time.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <linux/clk-provider.h>
  57. #include <linux/suspend.h>
  58. #include <linux/rtc.h>
  59. #include <asm/trace.h>
  60. #include <asm/io.h>
  61. #include <asm/processor.h>
  62. #include <asm/nvram.h>
  63. #include <asm/cache.h>
  64. #include <asm/machdep.h>
  65. #include <linux/uaccess.h>
  66. #include <asm/time.h>
  67. #include <asm/prom.h>
  68. #include <asm/irq.h>
  69. #include <asm/div64.h>
  70. #include <asm/smp.h>
  71. #include <asm/vdso_datapage.h>
  72. #include <asm/firmware.h>
  73. #include <asm/cputime.h>
  74. #include <asm/asm-prototypes.h>
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/timekeeper_internal.h>
  78. static u64 rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .read = rtc_read,
  85. };
  86. static u64 timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  95. u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  96. static int decrementer_set_next_event(unsigned long evt,
  97. struct clock_event_device *dev);
  98. static int decrementer_shutdown(struct clock_event_device *evt);
  99. struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .irq = 0,
  103. .set_next_event = decrementer_set_next_event,
  104. .set_state_shutdown = decrementer_shutdown,
  105. .tick_resume = decrementer_shutdown,
  106. .features = CLOCK_EVT_FEAT_ONESHOT |
  107. CLOCK_EVT_FEAT_C3STOP,
  108. };
  109. EXPORT_SYMBOL(decrementer_clockevent);
  110. DEFINE_PER_CPU(u64, decrementers_next_tb);
  111. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  112. #define XSEC_PER_SEC (1024*1024)
  113. #ifdef CONFIG_PPC64
  114. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  115. #else
  116. /* compute ((xsec << 12) * max) >> 32 */
  117. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  118. #endif
  119. unsigned long tb_ticks_per_jiffy;
  120. unsigned long tb_ticks_per_usec = 100; /* sane default */
  121. EXPORT_SYMBOL(tb_ticks_per_usec);
  122. unsigned long tb_ticks_per_sec;
  123. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  124. DEFINE_SPINLOCK(rtc_lock);
  125. EXPORT_SYMBOL_GPL(rtc_lock);
  126. static u64 tb_to_ns_scale __read_mostly;
  127. static unsigned tb_to_ns_shift __read_mostly;
  128. static u64 boot_tb __read_mostly;
  129. extern struct timezone sys_tz;
  130. static long timezone_offset;
  131. unsigned long ppc_proc_freq;
  132. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  133. unsigned long ppc_tb_freq;
  134. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  135. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  136. /*
  137. * Factors for converting from cputime_t (timebase ticks) to
  138. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  139. * These are all stored as 0.64 fixed-point binary fractions.
  140. */
  141. u64 __cputime_jiffies_factor;
  142. EXPORT_SYMBOL(__cputime_jiffies_factor);
  143. u64 __cputime_usec_factor;
  144. EXPORT_SYMBOL(__cputime_usec_factor);
  145. u64 __cputime_sec_factor;
  146. EXPORT_SYMBOL(__cputime_sec_factor);
  147. u64 __cputime_clockt_factor;
  148. EXPORT_SYMBOL(__cputime_clockt_factor);
  149. cputime_t cputime_one_jiffy;
  150. #ifdef CONFIG_PPC_SPLPAR
  151. void (*dtl_consumer)(struct dtl_entry *, u64);
  152. #endif
  153. #ifdef CONFIG_PPC64
  154. #define get_accounting(tsk) (&get_paca()->accounting)
  155. #else
  156. #define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
  157. #endif
  158. static void calc_cputime_factors(void)
  159. {
  160. struct div_result res;
  161. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  162. __cputime_jiffies_factor = res.result_low;
  163. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  164. __cputime_usec_factor = res.result_low;
  165. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  166. __cputime_sec_factor = res.result_low;
  167. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  168. __cputime_clockt_factor = res.result_low;
  169. }
  170. /*
  171. * Read the SPURR on systems that have it, otherwise the PURR,
  172. * or if that doesn't exist return the timebase value passed in.
  173. */
  174. static unsigned long read_spurr(unsigned long tb)
  175. {
  176. if (cpu_has_feature(CPU_FTR_SPURR))
  177. return mfspr(SPRN_SPURR);
  178. if (cpu_has_feature(CPU_FTR_PURR))
  179. return mfspr(SPRN_PURR);
  180. return tb;
  181. }
  182. #ifdef CONFIG_PPC_SPLPAR
  183. /*
  184. * Scan the dispatch trace log and count up the stolen time.
  185. * Should be called with interrupts disabled.
  186. */
  187. static u64 scan_dispatch_log(u64 stop_tb)
  188. {
  189. u64 i = local_paca->dtl_ridx;
  190. struct dtl_entry *dtl = local_paca->dtl_curr;
  191. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  192. struct lppaca *vpa = local_paca->lppaca_ptr;
  193. u64 tb_delta;
  194. u64 stolen = 0;
  195. u64 dtb;
  196. if (!dtl)
  197. return 0;
  198. if (i == be64_to_cpu(vpa->dtl_idx))
  199. return 0;
  200. while (i < be64_to_cpu(vpa->dtl_idx)) {
  201. dtb = be64_to_cpu(dtl->timebase);
  202. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  203. be32_to_cpu(dtl->ready_to_enqueue_time);
  204. barrier();
  205. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  206. /* buffer has overflowed */
  207. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  208. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  209. continue;
  210. }
  211. if (dtb > stop_tb)
  212. break;
  213. if (dtl_consumer)
  214. dtl_consumer(dtl, i);
  215. stolen += tb_delta;
  216. ++i;
  217. ++dtl;
  218. if (dtl == dtl_end)
  219. dtl = local_paca->dispatch_log;
  220. }
  221. local_paca->dtl_ridx = i;
  222. local_paca->dtl_curr = dtl;
  223. return stolen;
  224. }
  225. /*
  226. * Accumulate stolen time by scanning the dispatch trace log.
  227. * Called on entry from user mode.
  228. */
  229. void accumulate_stolen_time(void)
  230. {
  231. u64 sst, ust;
  232. u8 save_soft_enabled = local_paca->soft_enabled;
  233. struct cpu_accounting_data *acct = &local_paca->accounting;
  234. /* We are called early in the exception entry, before
  235. * soft/hard_enabled are sync'ed to the expected state
  236. * for the exception. We are hard disabled but the PACA
  237. * needs to reflect that so various debug stuff doesn't
  238. * complain
  239. */
  240. local_paca->soft_enabled = 0;
  241. sst = scan_dispatch_log(acct->starttime_user);
  242. ust = scan_dispatch_log(acct->starttime);
  243. acct->stime -= sst;
  244. acct->utime -= ust;
  245. acct->steal_time += ust + sst;
  246. local_paca->soft_enabled = save_soft_enabled;
  247. }
  248. static inline u64 calculate_stolen_time(u64 stop_tb)
  249. {
  250. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
  251. return scan_dispatch_log(stop_tb);
  252. return 0;
  253. }
  254. #else /* CONFIG_PPC_SPLPAR */
  255. static inline u64 calculate_stolen_time(u64 stop_tb)
  256. {
  257. return 0;
  258. }
  259. #endif /* CONFIG_PPC_SPLPAR */
  260. /*
  261. * Account time for a transition between system, hard irq
  262. * or soft irq state.
  263. */
  264. static unsigned long vtime_delta(struct task_struct *tsk,
  265. unsigned long *stime_scaled,
  266. unsigned long *steal_time)
  267. {
  268. unsigned long now, nowscaled, deltascaled;
  269. unsigned long stime;
  270. unsigned long utime, utime_scaled;
  271. struct cpu_accounting_data *acct = get_accounting(tsk);
  272. WARN_ON_ONCE(!irqs_disabled());
  273. now = mftb();
  274. nowscaled = read_spurr(now);
  275. stime = now - acct->starttime;
  276. acct->starttime = now;
  277. deltascaled = nowscaled - acct->startspurr;
  278. acct->startspurr = nowscaled;
  279. *steal_time = calculate_stolen_time(now);
  280. utime = acct->utime - acct->utime_sspurr;
  281. acct->utime_sspurr = acct->utime;
  282. /*
  283. * Because we don't read the SPURR on every kernel entry/exit,
  284. * deltascaled includes both user and system SPURR ticks.
  285. * Apportion these ticks to system SPURR ticks and user
  286. * SPURR ticks in the same ratio as the system time (delta)
  287. * and user time (udelta) values obtained from the timebase
  288. * over the same interval. The system ticks get accounted here;
  289. * the user ticks get saved up in paca->user_time_scaled to be
  290. * used by account_process_tick.
  291. */
  292. *stime_scaled = stime;
  293. utime_scaled = utime;
  294. if (deltascaled != stime + utime) {
  295. if (utime) {
  296. *stime_scaled = deltascaled * stime / (stime + utime);
  297. utime_scaled = deltascaled - *stime_scaled;
  298. } else {
  299. *stime_scaled = deltascaled;
  300. }
  301. }
  302. acct->utime_scaled += utime_scaled;
  303. return stime;
  304. }
  305. void vtime_account_system(struct task_struct *tsk)
  306. {
  307. unsigned long stime, stime_scaled, steal_time;
  308. struct cpu_accounting_data *acct = get_accounting(tsk);
  309. stime = vtime_delta(tsk, &stime_scaled, &steal_time);
  310. stime -= min(stime, steal_time);
  311. acct->steal_time += steal_time;
  312. if ((tsk->flags & PF_VCPU) && !irq_count()) {
  313. acct->gtime += stime;
  314. acct->utime_scaled += stime_scaled;
  315. } else {
  316. if (hardirq_count())
  317. acct->hardirq_time += stime;
  318. else if (in_serving_softirq())
  319. acct->softirq_time += stime;
  320. else
  321. acct->stime += stime;
  322. acct->stime_scaled += stime_scaled;
  323. }
  324. }
  325. EXPORT_SYMBOL_GPL(vtime_account_system);
  326. void vtime_account_idle(struct task_struct *tsk)
  327. {
  328. unsigned long stime, stime_scaled, steal_time;
  329. struct cpu_accounting_data *acct = get_accounting(tsk);
  330. stime = vtime_delta(tsk, &stime_scaled, &steal_time);
  331. acct->idle_time += stime + steal_time;
  332. }
  333. /*
  334. * Account the whole cputime accumulated in the paca
  335. * Must be called with interrupts disabled.
  336. * Assumes that vtime_account_system/idle() has been called
  337. * recently (i.e. since the last entry from usermode) so that
  338. * get_paca()->user_time_scaled is up to date.
  339. */
  340. void vtime_flush(struct task_struct *tsk)
  341. {
  342. struct cpu_accounting_data *acct = get_accounting(tsk);
  343. if (acct->utime)
  344. account_user_time(tsk, acct->utime);
  345. if (acct->utime_scaled)
  346. tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
  347. if (acct->gtime)
  348. account_guest_time(tsk, acct->gtime);
  349. if (acct->steal_time)
  350. account_steal_time(acct->steal_time);
  351. if (acct->idle_time)
  352. account_idle_time(acct->idle_time);
  353. if (acct->stime)
  354. account_system_index_time(tsk, acct->stime, CPUTIME_SYSTEM);
  355. if (acct->stime_scaled)
  356. tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
  357. if (acct->hardirq_time)
  358. account_system_index_time(tsk, acct->hardirq_time, CPUTIME_IRQ);
  359. if (acct->softirq_time)
  360. account_system_index_time(tsk, acct->softirq_time, CPUTIME_SOFTIRQ);
  361. acct->utime = 0;
  362. acct->utime_scaled = 0;
  363. acct->utime_sspurr = 0;
  364. acct->gtime = 0;
  365. acct->steal_time = 0;
  366. acct->idle_time = 0;
  367. acct->stime = 0;
  368. acct->stime_scaled = 0;
  369. acct->hardirq_time = 0;
  370. acct->softirq_time = 0;
  371. }
  372. #ifdef CONFIG_PPC32
  373. /*
  374. * Called from the context switch with interrupts disabled, to charge all
  375. * accumulated times to the current process, and to prepare accounting on
  376. * the next process.
  377. */
  378. void arch_vtime_task_switch(struct task_struct *prev)
  379. {
  380. struct cpu_accounting_data *acct = get_accounting(current);
  381. acct->starttime = get_accounting(prev)->starttime;
  382. acct->startspurr = get_accounting(prev)->startspurr;
  383. }
  384. #endif /* CONFIG_PPC32 */
  385. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  386. #define calc_cputime_factors()
  387. #endif
  388. void __delay(unsigned long loops)
  389. {
  390. unsigned long start;
  391. int diff;
  392. if (__USE_RTC()) {
  393. start = get_rtcl();
  394. do {
  395. /* the RTCL register wraps at 1000000000 */
  396. diff = get_rtcl() - start;
  397. if (diff < 0)
  398. diff += 1000000000;
  399. } while (diff < loops);
  400. } else {
  401. start = get_tbl();
  402. while (get_tbl() - start < loops)
  403. HMT_low();
  404. HMT_medium();
  405. }
  406. }
  407. EXPORT_SYMBOL(__delay);
  408. void udelay(unsigned long usecs)
  409. {
  410. __delay(tb_ticks_per_usec * usecs);
  411. }
  412. EXPORT_SYMBOL(udelay);
  413. #ifdef CONFIG_SMP
  414. unsigned long profile_pc(struct pt_regs *regs)
  415. {
  416. unsigned long pc = instruction_pointer(regs);
  417. if (in_lock_functions(pc))
  418. return regs->link;
  419. return pc;
  420. }
  421. EXPORT_SYMBOL(profile_pc);
  422. #endif
  423. #ifdef CONFIG_IRQ_WORK
  424. /*
  425. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  426. */
  427. #ifdef CONFIG_PPC64
  428. static inline unsigned long test_irq_work_pending(void)
  429. {
  430. unsigned long x;
  431. asm volatile("lbz %0,%1(13)"
  432. : "=r" (x)
  433. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  434. return x;
  435. }
  436. static inline void set_irq_work_pending_flag(void)
  437. {
  438. asm volatile("stb %0,%1(13)" : :
  439. "r" (1),
  440. "i" (offsetof(struct paca_struct, irq_work_pending)));
  441. }
  442. static inline void clear_irq_work_pending(void)
  443. {
  444. asm volatile("stb %0,%1(13)" : :
  445. "r" (0),
  446. "i" (offsetof(struct paca_struct, irq_work_pending)));
  447. }
  448. #else /* 32-bit */
  449. DEFINE_PER_CPU(u8, irq_work_pending);
  450. #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
  451. #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
  452. #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
  453. #endif /* 32 vs 64 bit */
  454. void arch_irq_work_raise(void)
  455. {
  456. preempt_disable();
  457. set_irq_work_pending_flag();
  458. set_dec(1);
  459. preempt_enable();
  460. }
  461. #else /* CONFIG_IRQ_WORK */
  462. #define test_irq_work_pending() 0
  463. #define clear_irq_work_pending()
  464. #endif /* CONFIG_IRQ_WORK */
  465. static void __timer_interrupt(void)
  466. {
  467. struct pt_regs *regs = get_irq_regs();
  468. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  469. struct clock_event_device *evt = this_cpu_ptr(&decrementers);
  470. u64 now;
  471. trace_timer_interrupt_entry(regs);
  472. if (test_irq_work_pending()) {
  473. clear_irq_work_pending();
  474. irq_work_run();
  475. }
  476. now = get_tb_or_rtc();
  477. if (now >= *next_tb) {
  478. *next_tb = ~(u64)0;
  479. if (evt->event_handler)
  480. evt->event_handler(evt);
  481. __this_cpu_inc(irq_stat.timer_irqs_event);
  482. } else {
  483. now = *next_tb - now;
  484. if (now <= decrementer_max)
  485. set_dec(now);
  486. /* We may have raced with new irq work */
  487. if (test_irq_work_pending())
  488. set_dec(1);
  489. __this_cpu_inc(irq_stat.timer_irqs_others);
  490. }
  491. #ifdef CONFIG_PPC64
  492. /* collect purr register values often, for accurate calculations */
  493. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  494. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  495. cu->current_tb = mfspr(SPRN_PURR);
  496. }
  497. #endif
  498. trace_timer_interrupt_exit(regs);
  499. }
  500. /*
  501. * timer_interrupt - gets called when the decrementer overflows,
  502. * with interrupts disabled.
  503. */
  504. void timer_interrupt(struct pt_regs * regs)
  505. {
  506. struct pt_regs *old_regs;
  507. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  508. /* Ensure a positive value is written to the decrementer, or else
  509. * some CPUs will continue to take decrementer exceptions.
  510. */
  511. set_dec(decrementer_max);
  512. /* Some implementations of hotplug will get timer interrupts while
  513. * offline, just ignore these and we also need to set
  514. * decrementers_next_tb as MAX to make sure __check_irq_replay
  515. * don't replay timer interrupt when return, otherwise we'll trap
  516. * here infinitely :(
  517. */
  518. if (!cpu_online(smp_processor_id())) {
  519. *next_tb = ~(u64)0;
  520. return;
  521. }
  522. /* Conditionally hard-enable interrupts now that the DEC has been
  523. * bumped to its maximum value
  524. */
  525. may_hard_irq_enable();
  526. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  527. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  528. do_IRQ(regs);
  529. #endif
  530. old_regs = set_irq_regs(regs);
  531. irq_enter();
  532. __timer_interrupt();
  533. irq_exit();
  534. set_irq_regs(old_regs);
  535. }
  536. EXPORT_SYMBOL(timer_interrupt);
  537. /*
  538. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  539. * left pending on exit from a KVM guest. We don't need to do anything
  540. * to clear them, as they are edge-triggered.
  541. */
  542. void hdec_interrupt(struct pt_regs *regs)
  543. {
  544. }
  545. #ifdef CONFIG_SUSPEND
  546. static void generic_suspend_disable_irqs(void)
  547. {
  548. /* Disable the decrementer, so that it doesn't interfere
  549. * with suspending.
  550. */
  551. set_dec(decrementer_max);
  552. local_irq_disable();
  553. set_dec(decrementer_max);
  554. }
  555. static void generic_suspend_enable_irqs(void)
  556. {
  557. local_irq_enable();
  558. }
  559. /* Overrides the weak version in kernel/power/main.c */
  560. void arch_suspend_disable_irqs(void)
  561. {
  562. if (ppc_md.suspend_disable_irqs)
  563. ppc_md.suspend_disable_irqs();
  564. generic_suspend_disable_irqs();
  565. }
  566. /* Overrides the weak version in kernel/power/main.c */
  567. void arch_suspend_enable_irqs(void)
  568. {
  569. generic_suspend_enable_irqs();
  570. if (ppc_md.suspend_enable_irqs)
  571. ppc_md.suspend_enable_irqs();
  572. }
  573. #endif
  574. unsigned long long tb_to_ns(unsigned long long ticks)
  575. {
  576. return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
  577. }
  578. EXPORT_SYMBOL_GPL(tb_to_ns);
  579. /*
  580. * Scheduler clock - returns current time in nanosec units.
  581. *
  582. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  583. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  584. * are 64-bit unsigned numbers.
  585. */
  586. unsigned long long sched_clock(void)
  587. {
  588. if (__USE_RTC())
  589. return get_rtc();
  590. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  591. }
  592. #ifdef CONFIG_PPC_PSERIES
  593. /*
  594. * Running clock - attempts to give a view of time passing for a virtualised
  595. * kernels.
  596. * Uses the VTB register if available otherwise a next best guess.
  597. */
  598. unsigned long long running_clock(void)
  599. {
  600. /*
  601. * Don't read the VTB as a host since KVM does not switch in host
  602. * timebase into the VTB when it takes a guest off the CPU, reading the
  603. * VTB would result in reading 'last switched out' guest VTB.
  604. *
  605. * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
  606. * would be unsafe to rely only on the #ifdef above.
  607. */
  608. if (firmware_has_feature(FW_FEATURE_LPAR) &&
  609. cpu_has_feature(CPU_FTR_ARCH_207S))
  610. return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  611. /*
  612. * This is a next best approximation without a VTB.
  613. * On a host which is running bare metal there should never be any stolen
  614. * time and on a host which doesn't do any virtualisation TB *should* equal
  615. * VTB so it makes no difference anyway.
  616. */
  617. return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
  618. }
  619. #endif
  620. static int __init get_freq(char *name, int cells, unsigned long *val)
  621. {
  622. struct device_node *cpu;
  623. const __be32 *fp;
  624. int found = 0;
  625. /* The cpu node should have timebase and clock frequency properties */
  626. cpu = of_find_node_by_type(NULL, "cpu");
  627. if (cpu) {
  628. fp = of_get_property(cpu, name, NULL);
  629. if (fp) {
  630. found = 1;
  631. *val = of_read_ulong(fp, cells);
  632. }
  633. of_node_put(cpu);
  634. }
  635. return found;
  636. }
  637. static void start_cpu_decrementer(void)
  638. {
  639. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  640. /* Clear any pending timer interrupts */
  641. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  642. /* Enable decrementer interrupt */
  643. mtspr(SPRN_TCR, TCR_DIE);
  644. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  645. }
  646. void __init generic_calibrate_decr(void)
  647. {
  648. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  649. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  650. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  651. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  652. "(not found)\n");
  653. }
  654. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  655. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  656. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  657. printk(KERN_ERR "WARNING: Estimating processor frequency "
  658. "(not found)\n");
  659. }
  660. }
  661. int update_persistent_clock(struct timespec now)
  662. {
  663. struct rtc_time tm;
  664. if (!ppc_md.set_rtc_time)
  665. return -ENODEV;
  666. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  667. tm.tm_year -= 1900;
  668. tm.tm_mon -= 1;
  669. return ppc_md.set_rtc_time(&tm);
  670. }
  671. static void __read_persistent_clock(struct timespec *ts)
  672. {
  673. struct rtc_time tm;
  674. static int first = 1;
  675. ts->tv_nsec = 0;
  676. /* XXX this is a litle fragile but will work okay in the short term */
  677. if (first) {
  678. first = 0;
  679. if (ppc_md.time_init)
  680. timezone_offset = ppc_md.time_init();
  681. /* get_boot_time() isn't guaranteed to be safe to call late */
  682. if (ppc_md.get_boot_time) {
  683. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  684. return;
  685. }
  686. }
  687. if (!ppc_md.get_rtc_time) {
  688. ts->tv_sec = 0;
  689. return;
  690. }
  691. ppc_md.get_rtc_time(&tm);
  692. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  693. tm.tm_hour, tm.tm_min, tm.tm_sec);
  694. }
  695. void read_persistent_clock(struct timespec *ts)
  696. {
  697. __read_persistent_clock(ts);
  698. /* Sanitize it in case real time clock is set below EPOCH */
  699. if (ts->tv_sec < 0) {
  700. ts->tv_sec = 0;
  701. ts->tv_nsec = 0;
  702. }
  703. }
  704. /* clocksource code */
  705. static u64 rtc_read(struct clocksource *cs)
  706. {
  707. return (u64)get_rtc();
  708. }
  709. static u64 timebase_read(struct clocksource *cs)
  710. {
  711. return (u64)get_tb();
  712. }
  713. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  714. struct clocksource *clock, u32 mult, u64 cycle_last)
  715. {
  716. u64 new_tb_to_xs, new_stamp_xsec;
  717. u32 frac_sec;
  718. if (clock != &clocksource_timebase)
  719. return;
  720. /* Make userspace gettimeofday spin until we're done. */
  721. ++vdso_data->tb_update_count;
  722. smp_mb();
  723. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  724. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  725. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  726. do_div(new_stamp_xsec, 1000000000);
  727. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  728. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  729. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  730. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  731. /*
  732. * tb_update_count is used to allow the userspace gettimeofday code
  733. * to assure itself that it sees a consistent view of the tb_to_xs and
  734. * stamp_xsec variables. It reads the tb_update_count, then reads
  735. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  736. * the two values of tb_update_count match and are even then the
  737. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  738. * loops back and reads them again until this criteria is met.
  739. * We expect the caller to have done the first increment of
  740. * vdso_data->tb_update_count already.
  741. */
  742. vdso_data->tb_orig_stamp = cycle_last;
  743. vdso_data->stamp_xsec = new_stamp_xsec;
  744. vdso_data->tb_to_xs = new_tb_to_xs;
  745. vdso_data->wtom_clock_sec = wtm->tv_sec;
  746. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  747. vdso_data->stamp_xtime = *wall_time;
  748. vdso_data->stamp_sec_fraction = frac_sec;
  749. smp_wmb();
  750. ++(vdso_data->tb_update_count);
  751. }
  752. void update_vsyscall_tz(void)
  753. {
  754. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  755. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  756. }
  757. static void __init clocksource_init(void)
  758. {
  759. struct clocksource *clock;
  760. if (__USE_RTC())
  761. clock = &clocksource_rtc;
  762. else
  763. clock = &clocksource_timebase;
  764. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  765. printk(KERN_ERR "clocksource: %s is already registered\n",
  766. clock->name);
  767. return;
  768. }
  769. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  770. clock->name, clock->mult, clock->shift);
  771. }
  772. static int decrementer_set_next_event(unsigned long evt,
  773. struct clock_event_device *dev)
  774. {
  775. __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
  776. set_dec(evt);
  777. /* We may have raced with new irq work */
  778. if (test_irq_work_pending())
  779. set_dec(1);
  780. return 0;
  781. }
  782. static int decrementer_shutdown(struct clock_event_device *dev)
  783. {
  784. decrementer_set_next_event(decrementer_max, dev);
  785. return 0;
  786. }
  787. /* Interrupt handler for the timer broadcast IPI */
  788. void tick_broadcast_ipi_handler(void)
  789. {
  790. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  791. *next_tb = get_tb_or_rtc();
  792. __timer_interrupt();
  793. }
  794. static void register_decrementer_clockevent(int cpu)
  795. {
  796. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  797. *dec = decrementer_clockevent;
  798. dec->cpumask = cpumask_of(cpu);
  799. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  800. dec->name, dec->mult, dec->shift, cpu);
  801. clockevents_register_device(dec);
  802. }
  803. static void enable_large_decrementer(void)
  804. {
  805. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  806. return;
  807. if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
  808. return;
  809. /*
  810. * If we're running as the hypervisor we need to enable the LD manually
  811. * otherwise firmware should have done it for us.
  812. */
  813. if (cpu_has_feature(CPU_FTR_HVMODE))
  814. mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
  815. }
  816. static void __init set_decrementer_max(void)
  817. {
  818. struct device_node *cpu;
  819. u32 bits = 32;
  820. /* Prior to ISAv3 the decrementer is always 32 bit */
  821. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  822. return;
  823. cpu = of_find_node_by_type(NULL, "cpu");
  824. if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
  825. if (bits > 64 || bits < 32) {
  826. pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
  827. bits = 32;
  828. }
  829. /* calculate the signed maximum given this many bits */
  830. decrementer_max = (1ul << (bits - 1)) - 1;
  831. }
  832. of_node_put(cpu);
  833. pr_info("time_init: %u bit decrementer (max: %llx)\n",
  834. bits, decrementer_max);
  835. }
  836. static void __init init_decrementer_clockevent(void)
  837. {
  838. int cpu = smp_processor_id();
  839. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  840. decrementer_clockevent.max_delta_ns =
  841. clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
  842. decrementer_clockevent.min_delta_ns =
  843. clockevent_delta2ns(2, &decrementer_clockevent);
  844. register_decrementer_clockevent(cpu);
  845. }
  846. void secondary_cpu_time_init(void)
  847. {
  848. /* Enable and test the large decrementer for this cpu */
  849. enable_large_decrementer();
  850. /* Start the decrementer on CPUs that have manual control
  851. * such as BookE
  852. */
  853. start_cpu_decrementer();
  854. /* FIME: Should make unrelatred change to move snapshot_timebase
  855. * call here ! */
  856. register_decrementer_clockevent(smp_processor_id());
  857. }
  858. /* This function is only called on the boot processor */
  859. void __init time_init(void)
  860. {
  861. struct div_result res;
  862. u64 scale;
  863. unsigned shift;
  864. if (__USE_RTC()) {
  865. /* 601 processor: dec counts down by 128 every 128ns */
  866. ppc_tb_freq = 1000000000;
  867. } else {
  868. /* Normal PowerPC with timebase register */
  869. ppc_md.calibrate_decr();
  870. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  871. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  872. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  873. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  874. }
  875. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  876. tb_ticks_per_sec = ppc_tb_freq;
  877. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  878. calc_cputime_factors();
  879. setup_cputime_one_jiffy();
  880. /*
  881. * Compute scale factor for sched_clock.
  882. * The calibrate_decr() function has set tb_ticks_per_sec,
  883. * which is the timebase frequency.
  884. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  885. * the 128-bit result as a 64.64 fixed-point number.
  886. * We then shift that number right until it is less than 1.0,
  887. * giving us the scale factor and shift count to use in
  888. * sched_clock().
  889. */
  890. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  891. scale = res.result_low;
  892. for (shift = 0; res.result_high != 0; ++shift) {
  893. scale = (scale >> 1) | (res.result_high << 63);
  894. res.result_high >>= 1;
  895. }
  896. tb_to_ns_scale = scale;
  897. tb_to_ns_shift = shift;
  898. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  899. boot_tb = get_tb_or_rtc();
  900. /* If platform provided a timezone (pmac), we correct the time */
  901. if (timezone_offset) {
  902. sys_tz.tz_minuteswest = -timezone_offset / 60;
  903. sys_tz.tz_dsttime = 0;
  904. }
  905. vdso_data->tb_update_count = 0;
  906. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  907. /* initialise and enable the large decrementer (if we have one) */
  908. set_decrementer_max();
  909. enable_large_decrementer();
  910. /* Start the decrementer on CPUs that have manual control
  911. * such as BookE
  912. */
  913. start_cpu_decrementer();
  914. /* Register the clocksource */
  915. clocksource_init();
  916. init_decrementer_clockevent();
  917. tick_setup_hrtimer_broadcast();
  918. #ifdef CONFIG_COMMON_CLK
  919. of_clk_init(NULL);
  920. #endif
  921. }
  922. #define FEBRUARY 2
  923. #define STARTOFTIME 1970
  924. #define SECDAY 86400L
  925. #define SECYR (SECDAY * 365)
  926. #define leapyear(year) ((year) % 4 == 0 && \
  927. ((year) % 100 != 0 || (year) % 400 == 0))
  928. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  929. #define days_in_month(a) (month_days[(a) - 1])
  930. static int month_days[12] = {
  931. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  932. };
  933. void to_tm(int tim, struct rtc_time * tm)
  934. {
  935. register int i;
  936. register long hms, day;
  937. day = tim / SECDAY;
  938. hms = tim % SECDAY;
  939. /* Hours, minutes, seconds are easy */
  940. tm->tm_hour = hms / 3600;
  941. tm->tm_min = (hms % 3600) / 60;
  942. tm->tm_sec = (hms % 3600) % 60;
  943. /* Number of years in days */
  944. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  945. day -= days_in_year(i);
  946. tm->tm_year = i;
  947. /* Number of months in days left */
  948. if (leapyear(tm->tm_year))
  949. days_in_month(FEBRUARY) = 29;
  950. for (i = 1; day >= days_in_month(i); i++)
  951. day -= days_in_month(i);
  952. days_in_month(FEBRUARY) = 28;
  953. tm->tm_mon = i;
  954. /* Days are what is left over (+1) from all that. */
  955. tm->tm_mday = day + 1;
  956. /*
  957. * No-one uses the day of the week.
  958. */
  959. tm->tm_wday = -1;
  960. }
  961. EXPORT_SYMBOL(to_tm);
  962. /*
  963. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  964. * result.
  965. */
  966. void div128_by_32(u64 dividend_high, u64 dividend_low,
  967. unsigned divisor, struct div_result *dr)
  968. {
  969. unsigned long a, b, c, d;
  970. unsigned long w, x, y, z;
  971. u64 ra, rb, rc;
  972. a = dividend_high >> 32;
  973. b = dividend_high & 0xffffffff;
  974. c = dividend_low >> 32;
  975. d = dividend_low & 0xffffffff;
  976. w = a / divisor;
  977. ra = ((u64)(a - (w * divisor)) << 32) + b;
  978. rb = ((u64) do_div(ra, divisor) << 32) + c;
  979. x = ra;
  980. rc = ((u64) do_div(rb, divisor) << 32) + d;
  981. y = rb;
  982. do_div(rc, divisor);
  983. z = rc;
  984. dr->result_high = ((u64)w << 32) + x;
  985. dr->result_low = ((u64)y << 32) + z;
  986. }
  987. /* We don't need to calibrate delay, we use the CPU timebase for that */
  988. void calibrate_delay(void)
  989. {
  990. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  991. * as the number of __delay(1) in a jiffy, so make it so
  992. */
  993. loops_per_jiffy = tb_ticks_per_jiffy;
  994. }
  995. #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
  996. static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
  997. {
  998. ppc_md.get_rtc_time(tm);
  999. return rtc_valid_tm(tm);
  1000. }
  1001. static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
  1002. {
  1003. if (!ppc_md.set_rtc_time)
  1004. return -EOPNOTSUPP;
  1005. if (ppc_md.set_rtc_time(tm) < 0)
  1006. return -EOPNOTSUPP;
  1007. return 0;
  1008. }
  1009. static const struct rtc_class_ops rtc_generic_ops = {
  1010. .read_time = rtc_generic_get_time,
  1011. .set_time = rtc_generic_set_time,
  1012. };
  1013. static int __init rtc_init(void)
  1014. {
  1015. struct platform_device *pdev;
  1016. if (!ppc_md.get_rtc_time)
  1017. return -ENODEV;
  1018. pdev = platform_device_register_data(NULL, "rtc-generic", -1,
  1019. &rtc_generic_ops,
  1020. sizeof(rtc_generic_ops));
  1021. return PTR_ERR_OR_ZERO(pdev);
  1022. }
  1023. device_initcall(rtc_init);
  1024. #endif