intel_ddi.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. };
  33. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  34. * them for both DP and FDI transports, allowing those ports to
  35. * automatically adapt to HDMI connections as well
  36. */
  37. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  38. { 0x00FFFFFF, 0x0006000E },
  39. { 0x00D75FFF, 0x0005000A },
  40. { 0x00C30FFF, 0x00040006 },
  41. { 0x80AAAFFF, 0x000B0000 },
  42. { 0x00FFFFFF, 0x0005000A },
  43. { 0x00D75FFF, 0x000C0004 },
  44. { 0x80C30FFF, 0x000B0000 },
  45. { 0x00FFFFFF, 0x00040006 },
  46. { 0x80D75FFF, 0x000B0000 },
  47. };
  48. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  49. { 0x00FFFFFF, 0x0007000E },
  50. { 0x00D75FFF, 0x000F000A },
  51. { 0x00C30FFF, 0x00060006 },
  52. { 0x00AAAFFF, 0x001E0000 },
  53. { 0x00FFFFFF, 0x000F000A },
  54. { 0x00D75FFF, 0x00160004 },
  55. { 0x00C30FFF, 0x001E0000 },
  56. { 0x00FFFFFF, 0x00060006 },
  57. { 0x00D75FFF, 0x001E0000 },
  58. };
  59. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  60. /* Idx NT mV d T mV d db */
  61. { 0x00FFFFFF, 0x0006000E }, /* 0: 400 400 0 */
  62. { 0x00E79FFF, 0x000E000C }, /* 1: 400 500 2 */
  63. { 0x00D75FFF, 0x0005000A }, /* 2: 400 600 3.5 */
  64. { 0x00FFFFFF, 0x0005000A }, /* 3: 600 600 0 */
  65. { 0x00E79FFF, 0x001D0007 }, /* 4: 600 750 2 */
  66. { 0x00D75FFF, 0x000C0004 }, /* 5: 600 900 3.5 */
  67. { 0x00FFFFFF, 0x00040006 }, /* 6: 800 800 0 */
  68. { 0x80E79FFF, 0x00030002 }, /* 7: 800 1000 2 */
  69. { 0x00FFFFFF, 0x00140005 }, /* 8: 850 850 0 */
  70. { 0x00FFFFFF, 0x000C0004 }, /* 9: 900 900 0 */
  71. { 0x00FFFFFF, 0x001C0003 }, /* 10: 950 950 0 */
  72. { 0x80FFFFFF, 0x00030002 }, /* 11: 1000 1000 0 */
  73. };
  74. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  75. { 0x00FFFFFF, 0x00000012 },
  76. { 0x00EBAFFF, 0x00020011 },
  77. { 0x00C71FFF, 0x0006000F },
  78. { 0x00AAAFFF, 0x000E000A },
  79. { 0x00FFFFFF, 0x00020011 },
  80. { 0x00DB6FFF, 0x0005000F },
  81. { 0x00BEEFFF, 0x000A000C },
  82. { 0x00FFFFFF, 0x0005000F },
  83. { 0x00DB6FFF, 0x000A000C },
  84. };
  85. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  86. { 0x00FFFFFF, 0x0007000E },
  87. { 0x00D75FFF, 0x000E000A },
  88. { 0x00BEFFFF, 0x00140006 },
  89. { 0x80B2CFFF, 0x001B0002 },
  90. { 0x00FFFFFF, 0x000E000A },
  91. { 0x00DB6FFF, 0x00160005 },
  92. { 0x80C71FFF, 0x001A0002 },
  93. { 0x00F7DFFF, 0x00180004 },
  94. { 0x80D75FFF, 0x001B0002 },
  95. };
  96. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  97. { 0x00FFFFFF, 0x0001000E },
  98. { 0x00D75FFF, 0x0004000A },
  99. { 0x00C30FFF, 0x00070006 },
  100. { 0x00AAAFFF, 0x000C0000 },
  101. { 0x00FFFFFF, 0x0004000A },
  102. { 0x00D75FFF, 0x00090004 },
  103. { 0x00C30FFF, 0x000C0000 },
  104. { 0x00FFFFFF, 0x00070006 },
  105. { 0x00D75FFF, 0x000C0000 },
  106. };
  107. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  108. /* Idx NT mV d T mV df db */
  109. { 0x00FFFFFF, 0x0007000E }, /* 0: 400 400 0 */
  110. { 0x00D75FFF, 0x000E000A }, /* 1: 400 600 3.5 */
  111. { 0x00BEFFFF, 0x00140006 }, /* 2: 400 800 6 */
  112. { 0x00FFFFFF, 0x0009000D }, /* 3: 450 450 0 */
  113. { 0x00FFFFFF, 0x000E000A }, /* 4: 600 600 0 */
  114. { 0x00D7FFFF, 0x00140006 }, /* 5: 600 800 2.5 */
  115. { 0x80CB2FFF, 0x001B0002 }, /* 6: 600 1000 4.5 */
  116. { 0x00FFFFFF, 0x00140006 }, /* 7: 800 800 0 */
  117. { 0x80E79FFF, 0x001B0002 }, /* 8: 800 1000 2 */
  118. { 0x80FFFFFF, 0x001B0002 }, /* 9: 1000 1000 0 */
  119. };
  120. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  121. { 0x00000018, 0x000000a0 },
  122. { 0x00004014, 0x00000098 },
  123. { 0x00006012, 0x00000088 },
  124. { 0x00008010, 0x00000080 },
  125. { 0x00000018, 0x00000098 },
  126. { 0x00004014, 0x00000088 },
  127. { 0x00006012, 0x00000080 },
  128. { 0x00000018, 0x00000088 },
  129. { 0x00004014, 0x00000080 },
  130. };
  131. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  132. /* Idx NT mV T mV db */
  133. { 0x00000018, 0x000000a0 }, /* 0: 400 400 0 */
  134. { 0x00004014, 0x00000098 }, /* 1: 400 600 3.5 */
  135. { 0x00006012, 0x00000088 }, /* 2: 400 800 6 */
  136. { 0x00000018, 0x0000003c }, /* 3: 450 450 0 */
  137. { 0x00000018, 0x00000098 }, /* 4: 600 600 0 */
  138. { 0x00003015, 0x00000088 }, /* 5: 600 800 2.5 */
  139. { 0x00005013, 0x00000080 }, /* 6: 600 1000 4.5 */
  140. { 0x00000018, 0x00000088 }, /* 7: 800 800 0 */
  141. { 0x00000096, 0x00000080 }, /* 8: 800 1000 2 */
  142. { 0x00000018, 0x00000080 }, /* 9: 1200 1200 0 */
  143. };
  144. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  145. {
  146. struct drm_encoder *encoder = &intel_encoder->base;
  147. int type = intel_encoder->type;
  148. if (type == INTEL_OUTPUT_DP_MST) {
  149. struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
  150. return intel_dig_port->port;
  151. } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  152. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  153. struct intel_digital_port *intel_dig_port =
  154. enc_to_dig_port(encoder);
  155. return intel_dig_port->port;
  156. } else if (type == INTEL_OUTPUT_ANALOG) {
  157. return PORT_E;
  158. } else {
  159. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  160. BUG();
  161. }
  162. }
  163. /*
  164. * Starting with Haswell, DDI port buffers must be programmed with correct
  165. * values in advance. The buffer values are different for FDI and DP modes,
  166. * but the HDMI/DVI fields are shared among those. So we program the DDI
  167. * in either FDI or DP modes only, as HDMI connections will work with both
  168. * of those
  169. */
  170. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  171. {
  172. struct drm_i915_private *dev_priv = dev->dev_private;
  173. u32 reg;
  174. int i, n_hdmi_entries, hdmi_800mV_0dB;
  175. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  176. const struct ddi_buf_trans *ddi_translations_fdi;
  177. const struct ddi_buf_trans *ddi_translations_dp;
  178. const struct ddi_buf_trans *ddi_translations_edp;
  179. const struct ddi_buf_trans *ddi_translations_hdmi;
  180. const struct ddi_buf_trans *ddi_translations;
  181. if (IS_SKYLAKE(dev)) {
  182. ddi_translations_fdi = NULL;
  183. ddi_translations_dp = skl_ddi_translations_dp;
  184. ddi_translations_edp = skl_ddi_translations_dp;
  185. ddi_translations_hdmi = skl_ddi_translations_hdmi;
  186. n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  187. hdmi_800mV_0dB = 7;
  188. } else if (IS_BROADWELL(dev)) {
  189. ddi_translations_fdi = bdw_ddi_translations_fdi;
  190. ddi_translations_dp = bdw_ddi_translations_dp;
  191. ddi_translations_edp = bdw_ddi_translations_edp;
  192. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  193. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  194. hdmi_800mV_0dB = 7;
  195. } else if (IS_HASWELL(dev)) {
  196. ddi_translations_fdi = hsw_ddi_translations_fdi;
  197. ddi_translations_dp = hsw_ddi_translations_dp;
  198. ddi_translations_edp = hsw_ddi_translations_dp;
  199. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  200. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  201. hdmi_800mV_0dB = 6;
  202. } else {
  203. WARN(1, "ddi translation table missing\n");
  204. ddi_translations_edp = bdw_ddi_translations_dp;
  205. ddi_translations_fdi = bdw_ddi_translations_fdi;
  206. ddi_translations_dp = bdw_ddi_translations_dp;
  207. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  208. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  209. hdmi_800mV_0dB = 7;
  210. }
  211. switch (port) {
  212. case PORT_A:
  213. ddi_translations = ddi_translations_edp;
  214. break;
  215. case PORT_B:
  216. case PORT_C:
  217. ddi_translations = ddi_translations_dp;
  218. break;
  219. case PORT_D:
  220. if (intel_dp_is_edp(dev, PORT_D))
  221. ddi_translations = ddi_translations_edp;
  222. else
  223. ddi_translations = ddi_translations_dp;
  224. break;
  225. case PORT_E:
  226. if (ddi_translations_fdi)
  227. ddi_translations = ddi_translations_fdi;
  228. else
  229. ddi_translations = ddi_translations_dp;
  230. break;
  231. default:
  232. BUG();
  233. }
  234. for (i = 0, reg = DDI_BUF_TRANS(port);
  235. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  236. I915_WRITE(reg, ddi_translations[i].trans1);
  237. reg += 4;
  238. I915_WRITE(reg, ddi_translations[i].trans2);
  239. reg += 4;
  240. }
  241. /* Choose a good default if VBT is badly populated */
  242. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  243. hdmi_level >= n_hdmi_entries)
  244. hdmi_level = hdmi_800mV_0dB;
  245. /* Entry 9 is for HDMI: */
  246. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
  247. reg += 4;
  248. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
  249. reg += 4;
  250. }
  251. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  252. * mode and port E for FDI.
  253. */
  254. void intel_prepare_ddi(struct drm_device *dev)
  255. {
  256. int port;
  257. if (!HAS_DDI(dev))
  258. return;
  259. for (port = PORT_A; port <= PORT_E; port++)
  260. intel_prepare_ddi_buffers(dev, port);
  261. }
  262. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  263. enum port port)
  264. {
  265. uint32_t reg = DDI_BUF_CTL(port);
  266. int i;
  267. for (i = 0; i < 8; i++) {
  268. udelay(1);
  269. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  270. return;
  271. }
  272. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  273. }
  274. /* Starting with Haswell, different DDI ports can work in FDI mode for
  275. * connection to the PCH-located connectors. For this, it is necessary to train
  276. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  277. *
  278. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  279. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  280. * DDI A (which is used for eDP)
  281. */
  282. void hsw_fdi_link_train(struct drm_crtc *crtc)
  283. {
  284. struct drm_device *dev = crtc->dev;
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  287. u32 temp, i, rx_ctl_val;
  288. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  289. * mode set "sequence for CRT port" document:
  290. * - TP1 to TP2 time with the default value
  291. * - FDI delay to 90h
  292. *
  293. * WaFDIAutoLinkSetTimingOverrride:hsw
  294. */
  295. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  296. FDI_RX_PWRDN_LANE0_VAL(2) |
  297. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  298. /* Enable the PCH Receiver FDI PLL */
  299. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  300. FDI_RX_PLL_ENABLE |
  301. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  302. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  303. POSTING_READ(_FDI_RXA_CTL);
  304. udelay(220);
  305. /* Switch from Rawclk to PCDclk */
  306. rx_ctl_val |= FDI_PCDCLK;
  307. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  308. /* Configure Port Clock Select */
  309. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
  310. WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
  311. /* Start the training iterating through available voltages and emphasis,
  312. * testing each value twice. */
  313. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  314. /* Configure DP_TP_CTL with auto-training */
  315. I915_WRITE(DP_TP_CTL(PORT_E),
  316. DP_TP_CTL_FDI_AUTOTRAIN |
  317. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  318. DP_TP_CTL_LINK_TRAIN_PAT1 |
  319. DP_TP_CTL_ENABLE);
  320. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  321. * DDI E does not support port reversal, the functionality is
  322. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  323. * port reversal bit */
  324. I915_WRITE(DDI_BUF_CTL(PORT_E),
  325. DDI_BUF_CTL_ENABLE |
  326. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  327. DDI_BUF_TRANS_SELECT(i / 2));
  328. POSTING_READ(DDI_BUF_CTL(PORT_E));
  329. udelay(600);
  330. /* Program PCH FDI Receiver TU */
  331. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  332. /* Enable PCH FDI Receiver with auto-training */
  333. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  334. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  335. POSTING_READ(_FDI_RXA_CTL);
  336. /* Wait for FDI receiver lane calibration */
  337. udelay(30);
  338. /* Unset FDI_RX_MISC pwrdn lanes */
  339. temp = I915_READ(_FDI_RXA_MISC);
  340. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  341. I915_WRITE(_FDI_RXA_MISC, temp);
  342. POSTING_READ(_FDI_RXA_MISC);
  343. /* Wait for FDI auto training time */
  344. udelay(5);
  345. temp = I915_READ(DP_TP_STATUS(PORT_E));
  346. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  347. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  348. /* Enable normal pixel sending for FDI */
  349. I915_WRITE(DP_TP_CTL(PORT_E),
  350. DP_TP_CTL_FDI_AUTOTRAIN |
  351. DP_TP_CTL_LINK_TRAIN_NORMAL |
  352. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  353. DP_TP_CTL_ENABLE);
  354. return;
  355. }
  356. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  357. temp &= ~DDI_BUF_CTL_ENABLE;
  358. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  359. POSTING_READ(DDI_BUF_CTL(PORT_E));
  360. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  361. temp = I915_READ(DP_TP_CTL(PORT_E));
  362. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  363. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  364. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  365. POSTING_READ(DP_TP_CTL(PORT_E));
  366. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  367. rx_ctl_val &= ~FDI_RX_ENABLE;
  368. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  369. POSTING_READ(_FDI_RXA_CTL);
  370. /* Reset FDI_RX_MISC pwrdn lanes */
  371. temp = I915_READ(_FDI_RXA_MISC);
  372. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  373. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  374. I915_WRITE(_FDI_RXA_MISC, temp);
  375. POSTING_READ(_FDI_RXA_MISC);
  376. }
  377. DRM_ERROR("FDI link training failed!\n");
  378. }
  379. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  380. {
  381. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  382. struct intel_digital_port *intel_dig_port =
  383. enc_to_dig_port(&encoder->base);
  384. intel_dp->DP = intel_dig_port->saved_port_bits |
  385. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  386. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  387. }
  388. static struct intel_encoder *
  389. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  390. {
  391. struct drm_device *dev = crtc->dev;
  392. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  393. struct intel_encoder *intel_encoder, *ret = NULL;
  394. int num_encoders = 0;
  395. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  396. ret = intel_encoder;
  397. num_encoders++;
  398. }
  399. if (num_encoders != 1)
  400. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  401. pipe_name(intel_crtc->pipe));
  402. BUG_ON(ret == NULL);
  403. return ret;
  404. }
  405. static struct intel_encoder *
  406. intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc)
  407. {
  408. struct drm_device *dev = crtc->base.dev;
  409. struct intel_encoder *intel_encoder, *ret = NULL;
  410. int num_encoders = 0;
  411. for_each_intel_encoder(dev, intel_encoder) {
  412. if (intel_encoder->new_crtc == crtc) {
  413. ret = intel_encoder;
  414. num_encoders++;
  415. }
  416. }
  417. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  418. pipe_name(crtc->pipe));
  419. BUG_ON(ret == NULL);
  420. return ret;
  421. }
  422. #define LC_FREQ 2700
  423. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  424. #define P_MIN 2
  425. #define P_MAX 64
  426. #define P_INC 2
  427. /* Constraints for PLL good behavior */
  428. #define REF_MIN 48
  429. #define REF_MAX 400
  430. #define VCO_MIN 2400
  431. #define VCO_MAX 4800
  432. #define abs_diff(a, b) ({ \
  433. typeof(a) __a = (a); \
  434. typeof(b) __b = (b); \
  435. (void) (&__a == &__b); \
  436. __a > __b ? (__a - __b) : (__b - __a); })
  437. struct wrpll_rnp {
  438. unsigned p, n2, r2;
  439. };
  440. static unsigned wrpll_get_budget_for_freq(int clock)
  441. {
  442. unsigned budget;
  443. switch (clock) {
  444. case 25175000:
  445. case 25200000:
  446. case 27000000:
  447. case 27027000:
  448. case 37762500:
  449. case 37800000:
  450. case 40500000:
  451. case 40541000:
  452. case 54000000:
  453. case 54054000:
  454. case 59341000:
  455. case 59400000:
  456. case 72000000:
  457. case 74176000:
  458. case 74250000:
  459. case 81000000:
  460. case 81081000:
  461. case 89012000:
  462. case 89100000:
  463. case 108000000:
  464. case 108108000:
  465. case 111264000:
  466. case 111375000:
  467. case 148352000:
  468. case 148500000:
  469. case 162000000:
  470. case 162162000:
  471. case 222525000:
  472. case 222750000:
  473. case 296703000:
  474. case 297000000:
  475. budget = 0;
  476. break;
  477. case 233500000:
  478. case 245250000:
  479. case 247750000:
  480. case 253250000:
  481. case 298000000:
  482. budget = 1500;
  483. break;
  484. case 169128000:
  485. case 169500000:
  486. case 179500000:
  487. case 202000000:
  488. budget = 2000;
  489. break;
  490. case 256250000:
  491. case 262500000:
  492. case 270000000:
  493. case 272500000:
  494. case 273750000:
  495. case 280750000:
  496. case 281250000:
  497. case 286000000:
  498. case 291750000:
  499. budget = 4000;
  500. break;
  501. case 267250000:
  502. case 268500000:
  503. budget = 5000;
  504. break;
  505. default:
  506. budget = 1000;
  507. break;
  508. }
  509. return budget;
  510. }
  511. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  512. unsigned r2, unsigned n2, unsigned p,
  513. struct wrpll_rnp *best)
  514. {
  515. uint64_t a, b, c, d, diff, diff_best;
  516. /* No best (r,n,p) yet */
  517. if (best->p == 0) {
  518. best->p = p;
  519. best->n2 = n2;
  520. best->r2 = r2;
  521. return;
  522. }
  523. /*
  524. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  525. * freq2k.
  526. *
  527. * delta = 1e6 *
  528. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  529. * freq2k;
  530. *
  531. * and we would like delta <= budget.
  532. *
  533. * If the discrepancy is above the PPM-based budget, always prefer to
  534. * improve upon the previous solution. However, if you're within the
  535. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  536. */
  537. a = freq2k * budget * p * r2;
  538. b = freq2k * budget * best->p * best->r2;
  539. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  540. diff_best = abs_diff(freq2k * best->p * best->r2,
  541. LC_FREQ_2K * best->n2);
  542. c = 1000000 * diff;
  543. d = 1000000 * diff_best;
  544. if (a < c && b < d) {
  545. /* If both are above the budget, pick the closer */
  546. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  547. best->p = p;
  548. best->n2 = n2;
  549. best->r2 = r2;
  550. }
  551. } else if (a >= c && b < d) {
  552. /* If A is below the threshold but B is above it? Update. */
  553. best->p = p;
  554. best->n2 = n2;
  555. best->r2 = r2;
  556. } else if (a >= c && b >= d) {
  557. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  558. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  559. best->p = p;
  560. best->n2 = n2;
  561. best->r2 = r2;
  562. }
  563. }
  564. /* Otherwise a < c && b >= d, do nothing */
  565. }
  566. static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  567. int reg)
  568. {
  569. int refclk = LC_FREQ;
  570. int n, p, r;
  571. u32 wrpll;
  572. wrpll = I915_READ(reg);
  573. switch (wrpll & WRPLL_PLL_REF_MASK) {
  574. case WRPLL_PLL_SSC:
  575. case WRPLL_PLL_NON_SSC:
  576. /*
  577. * We could calculate spread here, but our checking
  578. * code only cares about 5% accuracy, and spread is a max of
  579. * 0.5% downspread.
  580. */
  581. refclk = 135;
  582. break;
  583. case WRPLL_PLL_LCPLL:
  584. refclk = LC_FREQ;
  585. break;
  586. default:
  587. WARN(1, "bad wrpll refclk\n");
  588. return 0;
  589. }
  590. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  591. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  592. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  593. /* Convert to KHz, p & r have a fixed point portion */
  594. return (refclk * n * 100) / (p * r);
  595. }
  596. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  597. uint32_t dpll)
  598. {
  599. uint32_t cfgcr1_reg, cfgcr2_reg;
  600. uint32_t cfgcr1_val, cfgcr2_val;
  601. uint32_t p0, p1, p2, dco_freq;
  602. cfgcr1_reg = GET_CFG_CR1_REG(dpll);
  603. cfgcr2_reg = GET_CFG_CR2_REG(dpll);
  604. cfgcr1_val = I915_READ(cfgcr1_reg);
  605. cfgcr2_val = I915_READ(cfgcr2_reg);
  606. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  607. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  608. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  609. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  610. else
  611. p1 = 1;
  612. switch (p0) {
  613. case DPLL_CFGCR2_PDIV_1:
  614. p0 = 1;
  615. break;
  616. case DPLL_CFGCR2_PDIV_2:
  617. p0 = 2;
  618. break;
  619. case DPLL_CFGCR2_PDIV_3:
  620. p0 = 3;
  621. break;
  622. case DPLL_CFGCR2_PDIV_7:
  623. p0 = 7;
  624. break;
  625. }
  626. switch (p2) {
  627. case DPLL_CFGCR2_KDIV_5:
  628. p2 = 5;
  629. break;
  630. case DPLL_CFGCR2_KDIV_2:
  631. p2 = 2;
  632. break;
  633. case DPLL_CFGCR2_KDIV_3:
  634. p2 = 3;
  635. break;
  636. case DPLL_CFGCR2_KDIV_1:
  637. p2 = 1;
  638. break;
  639. }
  640. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  641. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  642. 1000) / 0x8000;
  643. return dco_freq / (p0 * p1 * p2 * 5);
  644. }
  645. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  646. struct intel_crtc_config *pipe_config)
  647. {
  648. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  649. enum port port = intel_ddi_get_encoder_port(encoder);
  650. int link_clock = 0;
  651. uint32_t dpll_ctl1, dpll;
  652. /* FIXME: This should be tracked in the pipe config. */
  653. dpll = I915_READ(DPLL_CTRL2);
  654. dpll &= DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
  655. dpll >>= DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
  656. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  657. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  658. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  659. } else {
  660. link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll);
  661. link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll);
  662. switch (link_clock) {
  663. case DPLL_CRTL1_LINK_RATE_810:
  664. link_clock = 81000;
  665. break;
  666. case DPLL_CRTL1_LINK_RATE_1350:
  667. link_clock = 135000;
  668. break;
  669. case DPLL_CRTL1_LINK_RATE_2700:
  670. link_clock = 270000;
  671. break;
  672. default:
  673. WARN(1, "Unsupported link rate\n");
  674. break;
  675. }
  676. link_clock *= 2;
  677. }
  678. pipe_config->port_clock = link_clock;
  679. if (pipe_config->has_dp_encoder)
  680. pipe_config->adjusted_mode.crtc_clock =
  681. intel_dotclock_calculate(pipe_config->port_clock,
  682. &pipe_config->dp_m_n);
  683. else
  684. pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
  685. }
  686. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  687. struct intel_crtc_config *pipe_config)
  688. {
  689. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  690. int link_clock = 0;
  691. u32 val, pll;
  692. val = pipe_config->ddi_pll_sel;
  693. switch (val & PORT_CLK_SEL_MASK) {
  694. case PORT_CLK_SEL_LCPLL_810:
  695. link_clock = 81000;
  696. break;
  697. case PORT_CLK_SEL_LCPLL_1350:
  698. link_clock = 135000;
  699. break;
  700. case PORT_CLK_SEL_LCPLL_2700:
  701. link_clock = 270000;
  702. break;
  703. case PORT_CLK_SEL_WRPLL1:
  704. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
  705. break;
  706. case PORT_CLK_SEL_WRPLL2:
  707. link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
  708. break;
  709. case PORT_CLK_SEL_SPLL:
  710. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  711. if (pll == SPLL_PLL_FREQ_810MHz)
  712. link_clock = 81000;
  713. else if (pll == SPLL_PLL_FREQ_1350MHz)
  714. link_clock = 135000;
  715. else if (pll == SPLL_PLL_FREQ_2700MHz)
  716. link_clock = 270000;
  717. else {
  718. WARN(1, "bad spll freq\n");
  719. return;
  720. }
  721. break;
  722. default:
  723. WARN(1, "bad port clock sel\n");
  724. return;
  725. }
  726. pipe_config->port_clock = link_clock * 2;
  727. if (pipe_config->has_pch_encoder)
  728. pipe_config->adjusted_mode.crtc_clock =
  729. intel_dotclock_calculate(pipe_config->port_clock,
  730. &pipe_config->fdi_m_n);
  731. else if (pipe_config->has_dp_encoder)
  732. pipe_config->adjusted_mode.crtc_clock =
  733. intel_dotclock_calculate(pipe_config->port_clock,
  734. &pipe_config->dp_m_n);
  735. else
  736. pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
  737. }
  738. void intel_ddi_clock_get(struct intel_encoder *encoder,
  739. struct intel_crtc_config *pipe_config)
  740. {
  741. hsw_ddi_clock_get(encoder, pipe_config);
  742. }
  743. static void
  744. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  745. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  746. {
  747. uint64_t freq2k;
  748. unsigned p, n2, r2;
  749. struct wrpll_rnp best = { 0, 0, 0 };
  750. unsigned budget;
  751. freq2k = clock / 100;
  752. budget = wrpll_get_budget_for_freq(clock);
  753. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  754. * and directly pass the LC PLL to it. */
  755. if (freq2k == 5400000) {
  756. *n2_out = 2;
  757. *p_out = 1;
  758. *r2_out = 2;
  759. return;
  760. }
  761. /*
  762. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  763. * the WR PLL.
  764. *
  765. * We want R so that REF_MIN <= Ref <= REF_MAX.
  766. * Injecting R2 = 2 * R gives:
  767. * REF_MAX * r2 > LC_FREQ * 2 and
  768. * REF_MIN * r2 < LC_FREQ * 2
  769. *
  770. * Which means the desired boundaries for r2 are:
  771. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  772. *
  773. */
  774. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  775. r2 <= LC_FREQ * 2 / REF_MIN;
  776. r2++) {
  777. /*
  778. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  779. *
  780. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  781. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  782. * VCO_MAX * r2 > n2 * LC_FREQ and
  783. * VCO_MIN * r2 < n2 * LC_FREQ)
  784. *
  785. * Which means the desired boundaries for n2 are:
  786. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  787. */
  788. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  789. n2 <= VCO_MAX * r2 / LC_FREQ;
  790. n2++) {
  791. for (p = P_MIN; p <= P_MAX; p += P_INC)
  792. wrpll_update_rnp(freq2k, budget,
  793. r2, n2, p, &best);
  794. }
  795. }
  796. *n2_out = best.n2;
  797. *p_out = best.p;
  798. *r2_out = best.r2;
  799. }
  800. static bool
  801. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  802. struct intel_encoder *intel_encoder,
  803. int clock)
  804. {
  805. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  806. struct intel_shared_dpll *pll;
  807. uint32_t val;
  808. unsigned p, n2, r2;
  809. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  810. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  811. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  812. WRPLL_DIVIDER_POST(p);
  813. intel_crtc->new_config->dpll_hw_state.wrpll = val;
  814. pll = intel_get_shared_dpll(intel_crtc);
  815. if (pll == NULL) {
  816. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  817. pipe_name(intel_crtc->pipe));
  818. return false;
  819. }
  820. intel_crtc->new_config->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  821. }
  822. return true;
  823. }
  824. struct skl_wrpll_params {
  825. uint32_t dco_fraction;
  826. uint32_t dco_integer;
  827. uint32_t qdiv_ratio;
  828. uint32_t qdiv_mode;
  829. uint32_t kdiv;
  830. uint32_t pdiv;
  831. uint32_t central_freq;
  832. };
  833. static void
  834. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  835. struct skl_wrpll_params *wrpll_params)
  836. {
  837. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  838. uint64_t dco_central_freq[3] = {8400000000ULL,
  839. 9000000000ULL,
  840. 9600000000ULL};
  841. uint32_t min_dco_deviation = 400;
  842. uint32_t min_dco_index = 3;
  843. uint32_t P0[4] = {1, 2, 3, 7};
  844. uint32_t P2[4] = {1, 2, 3, 5};
  845. bool found = false;
  846. uint32_t candidate_p = 0;
  847. uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
  848. uint32_t candidate_p2[3] = {0};
  849. uint32_t dco_central_freq_deviation[3];
  850. uint32_t i, P1, k, dco_count;
  851. bool retry_with_odd = false;
  852. uint64_t dco_freq;
  853. /* Determine P0, P1 or P2 */
  854. for (dco_count = 0; dco_count < 3; dco_count++) {
  855. found = false;
  856. candidate_p =
  857. div64_u64(dco_central_freq[dco_count], afe_clock);
  858. if (retry_with_odd == false)
  859. candidate_p = (candidate_p % 2 == 0 ?
  860. candidate_p : candidate_p + 1);
  861. for (P1 = 1; P1 < candidate_p; P1++) {
  862. for (i = 0; i < 4; i++) {
  863. if (!(P0[i] != 1 || P1 == 1))
  864. continue;
  865. for (k = 0; k < 4; k++) {
  866. if (P1 != 1 && P2[k] != 2)
  867. continue;
  868. if (candidate_p == P0[i] * P1 * P2[k]) {
  869. /* Found possible P0, P1, P2 */
  870. found = true;
  871. candidate_p0[dco_count] = P0[i];
  872. candidate_p1[dco_count] = P1;
  873. candidate_p2[dco_count] = P2[k];
  874. goto found;
  875. }
  876. }
  877. }
  878. }
  879. found:
  880. if (found) {
  881. dco_central_freq_deviation[dco_count] =
  882. div64_u64(10000 *
  883. abs_diff((candidate_p * afe_clock),
  884. dco_central_freq[dco_count]),
  885. dco_central_freq[dco_count]);
  886. if (dco_central_freq_deviation[dco_count] <
  887. min_dco_deviation) {
  888. min_dco_deviation =
  889. dco_central_freq_deviation[dco_count];
  890. min_dco_index = dco_count;
  891. }
  892. }
  893. if (min_dco_index > 2 && dco_count == 2) {
  894. retry_with_odd = true;
  895. dco_count = 0;
  896. }
  897. }
  898. if (min_dco_index > 2) {
  899. WARN(1, "No valid values found for the given pixel clock\n");
  900. } else {
  901. wrpll_params->central_freq = dco_central_freq[min_dco_index];
  902. switch (dco_central_freq[min_dco_index]) {
  903. case 9600000000ULL:
  904. wrpll_params->central_freq = 0;
  905. break;
  906. case 9000000000ULL:
  907. wrpll_params->central_freq = 1;
  908. break;
  909. case 8400000000ULL:
  910. wrpll_params->central_freq = 3;
  911. }
  912. switch (candidate_p0[min_dco_index]) {
  913. case 1:
  914. wrpll_params->pdiv = 0;
  915. break;
  916. case 2:
  917. wrpll_params->pdiv = 1;
  918. break;
  919. case 3:
  920. wrpll_params->pdiv = 2;
  921. break;
  922. case 7:
  923. wrpll_params->pdiv = 4;
  924. break;
  925. default:
  926. WARN(1, "Incorrect PDiv\n");
  927. }
  928. switch (candidate_p2[min_dco_index]) {
  929. case 5:
  930. wrpll_params->kdiv = 0;
  931. break;
  932. case 2:
  933. wrpll_params->kdiv = 1;
  934. break;
  935. case 3:
  936. wrpll_params->kdiv = 2;
  937. break;
  938. case 1:
  939. wrpll_params->kdiv = 3;
  940. break;
  941. default:
  942. WARN(1, "Incorrect KDiv\n");
  943. }
  944. wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
  945. wrpll_params->qdiv_mode =
  946. (wrpll_params->qdiv_ratio == 1) ? 0 : 1;
  947. dco_freq = candidate_p0[min_dco_index] *
  948. candidate_p1[min_dco_index] *
  949. candidate_p2[min_dco_index] * afe_clock;
  950. /*
  951. * Intermediate values are in Hz.
  952. * Divide by MHz to match bsepc
  953. */
  954. wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
  955. wrpll_params->dco_fraction =
  956. div_u64(((div_u64(dco_freq, 24) -
  957. wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
  958. }
  959. }
  960. static bool
  961. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  962. struct intel_encoder *intel_encoder,
  963. int clock)
  964. {
  965. struct intel_shared_dpll *pll;
  966. uint32_t ctrl1, cfgcr1, cfgcr2;
  967. /*
  968. * See comment in intel_dpll_hw_state to understand why we always use 0
  969. * as the DPLL id in this function.
  970. */
  971. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  972. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  973. struct skl_wrpll_params wrpll_params = { 0, };
  974. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  975. skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);
  976. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  977. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  978. wrpll_params.dco_integer;
  979. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  980. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  981. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  982. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  983. wrpll_params.central_freq;
  984. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  985. struct drm_encoder *encoder = &intel_encoder->base;
  986. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  987. switch (intel_dp->link_bw) {
  988. case DP_LINK_BW_1_62:
  989. ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0);
  990. break;
  991. case DP_LINK_BW_2_7:
  992. ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0);
  993. break;
  994. case DP_LINK_BW_5_4:
  995. ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0);
  996. break;
  997. }
  998. cfgcr1 = cfgcr2 = 0;
  999. } else /* eDP */
  1000. return true;
  1001. intel_crtc->new_config->dpll_hw_state.ctrl1 = ctrl1;
  1002. intel_crtc->new_config->dpll_hw_state.cfgcr1 = cfgcr1;
  1003. intel_crtc->new_config->dpll_hw_state.cfgcr2 = cfgcr2;
  1004. pll = intel_get_shared_dpll(intel_crtc);
  1005. if (pll == NULL) {
  1006. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1007. pipe_name(intel_crtc->pipe));
  1008. return false;
  1009. }
  1010. /* shared DPLL id 0 is DPLL 1 */
  1011. intel_crtc->new_config->ddi_pll_sel = pll->id + 1;
  1012. return true;
  1013. }
  1014. /*
  1015. * Tries to find a *shared* PLL for the CRTC and store it in
  1016. * intel_crtc->ddi_pll_sel.
  1017. *
  1018. * For private DPLLs, compute_config() should do the selection for us. This
  1019. * function should be folded into compute_config() eventually.
  1020. */
  1021. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
  1022. {
  1023. struct drm_device *dev = intel_crtc->base.dev;
  1024. struct intel_encoder *intel_encoder =
  1025. intel_ddi_get_crtc_new_encoder(intel_crtc);
  1026. int clock = intel_crtc->new_config->port_clock;
  1027. if (IS_SKYLAKE(dev))
  1028. return skl_ddi_pll_select(intel_crtc, intel_encoder, clock);
  1029. else
  1030. return hsw_ddi_pll_select(intel_crtc, intel_encoder, clock);
  1031. }
  1032. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  1033. {
  1034. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1035. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1036. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1037. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1038. int type = intel_encoder->type;
  1039. uint32_t temp;
  1040. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  1041. temp = TRANS_MSA_SYNC_CLK;
  1042. switch (intel_crtc->config.pipe_bpp) {
  1043. case 18:
  1044. temp |= TRANS_MSA_6_BPC;
  1045. break;
  1046. case 24:
  1047. temp |= TRANS_MSA_8_BPC;
  1048. break;
  1049. case 30:
  1050. temp |= TRANS_MSA_10_BPC;
  1051. break;
  1052. case 36:
  1053. temp |= TRANS_MSA_12_BPC;
  1054. break;
  1055. default:
  1056. BUG();
  1057. }
  1058. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1059. }
  1060. }
  1061. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  1062. {
  1063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1064. struct drm_device *dev = crtc->dev;
  1065. struct drm_i915_private *dev_priv = dev->dev_private;
  1066. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1067. uint32_t temp;
  1068. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1069. if (state == true)
  1070. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1071. else
  1072. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1073. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1074. }
  1075. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  1076. {
  1077. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1078. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1079. struct drm_encoder *encoder = &intel_encoder->base;
  1080. struct drm_device *dev = crtc->dev;
  1081. struct drm_i915_private *dev_priv = dev->dev_private;
  1082. enum pipe pipe = intel_crtc->pipe;
  1083. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1084. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1085. int type = intel_encoder->type;
  1086. uint32_t temp;
  1087. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1088. temp = TRANS_DDI_FUNC_ENABLE;
  1089. temp |= TRANS_DDI_SELECT_PORT(port);
  1090. switch (intel_crtc->config.pipe_bpp) {
  1091. case 18:
  1092. temp |= TRANS_DDI_BPC_6;
  1093. break;
  1094. case 24:
  1095. temp |= TRANS_DDI_BPC_8;
  1096. break;
  1097. case 30:
  1098. temp |= TRANS_DDI_BPC_10;
  1099. break;
  1100. case 36:
  1101. temp |= TRANS_DDI_BPC_12;
  1102. break;
  1103. default:
  1104. BUG();
  1105. }
  1106. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1107. temp |= TRANS_DDI_PVSYNC;
  1108. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1109. temp |= TRANS_DDI_PHSYNC;
  1110. if (cpu_transcoder == TRANSCODER_EDP) {
  1111. switch (pipe) {
  1112. case PIPE_A:
  1113. /* On Haswell, can only use the always-on power well for
  1114. * eDP when not using the panel fitter, and when not
  1115. * using motion blur mitigation (which we don't
  1116. * support). */
  1117. if (IS_HASWELL(dev) &&
  1118. (intel_crtc->config.pch_pfit.enabled ||
  1119. intel_crtc->config.pch_pfit.force_thru))
  1120. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1121. else
  1122. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1123. break;
  1124. case PIPE_B:
  1125. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1126. break;
  1127. case PIPE_C:
  1128. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1129. break;
  1130. default:
  1131. BUG();
  1132. break;
  1133. }
  1134. }
  1135. if (type == INTEL_OUTPUT_HDMI) {
  1136. if (intel_crtc->config.has_hdmi_sink)
  1137. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1138. else
  1139. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1140. } else if (type == INTEL_OUTPUT_ANALOG) {
  1141. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1142. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  1143. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  1144. type == INTEL_OUTPUT_EDP) {
  1145. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1146. if (intel_dp->is_mst) {
  1147. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1148. } else
  1149. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1150. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1151. } else if (type == INTEL_OUTPUT_DP_MST) {
  1152. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  1153. if (intel_dp->is_mst) {
  1154. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1155. } else
  1156. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1157. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1158. } else {
  1159. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1160. intel_encoder->type, pipe_name(pipe));
  1161. }
  1162. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1163. }
  1164. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1165. enum transcoder cpu_transcoder)
  1166. {
  1167. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1168. uint32_t val = I915_READ(reg);
  1169. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1170. val |= TRANS_DDI_PORT_NONE;
  1171. I915_WRITE(reg, val);
  1172. }
  1173. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1174. {
  1175. struct drm_device *dev = intel_connector->base.dev;
  1176. struct drm_i915_private *dev_priv = dev->dev_private;
  1177. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1178. int type = intel_connector->base.connector_type;
  1179. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1180. enum pipe pipe = 0;
  1181. enum transcoder cpu_transcoder;
  1182. enum intel_display_power_domain power_domain;
  1183. uint32_t tmp;
  1184. power_domain = intel_display_port_power_domain(intel_encoder);
  1185. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1186. return false;
  1187. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  1188. return false;
  1189. if (port == PORT_A)
  1190. cpu_transcoder = TRANSCODER_EDP;
  1191. else
  1192. cpu_transcoder = (enum transcoder) pipe;
  1193. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1194. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1195. case TRANS_DDI_MODE_SELECT_HDMI:
  1196. case TRANS_DDI_MODE_SELECT_DVI:
  1197. return (type == DRM_MODE_CONNECTOR_HDMIA);
  1198. case TRANS_DDI_MODE_SELECT_DP_SST:
  1199. if (type == DRM_MODE_CONNECTOR_eDP)
  1200. return true;
  1201. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  1202. case TRANS_DDI_MODE_SELECT_DP_MST:
  1203. /* if the transcoder is in MST state then
  1204. * connector isn't connected */
  1205. return false;
  1206. case TRANS_DDI_MODE_SELECT_FDI:
  1207. return (type == DRM_MODE_CONNECTOR_VGA);
  1208. default:
  1209. return false;
  1210. }
  1211. }
  1212. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1213. enum pipe *pipe)
  1214. {
  1215. struct drm_device *dev = encoder->base.dev;
  1216. struct drm_i915_private *dev_priv = dev->dev_private;
  1217. enum port port = intel_ddi_get_encoder_port(encoder);
  1218. enum intel_display_power_domain power_domain;
  1219. u32 tmp;
  1220. int i;
  1221. power_domain = intel_display_port_power_domain(encoder);
  1222. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1223. return false;
  1224. tmp = I915_READ(DDI_BUF_CTL(port));
  1225. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1226. return false;
  1227. if (port == PORT_A) {
  1228. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1229. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1230. case TRANS_DDI_EDP_INPUT_A_ON:
  1231. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1232. *pipe = PIPE_A;
  1233. break;
  1234. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1235. *pipe = PIPE_B;
  1236. break;
  1237. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1238. *pipe = PIPE_C;
  1239. break;
  1240. }
  1241. return true;
  1242. } else {
  1243. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1244. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1245. if ((tmp & TRANS_DDI_PORT_MASK)
  1246. == TRANS_DDI_SELECT_PORT(port)) {
  1247. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
  1248. return false;
  1249. *pipe = i;
  1250. return true;
  1251. }
  1252. }
  1253. }
  1254. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1255. return false;
  1256. }
  1257. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1258. {
  1259. struct drm_crtc *crtc = &intel_crtc->base;
  1260. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1261. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1262. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1263. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1264. if (cpu_transcoder != TRANSCODER_EDP)
  1265. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1266. TRANS_CLK_SEL_PORT(port));
  1267. }
  1268. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1269. {
  1270. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1271. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1272. if (cpu_transcoder != TRANSCODER_EDP)
  1273. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1274. TRANS_CLK_SEL_DISABLED);
  1275. }
  1276. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  1277. {
  1278. struct drm_encoder *encoder = &intel_encoder->base;
  1279. struct drm_device *dev = encoder->dev;
  1280. struct drm_i915_private *dev_priv = dev->dev_private;
  1281. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  1282. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1283. int type = intel_encoder->type;
  1284. if (type == INTEL_OUTPUT_EDP) {
  1285. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1286. intel_edp_panel_on(intel_dp);
  1287. }
  1288. if (IS_SKYLAKE(dev)) {
  1289. uint32_t dpll = crtc->config.ddi_pll_sel;
  1290. uint32_t val;
  1291. /*
  1292. * DPLL0 is used for eDP and is the only "private" DPLL (as
  1293. * opposed to shared) on SKL
  1294. */
  1295. if (type == INTEL_OUTPUT_EDP) {
  1296. WARN_ON(dpll != SKL_DPLL0);
  1297. val = I915_READ(DPLL_CTRL1);
  1298. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
  1299. DPLL_CTRL1_SSC(dpll) |
  1300. DPLL_CRTL1_LINK_RATE_MASK(dpll));
  1301. val |= crtc->config.dpll_hw_state.ctrl1 << (dpll * 6);
  1302. I915_WRITE(DPLL_CTRL1, val);
  1303. POSTING_READ(DPLL_CTRL1);
  1304. }
  1305. /* DDI -> PLL mapping */
  1306. val = I915_READ(DPLL_CTRL2);
  1307. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1308. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1309. val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
  1310. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1311. I915_WRITE(DPLL_CTRL2, val);
  1312. } else {
  1313. WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
  1314. I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
  1315. }
  1316. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1317. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1318. intel_ddi_init_dp_buf_reg(intel_encoder);
  1319. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1320. intel_dp_start_link_train(intel_dp);
  1321. intel_dp_complete_link_train(intel_dp);
  1322. if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
  1323. intel_dp_stop_link_train(intel_dp);
  1324. } else if (type == INTEL_OUTPUT_HDMI) {
  1325. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  1326. intel_hdmi->set_infoframes(encoder,
  1327. crtc->config.has_hdmi_sink,
  1328. &crtc->config.adjusted_mode);
  1329. }
  1330. }
  1331. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  1332. {
  1333. struct drm_encoder *encoder = &intel_encoder->base;
  1334. struct drm_device *dev = encoder->dev;
  1335. struct drm_i915_private *dev_priv = dev->dev_private;
  1336. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1337. int type = intel_encoder->type;
  1338. uint32_t val;
  1339. bool wait = false;
  1340. val = I915_READ(DDI_BUF_CTL(port));
  1341. if (val & DDI_BUF_CTL_ENABLE) {
  1342. val &= ~DDI_BUF_CTL_ENABLE;
  1343. I915_WRITE(DDI_BUF_CTL(port), val);
  1344. wait = true;
  1345. }
  1346. val = I915_READ(DP_TP_CTL(port));
  1347. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1348. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1349. I915_WRITE(DP_TP_CTL(port), val);
  1350. if (wait)
  1351. intel_wait_ddi_buf_idle(dev_priv, port);
  1352. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1353. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1354. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1355. intel_edp_panel_vdd_on(intel_dp);
  1356. intel_edp_panel_off(intel_dp);
  1357. }
  1358. if (IS_SKYLAKE(dev))
  1359. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  1360. DPLL_CTRL2_DDI_CLK_OFF(port)));
  1361. else
  1362. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1363. }
  1364. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  1365. {
  1366. struct drm_encoder *encoder = &intel_encoder->base;
  1367. struct drm_crtc *crtc = encoder->crtc;
  1368. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1369. struct drm_device *dev = encoder->dev;
  1370. struct drm_i915_private *dev_priv = dev->dev_private;
  1371. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1372. int type = intel_encoder->type;
  1373. if (type == INTEL_OUTPUT_HDMI) {
  1374. struct intel_digital_port *intel_dig_port =
  1375. enc_to_dig_port(encoder);
  1376. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1377. * are ignored so nothing special needs to be done besides
  1378. * enabling the port.
  1379. */
  1380. I915_WRITE(DDI_BUF_CTL(port),
  1381. intel_dig_port->saved_port_bits |
  1382. DDI_BUF_CTL_ENABLE);
  1383. } else if (type == INTEL_OUTPUT_EDP) {
  1384. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1385. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  1386. intel_dp_stop_link_train(intel_dp);
  1387. intel_edp_backlight_on(intel_dp);
  1388. intel_psr_enable(intel_dp);
  1389. }
  1390. if (intel_crtc->config.has_audio) {
  1391. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  1392. intel_audio_codec_enable(intel_encoder);
  1393. }
  1394. }
  1395. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1396. {
  1397. struct drm_encoder *encoder = &intel_encoder->base;
  1398. struct drm_crtc *crtc = encoder->crtc;
  1399. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1400. int type = intel_encoder->type;
  1401. struct drm_device *dev = encoder->dev;
  1402. struct drm_i915_private *dev_priv = dev->dev_private;
  1403. if (intel_crtc->config.has_audio) {
  1404. intel_audio_codec_disable(intel_encoder);
  1405. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  1406. }
  1407. if (type == INTEL_OUTPUT_EDP) {
  1408. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1409. intel_psr_disable(intel_dp);
  1410. intel_edp_backlight_off(intel_dp);
  1411. }
  1412. }
  1413. static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1414. {
  1415. uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
  1416. uint32_t cdctl = I915_READ(CDCLK_CTL);
  1417. uint32_t linkrate;
  1418. if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
  1419. WARN(1, "LCPLL1 not enabled\n");
  1420. return 24000; /* 24MHz is the cd freq with NSSC ref */
  1421. }
  1422. if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
  1423. return 540000;
  1424. linkrate = (I915_READ(DPLL_CTRL1) &
  1425. DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
  1426. if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
  1427. linkrate == DPLL_CRTL1_LINK_RATE_1080) {
  1428. /* vco 8640 */
  1429. switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  1430. case CDCLK_FREQ_450_432:
  1431. return 432000;
  1432. case CDCLK_FREQ_337_308:
  1433. return 308570;
  1434. case CDCLK_FREQ_675_617:
  1435. return 617140;
  1436. default:
  1437. WARN(1, "Unknown cd freq selection\n");
  1438. }
  1439. } else {
  1440. /* vco 8100 */
  1441. switch (cdctl & CDCLK_FREQ_SEL_MASK) {
  1442. case CDCLK_FREQ_450_432:
  1443. return 450000;
  1444. case CDCLK_FREQ_337_308:
  1445. return 337500;
  1446. case CDCLK_FREQ_675_617:
  1447. return 675000;
  1448. default:
  1449. WARN(1, "Unknown cd freq selection\n");
  1450. }
  1451. }
  1452. /* error case, do as if DPLL0 isn't enabled */
  1453. return 24000;
  1454. }
  1455. static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1456. {
  1457. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1458. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1459. if (lcpll & LCPLL_CD_SOURCE_FCLK)
  1460. return 800000;
  1461. else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  1462. return 450000;
  1463. else if (freq == LCPLL_CLK_FREQ_450)
  1464. return 450000;
  1465. else if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1466. return 540000;
  1467. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1468. return 337500;
  1469. else
  1470. return 675000;
  1471. }
  1472. static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1473. {
  1474. struct drm_device *dev = dev_priv->dev;
  1475. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1476. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1477. if (lcpll & LCPLL_CD_SOURCE_FCLK)
  1478. return 800000;
  1479. else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
  1480. return 450000;
  1481. else if (freq == LCPLL_CLK_FREQ_450)
  1482. return 450000;
  1483. else if (IS_HSW_ULT(dev))
  1484. return 337500;
  1485. else
  1486. return 540000;
  1487. }
  1488. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1489. {
  1490. struct drm_device *dev = dev_priv->dev;
  1491. if (IS_SKYLAKE(dev))
  1492. return skl_get_cdclk_freq(dev_priv);
  1493. if (IS_BROADWELL(dev))
  1494. return bdw_get_cdclk_freq(dev_priv);
  1495. /* Haswell */
  1496. return hsw_get_cdclk_freq(dev_priv);
  1497. }
  1498. static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1499. struct intel_shared_dpll *pll)
  1500. {
  1501. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  1502. POSTING_READ(WRPLL_CTL(pll->id));
  1503. udelay(20);
  1504. }
  1505. static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1506. struct intel_shared_dpll *pll)
  1507. {
  1508. uint32_t val;
  1509. val = I915_READ(WRPLL_CTL(pll->id));
  1510. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  1511. POSTING_READ(WRPLL_CTL(pll->id));
  1512. }
  1513. static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1514. struct intel_shared_dpll *pll,
  1515. struct intel_dpll_hw_state *hw_state)
  1516. {
  1517. uint32_t val;
  1518. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1519. return false;
  1520. val = I915_READ(WRPLL_CTL(pll->id));
  1521. hw_state->wrpll = val;
  1522. return val & WRPLL_PLL_ENABLE;
  1523. }
  1524. static const char * const hsw_ddi_pll_names[] = {
  1525. "WRPLL 1",
  1526. "WRPLL 2",
  1527. };
  1528. static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
  1529. {
  1530. int i;
  1531. dev_priv->num_shared_dpll = 2;
  1532. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  1533. dev_priv->shared_dplls[i].id = i;
  1534. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  1535. dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
  1536. dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
  1537. dev_priv->shared_dplls[i].get_hw_state =
  1538. hsw_ddi_pll_get_hw_state;
  1539. }
  1540. }
  1541. static const char * const skl_ddi_pll_names[] = {
  1542. "DPLL 1",
  1543. "DPLL 2",
  1544. "DPLL 3",
  1545. };
  1546. struct skl_dpll_regs {
  1547. u32 ctl, cfgcr1, cfgcr2;
  1548. };
  1549. /* this array is indexed by the *shared* pll id */
  1550. static const struct skl_dpll_regs skl_dpll_regs[3] = {
  1551. {
  1552. /* DPLL 1 */
  1553. .ctl = LCPLL2_CTL,
  1554. .cfgcr1 = DPLL1_CFGCR1,
  1555. .cfgcr2 = DPLL1_CFGCR2,
  1556. },
  1557. {
  1558. /* DPLL 2 */
  1559. .ctl = WRPLL_CTL1,
  1560. .cfgcr1 = DPLL2_CFGCR1,
  1561. .cfgcr2 = DPLL2_CFGCR2,
  1562. },
  1563. {
  1564. /* DPLL 3 */
  1565. .ctl = WRPLL_CTL2,
  1566. .cfgcr1 = DPLL3_CFGCR1,
  1567. .cfgcr2 = DPLL3_CFGCR2,
  1568. },
  1569. };
  1570. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1571. struct intel_shared_dpll *pll)
  1572. {
  1573. uint32_t val;
  1574. unsigned int dpll;
  1575. const struct skl_dpll_regs *regs = skl_dpll_regs;
  1576. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  1577. dpll = pll->id + 1;
  1578. val = I915_READ(DPLL_CTRL1);
  1579. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
  1580. DPLL_CRTL1_LINK_RATE_MASK(dpll));
  1581. val |= pll->config.hw_state.ctrl1 << (dpll * 6);
  1582. I915_WRITE(DPLL_CTRL1, val);
  1583. POSTING_READ(DPLL_CTRL1);
  1584. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  1585. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  1586. POSTING_READ(regs[pll->id].cfgcr1);
  1587. POSTING_READ(regs[pll->id].cfgcr2);
  1588. /* the enable bit is always bit 31 */
  1589. I915_WRITE(regs[pll->id].ctl,
  1590. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  1591. if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
  1592. DRM_ERROR("DPLL %d not locked\n", dpll);
  1593. }
  1594. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1595. struct intel_shared_dpll *pll)
  1596. {
  1597. const struct skl_dpll_regs *regs = skl_dpll_regs;
  1598. /* the enable bit is always bit 31 */
  1599. I915_WRITE(regs[pll->id].ctl,
  1600. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  1601. POSTING_READ(regs[pll->id].ctl);
  1602. }
  1603. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1604. struct intel_shared_dpll *pll,
  1605. struct intel_dpll_hw_state *hw_state)
  1606. {
  1607. uint32_t val;
  1608. unsigned int dpll;
  1609. const struct skl_dpll_regs *regs = skl_dpll_regs;
  1610. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1611. return false;
  1612. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  1613. dpll = pll->id + 1;
  1614. val = I915_READ(regs[pll->id].ctl);
  1615. if (!(val & LCPLL_PLL_ENABLE))
  1616. return false;
  1617. val = I915_READ(DPLL_CTRL1);
  1618. hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
  1619. /* avoid reading back stale values if HDMI mode is not enabled */
  1620. if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
  1621. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  1622. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  1623. }
  1624. return true;
  1625. }
  1626. static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
  1627. {
  1628. int i;
  1629. dev_priv->num_shared_dpll = 3;
  1630. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  1631. dev_priv->shared_dplls[i].id = i;
  1632. dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
  1633. dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
  1634. dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
  1635. dev_priv->shared_dplls[i].get_hw_state =
  1636. skl_ddi_pll_get_hw_state;
  1637. }
  1638. }
  1639. void intel_ddi_pll_init(struct drm_device *dev)
  1640. {
  1641. struct drm_i915_private *dev_priv = dev->dev_private;
  1642. uint32_t val = I915_READ(LCPLL_CTL);
  1643. if (IS_SKYLAKE(dev))
  1644. skl_shared_dplls_init(dev_priv);
  1645. else
  1646. hsw_shared_dplls_init(dev_priv);
  1647. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1648. intel_ddi_get_cdclk_freq(dev_priv));
  1649. if (IS_SKYLAKE(dev)) {
  1650. if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
  1651. DRM_ERROR("LCPLL1 is disabled\n");
  1652. } else {
  1653. /*
  1654. * The LCPLL register should be turned on by the BIOS. For now
  1655. * let's just check its state and print errors in case
  1656. * something is wrong. Don't even try to turn it on.
  1657. */
  1658. if (val & LCPLL_CD_SOURCE_FCLK)
  1659. DRM_ERROR("CDCLK source is not LCPLL\n");
  1660. if (val & LCPLL_PLL_DISABLE)
  1661. DRM_ERROR("LCPLL is disabled\n");
  1662. }
  1663. }
  1664. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1665. {
  1666. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1667. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1668. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1669. enum port port = intel_dig_port->port;
  1670. uint32_t val;
  1671. bool wait = false;
  1672. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1673. val = I915_READ(DDI_BUF_CTL(port));
  1674. if (val & DDI_BUF_CTL_ENABLE) {
  1675. val &= ~DDI_BUF_CTL_ENABLE;
  1676. I915_WRITE(DDI_BUF_CTL(port), val);
  1677. wait = true;
  1678. }
  1679. val = I915_READ(DP_TP_CTL(port));
  1680. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1681. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1682. I915_WRITE(DP_TP_CTL(port), val);
  1683. POSTING_READ(DP_TP_CTL(port));
  1684. if (wait)
  1685. intel_wait_ddi_buf_idle(dev_priv, port);
  1686. }
  1687. val = DP_TP_CTL_ENABLE |
  1688. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1689. if (intel_dp->is_mst)
  1690. val |= DP_TP_CTL_MODE_MST;
  1691. else {
  1692. val |= DP_TP_CTL_MODE_SST;
  1693. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1694. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1695. }
  1696. I915_WRITE(DP_TP_CTL(port), val);
  1697. POSTING_READ(DP_TP_CTL(port));
  1698. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1699. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1700. POSTING_READ(DDI_BUF_CTL(port));
  1701. udelay(600);
  1702. }
  1703. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1704. {
  1705. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1706. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1707. uint32_t val;
  1708. intel_ddi_post_disable(intel_encoder);
  1709. val = I915_READ(_FDI_RXA_CTL);
  1710. val &= ~FDI_RX_ENABLE;
  1711. I915_WRITE(_FDI_RXA_CTL, val);
  1712. val = I915_READ(_FDI_RXA_MISC);
  1713. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1714. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1715. I915_WRITE(_FDI_RXA_MISC, val);
  1716. val = I915_READ(_FDI_RXA_CTL);
  1717. val &= ~FDI_PCDCLK;
  1718. I915_WRITE(_FDI_RXA_CTL, val);
  1719. val = I915_READ(_FDI_RXA_CTL);
  1720. val &= ~FDI_RX_PLL_ENABLE;
  1721. I915_WRITE(_FDI_RXA_CTL, val);
  1722. }
  1723. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1724. {
  1725. struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  1726. int type = intel_dig_port->base.type;
  1727. if (type != INTEL_OUTPUT_DISPLAYPORT &&
  1728. type != INTEL_OUTPUT_EDP &&
  1729. type != INTEL_OUTPUT_UNKNOWN) {
  1730. return;
  1731. }
  1732. intel_dp_hot_plug(intel_encoder);
  1733. }
  1734. void intel_ddi_get_config(struct intel_encoder *encoder,
  1735. struct intel_crtc_config *pipe_config)
  1736. {
  1737. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1738. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1739. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1740. u32 temp, flags = 0;
  1741. struct drm_device *dev = dev_priv->dev;
  1742. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1743. if (temp & TRANS_DDI_PHSYNC)
  1744. flags |= DRM_MODE_FLAG_PHSYNC;
  1745. else
  1746. flags |= DRM_MODE_FLAG_NHSYNC;
  1747. if (temp & TRANS_DDI_PVSYNC)
  1748. flags |= DRM_MODE_FLAG_PVSYNC;
  1749. else
  1750. flags |= DRM_MODE_FLAG_NVSYNC;
  1751. pipe_config->adjusted_mode.flags |= flags;
  1752. switch (temp & TRANS_DDI_BPC_MASK) {
  1753. case TRANS_DDI_BPC_6:
  1754. pipe_config->pipe_bpp = 18;
  1755. break;
  1756. case TRANS_DDI_BPC_8:
  1757. pipe_config->pipe_bpp = 24;
  1758. break;
  1759. case TRANS_DDI_BPC_10:
  1760. pipe_config->pipe_bpp = 30;
  1761. break;
  1762. case TRANS_DDI_BPC_12:
  1763. pipe_config->pipe_bpp = 36;
  1764. break;
  1765. default:
  1766. break;
  1767. }
  1768. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1769. case TRANS_DDI_MODE_SELECT_HDMI:
  1770. pipe_config->has_hdmi_sink = true;
  1771. case TRANS_DDI_MODE_SELECT_DVI:
  1772. case TRANS_DDI_MODE_SELECT_FDI:
  1773. break;
  1774. case TRANS_DDI_MODE_SELECT_DP_SST:
  1775. case TRANS_DDI_MODE_SELECT_DP_MST:
  1776. pipe_config->has_dp_encoder = true;
  1777. intel_dp_get_m_n(intel_crtc, pipe_config);
  1778. break;
  1779. default:
  1780. break;
  1781. }
  1782. if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  1783. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1784. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  1785. pipe_config->has_audio = true;
  1786. }
  1787. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  1788. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1789. /*
  1790. * This is a big fat ugly hack.
  1791. *
  1792. * Some machines in UEFI boot mode provide us a VBT that has 18
  1793. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1794. * unknown we fail to light up. Yet the same BIOS boots up with
  1795. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1796. * max, not what it tells us to use.
  1797. *
  1798. * Note: This will still be broken if the eDP panel is not lit
  1799. * up by the BIOS, and thus we can't get the mode at module
  1800. * load.
  1801. */
  1802. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1803. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1804. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1805. }
  1806. if (INTEL_INFO(dev)->gen <= 8)
  1807. hsw_ddi_clock_get(encoder, pipe_config);
  1808. else
  1809. skl_ddi_clock_get(encoder, pipe_config);
  1810. }
  1811. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1812. {
  1813. /* HDMI has nothing special to destroy, so we can go with this. */
  1814. intel_dp_encoder_destroy(encoder);
  1815. }
  1816. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1817. struct intel_crtc_config *pipe_config)
  1818. {
  1819. int type = encoder->type;
  1820. int port = intel_ddi_get_encoder_port(encoder);
  1821. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1822. if (port == PORT_A)
  1823. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1824. if (type == INTEL_OUTPUT_HDMI)
  1825. return intel_hdmi_compute_config(encoder, pipe_config);
  1826. else
  1827. return intel_dp_compute_config(encoder, pipe_config);
  1828. }
  1829. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1830. .destroy = intel_ddi_destroy,
  1831. };
  1832. static struct intel_connector *
  1833. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1834. {
  1835. struct intel_connector *connector;
  1836. enum port port = intel_dig_port->port;
  1837. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1838. if (!connector)
  1839. return NULL;
  1840. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1841. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1842. kfree(connector);
  1843. return NULL;
  1844. }
  1845. return connector;
  1846. }
  1847. static struct intel_connector *
  1848. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1849. {
  1850. struct intel_connector *connector;
  1851. enum port port = intel_dig_port->port;
  1852. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1853. if (!connector)
  1854. return NULL;
  1855. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1856. intel_hdmi_init_connector(intel_dig_port, connector);
  1857. return connector;
  1858. }
  1859. void intel_ddi_init(struct drm_device *dev, enum port port)
  1860. {
  1861. struct drm_i915_private *dev_priv = dev->dev_private;
  1862. struct intel_digital_port *intel_dig_port;
  1863. struct intel_encoder *intel_encoder;
  1864. struct drm_encoder *encoder;
  1865. bool init_hdmi, init_dp;
  1866. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1867. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1868. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1869. if (!init_dp && !init_hdmi) {
  1870. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
  1871. port_name(port));
  1872. init_hdmi = true;
  1873. init_dp = true;
  1874. }
  1875. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1876. if (!intel_dig_port)
  1877. return;
  1878. intel_encoder = &intel_dig_port->base;
  1879. encoder = &intel_encoder->base;
  1880. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1881. DRM_MODE_ENCODER_TMDS);
  1882. intel_encoder->compute_config = intel_ddi_compute_config;
  1883. intel_encoder->enable = intel_enable_ddi;
  1884. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1885. intel_encoder->disable = intel_disable_ddi;
  1886. intel_encoder->post_disable = intel_ddi_post_disable;
  1887. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1888. intel_encoder->get_config = intel_ddi_get_config;
  1889. intel_dig_port->port = port;
  1890. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1891. (DDI_BUF_PORT_REVERSAL |
  1892. DDI_A_4_LANES);
  1893. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1894. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1895. intel_encoder->cloneable = 0;
  1896. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1897. if (init_dp) {
  1898. if (!intel_ddi_init_dp_connector(intel_dig_port))
  1899. goto err;
  1900. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  1901. dev_priv->hpd_irq_port[port] = intel_dig_port;
  1902. }
  1903. /* In theory we don't need the encoder->type check, but leave it just in
  1904. * case we have some really bad VBTs... */
  1905. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  1906. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  1907. goto err;
  1908. }
  1909. return;
  1910. err:
  1911. drm_encoder_cleanup(encoder);
  1912. kfree(intel_dig_port);
  1913. }