pmem.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /*
  2. * Persistent Memory Driver
  3. *
  4. * Copyright (c) 2014-2015, Intel Corporation.
  5. * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
  6. * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. */
  17. #include <asm/cacheflush.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/hdreg.h>
  20. #include <linux/init.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/module.h>
  23. #include <linux/moduleparam.h>
  24. #include <linux/badblocks.h>
  25. #include <linux/memremap.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/pfn_t.h>
  28. #include <linux/slab.h>
  29. #include <linux/pmem.h>
  30. #include <linux/nd.h>
  31. #include "pfn.h"
  32. #include "nd.h"
  33. struct pmem_device {
  34. struct request_queue *pmem_queue;
  35. struct gendisk *pmem_disk;
  36. struct nd_namespace_common *ndns;
  37. /* One contiguous memory region per device */
  38. phys_addr_t phys_addr;
  39. /* when non-zero this device is hosting a 'pfn' instance */
  40. phys_addr_t data_offset;
  41. u64 pfn_flags;
  42. void __pmem *virt_addr;
  43. /* immutable base size of the namespace */
  44. size_t size;
  45. /* trim size when namespace capacity has been section aligned */
  46. u32 pfn_pad;
  47. struct badblocks bb;
  48. };
  49. static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
  50. {
  51. if (bb->count) {
  52. sector_t first_bad;
  53. int num_bad;
  54. return !!badblocks_check(bb, sector, len / 512, &first_bad,
  55. &num_bad);
  56. }
  57. return false;
  58. }
  59. static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
  60. unsigned int len, unsigned int off, int rw,
  61. sector_t sector)
  62. {
  63. void *mem = kmap_atomic(page);
  64. phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
  65. void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
  66. if (rw == READ) {
  67. if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
  68. return -EIO;
  69. memcpy_from_pmem(mem + off, pmem_addr, len);
  70. flush_dcache_page(page);
  71. } else {
  72. flush_dcache_page(page);
  73. memcpy_to_pmem(pmem_addr, mem + off, len);
  74. }
  75. kunmap_atomic(mem);
  76. return 0;
  77. }
  78. static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
  79. {
  80. int rc = 0;
  81. bool do_acct;
  82. unsigned long start;
  83. struct bio_vec bvec;
  84. struct bvec_iter iter;
  85. struct block_device *bdev = bio->bi_bdev;
  86. struct pmem_device *pmem = bdev->bd_disk->private_data;
  87. do_acct = nd_iostat_start(bio, &start);
  88. bio_for_each_segment(bvec, bio, iter) {
  89. rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
  90. bvec.bv_offset, bio_data_dir(bio),
  91. iter.bi_sector);
  92. if (rc) {
  93. bio->bi_error = rc;
  94. break;
  95. }
  96. }
  97. if (do_acct)
  98. nd_iostat_end(bio, start);
  99. if (bio_data_dir(bio))
  100. wmb_pmem();
  101. bio_endio(bio);
  102. return BLK_QC_T_NONE;
  103. }
  104. static int pmem_rw_page(struct block_device *bdev, sector_t sector,
  105. struct page *page, int rw)
  106. {
  107. struct pmem_device *pmem = bdev->bd_disk->private_data;
  108. int rc;
  109. rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
  110. if (rw & WRITE)
  111. wmb_pmem();
  112. /*
  113. * The ->rw_page interface is subtle and tricky. The core
  114. * retries on any error, so we can only invoke page_endio() in
  115. * the successful completion case. Otherwise, we'll see crashes
  116. * caused by double completion.
  117. */
  118. if (rc == 0)
  119. page_endio(page, rw & WRITE, 0);
  120. return rc;
  121. }
  122. static long pmem_direct_access(struct block_device *bdev, sector_t sector,
  123. void __pmem **kaddr, pfn_t *pfn)
  124. {
  125. struct pmem_device *pmem = bdev->bd_disk->private_data;
  126. resource_size_t offset = sector * 512 + pmem->data_offset;
  127. *kaddr = pmem->virt_addr + offset;
  128. *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
  129. return pmem->size - pmem->pfn_pad - offset;
  130. }
  131. static const struct block_device_operations pmem_fops = {
  132. .owner = THIS_MODULE,
  133. .rw_page = pmem_rw_page,
  134. .direct_access = pmem_direct_access,
  135. .revalidate_disk = nvdimm_revalidate_disk,
  136. };
  137. static struct pmem_device *pmem_alloc(struct device *dev,
  138. struct resource *res, int id)
  139. {
  140. struct pmem_device *pmem;
  141. struct request_queue *q;
  142. pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
  143. if (!pmem)
  144. return ERR_PTR(-ENOMEM);
  145. pmem->phys_addr = res->start;
  146. pmem->size = resource_size(res);
  147. if (!arch_has_wmb_pmem())
  148. dev_warn(dev, "unable to guarantee persistence of writes\n");
  149. if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
  150. dev_name(dev))) {
  151. dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
  152. &pmem->phys_addr, pmem->size);
  153. return ERR_PTR(-EBUSY);
  154. }
  155. q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
  156. if (!q)
  157. return ERR_PTR(-ENOMEM);
  158. pmem->pfn_flags = PFN_DEV;
  159. if (pmem_should_map_pages(dev)) {
  160. pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
  161. &q->q_usage_counter, NULL);
  162. pmem->pfn_flags |= PFN_MAP;
  163. } else
  164. pmem->virt_addr = (void __pmem *) devm_memremap(dev,
  165. pmem->phys_addr, pmem->size,
  166. ARCH_MEMREMAP_PMEM);
  167. if (IS_ERR(pmem->virt_addr)) {
  168. blk_cleanup_queue(q);
  169. return (void __force *) pmem->virt_addr;
  170. }
  171. pmem->pmem_queue = q;
  172. return pmem;
  173. }
  174. static void pmem_detach_disk(struct pmem_device *pmem)
  175. {
  176. if (!pmem->pmem_disk)
  177. return;
  178. del_gendisk(pmem->pmem_disk);
  179. put_disk(pmem->pmem_disk);
  180. blk_cleanup_queue(pmem->pmem_queue);
  181. }
  182. static int pmem_attach_disk(struct device *dev,
  183. struct nd_namespace_common *ndns, struct pmem_device *pmem)
  184. {
  185. int nid = dev_to_node(dev);
  186. struct gendisk *disk;
  187. blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
  188. blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
  189. blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
  190. blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
  191. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
  192. disk = alloc_disk_node(0, nid);
  193. if (!disk) {
  194. blk_cleanup_queue(pmem->pmem_queue);
  195. return -ENOMEM;
  196. }
  197. disk->fops = &pmem_fops;
  198. disk->private_data = pmem;
  199. disk->queue = pmem->pmem_queue;
  200. disk->flags = GENHD_FL_EXT_DEVT;
  201. nvdimm_namespace_disk_name(ndns, disk->disk_name);
  202. disk->driverfs_dev = dev;
  203. set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
  204. / 512);
  205. pmem->pmem_disk = disk;
  206. devm_exit_badblocks(dev, &pmem->bb);
  207. if (devm_init_badblocks(dev, &pmem->bb))
  208. return -ENOMEM;
  209. nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
  210. disk->bb = &pmem->bb;
  211. add_disk(disk);
  212. revalidate_disk(disk);
  213. return 0;
  214. }
  215. static int pmem_rw_bytes(struct nd_namespace_common *ndns,
  216. resource_size_t offset, void *buf, size_t size, int rw)
  217. {
  218. struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
  219. if (unlikely(offset + size > pmem->size)) {
  220. dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
  221. return -EFAULT;
  222. }
  223. if (rw == READ) {
  224. unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
  225. if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
  226. return -EIO;
  227. memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
  228. } else {
  229. memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
  230. wmb_pmem();
  231. }
  232. return 0;
  233. }
  234. static int nd_pfn_init(struct nd_pfn *nd_pfn)
  235. {
  236. struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
  237. struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
  238. struct nd_namespace_common *ndns = nd_pfn->ndns;
  239. u32 start_pad = 0, end_trunc = 0;
  240. resource_size_t start, size;
  241. struct nd_namespace_io *nsio;
  242. struct nd_region *nd_region;
  243. unsigned long npfns;
  244. phys_addr_t offset;
  245. u64 checksum;
  246. int rc;
  247. if (!pfn_sb)
  248. return -ENOMEM;
  249. nd_pfn->pfn_sb = pfn_sb;
  250. rc = nd_pfn_validate(nd_pfn);
  251. if (rc == -ENODEV)
  252. /* no info block, do init */;
  253. else
  254. return rc;
  255. nd_region = to_nd_region(nd_pfn->dev.parent);
  256. if (nd_region->ro) {
  257. dev_info(&nd_pfn->dev,
  258. "%s is read-only, unable to init metadata\n",
  259. dev_name(&nd_region->dev));
  260. goto err;
  261. }
  262. memset(pfn_sb, 0, sizeof(*pfn_sb));
  263. /*
  264. * Check if pmem collides with 'System RAM' when section aligned and
  265. * trim it accordingly
  266. */
  267. nsio = to_nd_namespace_io(&ndns->dev);
  268. start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
  269. size = resource_size(&nsio->res);
  270. if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
  271. IORES_DESC_NONE) == REGION_MIXED) {
  272. start = nsio->res.start;
  273. start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
  274. }
  275. start = nsio->res.start;
  276. size = PHYS_SECTION_ALIGN_UP(start + size) - start;
  277. if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
  278. IORES_DESC_NONE) == REGION_MIXED) {
  279. size = resource_size(&nsio->res);
  280. end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
  281. }
  282. if (start_pad + end_trunc)
  283. dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
  284. dev_name(&ndns->dev), start_pad + end_trunc);
  285. /*
  286. * Note, we use 64 here for the standard size of struct page,
  287. * debugging options may cause it to be larger in which case the
  288. * implementation will limit the pfns advertised through
  289. * ->direct_access() to those that are included in the memmap.
  290. */
  291. start += start_pad;
  292. npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
  293. if (nd_pfn->mode == PFN_MODE_PMEM)
  294. offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
  295. - start;
  296. else if (nd_pfn->mode == PFN_MODE_RAM)
  297. offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
  298. else
  299. goto err;
  300. if (offset + start_pad + end_trunc >= pmem->size) {
  301. dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
  302. dev_name(&ndns->dev));
  303. goto err;
  304. }
  305. npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
  306. pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
  307. pfn_sb->dataoff = cpu_to_le64(offset);
  308. pfn_sb->npfns = cpu_to_le64(npfns);
  309. memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
  310. memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
  311. memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
  312. pfn_sb->version_major = cpu_to_le16(1);
  313. pfn_sb->version_minor = cpu_to_le16(1);
  314. pfn_sb->start_pad = cpu_to_le32(start_pad);
  315. pfn_sb->end_trunc = cpu_to_le32(end_trunc);
  316. checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
  317. pfn_sb->checksum = cpu_to_le64(checksum);
  318. rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
  319. if (rc)
  320. goto err;
  321. return 0;
  322. err:
  323. nd_pfn->pfn_sb = NULL;
  324. kfree(pfn_sb);
  325. return -ENXIO;
  326. }
  327. static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
  328. {
  329. struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
  330. struct pmem_device *pmem;
  331. /* free pmem disk */
  332. pmem = dev_get_drvdata(&nd_pfn->dev);
  333. pmem_detach_disk(pmem);
  334. /* release nd_pfn resources */
  335. kfree(nd_pfn->pfn_sb);
  336. nd_pfn->pfn_sb = NULL;
  337. return 0;
  338. }
  339. /*
  340. * We hotplug memory at section granularity, pad the reserved area from
  341. * the previous section base to the namespace base address.
  342. */
  343. static unsigned long init_altmap_base(resource_size_t base)
  344. {
  345. unsigned long base_pfn = PHYS_PFN(base);
  346. return PFN_SECTION_ALIGN_DOWN(base_pfn);
  347. }
  348. static unsigned long init_altmap_reserve(resource_size_t base)
  349. {
  350. unsigned long reserve = PHYS_PFN(SZ_8K);
  351. unsigned long base_pfn = PHYS_PFN(base);
  352. reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
  353. return reserve;
  354. }
  355. static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
  356. {
  357. int rc;
  358. struct resource res;
  359. struct request_queue *q;
  360. struct pmem_device *pmem;
  361. struct vmem_altmap *altmap;
  362. struct device *dev = &nd_pfn->dev;
  363. struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
  364. struct nd_namespace_common *ndns = nd_pfn->ndns;
  365. u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
  366. u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
  367. struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
  368. resource_size_t base = nsio->res.start + start_pad;
  369. struct vmem_altmap __altmap = {
  370. .base_pfn = init_altmap_base(base),
  371. .reserve = init_altmap_reserve(base),
  372. };
  373. pmem = dev_get_drvdata(dev);
  374. pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
  375. pmem->pfn_pad = start_pad + end_trunc;
  376. nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
  377. if (nd_pfn->mode == PFN_MODE_RAM) {
  378. if (pmem->data_offset < SZ_8K)
  379. return -EINVAL;
  380. nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
  381. altmap = NULL;
  382. } else if (nd_pfn->mode == PFN_MODE_PMEM) {
  383. nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
  384. / PAGE_SIZE;
  385. if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
  386. dev_info(&nd_pfn->dev,
  387. "number of pfns truncated from %lld to %ld\n",
  388. le64_to_cpu(nd_pfn->pfn_sb->npfns),
  389. nd_pfn->npfns);
  390. altmap = & __altmap;
  391. altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
  392. altmap->alloc = 0;
  393. } else {
  394. rc = -ENXIO;
  395. goto err;
  396. }
  397. /* establish pfn range for lookup, and switch to direct map */
  398. q = pmem->pmem_queue;
  399. memcpy(&res, &nsio->res, sizeof(res));
  400. res.start += start_pad;
  401. res.end -= end_trunc;
  402. devm_memunmap(dev, (void __force *) pmem->virt_addr);
  403. pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
  404. &q->q_usage_counter, altmap);
  405. pmem->pfn_flags |= PFN_MAP;
  406. if (IS_ERR(pmem->virt_addr)) {
  407. rc = PTR_ERR(pmem->virt_addr);
  408. goto err;
  409. }
  410. /* attach pmem disk in "pfn-mode" */
  411. rc = pmem_attach_disk(dev, ndns, pmem);
  412. if (rc)
  413. goto err;
  414. return rc;
  415. err:
  416. nvdimm_namespace_detach_pfn(ndns);
  417. return rc;
  418. }
  419. static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
  420. {
  421. struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
  422. int rc;
  423. if (!nd_pfn->uuid || !nd_pfn->ndns)
  424. return -ENODEV;
  425. rc = nd_pfn_init(nd_pfn);
  426. if (rc)
  427. return rc;
  428. /* we need a valid pfn_sb before we can init a vmem_altmap */
  429. return __nvdimm_namespace_attach_pfn(nd_pfn);
  430. }
  431. static int nd_pmem_probe(struct device *dev)
  432. {
  433. struct nd_region *nd_region = to_nd_region(dev->parent);
  434. struct nd_namespace_common *ndns;
  435. struct nd_namespace_io *nsio;
  436. struct pmem_device *pmem;
  437. ndns = nvdimm_namespace_common_probe(dev);
  438. if (IS_ERR(ndns))
  439. return PTR_ERR(ndns);
  440. nsio = to_nd_namespace_io(&ndns->dev);
  441. pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
  442. if (IS_ERR(pmem))
  443. return PTR_ERR(pmem);
  444. pmem->ndns = ndns;
  445. dev_set_drvdata(dev, pmem);
  446. ndns->rw_bytes = pmem_rw_bytes;
  447. if (devm_init_badblocks(dev, &pmem->bb))
  448. return -ENOMEM;
  449. nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
  450. if (is_nd_btt(dev)) {
  451. /* btt allocates its own request_queue */
  452. blk_cleanup_queue(pmem->pmem_queue);
  453. pmem->pmem_queue = NULL;
  454. return nvdimm_namespace_attach_btt(ndns);
  455. }
  456. if (is_nd_pfn(dev))
  457. return nvdimm_namespace_attach_pfn(ndns);
  458. if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
  459. /*
  460. * We'll come back as either btt-pmem, or pfn-pmem, so
  461. * drop the queue allocation for now.
  462. */
  463. blk_cleanup_queue(pmem->pmem_queue);
  464. return -ENXIO;
  465. }
  466. return pmem_attach_disk(dev, ndns, pmem);
  467. }
  468. static int nd_pmem_remove(struct device *dev)
  469. {
  470. struct pmem_device *pmem = dev_get_drvdata(dev);
  471. if (is_nd_btt(dev))
  472. nvdimm_namespace_detach_btt(pmem->ndns);
  473. else if (is_nd_pfn(dev))
  474. nvdimm_namespace_detach_pfn(pmem->ndns);
  475. else
  476. pmem_detach_disk(pmem);
  477. return 0;
  478. }
  479. MODULE_ALIAS("pmem");
  480. MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
  481. MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
  482. static struct nd_device_driver nd_pmem_driver = {
  483. .probe = nd_pmem_probe,
  484. .remove = nd_pmem_remove,
  485. .drv = {
  486. .name = "nd_pmem",
  487. },
  488. .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
  489. };
  490. static int __init pmem_init(void)
  491. {
  492. return nd_driver_register(&nd_pmem_driver);
  493. }
  494. module_init(pmem_init);
  495. static void pmem_exit(void)
  496. {
  497. driver_unregister(&nd_pmem_driver.drv);
  498. }
  499. module_exit(pmem_exit);
  500. MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
  501. MODULE_LICENSE("GPL v2");