ordered-data.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2007 Oracle. All rights reserved.
  4. */
  5. #include <linux/slab.h>
  6. #include <linux/blkdev.h>
  7. #include <linux/writeback.h>
  8. #include <linux/pagevec.h>
  9. #include "ctree.h"
  10. #include "transaction.h"
  11. #include "btrfs_inode.h"
  12. #include "extent_io.h"
  13. #include "disk-io.h"
  14. #include "compression.h"
  15. static struct kmem_cache *btrfs_ordered_extent_cache;
  16. static u64 entry_end(struct btrfs_ordered_extent *entry)
  17. {
  18. if (entry->file_offset + entry->len < entry->file_offset)
  19. return (u64)-1;
  20. return entry->file_offset + entry->len;
  21. }
  22. /* returns NULL if the insertion worked, or it returns the node it did find
  23. * in the tree
  24. */
  25. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  26. struct rb_node *node)
  27. {
  28. struct rb_node **p = &root->rb_node;
  29. struct rb_node *parent = NULL;
  30. struct btrfs_ordered_extent *entry;
  31. while (*p) {
  32. parent = *p;
  33. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  34. if (file_offset < entry->file_offset)
  35. p = &(*p)->rb_left;
  36. else if (file_offset >= entry_end(entry))
  37. p = &(*p)->rb_right;
  38. else
  39. return parent;
  40. }
  41. rb_link_node(node, parent, p);
  42. rb_insert_color(node, root);
  43. return NULL;
  44. }
  45. static void ordered_data_tree_panic(struct inode *inode, int errno,
  46. u64 offset)
  47. {
  48. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  49. btrfs_panic(fs_info, errno,
  50. "Inconsistency in ordered tree at offset %llu", offset);
  51. }
  52. /*
  53. * look for a given offset in the tree, and if it can't be found return the
  54. * first lesser offset
  55. */
  56. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  57. struct rb_node **prev_ret)
  58. {
  59. struct rb_node *n = root->rb_node;
  60. struct rb_node *prev = NULL;
  61. struct rb_node *test;
  62. struct btrfs_ordered_extent *entry;
  63. struct btrfs_ordered_extent *prev_entry = NULL;
  64. while (n) {
  65. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  66. prev = n;
  67. prev_entry = entry;
  68. if (file_offset < entry->file_offset)
  69. n = n->rb_left;
  70. else if (file_offset >= entry_end(entry))
  71. n = n->rb_right;
  72. else
  73. return n;
  74. }
  75. if (!prev_ret)
  76. return NULL;
  77. while (prev && file_offset >= entry_end(prev_entry)) {
  78. test = rb_next(prev);
  79. if (!test)
  80. break;
  81. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  82. rb_node);
  83. if (file_offset < entry_end(prev_entry))
  84. break;
  85. prev = test;
  86. }
  87. if (prev)
  88. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  89. rb_node);
  90. while (prev && file_offset < entry_end(prev_entry)) {
  91. test = rb_prev(prev);
  92. if (!test)
  93. break;
  94. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  95. rb_node);
  96. prev = test;
  97. }
  98. *prev_ret = prev;
  99. return NULL;
  100. }
  101. /*
  102. * helper to check if a given offset is inside a given entry
  103. */
  104. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  105. {
  106. if (file_offset < entry->file_offset ||
  107. entry->file_offset + entry->len <= file_offset)
  108. return 0;
  109. return 1;
  110. }
  111. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  112. u64 len)
  113. {
  114. if (file_offset + len <= entry->file_offset ||
  115. entry->file_offset + entry->len <= file_offset)
  116. return 0;
  117. return 1;
  118. }
  119. /*
  120. * look find the first ordered struct that has this offset, otherwise
  121. * the first one less than this offset
  122. */
  123. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  124. u64 file_offset)
  125. {
  126. struct rb_root *root = &tree->tree;
  127. struct rb_node *prev = NULL;
  128. struct rb_node *ret;
  129. struct btrfs_ordered_extent *entry;
  130. if (tree->last) {
  131. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  132. rb_node);
  133. if (offset_in_entry(entry, file_offset))
  134. return tree->last;
  135. }
  136. ret = __tree_search(root, file_offset, &prev);
  137. if (!ret)
  138. ret = prev;
  139. if (ret)
  140. tree->last = ret;
  141. return ret;
  142. }
  143. /* allocate and add a new ordered_extent into the per-inode tree.
  144. * file_offset is the logical offset in the file
  145. *
  146. * start is the disk block number of an extent already reserved in the
  147. * extent allocation tree
  148. *
  149. * len is the length of the extent
  150. *
  151. * The tree is given a single reference on the ordered extent that was
  152. * inserted.
  153. */
  154. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  155. u64 start, u64 len, u64 disk_len,
  156. int type, int dio, int compress_type)
  157. {
  158. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  159. struct btrfs_root *root = BTRFS_I(inode)->root;
  160. struct btrfs_ordered_inode_tree *tree;
  161. struct rb_node *node;
  162. struct btrfs_ordered_extent *entry;
  163. tree = &BTRFS_I(inode)->ordered_tree;
  164. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  165. if (!entry)
  166. return -ENOMEM;
  167. entry->file_offset = file_offset;
  168. entry->start = start;
  169. entry->len = len;
  170. entry->disk_len = disk_len;
  171. entry->bytes_left = len;
  172. entry->inode = igrab(inode);
  173. entry->compress_type = compress_type;
  174. entry->truncated_len = (u64)-1;
  175. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  176. set_bit(type, &entry->flags);
  177. if (dio)
  178. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  179. /* one ref for the tree */
  180. refcount_set(&entry->refs, 1);
  181. init_waitqueue_head(&entry->wait);
  182. INIT_LIST_HEAD(&entry->list);
  183. INIT_LIST_HEAD(&entry->root_extent_list);
  184. INIT_LIST_HEAD(&entry->work_list);
  185. init_completion(&entry->completion);
  186. INIT_LIST_HEAD(&entry->log_list);
  187. INIT_LIST_HEAD(&entry->trans_list);
  188. trace_btrfs_ordered_extent_add(inode, entry);
  189. spin_lock_irq(&tree->lock);
  190. node = tree_insert(&tree->tree, file_offset,
  191. &entry->rb_node);
  192. if (node)
  193. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  194. spin_unlock_irq(&tree->lock);
  195. spin_lock(&root->ordered_extent_lock);
  196. list_add_tail(&entry->root_extent_list,
  197. &root->ordered_extents);
  198. root->nr_ordered_extents++;
  199. if (root->nr_ordered_extents == 1) {
  200. spin_lock(&fs_info->ordered_root_lock);
  201. BUG_ON(!list_empty(&root->ordered_root));
  202. list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
  203. spin_unlock(&fs_info->ordered_root_lock);
  204. }
  205. spin_unlock(&root->ordered_extent_lock);
  206. /*
  207. * We don't need the count_max_extents here, we can assume that all of
  208. * that work has been done at higher layers, so this is truly the
  209. * smallest the extent is going to get.
  210. */
  211. spin_lock(&BTRFS_I(inode)->lock);
  212. btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
  213. spin_unlock(&BTRFS_I(inode)->lock);
  214. return 0;
  215. }
  216. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  217. u64 start, u64 len, u64 disk_len, int type)
  218. {
  219. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  220. disk_len, type, 0,
  221. BTRFS_COMPRESS_NONE);
  222. }
  223. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  224. u64 start, u64 len, u64 disk_len, int type)
  225. {
  226. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  227. disk_len, type, 1,
  228. BTRFS_COMPRESS_NONE);
  229. }
  230. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  231. u64 start, u64 len, u64 disk_len,
  232. int type, int compress_type)
  233. {
  234. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  235. disk_len, type, 0,
  236. compress_type);
  237. }
  238. /*
  239. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  240. * when an ordered extent is finished. If the list covers more than one
  241. * ordered extent, it is split across multiples.
  242. */
  243. void btrfs_add_ordered_sum(struct inode *inode,
  244. struct btrfs_ordered_extent *entry,
  245. struct btrfs_ordered_sum *sum)
  246. {
  247. struct btrfs_ordered_inode_tree *tree;
  248. tree = &BTRFS_I(inode)->ordered_tree;
  249. spin_lock_irq(&tree->lock);
  250. list_add_tail(&sum->list, &entry->list);
  251. spin_unlock_irq(&tree->lock);
  252. }
  253. /*
  254. * this is used to account for finished IO across a given range
  255. * of the file. The IO may span ordered extents. If
  256. * a given ordered_extent is completely done, 1 is returned, otherwise
  257. * 0.
  258. *
  259. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  260. * to make sure this function only returns 1 once for a given ordered extent.
  261. *
  262. * file_offset is updated to one byte past the range that is recorded as
  263. * complete. This allows you to walk forward in the file.
  264. */
  265. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  266. struct btrfs_ordered_extent **cached,
  267. u64 *file_offset, u64 io_size, int uptodate)
  268. {
  269. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  270. struct btrfs_ordered_inode_tree *tree;
  271. struct rb_node *node;
  272. struct btrfs_ordered_extent *entry = NULL;
  273. int ret;
  274. unsigned long flags;
  275. u64 dec_end;
  276. u64 dec_start;
  277. u64 to_dec;
  278. tree = &BTRFS_I(inode)->ordered_tree;
  279. spin_lock_irqsave(&tree->lock, flags);
  280. node = tree_search(tree, *file_offset);
  281. if (!node) {
  282. ret = 1;
  283. goto out;
  284. }
  285. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  286. if (!offset_in_entry(entry, *file_offset)) {
  287. ret = 1;
  288. goto out;
  289. }
  290. dec_start = max(*file_offset, entry->file_offset);
  291. dec_end = min(*file_offset + io_size, entry->file_offset +
  292. entry->len);
  293. *file_offset = dec_end;
  294. if (dec_start > dec_end) {
  295. btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
  296. dec_start, dec_end);
  297. }
  298. to_dec = dec_end - dec_start;
  299. if (to_dec > entry->bytes_left) {
  300. btrfs_crit(fs_info,
  301. "bad ordered accounting left %llu size %llu",
  302. entry->bytes_left, to_dec);
  303. }
  304. entry->bytes_left -= to_dec;
  305. if (!uptodate)
  306. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  307. if (entry->bytes_left == 0) {
  308. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  309. /* test_and_set_bit implies a barrier */
  310. cond_wake_up_nomb(&entry->wait);
  311. } else {
  312. ret = 1;
  313. }
  314. out:
  315. if (!ret && cached && entry) {
  316. *cached = entry;
  317. refcount_inc(&entry->refs);
  318. }
  319. spin_unlock_irqrestore(&tree->lock, flags);
  320. return ret == 0;
  321. }
  322. /*
  323. * this is used to account for finished IO across a given range
  324. * of the file. The IO should not span ordered extents. If
  325. * a given ordered_extent is completely done, 1 is returned, otherwise
  326. * 0.
  327. *
  328. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  329. * to make sure this function only returns 1 once for a given ordered extent.
  330. */
  331. int btrfs_dec_test_ordered_pending(struct inode *inode,
  332. struct btrfs_ordered_extent **cached,
  333. u64 file_offset, u64 io_size, int uptodate)
  334. {
  335. struct btrfs_ordered_inode_tree *tree;
  336. struct rb_node *node;
  337. struct btrfs_ordered_extent *entry = NULL;
  338. unsigned long flags;
  339. int ret;
  340. tree = &BTRFS_I(inode)->ordered_tree;
  341. spin_lock_irqsave(&tree->lock, flags);
  342. if (cached && *cached) {
  343. entry = *cached;
  344. goto have_entry;
  345. }
  346. node = tree_search(tree, file_offset);
  347. if (!node) {
  348. ret = 1;
  349. goto out;
  350. }
  351. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  352. have_entry:
  353. if (!offset_in_entry(entry, file_offset)) {
  354. ret = 1;
  355. goto out;
  356. }
  357. if (io_size > entry->bytes_left) {
  358. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  359. "bad ordered accounting left %llu size %llu",
  360. entry->bytes_left, io_size);
  361. }
  362. entry->bytes_left -= io_size;
  363. if (!uptodate)
  364. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  365. if (entry->bytes_left == 0) {
  366. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  367. /* test_and_set_bit implies a barrier */
  368. cond_wake_up_nomb(&entry->wait);
  369. } else {
  370. ret = 1;
  371. }
  372. out:
  373. if (!ret && cached && entry) {
  374. *cached = entry;
  375. refcount_inc(&entry->refs);
  376. }
  377. spin_unlock_irqrestore(&tree->lock, flags);
  378. return ret == 0;
  379. }
  380. /*
  381. * used to drop a reference on an ordered extent. This will free
  382. * the extent if the last reference is dropped
  383. */
  384. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  385. {
  386. struct list_head *cur;
  387. struct btrfs_ordered_sum *sum;
  388. trace_btrfs_ordered_extent_put(entry->inode, entry);
  389. if (refcount_dec_and_test(&entry->refs)) {
  390. ASSERT(list_empty(&entry->log_list));
  391. ASSERT(list_empty(&entry->trans_list));
  392. ASSERT(list_empty(&entry->root_extent_list));
  393. ASSERT(RB_EMPTY_NODE(&entry->rb_node));
  394. if (entry->inode)
  395. btrfs_add_delayed_iput(entry->inode);
  396. while (!list_empty(&entry->list)) {
  397. cur = entry->list.next;
  398. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  399. list_del(&sum->list);
  400. kfree(sum);
  401. }
  402. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  403. }
  404. }
  405. /*
  406. * remove an ordered extent from the tree. No references are dropped
  407. * and waiters are woken up.
  408. */
  409. void btrfs_remove_ordered_extent(struct inode *inode,
  410. struct btrfs_ordered_extent *entry)
  411. {
  412. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  413. struct btrfs_ordered_inode_tree *tree;
  414. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  415. struct btrfs_root *root = btrfs_inode->root;
  416. struct rb_node *node;
  417. bool dec_pending_ordered = false;
  418. /* This is paired with btrfs_add_ordered_extent. */
  419. spin_lock(&btrfs_inode->lock);
  420. btrfs_mod_outstanding_extents(btrfs_inode, -1);
  421. spin_unlock(&btrfs_inode->lock);
  422. if (root != fs_info->tree_root)
  423. btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
  424. tree = &btrfs_inode->ordered_tree;
  425. spin_lock_irq(&tree->lock);
  426. node = &entry->rb_node;
  427. rb_erase(node, &tree->tree);
  428. RB_CLEAR_NODE(node);
  429. if (tree->last == node)
  430. tree->last = NULL;
  431. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  432. if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
  433. dec_pending_ordered = true;
  434. spin_unlock_irq(&tree->lock);
  435. /*
  436. * The current running transaction is waiting on us, we need to let it
  437. * know that we're complete and wake it up.
  438. */
  439. if (dec_pending_ordered) {
  440. struct btrfs_transaction *trans;
  441. /*
  442. * The checks for trans are just a formality, it should be set,
  443. * but if it isn't we don't want to deref/assert under the spin
  444. * lock, so be nice and check if trans is set, but ASSERT() so
  445. * if it isn't set a developer will notice.
  446. */
  447. spin_lock(&fs_info->trans_lock);
  448. trans = fs_info->running_transaction;
  449. if (trans)
  450. refcount_inc(&trans->use_count);
  451. spin_unlock(&fs_info->trans_lock);
  452. ASSERT(trans);
  453. if (trans) {
  454. if (atomic_dec_and_test(&trans->pending_ordered))
  455. wake_up(&trans->pending_wait);
  456. btrfs_put_transaction(trans);
  457. }
  458. }
  459. spin_lock(&root->ordered_extent_lock);
  460. list_del_init(&entry->root_extent_list);
  461. root->nr_ordered_extents--;
  462. trace_btrfs_ordered_extent_remove(inode, entry);
  463. if (!root->nr_ordered_extents) {
  464. spin_lock(&fs_info->ordered_root_lock);
  465. BUG_ON(list_empty(&root->ordered_root));
  466. list_del_init(&root->ordered_root);
  467. spin_unlock(&fs_info->ordered_root_lock);
  468. }
  469. spin_unlock(&root->ordered_extent_lock);
  470. wake_up(&entry->wait);
  471. }
  472. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  473. {
  474. struct btrfs_ordered_extent *ordered;
  475. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  476. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  477. complete(&ordered->completion);
  478. }
  479. /*
  480. * wait for all the ordered extents in a root. This is done when balancing
  481. * space between drives.
  482. */
  483. u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
  484. const u64 range_start, const u64 range_len)
  485. {
  486. struct btrfs_fs_info *fs_info = root->fs_info;
  487. LIST_HEAD(splice);
  488. LIST_HEAD(skipped);
  489. LIST_HEAD(works);
  490. struct btrfs_ordered_extent *ordered, *next;
  491. u64 count = 0;
  492. const u64 range_end = range_start + range_len;
  493. mutex_lock(&root->ordered_extent_mutex);
  494. spin_lock(&root->ordered_extent_lock);
  495. list_splice_init(&root->ordered_extents, &splice);
  496. while (!list_empty(&splice) && nr) {
  497. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  498. root_extent_list);
  499. if (range_end <= ordered->start ||
  500. ordered->start + ordered->disk_len <= range_start) {
  501. list_move_tail(&ordered->root_extent_list, &skipped);
  502. cond_resched_lock(&root->ordered_extent_lock);
  503. continue;
  504. }
  505. list_move_tail(&ordered->root_extent_list,
  506. &root->ordered_extents);
  507. refcount_inc(&ordered->refs);
  508. spin_unlock(&root->ordered_extent_lock);
  509. btrfs_init_work(&ordered->flush_work,
  510. btrfs_flush_delalloc_helper,
  511. btrfs_run_ordered_extent_work, NULL, NULL);
  512. list_add_tail(&ordered->work_list, &works);
  513. btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
  514. cond_resched();
  515. spin_lock(&root->ordered_extent_lock);
  516. if (nr != U64_MAX)
  517. nr--;
  518. count++;
  519. }
  520. list_splice_tail(&skipped, &root->ordered_extents);
  521. list_splice_tail(&splice, &root->ordered_extents);
  522. spin_unlock(&root->ordered_extent_lock);
  523. list_for_each_entry_safe(ordered, next, &works, work_list) {
  524. list_del_init(&ordered->work_list);
  525. wait_for_completion(&ordered->completion);
  526. btrfs_put_ordered_extent(ordered);
  527. cond_resched();
  528. }
  529. mutex_unlock(&root->ordered_extent_mutex);
  530. return count;
  531. }
  532. u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
  533. const u64 range_start, const u64 range_len)
  534. {
  535. struct btrfs_root *root;
  536. struct list_head splice;
  537. u64 total_done = 0;
  538. u64 done;
  539. INIT_LIST_HEAD(&splice);
  540. mutex_lock(&fs_info->ordered_operations_mutex);
  541. spin_lock(&fs_info->ordered_root_lock);
  542. list_splice_init(&fs_info->ordered_roots, &splice);
  543. while (!list_empty(&splice) && nr) {
  544. root = list_first_entry(&splice, struct btrfs_root,
  545. ordered_root);
  546. root = btrfs_grab_fs_root(root);
  547. BUG_ON(!root);
  548. list_move_tail(&root->ordered_root,
  549. &fs_info->ordered_roots);
  550. spin_unlock(&fs_info->ordered_root_lock);
  551. done = btrfs_wait_ordered_extents(root, nr,
  552. range_start, range_len);
  553. btrfs_put_fs_root(root);
  554. total_done += done;
  555. spin_lock(&fs_info->ordered_root_lock);
  556. if (nr != U64_MAX) {
  557. nr -= done;
  558. }
  559. }
  560. list_splice_tail(&splice, &fs_info->ordered_roots);
  561. spin_unlock(&fs_info->ordered_root_lock);
  562. mutex_unlock(&fs_info->ordered_operations_mutex);
  563. return total_done;
  564. }
  565. /*
  566. * Used to start IO or wait for a given ordered extent to finish.
  567. *
  568. * If wait is one, this effectively waits on page writeback for all the pages
  569. * in the extent, and it waits on the io completion code to insert
  570. * metadata into the btree corresponding to the extent
  571. */
  572. void btrfs_start_ordered_extent(struct inode *inode,
  573. struct btrfs_ordered_extent *entry,
  574. int wait)
  575. {
  576. u64 start = entry->file_offset;
  577. u64 end = start + entry->len - 1;
  578. trace_btrfs_ordered_extent_start(inode, entry);
  579. /*
  580. * pages in the range can be dirty, clean or writeback. We
  581. * start IO on any dirty ones so the wait doesn't stall waiting
  582. * for the flusher thread to find them
  583. */
  584. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  585. filemap_fdatawrite_range(inode->i_mapping, start, end);
  586. if (wait) {
  587. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  588. &entry->flags));
  589. }
  590. }
  591. /*
  592. * Used to wait on ordered extents across a large range of bytes.
  593. */
  594. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  595. {
  596. int ret = 0;
  597. int ret_wb = 0;
  598. u64 end;
  599. u64 orig_end;
  600. struct btrfs_ordered_extent *ordered;
  601. if (start + len < start) {
  602. orig_end = INT_LIMIT(loff_t);
  603. } else {
  604. orig_end = start + len - 1;
  605. if (orig_end > INT_LIMIT(loff_t))
  606. orig_end = INT_LIMIT(loff_t);
  607. }
  608. /* start IO across the range first to instantiate any delalloc
  609. * extents
  610. */
  611. ret = btrfs_fdatawrite_range(inode, start, orig_end);
  612. if (ret)
  613. return ret;
  614. /*
  615. * If we have a writeback error don't return immediately. Wait first
  616. * for any ordered extents that haven't completed yet. This is to make
  617. * sure no one can dirty the same page ranges and call writepages()
  618. * before the ordered extents complete - to avoid failures (-EEXIST)
  619. * when adding the new ordered extents to the ordered tree.
  620. */
  621. ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  622. end = orig_end;
  623. while (1) {
  624. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  625. if (!ordered)
  626. break;
  627. if (ordered->file_offset > orig_end) {
  628. btrfs_put_ordered_extent(ordered);
  629. break;
  630. }
  631. if (ordered->file_offset + ordered->len <= start) {
  632. btrfs_put_ordered_extent(ordered);
  633. break;
  634. }
  635. btrfs_start_ordered_extent(inode, ordered, 1);
  636. end = ordered->file_offset;
  637. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  638. ret = -EIO;
  639. btrfs_put_ordered_extent(ordered);
  640. if (ret || end == 0 || end == start)
  641. break;
  642. end--;
  643. }
  644. return ret_wb ? ret_wb : ret;
  645. }
  646. /*
  647. * find an ordered extent corresponding to file_offset. return NULL if
  648. * nothing is found, otherwise take a reference on the extent and return it
  649. */
  650. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  651. u64 file_offset)
  652. {
  653. struct btrfs_ordered_inode_tree *tree;
  654. struct rb_node *node;
  655. struct btrfs_ordered_extent *entry = NULL;
  656. tree = &BTRFS_I(inode)->ordered_tree;
  657. spin_lock_irq(&tree->lock);
  658. node = tree_search(tree, file_offset);
  659. if (!node)
  660. goto out;
  661. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  662. if (!offset_in_entry(entry, file_offset))
  663. entry = NULL;
  664. if (entry)
  665. refcount_inc(&entry->refs);
  666. out:
  667. spin_unlock_irq(&tree->lock);
  668. return entry;
  669. }
  670. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  671. * extents that exist in the range, rather than just the start of the range.
  672. */
  673. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
  674. struct btrfs_inode *inode, u64 file_offset, u64 len)
  675. {
  676. struct btrfs_ordered_inode_tree *tree;
  677. struct rb_node *node;
  678. struct btrfs_ordered_extent *entry = NULL;
  679. tree = &inode->ordered_tree;
  680. spin_lock_irq(&tree->lock);
  681. node = tree_search(tree, file_offset);
  682. if (!node) {
  683. node = tree_search(tree, file_offset + len);
  684. if (!node)
  685. goto out;
  686. }
  687. while (1) {
  688. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  689. if (range_overlaps(entry, file_offset, len))
  690. break;
  691. if (entry->file_offset >= file_offset + len) {
  692. entry = NULL;
  693. break;
  694. }
  695. entry = NULL;
  696. node = rb_next(node);
  697. if (!node)
  698. break;
  699. }
  700. out:
  701. if (entry)
  702. refcount_inc(&entry->refs);
  703. spin_unlock_irq(&tree->lock);
  704. return entry;
  705. }
  706. bool btrfs_have_ordered_extents_in_range(struct inode *inode,
  707. u64 file_offset,
  708. u64 len)
  709. {
  710. struct btrfs_ordered_extent *oe;
  711. oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
  712. if (oe) {
  713. btrfs_put_ordered_extent(oe);
  714. return true;
  715. }
  716. return false;
  717. }
  718. /*
  719. * lookup and return any extent before 'file_offset'. NULL is returned
  720. * if none is found
  721. */
  722. struct btrfs_ordered_extent *
  723. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  724. {
  725. struct btrfs_ordered_inode_tree *tree;
  726. struct rb_node *node;
  727. struct btrfs_ordered_extent *entry = NULL;
  728. tree = &BTRFS_I(inode)->ordered_tree;
  729. spin_lock_irq(&tree->lock);
  730. node = tree_search(tree, file_offset);
  731. if (!node)
  732. goto out;
  733. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  734. refcount_inc(&entry->refs);
  735. out:
  736. spin_unlock_irq(&tree->lock);
  737. return entry;
  738. }
  739. /*
  740. * After an extent is done, call this to conditionally update the on disk
  741. * i_size. i_size is updated to cover any fully written part of the file.
  742. */
  743. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  744. struct btrfs_ordered_extent *ordered)
  745. {
  746. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  747. u64 disk_i_size;
  748. u64 new_i_size;
  749. u64 i_size = i_size_read(inode);
  750. struct rb_node *node;
  751. struct rb_node *prev = NULL;
  752. struct btrfs_ordered_extent *test;
  753. int ret = 1;
  754. u64 orig_offset = offset;
  755. spin_lock_irq(&tree->lock);
  756. if (ordered) {
  757. offset = entry_end(ordered);
  758. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  759. offset = min(offset,
  760. ordered->file_offset +
  761. ordered->truncated_len);
  762. } else {
  763. offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
  764. }
  765. disk_i_size = BTRFS_I(inode)->disk_i_size;
  766. /*
  767. * truncate file.
  768. * If ordered is not NULL, then this is called from endio and
  769. * disk_i_size will be updated by either truncate itself or any
  770. * in-flight IOs which are inside the disk_i_size.
  771. *
  772. * Because btrfs_setsize() may set i_size with disk_i_size if truncate
  773. * fails somehow, we need to make sure we have a precise disk_i_size by
  774. * updating it as usual.
  775. *
  776. */
  777. if (!ordered && disk_i_size > i_size) {
  778. BTRFS_I(inode)->disk_i_size = orig_offset;
  779. ret = 0;
  780. goto out;
  781. }
  782. /*
  783. * if the disk i_size is already at the inode->i_size, or
  784. * this ordered extent is inside the disk i_size, we're done
  785. */
  786. if (disk_i_size == i_size)
  787. goto out;
  788. /*
  789. * We still need to update disk_i_size if outstanding_isize is greater
  790. * than disk_i_size.
  791. */
  792. if (offset <= disk_i_size &&
  793. (!ordered || ordered->outstanding_isize <= disk_i_size))
  794. goto out;
  795. /*
  796. * walk backward from this ordered extent to disk_i_size.
  797. * if we find an ordered extent then we can't update disk i_size
  798. * yet
  799. */
  800. if (ordered) {
  801. node = rb_prev(&ordered->rb_node);
  802. } else {
  803. prev = tree_search(tree, offset);
  804. /*
  805. * we insert file extents without involving ordered struct,
  806. * so there should be no ordered struct cover this offset
  807. */
  808. if (prev) {
  809. test = rb_entry(prev, struct btrfs_ordered_extent,
  810. rb_node);
  811. BUG_ON(offset_in_entry(test, offset));
  812. }
  813. node = prev;
  814. }
  815. for (; node; node = rb_prev(node)) {
  816. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  817. /* We treat this entry as if it doesn't exist */
  818. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  819. continue;
  820. if (entry_end(test) <= disk_i_size)
  821. break;
  822. if (test->file_offset >= i_size)
  823. break;
  824. /*
  825. * We don't update disk_i_size now, so record this undealt
  826. * i_size. Or we will not know the real i_size.
  827. */
  828. if (test->outstanding_isize < offset)
  829. test->outstanding_isize = offset;
  830. if (ordered &&
  831. ordered->outstanding_isize > test->outstanding_isize)
  832. test->outstanding_isize = ordered->outstanding_isize;
  833. goto out;
  834. }
  835. new_i_size = min_t(u64, offset, i_size);
  836. /*
  837. * Some ordered extents may completed before the current one, and
  838. * we hold the real i_size in ->outstanding_isize.
  839. */
  840. if (ordered && ordered->outstanding_isize > new_i_size)
  841. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  842. BTRFS_I(inode)->disk_i_size = new_i_size;
  843. ret = 0;
  844. out:
  845. /*
  846. * We need to do this because we can't remove ordered extents until
  847. * after the i_disk_size has been updated and then the inode has been
  848. * updated to reflect the change, so we need to tell anybody who finds
  849. * this ordered extent that we've already done all the real work, we
  850. * just haven't completed all the other work.
  851. */
  852. if (ordered)
  853. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  854. spin_unlock_irq(&tree->lock);
  855. return ret;
  856. }
  857. /*
  858. * search the ordered extents for one corresponding to 'offset' and
  859. * try to find a checksum. This is used because we allow pages to
  860. * be reclaimed before their checksum is actually put into the btree
  861. */
  862. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  863. u32 *sum, int len)
  864. {
  865. struct btrfs_ordered_sum *ordered_sum;
  866. struct btrfs_ordered_extent *ordered;
  867. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  868. unsigned long num_sectors;
  869. unsigned long i;
  870. u32 sectorsize = btrfs_inode_sectorsize(inode);
  871. int index = 0;
  872. ordered = btrfs_lookup_ordered_extent(inode, offset);
  873. if (!ordered)
  874. return 0;
  875. spin_lock_irq(&tree->lock);
  876. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  877. if (disk_bytenr >= ordered_sum->bytenr &&
  878. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  879. i = (disk_bytenr - ordered_sum->bytenr) >>
  880. inode->i_sb->s_blocksize_bits;
  881. num_sectors = ordered_sum->len >>
  882. inode->i_sb->s_blocksize_bits;
  883. num_sectors = min_t(int, len - index, num_sectors - i);
  884. memcpy(sum + index, ordered_sum->sums + i,
  885. num_sectors);
  886. index += (int)num_sectors;
  887. if (index == len)
  888. goto out;
  889. disk_bytenr += num_sectors * sectorsize;
  890. }
  891. }
  892. out:
  893. spin_unlock_irq(&tree->lock);
  894. btrfs_put_ordered_extent(ordered);
  895. return index;
  896. }
  897. int __init ordered_data_init(void)
  898. {
  899. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  900. sizeof(struct btrfs_ordered_extent), 0,
  901. SLAB_MEM_SPREAD,
  902. NULL);
  903. if (!btrfs_ordered_extent_cache)
  904. return -ENOMEM;
  905. return 0;
  906. }
  907. void __cold ordered_data_exit(void)
  908. {
  909. kmem_cache_destroy(btrfs_ordered_extent_cache);
  910. }