ccp-dev-v5.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. /*
  2. * AMD Cryptographic Coprocessor (CCP) driver
  3. *
  4. * Copyright (C) 2016 Advanced Micro Devices, Inc.
  5. *
  6. * Author: Gary R Hook <gary.hook@amd.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/pci.h>
  15. #include <linux/kthread.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/compiler.h>
  19. #include <linux/ccp.h>
  20. #include "ccp-dev.h"
  21. /* Allocate the requested number of contiguous LSB slots
  22. * from the LSB bitmap. Look in the private range for this
  23. * queue first; failing that, check the public area.
  24. * If no space is available, wait around.
  25. * Return: first slot number
  26. */
  27. static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
  28. {
  29. struct ccp_device *ccp;
  30. int start;
  31. /* First look at the map for the queue */
  32. if (cmd_q->lsb >= 0) {
  33. start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
  34. LSB_SIZE,
  35. 0, count, 0);
  36. if (start < LSB_SIZE) {
  37. bitmap_set(cmd_q->lsbmap, start, count);
  38. return start + cmd_q->lsb * LSB_SIZE;
  39. }
  40. }
  41. /* No joy; try to get an entry from the shared blocks */
  42. ccp = cmd_q->ccp;
  43. for (;;) {
  44. mutex_lock(&ccp->sb_mutex);
  45. start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
  46. MAX_LSB_CNT * LSB_SIZE,
  47. 0,
  48. count, 0);
  49. if (start <= MAX_LSB_CNT * LSB_SIZE) {
  50. bitmap_set(ccp->lsbmap, start, count);
  51. mutex_unlock(&ccp->sb_mutex);
  52. return start;
  53. }
  54. ccp->sb_avail = 0;
  55. mutex_unlock(&ccp->sb_mutex);
  56. /* Wait for KSB entries to become available */
  57. if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
  58. return 0;
  59. }
  60. }
  61. /* Free a number of LSB slots from the bitmap, starting at
  62. * the indicated starting slot number.
  63. */
  64. static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
  65. unsigned int count)
  66. {
  67. if (!start)
  68. return;
  69. if (cmd_q->lsb == start) {
  70. /* An entry from the private LSB */
  71. bitmap_clear(cmd_q->lsbmap, start, count);
  72. } else {
  73. /* From the shared LSBs */
  74. struct ccp_device *ccp = cmd_q->ccp;
  75. mutex_lock(&ccp->sb_mutex);
  76. bitmap_clear(ccp->lsbmap, start, count);
  77. ccp->sb_avail = 1;
  78. mutex_unlock(&ccp->sb_mutex);
  79. wake_up_interruptible_all(&ccp->sb_queue);
  80. }
  81. }
  82. /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
  83. union ccp_function {
  84. struct {
  85. u16 size:7;
  86. u16 encrypt:1;
  87. u16 mode:5;
  88. u16 type:2;
  89. } aes;
  90. struct {
  91. u16 size:7;
  92. u16 encrypt:1;
  93. u16 rsvd:5;
  94. u16 type:2;
  95. } aes_xts;
  96. struct {
  97. u16 size:7;
  98. u16 encrypt:1;
  99. u16 mode:5;
  100. u16 type:2;
  101. } des3;
  102. struct {
  103. u16 rsvd1:10;
  104. u16 type:4;
  105. u16 rsvd2:1;
  106. } sha;
  107. struct {
  108. u16 mode:3;
  109. u16 size:12;
  110. } rsa;
  111. struct {
  112. u16 byteswap:2;
  113. u16 bitwise:3;
  114. u16 reflect:2;
  115. u16 rsvd:8;
  116. } pt;
  117. struct {
  118. u16 rsvd:13;
  119. } zlib;
  120. struct {
  121. u16 size:10;
  122. u16 type:2;
  123. u16 mode:3;
  124. } ecc;
  125. u16 raw;
  126. };
  127. #define CCP_AES_SIZE(p) ((p)->aes.size)
  128. #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
  129. #define CCP_AES_MODE(p) ((p)->aes.mode)
  130. #define CCP_AES_TYPE(p) ((p)->aes.type)
  131. #define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
  132. #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
  133. #define CCP_DES3_SIZE(p) ((p)->des3.size)
  134. #define CCP_DES3_ENCRYPT(p) ((p)->des3.encrypt)
  135. #define CCP_DES3_MODE(p) ((p)->des3.mode)
  136. #define CCP_DES3_TYPE(p) ((p)->des3.type)
  137. #define CCP_SHA_TYPE(p) ((p)->sha.type)
  138. #define CCP_RSA_SIZE(p) ((p)->rsa.size)
  139. #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
  140. #define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
  141. #define CCP_ECC_MODE(p) ((p)->ecc.mode)
  142. #define CCP_ECC_AFFINE(p) ((p)->ecc.one)
  143. /* Word 0 */
  144. #define CCP5_CMD_DW0(p) ((p)->dw0)
  145. #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
  146. #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
  147. #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
  148. #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
  149. #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
  150. #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
  151. #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
  152. /* Word 1 */
  153. #define CCP5_CMD_DW1(p) ((p)->length)
  154. #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
  155. /* Word 2 */
  156. #define CCP5_CMD_DW2(p) ((p)->src_lo)
  157. #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
  158. /* Word 3 */
  159. #define CCP5_CMD_DW3(p) ((p)->dw3)
  160. #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
  161. #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
  162. #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
  163. #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
  164. /* Words 4/5 */
  165. #define CCP5_CMD_DW4(p) ((p)->dw4)
  166. #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
  167. #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
  168. #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
  169. #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
  170. #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
  171. #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
  172. #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
  173. /* Word 6/7 */
  174. #define CCP5_CMD_DW6(p) ((p)->key_lo)
  175. #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
  176. #define CCP5_CMD_DW7(p) ((p)->dw7)
  177. #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
  178. #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
  179. static inline u32 low_address(unsigned long addr)
  180. {
  181. return (u64)addr & 0x0ffffffff;
  182. }
  183. static inline u32 high_address(unsigned long addr)
  184. {
  185. return ((u64)addr >> 32) & 0x00000ffff;
  186. }
  187. static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
  188. {
  189. unsigned int head_idx, n;
  190. u32 head_lo, queue_start;
  191. queue_start = low_address(cmd_q->qdma_tail);
  192. head_lo = ioread32(cmd_q->reg_head_lo);
  193. head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
  194. n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
  195. return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
  196. }
  197. static int ccp5_do_cmd(struct ccp5_desc *desc,
  198. struct ccp_cmd_queue *cmd_q)
  199. {
  200. u32 *mP;
  201. __le32 *dP;
  202. u32 tail;
  203. int i;
  204. int ret = 0;
  205. if (CCP5_CMD_SOC(desc)) {
  206. CCP5_CMD_IOC(desc) = 1;
  207. CCP5_CMD_SOC(desc) = 0;
  208. }
  209. mutex_lock(&cmd_q->q_mutex);
  210. mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
  211. dP = (__le32 *) desc;
  212. for (i = 0; i < 8; i++)
  213. mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
  214. cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
  215. /* The data used by this command must be flushed to memory */
  216. wmb();
  217. /* Write the new tail address back to the queue register */
  218. tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
  219. iowrite32(tail, cmd_q->reg_tail_lo);
  220. /* Turn the queue back on using our cached control register */
  221. iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
  222. mutex_unlock(&cmd_q->q_mutex);
  223. if (CCP5_CMD_IOC(desc)) {
  224. /* Wait for the job to complete */
  225. ret = wait_event_interruptible(cmd_q->int_queue,
  226. cmd_q->int_rcvd);
  227. if (ret || cmd_q->cmd_error) {
  228. /* Log the error and flush the queue by
  229. * moving the head pointer
  230. */
  231. if (cmd_q->cmd_error)
  232. ccp_log_error(cmd_q->ccp,
  233. cmd_q->cmd_error);
  234. iowrite32(tail, cmd_q->reg_head_lo);
  235. if (!ret)
  236. ret = -EIO;
  237. }
  238. cmd_q->int_rcvd = 0;
  239. }
  240. return ret;
  241. }
  242. static int ccp5_perform_aes(struct ccp_op *op)
  243. {
  244. struct ccp5_desc desc;
  245. union ccp_function function;
  246. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  247. /* Zero out all the fields of the command desc */
  248. memset(&desc, 0, Q_DESC_SIZE);
  249. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
  250. CCP5_CMD_SOC(&desc) = op->soc;
  251. CCP5_CMD_IOC(&desc) = 1;
  252. CCP5_CMD_INIT(&desc) = op->init;
  253. CCP5_CMD_EOM(&desc) = op->eom;
  254. CCP5_CMD_PROT(&desc) = 0;
  255. function.raw = 0;
  256. CCP_AES_ENCRYPT(&function) = op->u.aes.action;
  257. CCP_AES_MODE(&function) = op->u.aes.mode;
  258. CCP_AES_TYPE(&function) = op->u.aes.type;
  259. CCP_AES_SIZE(&function) = op->u.aes.size;
  260. CCP5_CMD_FUNCTION(&desc) = function.raw;
  261. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  262. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  263. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  264. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  265. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  266. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  267. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  268. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  269. CCP5_CMD_KEY_HI(&desc) = 0;
  270. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  271. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  272. return ccp5_do_cmd(&desc, op->cmd_q);
  273. }
  274. static int ccp5_perform_xts_aes(struct ccp_op *op)
  275. {
  276. struct ccp5_desc desc;
  277. union ccp_function function;
  278. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  279. /* Zero out all the fields of the command desc */
  280. memset(&desc, 0, Q_DESC_SIZE);
  281. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
  282. CCP5_CMD_SOC(&desc) = op->soc;
  283. CCP5_CMD_IOC(&desc) = 1;
  284. CCP5_CMD_INIT(&desc) = op->init;
  285. CCP5_CMD_EOM(&desc) = op->eom;
  286. CCP5_CMD_PROT(&desc) = 0;
  287. function.raw = 0;
  288. CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
  289. CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
  290. CCP5_CMD_FUNCTION(&desc) = function.raw;
  291. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  292. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  293. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  294. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  295. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  296. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  297. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  298. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  299. CCP5_CMD_KEY_HI(&desc) = 0;
  300. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  301. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  302. return ccp5_do_cmd(&desc, op->cmd_q);
  303. }
  304. static int ccp5_perform_sha(struct ccp_op *op)
  305. {
  306. struct ccp5_desc desc;
  307. union ccp_function function;
  308. /* Zero out all the fields of the command desc */
  309. memset(&desc, 0, Q_DESC_SIZE);
  310. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
  311. CCP5_CMD_SOC(&desc) = op->soc;
  312. CCP5_CMD_IOC(&desc) = 1;
  313. CCP5_CMD_INIT(&desc) = 1;
  314. CCP5_CMD_EOM(&desc) = op->eom;
  315. CCP5_CMD_PROT(&desc) = 0;
  316. function.raw = 0;
  317. CCP_SHA_TYPE(&function) = op->u.sha.type;
  318. CCP5_CMD_FUNCTION(&desc) = function.raw;
  319. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  320. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  321. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  322. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  323. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  324. if (op->eom) {
  325. CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
  326. CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
  327. } else {
  328. CCP5_CMD_SHA_LO(&desc) = 0;
  329. CCP5_CMD_SHA_HI(&desc) = 0;
  330. }
  331. return ccp5_do_cmd(&desc, op->cmd_q);
  332. }
  333. static int ccp5_perform_des3(struct ccp_op *op)
  334. {
  335. struct ccp5_desc desc;
  336. union ccp_function function;
  337. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  338. /* Zero out all the fields of the command desc */
  339. memset(&desc, 0, sizeof(struct ccp5_desc));
  340. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
  341. CCP5_CMD_SOC(&desc) = op->soc;
  342. CCP5_CMD_IOC(&desc) = 1;
  343. CCP5_CMD_INIT(&desc) = op->init;
  344. CCP5_CMD_EOM(&desc) = op->eom;
  345. CCP5_CMD_PROT(&desc) = 0;
  346. function.raw = 0;
  347. CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
  348. CCP_DES3_MODE(&function) = op->u.des3.mode;
  349. CCP_DES3_TYPE(&function) = op->u.des3.type;
  350. CCP5_CMD_FUNCTION(&desc) = function.raw;
  351. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  352. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  353. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  354. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  355. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  356. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  357. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  358. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  359. CCP5_CMD_KEY_HI(&desc) = 0;
  360. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  361. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  362. return ccp5_do_cmd(&desc, op->cmd_q);
  363. }
  364. static int ccp5_perform_rsa(struct ccp_op *op)
  365. {
  366. struct ccp5_desc desc;
  367. union ccp_function function;
  368. /* Zero out all the fields of the command desc */
  369. memset(&desc, 0, Q_DESC_SIZE);
  370. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
  371. CCP5_CMD_SOC(&desc) = op->soc;
  372. CCP5_CMD_IOC(&desc) = 1;
  373. CCP5_CMD_INIT(&desc) = 0;
  374. CCP5_CMD_EOM(&desc) = 1;
  375. CCP5_CMD_PROT(&desc) = 0;
  376. function.raw = 0;
  377. CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
  378. CCP5_CMD_FUNCTION(&desc) = function.raw;
  379. CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
  380. /* Source is from external memory */
  381. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  382. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  383. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  384. /* Destination is in external memory */
  385. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  386. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  387. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  388. /* Exponent is in LSB memory */
  389. CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
  390. CCP5_CMD_KEY_HI(&desc) = 0;
  391. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  392. return ccp5_do_cmd(&desc, op->cmd_q);
  393. }
  394. static int ccp5_perform_passthru(struct ccp_op *op)
  395. {
  396. struct ccp5_desc desc;
  397. union ccp_function function;
  398. struct ccp_dma_info *saddr = &op->src.u.dma;
  399. struct ccp_dma_info *daddr = &op->dst.u.dma;
  400. memset(&desc, 0, Q_DESC_SIZE);
  401. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
  402. CCP5_CMD_SOC(&desc) = 0;
  403. CCP5_CMD_IOC(&desc) = 1;
  404. CCP5_CMD_INIT(&desc) = 0;
  405. CCP5_CMD_EOM(&desc) = op->eom;
  406. CCP5_CMD_PROT(&desc) = 0;
  407. function.raw = 0;
  408. CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
  409. CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
  410. CCP5_CMD_FUNCTION(&desc) = function.raw;
  411. /* Length of source data is always 256 bytes */
  412. if (op->src.type == CCP_MEMTYPE_SYSTEM)
  413. CCP5_CMD_LEN(&desc) = saddr->length;
  414. else
  415. CCP5_CMD_LEN(&desc) = daddr->length;
  416. if (op->src.type == CCP_MEMTYPE_SYSTEM) {
  417. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  418. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  419. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  420. if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
  421. CCP5_CMD_LSB_ID(&desc) = op->sb_key;
  422. } else {
  423. u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
  424. CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
  425. CCP5_CMD_SRC_HI(&desc) = 0;
  426. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
  427. }
  428. if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
  429. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  430. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  431. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  432. } else {
  433. u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
  434. CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
  435. CCP5_CMD_DST_HI(&desc) = 0;
  436. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
  437. }
  438. return ccp5_do_cmd(&desc, op->cmd_q);
  439. }
  440. static int ccp5_perform_ecc(struct ccp_op *op)
  441. {
  442. struct ccp5_desc desc;
  443. union ccp_function function;
  444. /* Zero out all the fields of the command desc */
  445. memset(&desc, 0, Q_DESC_SIZE);
  446. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
  447. CCP5_CMD_SOC(&desc) = 0;
  448. CCP5_CMD_IOC(&desc) = 1;
  449. CCP5_CMD_INIT(&desc) = 0;
  450. CCP5_CMD_EOM(&desc) = 1;
  451. CCP5_CMD_PROT(&desc) = 0;
  452. function.raw = 0;
  453. function.ecc.mode = op->u.ecc.function;
  454. CCP5_CMD_FUNCTION(&desc) = function.raw;
  455. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  456. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  457. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  458. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  459. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  460. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  461. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  462. return ccp5_do_cmd(&desc, op->cmd_q);
  463. }
  464. static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
  465. {
  466. int q_mask = 1 << cmd_q->id;
  467. int queues = 0;
  468. int j;
  469. /* Build a bit mask to know which LSBs this queue has access to.
  470. * Don't bother with segment 0 as it has special privileges.
  471. */
  472. for (j = 1; j < MAX_LSB_CNT; j++) {
  473. if (status & q_mask)
  474. bitmap_set(cmd_q->lsbmask, j, 1);
  475. status >>= LSB_REGION_WIDTH;
  476. }
  477. queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  478. dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
  479. cmd_q->id, queues);
  480. return queues ? 0 : -EINVAL;
  481. }
  482. static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
  483. int lsb_cnt, int n_lsbs,
  484. unsigned long *lsb_pub)
  485. {
  486. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  487. int bitno;
  488. int qlsb_wgt;
  489. int i;
  490. /* For each queue:
  491. * If the count of potential LSBs available to a queue matches the
  492. * ordinal given to us in lsb_cnt:
  493. * Copy the mask of possible LSBs for this queue into "qlsb";
  494. * For each bit in qlsb, see if the corresponding bit in the
  495. * aggregation mask is set; if so, we have a match.
  496. * If we have a match, clear the bit in the aggregation to
  497. * mark it as no longer available.
  498. * If there is no match, clear the bit in qlsb and keep looking.
  499. */
  500. for (i = 0; i < ccp->cmd_q_count; i++) {
  501. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  502. qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  503. if (qlsb_wgt == lsb_cnt) {
  504. bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
  505. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  506. while (bitno < MAX_LSB_CNT) {
  507. if (test_bit(bitno, lsb_pub)) {
  508. /* We found an available LSB
  509. * that this queue can access
  510. */
  511. cmd_q->lsb = bitno;
  512. bitmap_clear(lsb_pub, bitno, 1);
  513. dev_dbg(ccp->dev,
  514. "Queue %d gets LSB %d\n",
  515. i, bitno);
  516. break;
  517. }
  518. bitmap_clear(qlsb, bitno, 1);
  519. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  520. }
  521. if (bitno >= MAX_LSB_CNT)
  522. return -EINVAL;
  523. n_lsbs--;
  524. }
  525. }
  526. return n_lsbs;
  527. }
  528. /* For each queue, from the most- to least-constrained:
  529. * find an LSB that can be assigned to the queue. If there are N queues that
  530. * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
  531. * dedicated LSB. Remaining LSB regions become a shared resource.
  532. * If we have fewer LSBs than queues, all LSB regions become shared resources.
  533. */
  534. static int ccp_assign_lsbs(struct ccp_device *ccp)
  535. {
  536. DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
  537. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  538. int n_lsbs = 0;
  539. int bitno;
  540. int i, lsb_cnt;
  541. int rc = 0;
  542. bitmap_zero(lsb_pub, MAX_LSB_CNT);
  543. /* Create an aggregate bitmap to get a total count of available LSBs */
  544. for (i = 0; i < ccp->cmd_q_count; i++)
  545. bitmap_or(lsb_pub,
  546. lsb_pub, ccp->cmd_q[i].lsbmask,
  547. MAX_LSB_CNT);
  548. n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
  549. if (n_lsbs >= ccp->cmd_q_count) {
  550. /* We have enough LSBS to give every queue a private LSB.
  551. * Brute force search to start with the queues that are more
  552. * constrained in LSB choice. When an LSB is privately
  553. * assigned, it is removed from the public mask.
  554. * This is an ugly N squared algorithm with some optimization.
  555. */
  556. for (lsb_cnt = 1;
  557. n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
  558. lsb_cnt++) {
  559. rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
  560. lsb_pub);
  561. if (rc < 0)
  562. return -EINVAL;
  563. n_lsbs = rc;
  564. }
  565. }
  566. rc = 0;
  567. /* What's left of the LSBs, according to the public mask, now become
  568. * shared. Any zero bits in the lsb_pub mask represent an LSB region
  569. * that can't be used as a shared resource, so mark the LSB slots for
  570. * them as "in use".
  571. */
  572. bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
  573. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  574. while (bitno < MAX_LSB_CNT) {
  575. bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
  576. bitmap_set(qlsb, bitno, 1);
  577. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  578. }
  579. return rc;
  580. }
  581. static int ccp5_init(struct ccp_device *ccp)
  582. {
  583. struct device *dev = ccp->dev;
  584. struct ccp_cmd_queue *cmd_q;
  585. struct dma_pool *dma_pool;
  586. char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
  587. unsigned int qmr, qim, i;
  588. u64 status;
  589. u32 status_lo, status_hi;
  590. int ret;
  591. /* Find available queues */
  592. qim = 0;
  593. qmr = ioread32(ccp->io_regs + Q_MASK_REG);
  594. for (i = 0; i < MAX_HW_QUEUES; i++) {
  595. if (!(qmr & (1 << i)))
  596. continue;
  597. /* Allocate a dma pool for this queue */
  598. snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
  599. ccp->name, i);
  600. dma_pool = dma_pool_create(dma_pool_name, dev,
  601. CCP_DMAPOOL_MAX_SIZE,
  602. CCP_DMAPOOL_ALIGN, 0);
  603. if (!dma_pool) {
  604. dev_err(dev, "unable to allocate dma pool\n");
  605. ret = -ENOMEM;
  606. }
  607. cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
  608. ccp->cmd_q_count++;
  609. cmd_q->ccp = ccp;
  610. cmd_q->id = i;
  611. cmd_q->dma_pool = dma_pool;
  612. mutex_init(&cmd_q->q_mutex);
  613. /* Page alignment satisfies our needs for N <= 128 */
  614. BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
  615. cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
  616. cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
  617. &cmd_q->qbase_dma,
  618. GFP_KERNEL);
  619. if (!cmd_q->qbase) {
  620. dev_err(dev, "unable to allocate command queue\n");
  621. ret = -ENOMEM;
  622. goto e_pool;
  623. }
  624. cmd_q->qidx = 0;
  625. /* Preset some register values and masks that are queue
  626. * number dependent
  627. */
  628. cmd_q->reg_control = ccp->io_regs +
  629. CMD5_Q_STATUS_INCR * (i + 1);
  630. cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
  631. cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
  632. cmd_q->reg_int_enable = cmd_q->reg_control +
  633. CMD5_Q_INT_ENABLE_BASE;
  634. cmd_q->reg_interrupt_status = cmd_q->reg_control +
  635. CMD5_Q_INTERRUPT_STATUS_BASE;
  636. cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
  637. cmd_q->reg_int_status = cmd_q->reg_control +
  638. CMD5_Q_INT_STATUS_BASE;
  639. cmd_q->reg_dma_status = cmd_q->reg_control +
  640. CMD5_Q_DMA_STATUS_BASE;
  641. cmd_q->reg_dma_read_status = cmd_q->reg_control +
  642. CMD5_Q_DMA_READ_STATUS_BASE;
  643. cmd_q->reg_dma_write_status = cmd_q->reg_control +
  644. CMD5_Q_DMA_WRITE_STATUS_BASE;
  645. init_waitqueue_head(&cmd_q->int_queue);
  646. dev_dbg(dev, "queue #%u available\n", i);
  647. }
  648. if (ccp->cmd_q_count == 0) {
  649. dev_notice(dev, "no command queues available\n");
  650. ret = -EIO;
  651. goto e_pool;
  652. }
  653. /* Turn off the queues and disable interrupts until ready */
  654. for (i = 0; i < ccp->cmd_q_count; i++) {
  655. cmd_q = &ccp->cmd_q[i];
  656. cmd_q->qcontrol = 0; /* Start with nothing */
  657. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  658. /* Disable the interrupts */
  659. iowrite32(0x00, cmd_q->reg_int_enable);
  660. ioread32(cmd_q->reg_int_status);
  661. ioread32(cmd_q->reg_status);
  662. /* Clear the interrupts */
  663. iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
  664. }
  665. dev_dbg(dev, "Requesting an IRQ...\n");
  666. /* Request an irq */
  667. ret = ccp->get_irq(ccp);
  668. if (ret) {
  669. dev_err(dev, "unable to allocate an IRQ\n");
  670. goto e_pool;
  671. }
  672. dev_dbg(dev, "Loading LSB map...\n");
  673. /* Copy the private LSB mask to the public registers */
  674. status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  675. status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  676. iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
  677. iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
  678. status = ((u64)status_hi<<30) | (u64)status_lo;
  679. dev_dbg(dev, "Configuring virtual queues...\n");
  680. /* Configure size of each virtual queue accessible to host */
  681. for (i = 0; i < ccp->cmd_q_count; i++) {
  682. u32 dma_addr_lo;
  683. u32 dma_addr_hi;
  684. cmd_q = &ccp->cmd_q[i];
  685. cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
  686. cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
  687. cmd_q->qdma_tail = cmd_q->qbase_dma;
  688. dma_addr_lo = low_address(cmd_q->qdma_tail);
  689. iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
  690. iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
  691. dma_addr_hi = high_address(cmd_q->qdma_tail);
  692. cmd_q->qcontrol |= (dma_addr_hi << 16);
  693. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  694. /* Find the LSB regions accessible to the queue */
  695. ccp_find_lsb_regions(cmd_q, status);
  696. cmd_q->lsb = -1; /* Unassigned value */
  697. }
  698. dev_dbg(dev, "Assigning LSBs...\n");
  699. ret = ccp_assign_lsbs(ccp);
  700. if (ret) {
  701. dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
  702. goto e_irq;
  703. }
  704. /* Optimization: pre-allocate LSB slots for each queue */
  705. for (i = 0; i < ccp->cmd_q_count; i++) {
  706. ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  707. ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  708. }
  709. dev_dbg(dev, "Starting threads...\n");
  710. /* Create a kthread for each queue */
  711. for (i = 0; i < ccp->cmd_q_count; i++) {
  712. struct task_struct *kthread;
  713. cmd_q = &ccp->cmd_q[i];
  714. kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
  715. "%s-q%u", ccp->name, cmd_q->id);
  716. if (IS_ERR(kthread)) {
  717. dev_err(dev, "error creating queue thread (%ld)\n",
  718. PTR_ERR(kthread));
  719. ret = PTR_ERR(kthread);
  720. goto e_kthread;
  721. }
  722. cmd_q->kthread = kthread;
  723. wake_up_process(kthread);
  724. }
  725. dev_dbg(dev, "Enabling interrupts...\n");
  726. /* Enable interrupts */
  727. for (i = 0; i < ccp->cmd_q_count; i++) {
  728. cmd_q = &ccp->cmd_q[i];
  729. iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_int_enable);
  730. }
  731. dev_dbg(dev, "Registering device...\n");
  732. /* Put this on the unit list to make it available */
  733. ccp_add_device(ccp);
  734. ret = ccp_register_rng(ccp);
  735. if (ret)
  736. goto e_kthread;
  737. /* Register the DMA engine support */
  738. ret = ccp_dmaengine_register(ccp);
  739. if (ret)
  740. goto e_hwrng;
  741. return 0;
  742. e_hwrng:
  743. ccp_unregister_rng(ccp);
  744. e_kthread:
  745. for (i = 0; i < ccp->cmd_q_count; i++)
  746. if (ccp->cmd_q[i].kthread)
  747. kthread_stop(ccp->cmd_q[i].kthread);
  748. e_irq:
  749. ccp->free_irq(ccp);
  750. e_pool:
  751. for (i = 0; i < ccp->cmd_q_count; i++)
  752. dma_pool_destroy(ccp->cmd_q[i].dma_pool);
  753. return ret;
  754. }
  755. static void ccp5_destroy(struct ccp_device *ccp)
  756. {
  757. struct device *dev = ccp->dev;
  758. struct ccp_cmd_queue *cmd_q;
  759. struct ccp_cmd *cmd;
  760. unsigned int i;
  761. /* Unregister the DMA engine */
  762. ccp_dmaengine_unregister(ccp);
  763. /* Unregister the RNG */
  764. ccp_unregister_rng(ccp);
  765. /* Remove this device from the list of available units first */
  766. ccp_del_device(ccp);
  767. /* Disable and clear interrupts */
  768. for (i = 0; i < ccp->cmd_q_count; i++) {
  769. cmd_q = &ccp->cmd_q[i];
  770. /* Turn off the run bit */
  771. iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
  772. /* Disable the interrupts */
  773. iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
  774. /* Clear the interrupt status */
  775. iowrite32(0x00, cmd_q->reg_int_enable);
  776. ioread32(cmd_q->reg_int_status);
  777. ioread32(cmd_q->reg_status);
  778. }
  779. /* Stop the queue kthreads */
  780. for (i = 0; i < ccp->cmd_q_count; i++)
  781. if (ccp->cmd_q[i].kthread)
  782. kthread_stop(ccp->cmd_q[i].kthread);
  783. ccp->free_irq(ccp);
  784. for (i = 0; i < ccp->cmd_q_count; i++) {
  785. cmd_q = &ccp->cmd_q[i];
  786. dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
  787. cmd_q->qbase_dma);
  788. }
  789. /* Flush the cmd and backlog queue */
  790. while (!list_empty(&ccp->cmd)) {
  791. /* Invoke the callback directly with an error code */
  792. cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
  793. list_del(&cmd->entry);
  794. cmd->callback(cmd->data, -ENODEV);
  795. }
  796. while (!list_empty(&ccp->backlog)) {
  797. /* Invoke the callback directly with an error code */
  798. cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
  799. list_del(&cmd->entry);
  800. cmd->callback(cmd->data, -ENODEV);
  801. }
  802. }
  803. static irqreturn_t ccp5_irq_handler(int irq, void *data)
  804. {
  805. struct device *dev = data;
  806. struct ccp_device *ccp = dev_get_drvdata(dev);
  807. u32 status;
  808. unsigned int i;
  809. for (i = 0; i < ccp->cmd_q_count; i++) {
  810. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  811. status = ioread32(cmd_q->reg_interrupt_status);
  812. if (status) {
  813. cmd_q->int_status = status;
  814. cmd_q->q_status = ioread32(cmd_q->reg_status);
  815. cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
  816. /* On error, only save the first error value */
  817. if ((status & INT_ERROR) && !cmd_q->cmd_error)
  818. cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
  819. cmd_q->int_rcvd = 1;
  820. /* Acknowledge the interrupt and wake the kthread */
  821. iowrite32(SUPPORTED_INTERRUPTS,
  822. cmd_q->reg_interrupt_status);
  823. wake_up_interruptible(&cmd_q->int_queue);
  824. }
  825. }
  826. return IRQ_HANDLED;
  827. }
  828. static void ccp5_config(struct ccp_device *ccp)
  829. {
  830. /* Public side */
  831. iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
  832. }
  833. static void ccp5other_config(struct ccp_device *ccp)
  834. {
  835. int i;
  836. u32 rnd;
  837. /* We own all of the queues on the NTB CCP */
  838. iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
  839. iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
  840. for (i = 0; i < 12; i++) {
  841. rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
  842. iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
  843. }
  844. iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
  845. iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
  846. iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
  847. iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  848. iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  849. iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
  850. ccp5_config(ccp);
  851. }
  852. /* Version 5 adds some function, but is essentially the same as v5 */
  853. static const struct ccp_actions ccp5_actions = {
  854. .aes = ccp5_perform_aes,
  855. .xts_aes = ccp5_perform_xts_aes,
  856. .sha = ccp5_perform_sha,
  857. .des3 = ccp5_perform_des3,
  858. .rsa = ccp5_perform_rsa,
  859. .passthru = ccp5_perform_passthru,
  860. .ecc = ccp5_perform_ecc,
  861. .sballoc = ccp_lsb_alloc,
  862. .sbfree = ccp_lsb_free,
  863. .init = ccp5_init,
  864. .destroy = ccp5_destroy,
  865. .get_free_slots = ccp5_get_free_slots,
  866. .irqhandler = ccp5_irq_handler,
  867. };
  868. const struct ccp_vdata ccpv5a = {
  869. .version = CCP_VERSION(5, 0),
  870. .setup = ccp5_config,
  871. .perform = &ccp5_actions,
  872. .bar = 2,
  873. .offset = 0x0,
  874. };
  875. const struct ccp_vdata ccpv5b = {
  876. .version = CCP_VERSION(5, 0),
  877. .dma_chan_attr = DMA_PRIVATE,
  878. .setup = ccp5other_config,
  879. .perform = &ccp5_actions,
  880. .bar = 2,
  881. .offset = 0x0,
  882. };