects
  2909. * are freed in them.
  2910. */
  2911. int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
  2912. {
  2913. int node;
  2914. int i;
  2915. struct kmem_cache_node *n;
  2916. struct page *page;
  2917. struct page *t;
  2918. struct list_head discard;
  2919. struct list_head promote[SHRINK_PROMOTE_MAX];
  2920. unsigned long flags;
  2921. int ret = 0;
  2922. if (deactivate) {
  2923. /*
  2924. * Disable empty slabs caching. Used to avoid pinning offline
  2925. * memory cgroups by kmem pages that can be freed.
  2926. */
  2927. s->cpu_partial = 0;
  2928. s->min_partial = 0;
  2929. /*
  2930. * s->cpu_partial is checked locklessly (see put_cpu_partial),
  2931. * so we have to make sure the change is visible.
  2932. */
  2933. kick_all_cpus_sync();
  2934. }
  2935. flush_all(s);
  2936. for_each_kmem_cache_node(s, node, n) {
  2937. INIT_LIST_HEAD(&discard);
  2938. for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
  2939. INIT_LIST_HEAD(promote + i);
  2940. spin_lock_irqsave(&n->list_lock, flags);
  2941. /*
  2942. * Build lists of slabs to discard or promote.
  2943. *
  2944. * Note that concurrent frees may occur while we hold the
  2945. * list_lock. page->inuse here is the upper limit.
  2946. */
  2947. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2948. int free = page->objects - page->inuse;
  2949. /* Do not reread page->inuse */
  2950. barrier();
  2951. /* We do not keep full slabs on the list */
  2952. BUG_ON(free <= 0);
  2953. if (free == page->objects) {
  2954. list_move(&page->lru, &discard);
  2955. n->nr_partial--;
  2956. } else if (free <= SHRINK_PROMOTE_MAX)
  2957. list_move(&page->lru, promote + free - 1);
  2958. }
  2959. /*
  2960. * Promote the slabs filled up most to the head of the
  2961. * partial list.
  2962. */
  2963. for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
  2964. list_splice(promote + i, &n->partial);
  2965. spin_unlock_irqrestore(&n->list_lock, flags);
  2966. /* Release empty slabs */
  2967. list_for_each_entry_safe(page, t, &discard, lru)
  2968. discard_slab(s, page);
  2969. if (slabs_node(s, node))
  2970. ret = 1;
  2971. }
  2972. return ret;
  2973. }
  2974. static int slab_mem_going_offline_callback(void *arg)
  2975. {
  2976. struct kmem_cache *s;
  2977. mutex_lock(&slab_mutex);
  2978. list_for_each_entry(s, &slab_caches, list)
  2979. __kmem_cache_shrink(s, false);
  2980. mutex_unlock(&slab_mutex);
  2981. return 0;
  2982. }
  2983. static void slab_mem_offline_callback(void *arg)
  2984. {
  2985. struct kmem_cache_node *n;
  2986. struct kmem_cache *s;
  2987. struct memory_notify *marg = arg;
  2988. int offline_node;
  2989. offline_node = marg->status_change_nid_normal;
  2990. /*
  2991. * If the node still has available memory. we need kmem_cache_node
  2992. * for it yet.
  2993. */
  2994. if (offline_node < 0)
  2995. return;
  2996. mutex_lock(&slab_mutex);
  2997. list_for_each_entry(s, &slab_caches, list) {
  2998. n = get_node(s, offline_node);
  2999. if (n) {
  3000. /*
  3001. * if n->nr_slabs > 0, slabs still exist on the node
  3002. * that is going down. We were unable to free them,
  3003. * and offline_pages() function shouldn't call this
  3004. * callback. So, we must fail.
  3005. */
  3006. BUG_ON(slabs_node(s, offline_node));
  3007. s->node[offline_node] = NULL;
  3008. kmem_cache_free(kmem_cache_node, n);
  3009. }
  3010. }
  3011. mutex_unlock(&slab_mutex);
  3012. }
  3013. static int slab_mem_going_online_callback(void *arg)
  3014. {
  3015. struct kmem_cache_node *n;
  3016. struct kmem_cache *s;
  3017. struct memory_notify *marg = arg;
  3018. int nid = marg->status_change_nid_normal;
  3019. int ret = 0;
  3020. /*
  3021. * If the node's memory is already available, then kmem_cache_node is
  3022. * already created. Nothing to do.
  3023. */
  3024. if (nid < 0)
  3025. return 0;
  3026. /*
  3027. * We are bringing a node online. No memory is available yet. We must
  3028. * allocate a kmem_cache_node structure in order to bring the node
  3029. * online.
  3030. */
  3031. mutex_lock(&slab_mutex);
  3032. list_for_each_entry(s, &slab_caches, list) {
  3033. /*
  3034. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3035. * since memory is not yet available from the node that
  3036. * is brought up.
  3037. */
  3038. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3039. if (!n) {
  3040. ret = -ENOMEM;
  3041. goto out;
  3042. }
  3043. init_kmem_cache_node(n);
  3044. s->node[nid] = n;
  3045. }
  3046. out:
  3047. mutex_unlock(&slab_mutex);
  3048. return ret;
  3049. }
  3050. static int slab_memory_callback(struct notifier_block *self,
  3051. unsigned long action, void *arg)
  3052. {
  3053. int ret = 0;
  3054. switch (action) {
  3055. case MEM_GOING_ONLINE:
  3056. ret = slab_mem_going_online_callback(arg);
  3057. break;
  3058. case MEM_GOING_OFFLINE:
  3059. ret = slab_mem_going_offline_callback(arg);
  3060. break;
  3061. case MEM_OFFLINE:
  3062. case MEM_CANCEL_ONLINE:
  3063. slab_mem_offline_callback(arg);
  3064. break;
  3065. case MEM_ONLINE:
  3066. case MEM_CANCEL_OFFLINE:
  3067. break;
  3068. }
  3069. if (ret)
  3070. ret = notifier_from_errno(ret);
  3071. else
  3072. ret = NOTIFY_OK;
  3073. return ret;
  3074. }
  3075. static struct notifier_block slab_memory_callback_nb = {
  3076. .notifier_call = slab_memory_callback,
  3077. .priority = SLAB_CALLBACK_PRI,
  3078. };
  3079. /********************************************************************
  3080. * Basic setup of slabs
  3081. *******************************************************************/
  3082. /*
  3083. * Used for early kmem_cache structures that were allocated using
  3084. * the page allocator. Allocate them properly then fix up the pointers
  3085. * that may be pointing to the wrong kmem_cache structure.
  3086. */
  3087. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3088. {
  3089. int node;
  3090. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3091. struct kmem_cache_node *n;
  3092. memcpy(s, static_cache, kmem_cache->object_size);
  3093. /*
  3094. * This runs very early, and only the boot processor is supposed to be
  3095. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3096. * IPIs around.
  3097. */
  3098. __flush_cpu_slab(s, smp_processor_id());
  3099. for_each_kmem_cache_node(s, node, n) {
  3100. struct page *p;
  3101. list_for_each_entry(p, &n->partial, lru)
  3102. p->slab_cache = s;
  3103. #ifdef CONFIG_SLUB_DEBUG
  3104. list_for_each_entry(p, &n->full, lru)
  3105. p->slab_cache = s;
  3106. #endif
  3107. }
  3108. slab_init_memcg_params(s);
  3109. list_add(&s->list, &slab_caches);
  3110. return s;
  3111. }
  3112. void __init kmem_cache_init(void)
  3113. {
  3114. static __initdata struct kmem_cache boot_kmem_cache,
  3115. boot_kmem_cache_node;
  3116. if (debug_guardpage_minorder())
  3117. slub_max_order = 0;
  3118. kmem_cache_node = &boot_kmem_cache_node;
  3119. kmem_cache = &boot_kmem_cache;
  3120. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3121. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3122. register_hotmemory_notifier(&slab_memory_callback_nb);
  3123. /* Able to allocate the per node structures */
  3124. slab_state = PARTIAL;
  3125. create_boot_cache(kmem_cache, "kmem_cache",
  3126. offsetof(struct kmem_cache, node) +
  3127. nr_node_ids * sizeof(struct kmem_cache_node *),
  3128. SLAB_HWCACHE_ALIGN);
  3129. kmem_cache = bootstrap(&boot_kmem_cache);
  3130. /*
  3131. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3132. * kmem_cache_node is separately allocated so no need to
  3133. * update any list pointers.
  3134. */
  3135. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3136. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3137. setup_kmalloc_cache_index_table();
  3138. create_kmalloc_caches(0);
  3139. #ifdef CONFIG_SMP
  3140. register_cpu_notifier(&slab_notifier);
  3141. #endif
  3142. pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
  3143. cache_line_size(),
  3144. slub_min_order, slub_max_order, slub_min_objects,
  3145. nr_cpu_ids, nr_node_ids);
  3146. }
  3147. void __init kmem_cache_init_late(void)
  3148. {
  3149. }
  3150. struct kmem_cache *
  3151. __kmem_cache_alias(const char *name, size_t size, size_t align,
  3152. unsigned long flags, void (*ctor)(void *))
  3153. {
  3154. struct kmem_cache *s, *c;
  3155. s = find_mergeable(size, align, flags, name, ctor);
  3156. if (s) {
  3157. s->refcount++;
  3158. /*
  3159. * Adjust the object sizes so that we clear
  3160. * the complete object on kzalloc.
  3161. */
  3162. s->object_size = max(s->object_size, (int)size);
  3163. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3164. for_each_memcg_cache(c, s) {
  3165. c->object_size = s->object_size;
  3166. c->inuse = max_t(int, c->inuse,
  3167. ALIGN(size, sizeof(void *)));
  3168. }
  3169. if (sysfs_slab_alias(s, name)) {
  3170. s->refcount--;
  3171. s = NULL;
  3172. }
  3173. }
  3174. return s;
  3175. }
  3176. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3177. {
  3178. int err;
  3179. err = kmem_cache_open(s, flags);
  3180. if (err)
  3181. return err;
  3182. /* Mutex is not taken during early boot */
  3183. if (slab_state <= UP)
  3184. return 0;
  3185. memcg_propagate_slab_attrs(s);
  3186. err = sysfs_slab_add(s);
  3187. if (err)
  3188. kmem_cache_close(s);
  3189. return err;
  3190. }
  3191. #ifdef CONFIG_SMP
  3192. /*
  3193. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3194. * necessary.
  3195. */
  3196. static int slab_cpuup_callback(struct notifier_block *nfb,
  3197. unsigned long action, void *hcpu)
  3198. {
  3199. long cpu = (long)hcpu;
  3200. struct kmem_cache *s;
  3201. unsigned long flags;
  3202. switch (action) {
  3203. case CPU_UP_CANCELED:
  3204. case CPU_UP_CANCELED_FROZEN:
  3205. case CPU_DEAD:
  3206. case CPU_DEAD_FROZEN:
  3207. mutex_lock(&slab_mutex);
  3208. list_for_each_entry(s, &slab_caches, list) {
  3209. local_irq_save(flags);
  3210. __flush_cpu_slab(s, cpu);
  3211. local_irq_restore(flags);
  3212. }
  3213. mutex_unlock(&slab_mutex);
  3214. break;
  3215. default:
  3216. break;
  3217. }
  3218. return NOTIFY_OK;
  3219. }
  3220. static struct notifier_block slab_notifier = {
  3221. .notifier_call = slab_cpuup_callback
  3222. };
  3223. #endif
  3224. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3225. {
  3226. struct kmem_cache *s;
  3227. void *ret;
  3228. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3229. return kmalloc_large(size, gfpflags);
  3230. s = kmalloc_slab(size, gfpflags);
  3231. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3232. return s;
  3233. ret = slab_alloc(s, gfpflags, caller);
  3234. /* Honor the call site pointer we received. */
  3235. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3236. return ret;
  3237. }
  3238. #ifdef CONFIG_NUMA
  3239. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3240. int node, unsigned long caller)
  3241. {
  3242. struct kmem_cache *s;
  3243. void *ret;
  3244. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3245. ret = kmalloc_large_node(size, gfpflags, node);
  3246. trace_kmalloc_node(caller, ret,
  3247. size, PAGE_SIZE << get_order(size),
  3248. gfpflags, node);
  3249. return ret;
  3250. }
  3251. s = kmalloc_slab(size, gfpflags);
  3252. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3253. return s;
  3254. ret = slab_alloc_node(s, gfpflags, node, caller);
  3255. /* Honor the call site pointer we received. */
  3256. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3257. return ret;
  3258. }
  3259. #endif
  3260. #ifdef CONFIG_SYSFS
  3261. static int count_inuse(struct page *page)
  3262. {
  3263. return page->inuse;
  3264. }
  3265. static int count_total(struct page *page)
  3266. {
  3267. return page->objects;
  3268. }
  3269. #endif
  3270. #ifdef CONFIG_SLUB_DEBUG
  3271. static int validate_slab(struct kmem_cache *s, struct page *page,
  3272. unsigned long *map)
  3273. {
  3274. void *p;
  3275. void *addr = page_address(page);
  3276. if (!check_slab(s, page) ||
  3277. !on_freelist(s, page, NULL))
  3278. return 0;
  3279. /* Now we know that a valid freelist exists */
  3280. bitmap_zero(map, page->objects);
  3281. get_map(s, page, map);
  3282. for_each_object(p, s, addr, page->objects) {
  3283. if (test_bit(slab_index(p, s, addr), map))
  3284. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3285. return 0;
  3286. }
  3287. for_each_object(p, s, addr, page->objects)
  3288. if (!test_bit(slab_index(p, s, addr), map))
  3289. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3290. return 0;
  3291. return 1;
  3292. }
  3293. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3294. unsigned long *map)
  3295. {
  3296. slab_lock(page);
  3297. validate_slab(s, page, map);
  3298. slab_unlock(page);
  3299. }
  3300. static int validate_slab_node(struct kmem_cache *s,
  3301. struct kmem_cache_node *n, unsigned long *map)
  3302. {
  3303. unsigned long count = 0;
  3304. struct page *page;
  3305. unsigned long flags;
  3306. spin_lock_irqsave(&n->list_lock, flags);
  3307. list_for_each_entry(page, &n->partial, lru) {
  3308. validate_slab_slab(s, page, map);
  3309. count++;
  3310. }
  3311. if (count != n->nr_partial)
  3312. pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
  3313. s->name, count, n->nr_partial);
  3314. if (!(s->flags & SLAB_STORE_USER))
  3315. goto out;
  3316. list_for_each_entry(page, &n->full, lru) {
  3317. validate_slab_slab(s, page, map);
  3318. count++;
  3319. }
  3320. if (count != atomic_long_read(&n->nr_slabs))
  3321. pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
  3322. s->name, count, atomic_long_read(&n->nr_slabs));
  3323. out:
  3324. spin_unlock_irqrestore(&n->list_lock, flags);
  3325. return count;
  3326. }
  3327. static long validate_slab_cache(struct kmem_cache *s)
  3328. {
  3329. int node;
  3330. unsigned long count = 0;
  3331. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3332. sizeof(unsigned long), GFP_KERNEL);
  3333. struct kmem_cache_node *n;
  3334. if (!map)
  3335. return -ENOMEM;
  3336. flush_all(s);
  3337. for_each_kmem_cache_node(s, node, n)
  3338. count += validate_slab_node(s, n, map);
  3339. kfree(map);
  3340. return count;
  3341. }
  3342. /*
  3343. * Generate lists of code addresses where slabcache objects are allocated
  3344. * and freed.
  3345. */
  3346. struct location {
  3347. unsigned long count;
  3348. unsigned long addr;
  3349. long long sum_time;
  3350. long min_time;
  3351. long max_time;
  3352. long min_pid;
  3353. long max_pid;
  3354. DECLARE_BITMAP(cpus, NR_CPUS);
  3355. nodemask_t nodes;
  3356. };
  3357. struct loc_track {
  3358. unsigned long max;
  3359. unsigned long count;
  3360. struct location *loc;
  3361. };
  3362. static void free_loc_track(struct loc_track *t)
  3363. {
  3364. if (t->max)
  3365. free_pages((unsigned long)t->loc,
  3366. get_order(sizeof(struct location) * t->max));
  3367. }
  3368. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3369. {
  3370. struct location *l;
  3371. int order;
  3372. order = get_order(sizeof(struct location) * max);
  3373. l = (void *)__get_free_pages(flags, order);
  3374. if (!l)
  3375. return 0;
  3376. if (t->count) {
  3377. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3378. free_loc_track(t);
  3379. }
  3380. t->max = max;
  3381. t->loc = l;
  3382. return 1;
  3383. }
  3384. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3385. const struct track *track)
  3386. {
  3387. long start, end, pos;
  3388. struct location *l;
  3389. unsigned long caddr;
  3390. unsigned long age = jiffies - track->when;
  3391. start = -1;
  3392. end = t->count;
  3393. for ( ; ; ) {
  3394. pos = start + (end - start + 1) / 2;
  3395. /*
  3396. * There is nothing at "end". If we end up there
  3397. * we need to add something to before end.
  3398. */
  3399. if (pos == end)
  3400. break;
  3401. caddr = t->loc[pos].addr;
  3402. if (track->addr == caddr) {
  3403. l = &t->loc[pos];
  3404. l->count++;
  3405. if (track->when) {
  3406. l->sum_time += age;
  3407. if (age < l->min_time)
  3408. l->min_time = age;
  3409. if (age > l->max_time)
  3410. l->max_time = age;
  3411. if (track->pid < l->min_pid)
  3412. l->min_pid = track->pid;
  3413. if (track->pid > l->max_pid)
  3414. l->max_pid = track->pid;
  3415. cpumask_set_cpu(track->cpu,
  3416. to_cpumask(l->cpus));
  3417. }
  3418. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3419. return 1;
  3420. }
  3421. if (track->addr < caddr)
  3422. end = pos;
  3423. else
  3424. start = pos;
  3425. }
  3426. /*
  3427. * Not found. Insert new tracking element.
  3428. */
  3429. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3430. return 0;
  3431. l = t->loc + pos;
  3432. if (pos < t->count)
  3433. memmove(l + 1, l,
  3434. (t->count - pos) * sizeof(struct location));
  3435. t->count++;
  3436. l->count = 1;
  3437. l->addr = track->addr;
  3438. l->sum_time = age;
  3439. l->min_time = age;
  3440. l->max_time = age;
  3441. l->min_pid = track->pid;
  3442. l->max_pid = track->pid;
  3443. cpumask_clear(to_cpumask(l->cpus));
  3444. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3445. nodes_clear(l->nodes);
  3446. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3447. return 1;
  3448. }
  3449. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3450. struct page *page, enum track_item alloc,
  3451. unsigned long *map)
  3452. {
  3453. void *addr = page_address(page);
  3454. void *p;
  3455. bitmap_zero(map, page->objects);
  3456. get_map(s, page, map);
  3457. for_each_object(p, s, addr, page->objects)
  3458. if (!test_bit(slab_index(p, s, addr), map))
  3459. add_location(t, s, get_track(s, p, alloc));
  3460. }
  3461. static int list_locations(struct kmem_cache *s, char *buf,
  3462. enum track_item alloc)
  3463. {
  3464. int len = 0;
  3465. unsigned long i;
  3466. struct loc_track t = { 0, 0, NULL };
  3467. int node;
  3468. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3469. sizeof(unsigned long), GFP_KERNEL);
  3470. struct kmem_cache_node *n;
  3471. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3472. GFP_TEMPORARY)) {
  3473. kfree(map);
  3474. return sprintf(buf, "Out of memory\n");
  3475. }
  3476. /* Push back cpu slabs */
  3477. flush_all(s);
  3478. for_each_kmem_cache_node(s, node, n) {
  3479. unsigned long flags;
  3480. struct page *page;
  3481. if (!atomic_long_read(&n->nr_slabs))
  3482. continue;
  3483. spin_lock_irqsave(&n->list_lock, flags);
  3484. list_for_each_entry(page, &n->partial, lru)
  3485. process_slab(&t, s, page, alloc, map);
  3486. list_for_each_entry(page, &n->full, lru)
  3487. process_slab(&t, s, page, alloc, map);
  3488. spin_unlock_irqrestore(&n->list_lock, flags);
  3489. }
  3490. for (i = 0; i < t.count; i++) {
  3491. struct location *l = &t.loc[i];
  3492. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3493. break;
  3494. len += sprintf(buf + len, "%7ld ", l->count);
  3495. if (l->addr)
  3496. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3497. else
  3498. len += sprintf(buf + len, "<not-available>");
  3499. if (l->sum_time != l->min_time) {
  3500. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3501. l->min_time,
  3502. (long)div_u64(l->sum_time, l->count),
  3503. l->max_time);
  3504. } else
  3505. len += sprintf(buf + len, " age=%ld",
  3506. l->min_time);
  3507. if (l->min_pid != l->max_pid)
  3508. len += sprintf(buf + len, " pid=%ld-%ld",
  3509. l->min_pid, l->max_pid);
  3510. else
  3511. len += sprintf(buf + len, " pid=%ld",
  3512. l->min_pid);
  3513. if (num_online_cpus() > 1 &&
  3514. !cpumask_empty(to_cpumask(l->cpus)) &&
  3515. len < PAGE_SIZE - 60)
  3516. len += scnprintf(buf + len, PAGE_SIZE - len - 50,
  3517. " cpus=%*pbl",
  3518. cpumask_pr_args(to_cpumask(l->cpus)));
  3519. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3520. len < PAGE_SIZE - 60)
  3521. len += scnprintf(buf + len, PAGE_SIZE - len - 50,
  3522. " nodes=%*pbl",
  3523. nodemask_pr_args(&l->nodes));
  3524. len += sprintf(buf + len, "\n");
  3525. }
  3526. free_loc_track(&t);
  3527. kfree(map);
  3528. if (!t.count)
  3529. len += sprintf(buf, "No data\n");
  3530. return len;
  3531. }
  3532. #endif
  3533. #ifdef SLUB_RESILIENCY_TEST
  3534. static void __init resiliency_test(void)
  3535. {
  3536. u8 *p;
  3537. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3538. pr_err("SLUB resiliency testing\n");
  3539. pr_err("-----------------------\n");
  3540. pr_err("A. Corruption after allocation\n");
  3541. p = kzalloc(16, GFP_KERNEL);
  3542. p[16] = 0x12;
  3543. pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
  3544. p + 16);
  3545. validate_slab_cache(kmalloc_caches[4]);
  3546. /* Hmmm... The next two are dangerous */
  3547. p = kzalloc(32, GFP_KERNEL);
  3548. p[32 + sizeof(void *)] = 0x34;
  3549. pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
  3550. p);
  3551. pr_err("If allocated object is overwritten then not detectable\n\n");
  3552. validate_slab_cache(kmalloc_caches[5]);
  3553. p = kzalloc(64, GFP_KERNEL);
  3554. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3555. *p = 0x56;
  3556. pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3557. p);
  3558. pr_err("If allocated object is overwritten then not detectable\n\n");
  3559. validate_slab_cache(kmalloc_caches[6]);
  3560. pr_err("\nB. Corruption after free\n");
  3561. p = kzalloc(128, GFP_KERNEL);
  3562. kfree(p);
  3563. *p = 0x78;
  3564. pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3565. validate_slab_cache(kmalloc_caches[7]);
  3566. p = kzalloc(256, GFP_KERNEL);
  3567. kfree(p);
  3568. p[50] = 0x9a;
  3569. pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  3570. validate_slab_cache(kmalloc_caches[8]);
  3571. p = kzalloc(512, GFP_KERNEL);
  3572. kfree(p);
  3573. p[512] = 0xab;
  3574. pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3575. validate_slab_cache(kmalloc_caches[9]);
  3576. }
  3577. #else
  3578. #ifdef CONFIG_SYSFS
  3579. static void resiliency_test(void) {};
  3580. #endif
  3581. #endif
  3582. #ifdef CONFIG_SYSFS
  3583. enum slab_stat_type {
  3584. SL_ALL, /* All slabs */
  3585. SL_PARTIAL, /* Only partially allocated slabs */
  3586. SL_CPU, /* Only slabs used for cpu caches */
  3587. SL_OBJECTS, /* Determine allocated objects not slabs */
  3588. SL_TOTAL /* Determine object capacity not slabs */
  3589. };
  3590. #define SO_ALL (1 << SL_ALL)
  3591. #define SO_PARTIAL (1 << SL_PARTIAL)
  3592. #define SO_CPU (1 << SL_CPU)
  3593. #define SO_OBJECTS (1 << SL_OBJECTS)
  3594. #define SO_TOTAL (1 << SL_TOTAL)
  3595. static ssize_t show_slab_objects(struct kmem_cache *s,
  3596. char *buf, unsigned long flags)
  3597. {
  3598. unsigned long total = 0;
  3599. int node;
  3600. int x;
  3601. unsigned long *nodes;
  3602. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3603. if (!nodes)
  3604. return -ENOMEM;
  3605. if (flags & SO_CPU) {
  3606. int cpu;
  3607. for_each_possible_cpu(cpu) {
  3608. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3609. cpu);
  3610. int node;
  3611. struct page *page;
  3612. page = READ_ONCE(c->page);
  3613. if (!page)
  3614. continue;
  3615. node = page_to_nid(page);
  3616. if (flags & SO_TOTAL)
  3617. x = page->objects;
  3618. else if (flags & SO_OBJECTS)
  3619. x = page->inuse;
  3620. else
  3621. x = 1;
  3622. total += x;
  3623. nodes[node] += x;
  3624. page = READ_ONCE(c->partial);
  3625. if (page) {
  3626. node = page_to_nid(page);
  3627. if (flags & SO_TOTAL)
  3628. WARN_ON_ONCE(1);
  3629. else if (flags & SO_OBJECTS)
  3630. WARN_ON_ONCE(1);
  3631. else
  3632. x = page->pages;
  3633. total += x;
  3634. nodes[node] += x;
  3635. }
  3636. }
  3637. }
  3638. get_online_mems();
  3639. #ifdef CONFIG_SLUB_DEBUG
  3640. if (flags & SO_ALL) {
  3641. struct kmem_cache_node *n;
  3642. for_each_kmem_cache_node(s, node, n) {
  3643. if (flags & SO_TOTAL)
  3644. x = atomic_long_read(&n->total_objects);
  3645. else if (flags & SO_OBJECTS)
  3646. x = atomic_long_read(&n->total_objects) -
  3647. count_partial(n, count_free);
  3648. else
  3649. x = atomic_long_read(&n->nr_slabs);
  3650. total += x;
  3651. nodes[node] += x;
  3652. }
  3653. } else
  3654. #endif
  3655. if (flags & SO_PARTIAL) {
  3656. struct kmem_cache_node *n;
  3657. for_each_kmem_cache_node(s, node, n) {
  3658. if (flags & SO_TOTAL)
  3659. x = count_partial(n, count_total);
  3660. else if (flags & SO_OBJECTS)
  3661. x = count_partial(n, count_inuse);
  3662. else
  3663. x = n->nr_partial;
  3664. total += x;
  3665. nodes[node] += x;
  3666. }
  3667. }
  3668. x = sprintf(buf, "%lu", total);
  3669. #ifdef CONFIG_NUMA
  3670. for (node = 0; node < nr_node_ids; node++)
  3671. if (nodes[node])
  3672. x += sprintf(buf + x, " N%d=%lu",
  3673. node, nodes[node]);
  3674. #endif
  3675. put_online_mems();
  3676. kfree(nodes);
  3677. return x + sprintf(buf + x, "\n");
  3678. }
  3679. #ifdef CONFIG_SLUB_DEBUG
  3680. static int any_slab_objects(struct kmem_cache *s)
  3681. {
  3682. int node;
  3683. struct kmem_cache_node *n;
  3684. for_each_kmem_cache_node(s, node, n)
  3685. if (atomic_long_read(&n->total_objects))
  3686. return 1;
  3687. return 0;
  3688. }
  3689. #endif
  3690. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3691. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3692. struct slab_attribute {
  3693. struct attribute attr;
  3694. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3695. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3696. };
  3697. #define SLAB_ATTR_RO(_name) \
  3698. static struct slab_attribute _name##_attr = \
  3699. __ATTR(_name, 0400, _name##_show, NULL)
  3700. #define SLAB_ATTR(_name) \
  3701. static struct slab_attribute _name##_attr = \
  3702. __ATTR(_name, 0600, _name##_show, _name##_store)
  3703. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3704. {
  3705. return sprintf(buf, "%d\n", s->size);
  3706. }
  3707. SLAB_ATTR_RO(slab_size);
  3708. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3709. {
  3710. return sprintf(buf, "%d\n", s->align);
  3711. }
  3712. SLAB_ATTR_RO(align);
  3713. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3714. {
  3715. return sprintf(buf, "%d\n", s->object_size);
  3716. }
  3717. SLAB_ATTR_RO(object_size);
  3718. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3719. {
  3720. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3721. }
  3722. SLAB_ATTR_RO(objs_per_slab);
  3723. static ssize_t order_store(struct kmem_cache *s,
  3724. const char *buf, size_t length)
  3725. {
  3726. unsigned long order;
  3727. int err;
  3728. err = kstrtoul(buf, 10, &order);
  3729. if (err)
  3730. return err;
  3731. if (order > slub_max_order || order < slub_min_order)
  3732. return -EINVAL;
  3733. calculate_sizes(s, order);
  3734. return length;
  3735. }
  3736. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3737. {
  3738. return sprintf(buf, "%d\n", oo_order(s->oo));
  3739. }
  3740. SLAB_ATTR(order);
  3741. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3742. {
  3743. return sprintf(buf, "%lu\n", s->min_partial);
  3744. }
  3745. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3746. size_t length)
  3747. {
  3748. unsigned long min;
  3749. int err;
  3750. err = kstrtoul(buf, 10, &min);
  3751. if (err)
  3752. return err;
  3753. set_min_partial(s, min);
  3754. return length;
  3755. }
  3756. SLAB_ATTR(min_partial);
  3757. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3758. {
  3759. return sprintf(buf, "%u\n", s->cpu_partial);
  3760. }
  3761. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3762. size_t length)
  3763. {
  3764. unsigned long objects;
  3765. int err;
  3766. err = kstrtoul(buf, 10, &objects);
  3767. if (err)
  3768. return err;
  3769. if (objects && !kmem_cache_has_cpu_partial(s))
  3770. return -EINVAL;
  3771. s->cpu_partial = objects;
  3772. flush_all(s);
  3773. return length;
  3774. }
  3775. SLAB_ATTR(cpu_partial);
  3776. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3777. {
  3778. if (!s->ctor)
  3779. return 0;
  3780. return sprintf(buf, "%pS\n", s->ctor);
  3781. }
  3782. SLAB_ATTR_RO(ctor);
  3783. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3784. {
  3785. return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
  3786. }
  3787. SLAB_ATTR_RO(aliases);
  3788. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3789. {
  3790. return show_slab_objects(s, buf, SO_PARTIAL);
  3791. }
  3792. SLAB_ATTR_RO(partial);
  3793. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3794. {
  3795. return show_slab_objects(s, buf, SO_CPU);
  3796. }
  3797. SLAB_ATTR_RO(cpu_slabs);
  3798. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3799. {
  3800. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3801. }
  3802. SLAB_ATTR_RO(objects);
  3803. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3804. {
  3805. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3806. }
  3807. SLAB_ATTR_RO(objects_partial);
  3808. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3809. {
  3810. int objects = 0;
  3811. int pages = 0;
  3812. int cpu;
  3813. int len;
  3814. for_each_online_cpu(cpu) {
  3815. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3816. if (page) {
  3817. pages += page->pages;
  3818. objects += page->pobjects;
  3819. }
  3820. }
  3821. len = sprintf(buf, "%d(%d)", objects, pages);
  3822. #ifdef CONFIG_SMP
  3823. for_each_online_cpu(cpu) {
  3824. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3825. if (page && len < PAGE_SIZE - 20)
  3826. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3827. page->pobjects, page->pages);
  3828. }
  3829. #endif
  3830. return len + sprintf(buf + len, "\n");
  3831. }
  3832. SLAB_ATTR_RO(slabs_cpu_partial);
  3833. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3834. {
  3835. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3836. }
  3837. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3838. const char *buf, size_t length)
  3839. {
  3840. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3841. if (buf[0] == '1')
  3842. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3843. return length;
  3844. }
  3845. SLAB_ATTR(reclaim_account);
  3846. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3847. {
  3848. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3849. }
  3850. SLAB_ATTR_RO(hwcache_align);
  3851. #ifdef CONFIG_ZONE_DMA
  3852. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3853. {
  3854. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3855. }
  3856. SLAB_ATTR_RO(cache_dma);
  3857. #endif
  3858. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3859. {
  3860. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3861. }
  3862. SLAB_ATTR_RO(destroy_by_rcu);
  3863. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3864. {
  3865. return sprintf(buf, "%d\n", s->reserved);
  3866. }
  3867. SLAB_ATTR_RO(reserved);
  3868. #ifdef CONFIG_SLUB_DEBUG
  3869. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3870. {
  3871. return show_slab_objects(s, buf, SO_ALL);
  3872. }
  3873. SLAB_ATTR_RO(slabs);
  3874. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3875. {
  3876. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3877. }
  3878. SLAB_ATTR_RO(total_objects);
  3879. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3880. {
  3881. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3882. }
  3883. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3884. const char *buf, size_t length)
  3885. {
  3886. s->flags &= ~SLAB_DEBUG_FREE;
  3887. if (buf[0] == '1') {
  3888. s->flags &= ~__CMPXCHG_DOUBLE;
  3889. s->flags |= SLAB_DEBUG_FREE;
  3890. }
  3891. return length;
  3892. }
  3893. SLAB_ATTR(sanity_checks);
  3894. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3895. {
  3896. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3897. }
  3898. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3899. size_t length)
  3900. {
  3901. /*
  3902. * Tracing a merged cache is going to give confusing results
  3903. * as well as cause other issues like converting a mergeable
  3904. * cache into an umergeable one.
  3905. */
  3906. if (s->refcount > 1)
  3907. return -EINVAL;
  3908. s->flags &= ~SLAB_TRACE;
  3909. if (buf[0] == '1') {
  3910. s->flags &= ~__CMPXCHG_DOUBLE;
  3911. s->flags |= SLAB_TRACE;
  3912. }
  3913. return length;
  3914. }
  3915. SLAB_ATTR(trace);
  3916. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3917. {
  3918. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3919. }
  3920. static ssize_t red_zone_store(struct kmem_cache *s,
  3921. const char *buf, size_t length)
  3922. {
  3923. if (any_slab_objects(s))
  3924. return -EBUSY;
  3925. s->flags &= ~SLAB_RED_ZONE;
  3926. if (buf[0] == '1') {
  3927. s->flags &= ~__CMPXCHG_DOUBLE;
  3928. s->flags |= SLAB_RED_ZONE;
  3929. }
  3930. calculate_sizes(s, -1);
  3931. return length;
  3932. }
  3933. SLAB_ATTR(red_zone);
  3934. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3935. {
  3936. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3937. }
  3938. static ssize_t poison_store(struct kmem_cache *s,
  3939. const char *buf, size_t length)
  3940. {
  3941. if (any_slab_objects(s))
  3942. return -EBUSY;
  3943. s->flags &= ~SLAB_POISON;
  3944. if (buf[0] == '1') {
  3945. s->flags &= ~__CMPXCHG_DOUBLE;
  3946. s->flags |= SLAB_POISON;
  3947. }
  3948. calculate_sizes(s, -1);
  3949. return length;
  3950. }
  3951. SLAB_ATTR(poison);
  3952. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3953. {
  3954. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3955. }
  3956. static ssize_t store_user_store(struct kmem_cache *s,
  3957. const char *buf, size_t length)
  3958. {
  3959. if (any_slab_objects(s))
  3960. return -EBUSY;
  3961. s->flags &= ~SLAB_STORE_USER;
  3962. if (buf[0] == '1') {
  3963. s->flags &= ~__CMPXCHG_DOUBLE;
  3964. s->flags |= SLAB_STORE_USER;
  3965. }
  3966. calculate_sizes(s, -1);
  3967. return length;
  3968. }
  3969. SLAB_ATTR(store_user);
  3970. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3971. {
  3972. return 0;
  3973. }
  3974. static ssize_t validate_store(struct kmem_cache *s,
  3975. const char *buf, size_t length)
  3976. {
  3977. int ret = -EINVAL;
  3978. if (buf[0] == '1') {
  3979. ret = validate_slab_cache(s);
  3980. if (ret >= 0)
  3981. ret = length;
  3982. }
  3983. return ret;
  3984. }
  3985. SLAB_ATTR(validate);
  3986. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3987. {
  3988. if (!(s->flags & SLAB_STORE_USER))
  3989. return -ENOSYS;
  3990. return list_locations(s, buf, TRACK_ALLOC);
  3991. }
  3992. SLAB_ATTR_RO(alloc_calls);
  3993. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3994. {
  3995. if (!(s->flags & SLAB_STORE_USER))
  3996. return -ENOSYS;
  3997. return list_locations(s, buf, TRACK_FREE);
  3998. }
  3999. SLAB_ATTR_RO(free_calls);
  4000. #endif /* CONFIG_SLUB_DEBUG */
  4001. #ifdef CONFIG_FAILSLAB
  4002. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4003. {
  4004. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4005. }
  4006. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4007. size_t length)
  4008. {
  4009. if (s->refcount > 1)
  4010. return -EINVAL;
  4011. s->flags &= ~SLAB_FAILSLAB;
  4012. if (buf[0] == '1')
  4013. s->flags |= SLAB_FAILSLAB;
  4014. return length;
  4015. }
  4016. SLAB_ATTR(failslab);
  4017. #endif
  4018. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4019. {
  4020. return 0;
  4021. }
  4022. static ssize_t shrink_store(struct kmem_cache *s,
  4023. const char *buf, size_t length)
  4024. {
  4025. if (buf[0] == '1')
  4026. kmem_cache_shrink(s);
  4027. else
  4028. return -EINVAL;
  4029. return length;
  4030. }
  4031. SLAB_ATTR(shrink);
  4032. #ifdef CONFIG_NUMA
  4033. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4034. {
  4035. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4036. }
  4037. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4038. const char *buf, size_t length)
  4039. {
  4040. unsigned long ratio;
  4041. int err;
  4042. err = kstrtoul(buf, 10, &ratio);
  4043. if (err)
  4044. return err;
  4045. if (ratio <= 100)
  4046. s->remote_node_defrag_ratio = ratio * 10;
  4047. return length;
  4048. }
  4049. SLAB_ATTR(remote_node_defrag_ratio);
  4050. #endif
  4051. #ifdef CONFIG_SLUB_STATS
  4052. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4053. {
  4054. unsigned long sum = 0;
  4055. int cpu;
  4056. int len;
  4057. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4058. if (!data)
  4059. return -ENOMEM;
  4060. for_each_online_cpu(cpu) {
  4061. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4062. data[cpu] = x;
  4063. sum += x;
  4064. }
  4065. len = sprintf(buf, "%lu", sum);
  4066. #ifdef CONFIG_SMP
  4067. for_each_online_cpu(cpu) {
  4068. if (data[cpu] && len < PAGE_SIZE - 20)
  4069. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4070. }
  4071. #endif
  4072. kfree(data);
  4073. return len + sprintf(buf + len, "\n");
  4074. }
  4075. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4076. {
  4077. int cpu;
  4078. for_each_online_cpu(cpu)
  4079. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4080. }
  4081. #define STAT_ATTR(si, text) \
  4082. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4083. { \
  4084. return show_stat(s, buf, si); \
  4085. } \
  4086. static ssize_t text##_store(struct kmem_cache *s, \
  4087. const char *buf, size_t length) \
  4088. { \
  4089. if (buf[0] != '0') \
  4090. return -EINVAL; \
  4091. clear_stat(s, si); \
  4092. return length; \
  4093. } \
  4094. SLAB_ATTR(text); \
  4095. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4096. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4097. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4098. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4099. STAT_ATTR(FREE_FROZEN, free_frozen);
  4100. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4101. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4102. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4103. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4104. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4105. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4106. STAT_ATTR(FREE_SLAB, free_slab);
  4107. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4108. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4109. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4110. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4111. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4112. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4113. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4114. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4115. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4116. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4117. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4118. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4119. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4120. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4121. #endif
  4122. static struct attribute *slab_attrs[] = {
  4123. &slab_size_attr.attr,
  4124. &object_size_attr.attr,
  4125. &objs_per_slab_attr.attr,
  4126. &order_attr.attr,
  4127. &min_partial_attr.attr,
  4128. &cpu_partial_attr.attr,
  4129. &objects_attr.attr,
  4130. &objects_partial_attr.attr,
  4131. &partial_attr.attr,
  4132. &cpu_slabs_attr.attr,
  4133. &ctor_attr.attr,
  4134. &aliases_attr.attr,
  4135. &align_attr.attr,
  4136. &hwcache_align_attr.attr,
  4137. &reclaim_account_attr.attr,
  4138. &destroy_by_rcu_attr.attr,
  4139. &shrink_attr.attr,
  4140. &reserved_attr.attr,
  4141. &slabs_cpu_partial_attr.attr,
  4142. #ifdef CONFIG_SLUB_DEBUG
  4143. &total_objects_attr.attr,
  4144. &slabs_attr.attr,
  4145. &sanity_checks_attr.attr,
  4146. &trace_attr.attr,
  4147. &red_zone_attr.attr,
  4148. &poison_attr.attr,
  4149. &store_user_attr.attr,
  4150. &validate_attr.attr,
  4151. &alloc_calls_attr.attr,
  4152. &free_calls_attr.attr,
  4153. #endif
  4154. #ifdef CONFIG_ZONE_DMA
  4155. &cache_dma_attr.attr,
  4156. #endif
  4157. #ifdef CONFIG_NUMA
  4158. &remote_node_defrag_ratio_attr.attr,
  4159. #endif
  4160. #ifdef CONFIG_SLUB_STATS
  4161. &alloc_fastpath_attr.attr,
  4162. &alloc_slowpath_attr.attr,
  4163. &free_fastpath_attr.attr,
  4164. &free_slowpath_attr.attr,
  4165. &free_frozen_attr.attr,
  4166. &free_add_partial_attr.attr,
  4167. &free_remove_partial_attr.attr,
  4168. &alloc_from_partial_attr.attr,
  4169. &alloc_slab_attr.attr,
  4170. &alloc_refill_attr.attr,
  4171. &alloc_node_mismatch_attr.attr,
  4172. &free_slab_attr.attr,
  4173. &cpuslab_flush_attr.attr,
  4174. &deactivate_full_attr.attr,
  4175. &deactivate_empty_attr.attr,
  4176. &deactivate_to_head_attr.attr,
  4177. &deactivate_to_tail_attr.attr,
  4178. &deactivate_remote_frees_attr.attr,
  4179. &deactivate_bypass_attr.attr,
  4180. &order_fallback_attr.attr,
  4181. &cmpxchg_double_fail_attr.attr,
  4182. &cmpxchg_double_cpu_fail_attr.attr,
  4183. &cpu_partial_alloc_attr.attr,
  4184. &cpu_partial_free_attr.attr,
  4185. &cpu_partial_node_attr.attr,
  4186. &cpu_partial_drain_attr.attr,
  4187. #endif
  4188. #ifdef CONFIG_FAILSLAB
  4189. &failslab_attr.attr,
  4190. #endif
  4191. NULL
  4192. };
  4193. static struct attribute_group slab_attr_group = {
  4194. .attrs = slab_attrs,
  4195. };
  4196. static ssize_t slab_attr_show(struct kobject *kobj,
  4197. struct attribute *attr,
  4198. char *buf)
  4199. {
  4200. struct slab_attribute *attribute;
  4201. struct kmem_cache *s;
  4202. int err;
  4203. attribute = to_slab_attr(attr);
  4204. s = to_slab(kobj);
  4205. if (!attribute->show)
  4206. return -EIO;
  4207. err = attribute->show(s, buf);
  4208. return err;
  4209. }
  4210. static ssize_t slab_attr_store(struct kobject *kobj,
  4211. struct attribute *attr,
  4212. const char *buf, size_t len)
  4213. {
  4214. struct slab_attribute *attribute;
  4215. struct kmem_cache *s;
  4216. int err;
  4217. attribute = to_slab_attr(attr);
  4218. s = to_slab(kobj);
  4219. if (!attribute->store)
  4220. return -EIO;
  4221. err = attribute->store(s, buf, len);
  4222. #ifdef CONFIG_MEMCG_KMEM
  4223. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4224. struct kmem_cache *c;
  4225. mutex_lock(&slab_mutex);
  4226. if (s->max_attr_size < len)
  4227. s->max_attr_size = len;
  4228. /*
  4229. * This is a best effort propagation, so this function's return
  4230. * value will be determined by the parent cache only. This is
  4231. * basically because not all attributes will have a well
  4232. * defined semantics for rollbacks - most of the actions will
  4233. * have permanent effects.
  4234. *
  4235. * Returning the error value of any of the children that fail
  4236. * is not 100 % defined, in the sense that users seeing the
  4237. * error code won't be able to know anything about the state of
  4238. * the cache.
  4239. *
  4240. * Only returning the error code for the parent cache at least
  4241. * has well defined semantics. The cache being written to
  4242. * directly either failed or succeeded, in which case we loop
  4243. * through the descendants with best-effort propagation.
  4244. */
  4245. for_each_memcg_cache(c, s)
  4246. attribute->store(c, buf, len);
  4247. mutex_unlock(&slab_mutex);
  4248. }
  4249. #endif
  4250. return err;
  4251. }
  4252. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4253. {
  4254. #ifdef CONFIG_MEMCG_KMEM
  4255. int i;
  4256. char *buffer = NULL;
  4257. struct kmem_cache *root_cache;
  4258. if (is_root_cache(s))
  4259. return;
  4260. root_cache = s->memcg_params.root_cache;
  4261. /*
  4262. * This mean this cache had no attribute written. Therefore, no point
  4263. * in copying default values around
  4264. */
  4265. if (!root_cache->max_attr_size)
  4266. return;
  4267. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4268. char mbuf[64];
  4269. char *buf;
  4270. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4271. if (!attr || !attr->store || !attr->show)
  4272. continue;
  4273. /*
  4274. * It is really bad that we have to allocate here, so we will
  4275. * do it only as a fallback. If we actually allocate, though,
  4276. * we can just use the allocated buffer until the end.
  4277. *
  4278. * Most of the slub attributes will tend to be very small in
  4279. * size, but sysfs allows buffers up to a page, so they can
  4280. * theoretically happen.
  4281. */
  4282. if (buffer)
  4283. buf = buffer;
  4284. else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
  4285. buf = mbuf;
  4286. else {
  4287. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4288. if (WARN_ON(!buffer))
  4289. continue;
  4290. buf = buffer;
  4291. }
  4292. attr->show(root_cache, buf);
  4293. attr->store(s, buf, strlen(buf));
  4294. }
  4295. if (buffer)
  4296. free_page((unsigned long)buffer);
  4297. #endif
  4298. }
  4299. static void kmem_cache_release(struct kobject *k)
  4300. {
  4301. slab_kmem_cache_release(to_slab(k));
  4302. }
  4303. static const struct sysfs_ops slab_sysfs_ops = {
  4304. .show = slab_attr_show,
  4305. .store = slab_attr_store,
  4306. };
  4307. static struct kobj_type slab_ktype = {
  4308. .sysfs_ops = &slab_sysfs_ops,
  4309. .release = kmem_cache_release,
  4310. };
  4311. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4312. {
  4313. struct kobj_type *ktype = get_ktype(kobj);
  4314. if (ktype == &slab_ktype)
  4315. return 1;
  4316. return 0;
  4317. }
  4318. static const struct kset_uevent_ops slab_uevent_ops = {
  4319. .filter = uevent_filter,
  4320. };
  4321. static struct kset *slab_kset;
  4322. static inline struct kset *cache_kset(struct kmem_cache *s)
  4323. {
  4324. #ifdef CONFIG_MEMCG_KMEM
  4325. if (!is_root_cache(s))
  4326. return s->memcg_params.root_cache->memcg_kset;
  4327. #endif
  4328. return slab_kset;
  4329. }
  4330. #define ID_STR_LENGTH 64
  4331. /* Create a unique string id for a slab cache:
  4332. *
  4333. * Format :[flags-]size
  4334. */
  4335. static char *create_unique_id(struct kmem_cache *s)
  4336. {
  4337. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4338. char *p = name;
  4339. BUG_ON(!name);
  4340. *p++ = ':';
  4341. /*
  4342. * First flags affecting slabcache operations. We will only
  4343. * get here for aliasable slabs so we do not need to support
  4344. * too many flags. The flags here must cover all flags that
  4345. * are matched during merging to guarantee that the id is
  4346. * unique.
  4347. */
  4348. if (s->flags & SLAB_CACHE_DMA)
  4349. *p++ = 'd';
  4350. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4351. *p++ = 'a';
  4352. if (s->flags & SLAB_DEBUG_FREE)
  4353. *p++ = 'F';
  4354. if (!(s->flags & SLAB_NOTRACK))
  4355. *p++ = 't';
  4356. if (p != name + 1)
  4357. *p++ = '-';
  4358. p += sprintf(p, "%07d", s->size);
  4359. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4360. return name;
  4361. }
  4362. static int sysfs_slab_add(struct kmem_cache *s)
  4363. {
  4364. int err;
  4365. const char *name;
  4366. int unmergeable = slab_unmergeable(s);
  4367. if (unmergeable) {
  4368. /*
  4369. * Slabcache can never be merged so we can use the name proper.
  4370. * This is typically the case for debug situations. In that
  4371. * case we can catch duplicate names easily.
  4372. */
  4373. sysfs_remove_link(&slab_kset->kobj, s->name);
  4374. name = s->name;
  4375. } else {
  4376. /*
  4377. * Create a unique name for the slab as a target
  4378. * for the symlinks.
  4379. */
  4380. name = create_unique_id(s);
  4381. }
  4382. s->kobj.kset = cache_kset(s);
  4383. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4384. if (err)
  4385. goto out_put_kobj;
  4386. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4387. if (err)
  4388. goto out_del_kobj;
  4389. #ifdef CONFIG_MEMCG_KMEM
  4390. if (is_root_cache(s)) {
  4391. s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
  4392. if (!s->memcg_kset) {
  4393. err = -ENOMEM;
  4394. goto out_del_kobj;
  4395. }
  4396. }
  4397. #endif
  4398. kobject_uevent(&s->kobj, KOBJ_ADD);
  4399. if (!unmergeable) {
  4400. /* Setup first alias */
  4401. sysfs_slab_alias(s, s->name);
  4402. }
  4403. out:
  4404. if (!unmergeable)
  4405. kfree(name);
  4406. return err;
  4407. out_del_kobj:
  4408. kobject_del(&s->kobj);
  4409. out_put_kobj:
  4410. kobject_put(&s->kobj);
  4411. goto out;
  4412. }
  4413. void sysfs_slab_remove(struct kmem_cache *s)
  4414. {
  4415. if (slab_state < FULL)
  4416. /*
  4417. * Sysfs has not been setup yet so no need to remove the
  4418. * cache from sysfs.
  4419. */
  4420. return;
  4421. #ifdef CONFIG_MEMCG_KMEM
  4422. kset_unregister(s->memcg_kset);
  4423. #endif
  4424. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4425. kobject_del(&s->kobj);
  4426. kobject_put(&s->kobj);
  4427. }
  4428. /*
  4429. * Need to buffer aliases during bootup until sysfs becomes
  4430. * available lest we lose that information.
  4431. */
  4432. struct saved_alias {
  4433. struct kmem_cache *s;
  4434. const char *name;
  4435. struct saved_alias *next;
  4436. };
  4437. static struct saved_alias *alias_list;
  4438. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4439. {
  4440. struct saved_alias *al;
  4441. if (slab_state == FULL) {
  4442. /*
  4443. * If we have a leftover link then remove it.
  4444. */
  4445. sysfs_remove_link(&slab_kset->kobj, name);
  4446. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4447. }
  4448. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4449. if (!al)
  4450. return -ENOMEM;
  4451. al->s = s;
  4452. al->name = name;
  4453. al->next = alias_list;
  4454. alias_list = al;
  4455. return 0;
  4456. }
  4457. static int __init slab_sysfs_init(void)
  4458. {
  4459. struct kmem_cache *s;
  4460. int err;
  4461. mutex_lock(&slab_mutex);
  4462. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4463. if (!slab_kset) {
  4464. mutex_unlock(&slab_mutex);
  4465. pr_err("Cannot register slab subsystem.\n");
  4466. return -ENOSYS;
  4467. }
  4468. slab_state = FULL;
  4469. list_for_each_entry(s, &slab_caches, list) {
  4470. err = sysfs_slab_add(s);
  4471. if (err)
  4472. pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
  4473. s->name);
  4474. }
  4475. while (alias_list) {
  4476. struct saved_alias *al = alias_list;
  4477. alias_list = alias_list->next;
  4478. err = sysfs_slab_alias(al->s, al->name);
  4479. if (err)
  4480. pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
  4481. al->name);
  4482. kfree(al);
  4483. }
  4484. mutex_unlock(&slab_mutex);
  4485. resiliency_test();
  4486. return 0;
  4487. }
  4488. __initcall(slab_sysfs_init);
  4489. #endif /* CONFIG_SYSFS */
  4490. /*
  4491. * The /proc/slabinfo ABI
  4492. */
  4493. #ifdef CONFIG_SLABINFO
  4494. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4495. {
  4496. unsigned long nr_slabs = 0;
  4497. unsigned long nr_objs = 0;
  4498. unsigned long nr_free = 0;
  4499. int node;
  4500. struct kmem_cache_node *n;
  4501. for_each_kmem_cache_node(s, node, n) {
  4502. nr_slabs += node_nr_slabs(n);
  4503. nr_objs += node_nr_objs(n);
  4504. nr_free += count_partial(n, count_free);
  4505. }
  4506. sinfo->active_objs = nr_objs - nr_free;
  4507. sinfo->num_objs = nr_objs;
  4508. sinfo->active_slabs = nr_slabs;
  4509. sinfo->num_slabs = nr_slabs;
  4510. sinfo->objects_per_slab = oo_objects(s->oo);
  4511. sinfo->cache_order = oo_order(s->oo);
  4512. }
  4513. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4514. {
  4515. }
  4516. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4517. size_t count, loff_t *ppos)
  4518. {
  4519. return -EIO;
  4520. }
  4521. #endif /* CONFIG_SLABINFO */