disk-io.c 121 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <linux/error-injection.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "free-space-tree.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #include "qgroup.h"
  52. #include "compression.h"
  53. #include "tree-checker.h"
  54. #include "ref-verify.h"
  55. #ifdef CONFIG_X86
  56. #include <asm/cpufeature.h>
  57. #endif
  58. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  59. BTRFS_HEADER_FLAG_RELOC |\
  60. BTRFS_SUPER_FLAG_ERROR |\
  61. BTRFS_SUPER_FLAG_SEEDING |\
  62. BTRFS_SUPER_FLAG_METADUMP)
  63. static const struct extent_io_ops btree_extent_io_ops;
  64. static void end_workqueue_fn(struct btrfs_work *work);
  65. static void free_fs_root(struct btrfs_root *root);
  66. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  67. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  68. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  69. struct btrfs_fs_info *fs_info);
  70. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  71. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  72. struct extent_io_tree *dirty_pages,
  73. int mark);
  74. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  75. struct extent_io_tree *pinned_extents);
  76. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  77. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  78. /*
  79. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  80. * is complete. This is used during reads to verify checksums, and it is used
  81. * by writes to insert metadata for new file extents after IO is complete.
  82. */
  83. struct btrfs_end_io_wq {
  84. struct bio *bio;
  85. bio_end_io_t *end_io;
  86. void *private;
  87. struct btrfs_fs_info *info;
  88. blk_status_t status;
  89. enum btrfs_wq_endio_type metadata;
  90. struct btrfs_work work;
  91. };
  92. static struct kmem_cache *btrfs_end_io_wq_cache;
  93. int __init btrfs_end_io_wq_init(void)
  94. {
  95. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  96. sizeof(struct btrfs_end_io_wq),
  97. 0,
  98. SLAB_MEM_SPREAD,
  99. NULL);
  100. if (!btrfs_end_io_wq_cache)
  101. return -ENOMEM;
  102. return 0;
  103. }
  104. void btrfs_end_io_wq_exit(void)
  105. {
  106. kmem_cache_destroy(btrfs_end_io_wq_cache);
  107. }
  108. /*
  109. * async submit bios are used to offload expensive checksumming
  110. * onto the worker threads. They checksum file and metadata bios
  111. * just before they are sent down the IO stack.
  112. */
  113. struct async_submit_bio {
  114. void *private_data;
  115. struct btrfs_fs_info *fs_info;
  116. struct bio *bio;
  117. extent_submit_bio_hook_t *submit_bio_start;
  118. extent_submit_bio_hook_t *submit_bio_done;
  119. int mirror_num;
  120. unsigned long bio_flags;
  121. /*
  122. * bio_offset is optional, can be used if the pages in the bio
  123. * can't tell us where in the file the bio should go
  124. */
  125. u64 bio_offset;
  126. struct btrfs_work work;
  127. blk_status_t status;
  128. };
  129. /*
  130. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  131. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  132. * the level the eb occupies in the tree.
  133. *
  134. * Different roots are used for different purposes and may nest inside each
  135. * other and they require separate keysets. As lockdep keys should be
  136. * static, assign keysets according to the purpose of the root as indicated
  137. * by btrfs_root->objectid. This ensures that all special purpose roots
  138. * have separate keysets.
  139. *
  140. * Lock-nesting across peer nodes is always done with the immediate parent
  141. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  142. * subclass to avoid triggering lockdep warning in such cases.
  143. *
  144. * The key is set by the readpage_end_io_hook after the buffer has passed
  145. * csum validation but before the pages are unlocked. It is also set by
  146. * btrfs_init_new_buffer on freshly allocated blocks.
  147. *
  148. * We also add a check to make sure the highest level of the tree is the
  149. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  150. * needs update as well.
  151. */
  152. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  153. # if BTRFS_MAX_LEVEL != 8
  154. # error
  155. # endif
  156. static struct btrfs_lockdep_keyset {
  157. u64 id; /* root objectid */
  158. const char *name_stem; /* lock name stem */
  159. char names[BTRFS_MAX_LEVEL + 1][20];
  160. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  161. } btrfs_lockdep_keysets[] = {
  162. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  163. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  164. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  165. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  166. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  167. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  168. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  169. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  170. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  171. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  172. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  173. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  174. { .id = 0, .name_stem = "tree" },
  175. };
  176. void __init btrfs_init_lockdep(void)
  177. {
  178. int i, j;
  179. /* initialize lockdep class names */
  180. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  181. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  182. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  183. snprintf(ks->names[j], sizeof(ks->names[j]),
  184. "btrfs-%s-%02d", ks->name_stem, j);
  185. }
  186. }
  187. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  188. int level)
  189. {
  190. struct btrfs_lockdep_keyset *ks;
  191. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  192. /* find the matching keyset, id 0 is the default entry */
  193. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  194. if (ks->id == objectid)
  195. break;
  196. lockdep_set_class_and_name(&eb->lock,
  197. &ks->keys[level], ks->names[level]);
  198. }
  199. #endif
  200. /*
  201. * extents on the btree inode are pretty simple, there's one extent
  202. * that covers the entire device
  203. */
  204. static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  205. struct page *page, size_t pg_offset, u64 start, u64 len,
  206. int create)
  207. {
  208. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  209. struct extent_map_tree *em_tree = &inode->extent_tree;
  210. struct extent_map *em;
  211. int ret;
  212. read_lock(&em_tree->lock);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (em) {
  215. em->bdev = fs_info->fs_devices->latest_bdev;
  216. read_unlock(&em_tree->lock);
  217. goto out;
  218. }
  219. read_unlock(&em_tree->lock);
  220. em = alloc_extent_map();
  221. if (!em) {
  222. em = ERR_PTR(-ENOMEM);
  223. goto out;
  224. }
  225. em->start = 0;
  226. em->len = (u64)-1;
  227. em->block_len = (u64)-1;
  228. em->block_start = 0;
  229. em->bdev = fs_info->fs_devices->latest_bdev;
  230. write_lock(&em_tree->lock);
  231. ret = add_extent_mapping(em_tree, em, 0);
  232. if (ret == -EEXIST) {
  233. free_extent_map(em);
  234. em = lookup_extent_mapping(em_tree, start, len);
  235. if (!em)
  236. em = ERR_PTR(-EIO);
  237. } else if (ret) {
  238. free_extent_map(em);
  239. em = ERR_PTR(ret);
  240. }
  241. write_unlock(&em_tree->lock);
  242. out:
  243. return em;
  244. }
  245. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  246. {
  247. return btrfs_crc32c(seed, data, len);
  248. }
  249. void btrfs_csum_final(u32 crc, u8 *result)
  250. {
  251. put_unaligned_le32(~crc, result);
  252. }
  253. /*
  254. * compute the csum for a btree block, and either verify it or write it
  255. * into the csum field of the block.
  256. */
  257. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  258. struct extent_buffer *buf,
  259. int verify)
  260. {
  261. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  262. char *result = NULL;
  263. unsigned long len;
  264. unsigned long cur_len;
  265. unsigned long offset = BTRFS_CSUM_SIZE;
  266. char *kaddr;
  267. unsigned long map_start;
  268. unsigned long map_len;
  269. int err;
  270. u32 crc = ~(u32)0;
  271. unsigned long inline_result;
  272. len = buf->len - offset;
  273. while (len > 0) {
  274. err = map_private_extent_buffer(buf, offset, 32,
  275. &kaddr, &map_start, &map_len);
  276. if (err)
  277. return err;
  278. cur_len = min(len, map_len - (offset - map_start));
  279. crc = btrfs_csum_data(kaddr + offset - map_start,
  280. crc, cur_len);
  281. len -= cur_len;
  282. offset += cur_len;
  283. }
  284. if (csum_size > sizeof(inline_result)) {
  285. result = kzalloc(csum_size, GFP_NOFS);
  286. if (!result)
  287. return -ENOMEM;
  288. } else {
  289. result = (char *)&inline_result;
  290. }
  291. btrfs_csum_final(crc, result);
  292. if (verify) {
  293. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  294. u32 val;
  295. u32 found = 0;
  296. memcpy(&found, result, csum_size);
  297. read_extent_buffer(buf, &val, 0, csum_size);
  298. btrfs_warn_rl(fs_info,
  299. "%s checksum verify failed on %llu wanted %X found %X level %d",
  300. fs_info->sb->s_id, buf->start,
  301. val, found, btrfs_header_level(buf));
  302. if (result != (char *)&inline_result)
  303. kfree(result);
  304. return -EUCLEAN;
  305. }
  306. } else {
  307. write_extent_buffer(buf, result, 0, csum_size);
  308. }
  309. if (result != (char *)&inline_result)
  310. kfree(result);
  311. return 0;
  312. }
  313. /*
  314. * we can't consider a given block up to date unless the transid of the
  315. * block matches the transid in the parent node's pointer. This is how we
  316. * detect blocks that either didn't get written at all or got written
  317. * in the wrong place.
  318. */
  319. static int verify_parent_transid(struct extent_io_tree *io_tree,
  320. struct extent_buffer *eb, u64 parent_transid,
  321. int atomic)
  322. {
  323. struct extent_state *cached_state = NULL;
  324. int ret;
  325. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  326. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  327. return 0;
  328. if (atomic)
  329. return -EAGAIN;
  330. if (need_lock) {
  331. btrfs_tree_read_lock(eb);
  332. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  333. }
  334. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  335. &cached_state);
  336. if (extent_buffer_uptodate(eb) &&
  337. btrfs_header_generation(eb) == parent_transid) {
  338. ret = 0;
  339. goto out;
  340. }
  341. btrfs_err_rl(eb->fs_info,
  342. "parent transid verify failed on %llu wanted %llu found %llu",
  343. eb->start,
  344. parent_transid, btrfs_header_generation(eb));
  345. ret = 1;
  346. /*
  347. * Things reading via commit roots that don't have normal protection,
  348. * like send, can have a really old block in cache that may point at a
  349. * block that has been freed and re-allocated. So don't clear uptodate
  350. * if we find an eb that is under IO (dirty/writeback) because we could
  351. * end up reading in the stale data and then writing it back out and
  352. * making everybody very sad.
  353. */
  354. if (!extent_buffer_under_io(eb))
  355. clear_extent_buffer_uptodate(eb);
  356. out:
  357. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  358. &cached_state, GFP_NOFS);
  359. if (need_lock)
  360. btrfs_tree_read_unlock_blocking(eb);
  361. return ret;
  362. }
  363. /*
  364. * Return 0 if the superblock checksum type matches the checksum value of that
  365. * algorithm. Pass the raw disk superblock data.
  366. */
  367. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  368. char *raw_disk_sb)
  369. {
  370. struct btrfs_super_block *disk_sb =
  371. (struct btrfs_super_block *)raw_disk_sb;
  372. u16 csum_type = btrfs_super_csum_type(disk_sb);
  373. int ret = 0;
  374. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  375. u32 crc = ~(u32)0;
  376. const int csum_size = sizeof(crc);
  377. char result[csum_size];
  378. /*
  379. * The super_block structure does not span the whole
  380. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  381. * is filled with zeros and is included in the checksum.
  382. */
  383. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  384. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  385. btrfs_csum_final(crc, result);
  386. if (memcmp(raw_disk_sb, result, csum_size))
  387. ret = 1;
  388. }
  389. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  390. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  391. csum_type);
  392. ret = 1;
  393. }
  394. return ret;
  395. }
  396. /*
  397. * helper to read a given tree block, doing retries as required when
  398. * the checksums don't match and we have alternate mirrors to try.
  399. */
  400. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  401. struct extent_buffer *eb,
  402. u64 parent_transid)
  403. {
  404. struct extent_io_tree *io_tree;
  405. int failed = 0;
  406. int ret;
  407. int num_copies = 0;
  408. int mirror_num = 0;
  409. int failed_mirror = 0;
  410. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  411. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  414. btree_get_extent, mirror_num);
  415. if (!ret) {
  416. if (!verify_parent_transid(io_tree, eb,
  417. parent_transid, 0))
  418. break;
  419. else
  420. ret = -EIO;
  421. }
  422. /*
  423. * This buffer's crc is fine, but its contents are corrupted, so
  424. * there is no reason to read the other copies, they won't be
  425. * any less wrong.
  426. */
  427. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  428. break;
  429. num_copies = btrfs_num_copies(fs_info,
  430. eb->start, eb->len);
  431. if (num_copies == 1)
  432. break;
  433. if (!failed_mirror) {
  434. failed = 1;
  435. failed_mirror = eb->read_mirror;
  436. }
  437. mirror_num++;
  438. if (mirror_num == failed_mirror)
  439. mirror_num++;
  440. if (mirror_num > num_copies)
  441. break;
  442. }
  443. if (failed && !ret && failed_mirror)
  444. repair_eb_io_failure(fs_info, eb, failed_mirror);
  445. return ret;
  446. }
  447. /*
  448. * checksum a dirty tree block before IO. This has extra checks to make sure
  449. * we only fill in the checksum field in the first page of a multi-page block
  450. */
  451. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  452. {
  453. u64 start = page_offset(page);
  454. u64 found_start;
  455. struct extent_buffer *eb;
  456. eb = (struct extent_buffer *)page->private;
  457. if (page != eb->pages[0])
  458. return 0;
  459. found_start = btrfs_header_bytenr(eb);
  460. /*
  461. * Please do not consolidate these warnings into a single if.
  462. * It is useful to know what went wrong.
  463. */
  464. if (WARN_ON(found_start != start))
  465. return -EUCLEAN;
  466. if (WARN_ON(!PageUptodate(page)))
  467. return -EUCLEAN;
  468. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  469. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  470. return csum_tree_block(fs_info, eb, 0);
  471. }
  472. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  473. struct extent_buffer *eb)
  474. {
  475. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  476. u8 fsid[BTRFS_FSID_SIZE];
  477. int ret = 1;
  478. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  479. while (fs_devices) {
  480. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  481. ret = 0;
  482. break;
  483. }
  484. fs_devices = fs_devices->seed;
  485. }
  486. return ret;
  487. }
  488. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  489. u64 phy_offset, struct page *page,
  490. u64 start, u64 end, int mirror)
  491. {
  492. u64 found_start;
  493. int found_level;
  494. struct extent_buffer *eb;
  495. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  496. struct btrfs_fs_info *fs_info = root->fs_info;
  497. int ret = 0;
  498. int reads_done;
  499. if (!page->private)
  500. goto out;
  501. eb = (struct extent_buffer *)page->private;
  502. /* the pending IO might have been the only thing that kept this buffer
  503. * in memory. Make sure we have a ref for all this other checks
  504. */
  505. extent_buffer_get(eb);
  506. reads_done = atomic_dec_and_test(&eb->io_pages);
  507. if (!reads_done)
  508. goto err;
  509. eb->read_mirror = mirror;
  510. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  511. ret = -EIO;
  512. goto err;
  513. }
  514. found_start = btrfs_header_bytenr(eb);
  515. if (found_start != eb->start) {
  516. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  517. found_start, eb->start);
  518. ret = -EIO;
  519. goto err;
  520. }
  521. if (check_tree_block_fsid(fs_info, eb)) {
  522. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  523. eb->start);
  524. ret = -EIO;
  525. goto err;
  526. }
  527. found_level = btrfs_header_level(eb);
  528. if (found_level >= BTRFS_MAX_LEVEL) {
  529. btrfs_err(fs_info, "bad tree block level %d",
  530. (int)btrfs_header_level(eb));
  531. ret = -EIO;
  532. goto err;
  533. }
  534. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  535. eb, found_level);
  536. ret = csum_tree_block(fs_info, eb, 1);
  537. if (ret)
  538. goto err;
  539. /*
  540. * If this is a leaf block and it is corrupt, set the corrupt bit so
  541. * that we don't try and read the other copies of this block, just
  542. * return -EIO.
  543. */
  544. if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
  545. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  546. ret = -EIO;
  547. }
  548. if (found_level > 0 && btrfs_check_node(root, eb))
  549. ret = -EIO;
  550. if (!ret)
  551. set_extent_buffer_uptodate(eb);
  552. err:
  553. if (reads_done &&
  554. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  555. btree_readahead_hook(eb, ret);
  556. if (ret) {
  557. /*
  558. * our io error hook is going to dec the io pages
  559. * again, we have to make sure it has something
  560. * to decrement
  561. */
  562. atomic_inc(&eb->io_pages);
  563. clear_extent_buffer_uptodate(eb);
  564. }
  565. free_extent_buffer(eb);
  566. out:
  567. return ret;
  568. }
  569. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  570. {
  571. struct extent_buffer *eb;
  572. eb = (struct extent_buffer *)page->private;
  573. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  574. eb->read_mirror = failed_mirror;
  575. atomic_dec(&eb->io_pages);
  576. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  577. btree_readahead_hook(eb, -EIO);
  578. return -EIO; /* we fixed nothing */
  579. }
  580. static void end_workqueue_bio(struct bio *bio)
  581. {
  582. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  583. struct btrfs_fs_info *fs_info;
  584. struct btrfs_workqueue *wq;
  585. btrfs_work_func_t func;
  586. fs_info = end_io_wq->info;
  587. end_io_wq->status = bio->bi_status;
  588. if (bio_op(bio) == REQ_OP_WRITE) {
  589. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  590. wq = fs_info->endio_meta_write_workers;
  591. func = btrfs_endio_meta_write_helper;
  592. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  593. wq = fs_info->endio_freespace_worker;
  594. func = btrfs_freespace_write_helper;
  595. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  596. wq = fs_info->endio_raid56_workers;
  597. func = btrfs_endio_raid56_helper;
  598. } else {
  599. wq = fs_info->endio_write_workers;
  600. func = btrfs_endio_write_helper;
  601. }
  602. } else {
  603. if (unlikely(end_io_wq->metadata ==
  604. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  605. wq = fs_info->endio_repair_workers;
  606. func = btrfs_endio_repair_helper;
  607. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  608. wq = fs_info->endio_raid56_workers;
  609. func = btrfs_endio_raid56_helper;
  610. } else if (end_io_wq->metadata) {
  611. wq = fs_info->endio_meta_workers;
  612. func = btrfs_endio_meta_helper;
  613. } else {
  614. wq = fs_info->endio_workers;
  615. func = btrfs_endio_helper;
  616. }
  617. }
  618. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  619. btrfs_queue_work(wq, &end_io_wq->work);
  620. }
  621. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  622. enum btrfs_wq_endio_type metadata)
  623. {
  624. struct btrfs_end_io_wq *end_io_wq;
  625. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  626. if (!end_io_wq)
  627. return BLK_STS_RESOURCE;
  628. end_io_wq->private = bio->bi_private;
  629. end_io_wq->end_io = bio->bi_end_io;
  630. end_io_wq->info = info;
  631. end_io_wq->status = 0;
  632. end_io_wq->bio = bio;
  633. end_io_wq->metadata = metadata;
  634. bio->bi_private = end_io_wq;
  635. bio->bi_end_io = end_workqueue_bio;
  636. return 0;
  637. }
  638. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  639. {
  640. unsigned long limit = min_t(unsigned long,
  641. info->thread_pool_size,
  642. info->fs_devices->open_devices);
  643. return 256 * limit;
  644. }
  645. static void run_one_async_start(struct btrfs_work *work)
  646. {
  647. struct async_submit_bio *async;
  648. blk_status_t ret;
  649. async = container_of(work, struct async_submit_bio, work);
  650. ret = async->submit_bio_start(async->private_data, async->bio,
  651. async->mirror_num, async->bio_flags,
  652. async->bio_offset);
  653. if (ret)
  654. async->status = ret;
  655. }
  656. static void run_one_async_done(struct btrfs_work *work)
  657. {
  658. struct async_submit_bio *async;
  659. async = container_of(work, struct async_submit_bio, work);
  660. /* If an error occurred we just want to clean up the bio and move on */
  661. if (async->status) {
  662. async->bio->bi_status = async->status;
  663. bio_endio(async->bio);
  664. return;
  665. }
  666. async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
  667. async->bio_flags, async->bio_offset);
  668. }
  669. static void run_one_async_free(struct btrfs_work *work)
  670. {
  671. struct async_submit_bio *async;
  672. async = container_of(work, struct async_submit_bio, work);
  673. kfree(async);
  674. }
  675. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  676. int mirror_num, unsigned long bio_flags,
  677. u64 bio_offset, void *private_data,
  678. extent_submit_bio_hook_t *submit_bio_start,
  679. extent_submit_bio_hook_t *submit_bio_done)
  680. {
  681. struct async_submit_bio *async;
  682. async = kmalloc(sizeof(*async), GFP_NOFS);
  683. if (!async)
  684. return BLK_STS_RESOURCE;
  685. async->private_data = private_data;
  686. async->fs_info = fs_info;
  687. async->bio = bio;
  688. async->mirror_num = mirror_num;
  689. async->submit_bio_start = submit_bio_start;
  690. async->submit_bio_done = submit_bio_done;
  691. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  692. run_one_async_done, run_one_async_free);
  693. async->bio_flags = bio_flags;
  694. async->bio_offset = bio_offset;
  695. async->status = 0;
  696. if (op_is_sync(bio->bi_opf))
  697. btrfs_set_work_high_priority(&async->work);
  698. btrfs_queue_work(fs_info->workers, &async->work);
  699. return 0;
  700. }
  701. static blk_status_t btree_csum_one_bio(struct bio *bio)
  702. {
  703. struct bio_vec *bvec;
  704. struct btrfs_root *root;
  705. int i, ret = 0;
  706. ASSERT(!bio_flagged(bio, BIO_CLONED));
  707. bio_for_each_segment_all(bvec, bio, i) {
  708. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  709. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  710. if (ret)
  711. break;
  712. }
  713. return errno_to_blk_status(ret);
  714. }
  715. static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
  716. int mirror_num, unsigned long bio_flags,
  717. u64 bio_offset)
  718. {
  719. /*
  720. * when we're called for a write, we're already in the async
  721. * submission context. Just jump into btrfs_map_bio
  722. */
  723. return btree_csum_one_bio(bio);
  724. }
  725. static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
  726. int mirror_num, unsigned long bio_flags,
  727. u64 bio_offset)
  728. {
  729. struct inode *inode = private_data;
  730. blk_status_t ret;
  731. /*
  732. * when we're called for a write, we're already in the async
  733. * submission context. Just jump into btrfs_map_bio
  734. */
  735. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  736. if (ret) {
  737. bio->bi_status = ret;
  738. bio_endio(bio);
  739. }
  740. return ret;
  741. }
  742. static int check_async_write(struct btrfs_inode *bi)
  743. {
  744. if (atomic_read(&bi->sync_writers))
  745. return 0;
  746. #ifdef CONFIG_X86
  747. if (static_cpu_has(X86_FEATURE_XMM4_2))
  748. return 0;
  749. #endif
  750. return 1;
  751. }
  752. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  753. int mirror_num, unsigned long bio_flags,
  754. u64 bio_offset)
  755. {
  756. struct inode *inode = private_data;
  757. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  758. int async = check_async_write(BTRFS_I(inode));
  759. blk_status_t ret;
  760. if (bio_op(bio) != REQ_OP_WRITE) {
  761. /*
  762. * called for a read, do the setup so that checksum validation
  763. * can happen in the async kernel threads
  764. */
  765. ret = btrfs_bio_wq_end_io(fs_info, bio,
  766. BTRFS_WQ_ENDIO_METADATA);
  767. if (ret)
  768. goto out_w_error;
  769. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  770. } else if (!async) {
  771. ret = btree_csum_one_bio(bio);
  772. if (ret)
  773. goto out_w_error;
  774. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  775. } else {
  776. /*
  777. * kthread helpers are used to submit writes so that
  778. * checksumming can happen in parallel across all CPUs
  779. */
  780. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  781. bio_offset, private_data,
  782. __btree_submit_bio_start,
  783. __btree_submit_bio_done);
  784. }
  785. if (ret)
  786. goto out_w_error;
  787. return 0;
  788. out_w_error:
  789. bio->bi_status = ret;
  790. bio_endio(bio);
  791. return ret;
  792. }
  793. #ifdef CONFIG_MIGRATION
  794. static int btree_migratepage(struct address_space *mapping,
  795. struct page *newpage, struct page *page,
  796. enum migrate_mode mode)
  797. {
  798. /*
  799. * we can't safely write a btree page from here,
  800. * we haven't done the locking hook
  801. */
  802. if (PageDirty(page))
  803. return -EAGAIN;
  804. /*
  805. * Buffers may be managed in a filesystem specific way.
  806. * We must have no buffers or drop them.
  807. */
  808. if (page_has_private(page) &&
  809. !try_to_release_page(page, GFP_KERNEL))
  810. return -EAGAIN;
  811. return migrate_page(mapping, newpage, page, mode);
  812. }
  813. #endif
  814. static int btree_writepages(struct address_space *mapping,
  815. struct writeback_control *wbc)
  816. {
  817. struct btrfs_fs_info *fs_info;
  818. int ret;
  819. if (wbc->sync_mode == WB_SYNC_NONE) {
  820. if (wbc->for_kupdate)
  821. return 0;
  822. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  823. /* this is a bit racy, but that's ok */
  824. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  825. BTRFS_DIRTY_METADATA_THRESH);
  826. if (ret < 0)
  827. return 0;
  828. }
  829. return btree_write_cache_pages(mapping, wbc);
  830. }
  831. static int btree_readpage(struct file *file, struct page *page)
  832. {
  833. struct extent_io_tree *tree;
  834. tree = &BTRFS_I(page->mapping->host)->io_tree;
  835. return extent_read_full_page(tree, page, btree_get_extent, 0);
  836. }
  837. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  838. {
  839. if (PageWriteback(page) || PageDirty(page))
  840. return 0;
  841. return try_release_extent_buffer(page);
  842. }
  843. static void btree_invalidatepage(struct page *page, unsigned int offset,
  844. unsigned int length)
  845. {
  846. struct extent_io_tree *tree;
  847. tree = &BTRFS_I(page->mapping->host)->io_tree;
  848. extent_invalidatepage(tree, page, offset);
  849. btree_releasepage(page, GFP_NOFS);
  850. if (PagePrivate(page)) {
  851. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  852. "page private not zero on page %llu",
  853. (unsigned long long)page_offset(page));
  854. ClearPagePrivate(page);
  855. set_page_private(page, 0);
  856. put_page(page);
  857. }
  858. }
  859. static int btree_set_page_dirty(struct page *page)
  860. {
  861. #ifdef DEBUG
  862. struct extent_buffer *eb;
  863. BUG_ON(!PagePrivate(page));
  864. eb = (struct extent_buffer *)page->private;
  865. BUG_ON(!eb);
  866. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  867. BUG_ON(!atomic_read(&eb->refs));
  868. btrfs_assert_tree_locked(eb);
  869. #endif
  870. return __set_page_dirty_nobuffers(page);
  871. }
  872. static const struct address_space_operations btree_aops = {
  873. .readpage = btree_readpage,
  874. .writepages = btree_writepages,
  875. .releasepage = btree_releasepage,
  876. .invalidatepage = btree_invalidatepage,
  877. #ifdef CONFIG_MIGRATION
  878. .migratepage = btree_migratepage,
  879. #endif
  880. .set_page_dirty = btree_set_page_dirty,
  881. };
  882. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  883. {
  884. struct extent_buffer *buf = NULL;
  885. struct inode *btree_inode = fs_info->btree_inode;
  886. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  887. if (IS_ERR(buf))
  888. return;
  889. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  890. buf, WAIT_NONE, btree_get_extent, 0);
  891. free_extent_buffer(buf);
  892. }
  893. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  894. int mirror_num, struct extent_buffer **eb)
  895. {
  896. struct extent_buffer *buf = NULL;
  897. struct inode *btree_inode = fs_info->btree_inode;
  898. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  899. int ret;
  900. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  901. if (IS_ERR(buf))
  902. return 0;
  903. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  904. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  905. btree_get_extent, mirror_num);
  906. if (ret) {
  907. free_extent_buffer(buf);
  908. return ret;
  909. }
  910. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  911. free_extent_buffer(buf);
  912. return -EIO;
  913. } else if (extent_buffer_uptodate(buf)) {
  914. *eb = buf;
  915. } else {
  916. free_extent_buffer(buf);
  917. }
  918. return 0;
  919. }
  920. struct extent_buffer *btrfs_find_create_tree_block(
  921. struct btrfs_fs_info *fs_info,
  922. u64 bytenr)
  923. {
  924. if (btrfs_is_testing(fs_info))
  925. return alloc_test_extent_buffer(fs_info, bytenr);
  926. return alloc_extent_buffer(fs_info, bytenr);
  927. }
  928. int btrfs_write_tree_block(struct extent_buffer *buf)
  929. {
  930. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  931. buf->start + buf->len - 1);
  932. }
  933. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  934. {
  935. filemap_fdatawait_range(buf->pages[0]->mapping,
  936. buf->start, buf->start + buf->len - 1);
  937. }
  938. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  939. u64 parent_transid)
  940. {
  941. struct extent_buffer *buf = NULL;
  942. int ret;
  943. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  944. if (IS_ERR(buf))
  945. return buf;
  946. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  947. if (ret) {
  948. free_extent_buffer(buf);
  949. return ERR_PTR(ret);
  950. }
  951. return buf;
  952. }
  953. void clean_tree_block(struct btrfs_fs_info *fs_info,
  954. struct extent_buffer *buf)
  955. {
  956. if (btrfs_header_generation(buf) ==
  957. fs_info->running_transaction->transid) {
  958. btrfs_assert_tree_locked(buf);
  959. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  960. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  961. -buf->len,
  962. fs_info->dirty_metadata_batch);
  963. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  964. btrfs_set_lock_blocking(buf);
  965. clear_extent_buffer_dirty(buf);
  966. }
  967. }
  968. }
  969. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  970. {
  971. struct btrfs_subvolume_writers *writers;
  972. int ret;
  973. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  974. if (!writers)
  975. return ERR_PTR(-ENOMEM);
  976. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  977. if (ret < 0) {
  978. kfree(writers);
  979. return ERR_PTR(ret);
  980. }
  981. init_waitqueue_head(&writers->wait);
  982. return writers;
  983. }
  984. static void
  985. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  986. {
  987. percpu_counter_destroy(&writers->counter);
  988. kfree(writers);
  989. }
  990. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  991. u64 objectid)
  992. {
  993. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  994. root->node = NULL;
  995. root->commit_root = NULL;
  996. root->state = 0;
  997. root->orphan_cleanup_state = 0;
  998. root->objectid = objectid;
  999. root->last_trans = 0;
  1000. root->highest_objectid = 0;
  1001. root->nr_delalloc_inodes = 0;
  1002. root->nr_ordered_extents = 0;
  1003. root->name = NULL;
  1004. root->inode_tree = RB_ROOT;
  1005. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1006. root->block_rsv = NULL;
  1007. root->orphan_block_rsv = NULL;
  1008. INIT_LIST_HEAD(&root->dirty_list);
  1009. INIT_LIST_HEAD(&root->root_list);
  1010. INIT_LIST_HEAD(&root->delalloc_inodes);
  1011. INIT_LIST_HEAD(&root->delalloc_root);
  1012. INIT_LIST_HEAD(&root->ordered_extents);
  1013. INIT_LIST_HEAD(&root->ordered_root);
  1014. INIT_LIST_HEAD(&root->logged_list[0]);
  1015. INIT_LIST_HEAD(&root->logged_list[1]);
  1016. spin_lock_init(&root->orphan_lock);
  1017. spin_lock_init(&root->inode_lock);
  1018. spin_lock_init(&root->delalloc_lock);
  1019. spin_lock_init(&root->ordered_extent_lock);
  1020. spin_lock_init(&root->accounting_lock);
  1021. spin_lock_init(&root->log_extents_lock[0]);
  1022. spin_lock_init(&root->log_extents_lock[1]);
  1023. mutex_init(&root->objectid_mutex);
  1024. mutex_init(&root->log_mutex);
  1025. mutex_init(&root->ordered_extent_mutex);
  1026. mutex_init(&root->delalloc_mutex);
  1027. init_waitqueue_head(&root->log_writer_wait);
  1028. init_waitqueue_head(&root->log_commit_wait[0]);
  1029. init_waitqueue_head(&root->log_commit_wait[1]);
  1030. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1031. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1032. atomic_set(&root->log_commit[0], 0);
  1033. atomic_set(&root->log_commit[1], 0);
  1034. atomic_set(&root->log_writers, 0);
  1035. atomic_set(&root->log_batch, 0);
  1036. atomic_set(&root->orphan_inodes, 0);
  1037. refcount_set(&root->refs, 1);
  1038. atomic_set(&root->will_be_snapshotted, 0);
  1039. atomic64_set(&root->qgroup_meta_rsv, 0);
  1040. root->log_transid = 0;
  1041. root->log_transid_committed = -1;
  1042. root->last_log_commit = 0;
  1043. if (!dummy)
  1044. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1045. memset(&root->root_key, 0, sizeof(root->root_key));
  1046. memset(&root->root_item, 0, sizeof(root->root_item));
  1047. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1048. if (!dummy)
  1049. root->defrag_trans_start = fs_info->generation;
  1050. else
  1051. root->defrag_trans_start = 0;
  1052. root->root_key.objectid = objectid;
  1053. root->anon_dev = 0;
  1054. spin_lock_init(&root->root_item_lock);
  1055. }
  1056. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1057. gfp_t flags)
  1058. {
  1059. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1060. if (root)
  1061. root->fs_info = fs_info;
  1062. return root;
  1063. }
  1064. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1065. /* Should only be used by the testing infrastructure */
  1066. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1067. {
  1068. struct btrfs_root *root;
  1069. if (!fs_info)
  1070. return ERR_PTR(-EINVAL);
  1071. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1072. if (!root)
  1073. return ERR_PTR(-ENOMEM);
  1074. /* We don't use the stripesize in selftest, set it as sectorsize */
  1075. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1076. root->alloc_bytenr = 0;
  1077. return root;
  1078. }
  1079. #endif
  1080. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1081. struct btrfs_fs_info *fs_info,
  1082. u64 objectid)
  1083. {
  1084. struct extent_buffer *leaf;
  1085. struct btrfs_root *tree_root = fs_info->tree_root;
  1086. struct btrfs_root *root;
  1087. struct btrfs_key key;
  1088. int ret = 0;
  1089. uuid_le uuid;
  1090. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1091. if (!root)
  1092. return ERR_PTR(-ENOMEM);
  1093. __setup_root(root, fs_info, objectid);
  1094. root->root_key.objectid = objectid;
  1095. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1096. root->root_key.offset = 0;
  1097. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1098. if (IS_ERR(leaf)) {
  1099. ret = PTR_ERR(leaf);
  1100. leaf = NULL;
  1101. goto fail;
  1102. }
  1103. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1104. btrfs_set_header_bytenr(leaf, leaf->start);
  1105. btrfs_set_header_generation(leaf, trans->transid);
  1106. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1107. btrfs_set_header_owner(leaf, objectid);
  1108. root->node = leaf;
  1109. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1110. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1111. btrfs_mark_buffer_dirty(leaf);
  1112. root->commit_root = btrfs_root_node(root);
  1113. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1114. root->root_item.flags = 0;
  1115. root->root_item.byte_limit = 0;
  1116. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1117. btrfs_set_root_generation(&root->root_item, trans->transid);
  1118. btrfs_set_root_level(&root->root_item, 0);
  1119. btrfs_set_root_refs(&root->root_item, 1);
  1120. btrfs_set_root_used(&root->root_item, leaf->len);
  1121. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1122. btrfs_set_root_dirid(&root->root_item, 0);
  1123. uuid_le_gen(&uuid);
  1124. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1125. root->root_item.drop_level = 0;
  1126. key.objectid = objectid;
  1127. key.type = BTRFS_ROOT_ITEM_KEY;
  1128. key.offset = 0;
  1129. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1130. if (ret)
  1131. goto fail;
  1132. btrfs_tree_unlock(leaf);
  1133. return root;
  1134. fail:
  1135. if (leaf) {
  1136. btrfs_tree_unlock(leaf);
  1137. free_extent_buffer(root->commit_root);
  1138. free_extent_buffer(leaf);
  1139. }
  1140. kfree(root);
  1141. return ERR_PTR(ret);
  1142. }
  1143. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1144. struct btrfs_fs_info *fs_info)
  1145. {
  1146. struct btrfs_root *root;
  1147. struct extent_buffer *leaf;
  1148. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1149. if (!root)
  1150. return ERR_PTR(-ENOMEM);
  1151. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1152. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1153. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1154. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1155. /*
  1156. * DON'T set REF_COWS for log trees
  1157. *
  1158. * log trees do not get reference counted because they go away
  1159. * before a real commit is actually done. They do store pointers
  1160. * to file data extents, and those reference counts still get
  1161. * updated (along with back refs to the log tree).
  1162. */
  1163. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1164. NULL, 0, 0, 0);
  1165. if (IS_ERR(leaf)) {
  1166. kfree(root);
  1167. return ERR_CAST(leaf);
  1168. }
  1169. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1170. btrfs_set_header_bytenr(leaf, leaf->start);
  1171. btrfs_set_header_generation(leaf, trans->transid);
  1172. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1173. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1174. root->node = leaf;
  1175. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1176. btrfs_mark_buffer_dirty(root->node);
  1177. btrfs_tree_unlock(root->node);
  1178. return root;
  1179. }
  1180. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1181. struct btrfs_fs_info *fs_info)
  1182. {
  1183. struct btrfs_root *log_root;
  1184. log_root = alloc_log_tree(trans, fs_info);
  1185. if (IS_ERR(log_root))
  1186. return PTR_ERR(log_root);
  1187. WARN_ON(fs_info->log_root_tree);
  1188. fs_info->log_root_tree = log_root;
  1189. return 0;
  1190. }
  1191. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1192. struct btrfs_root *root)
  1193. {
  1194. struct btrfs_fs_info *fs_info = root->fs_info;
  1195. struct btrfs_root *log_root;
  1196. struct btrfs_inode_item *inode_item;
  1197. log_root = alloc_log_tree(trans, fs_info);
  1198. if (IS_ERR(log_root))
  1199. return PTR_ERR(log_root);
  1200. log_root->last_trans = trans->transid;
  1201. log_root->root_key.offset = root->root_key.objectid;
  1202. inode_item = &log_root->root_item.inode;
  1203. btrfs_set_stack_inode_generation(inode_item, 1);
  1204. btrfs_set_stack_inode_size(inode_item, 3);
  1205. btrfs_set_stack_inode_nlink(inode_item, 1);
  1206. btrfs_set_stack_inode_nbytes(inode_item,
  1207. fs_info->nodesize);
  1208. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1209. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1210. WARN_ON(root->log_root);
  1211. root->log_root = log_root;
  1212. root->log_transid = 0;
  1213. root->log_transid_committed = -1;
  1214. root->last_log_commit = 0;
  1215. return 0;
  1216. }
  1217. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1218. struct btrfs_key *key)
  1219. {
  1220. struct btrfs_root *root;
  1221. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1222. struct btrfs_path *path;
  1223. u64 generation;
  1224. int ret;
  1225. path = btrfs_alloc_path();
  1226. if (!path)
  1227. return ERR_PTR(-ENOMEM);
  1228. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1229. if (!root) {
  1230. ret = -ENOMEM;
  1231. goto alloc_fail;
  1232. }
  1233. __setup_root(root, fs_info, key->objectid);
  1234. ret = btrfs_find_root(tree_root, key, path,
  1235. &root->root_item, &root->root_key);
  1236. if (ret) {
  1237. if (ret > 0)
  1238. ret = -ENOENT;
  1239. goto find_fail;
  1240. }
  1241. generation = btrfs_root_generation(&root->root_item);
  1242. root->node = read_tree_block(fs_info,
  1243. btrfs_root_bytenr(&root->root_item),
  1244. generation);
  1245. if (IS_ERR(root->node)) {
  1246. ret = PTR_ERR(root->node);
  1247. goto find_fail;
  1248. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1249. ret = -EIO;
  1250. free_extent_buffer(root->node);
  1251. goto find_fail;
  1252. }
  1253. root->commit_root = btrfs_root_node(root);
  1254. out:
  1255. btrfs_free_path(path);
  1256. return root;
  1257. find_fail:
  1258. kfree(root);
  1259. alloc_fail:
  1260. root = ERR_PTR(ret);
  1261. goto out;
  1262. }
  1263. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1264. struct btrfs_key *location)
  1265. {
  1266. struct btrfs_root *root;
  1267. root = btrfs_read_tree_root(tree_root, location);
  1268. if (IS_ERR(root))
  1269. return root;
  1270. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1271. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1272. btrfs_check_and_init_root_item(&root->root_item);
  1273. }
  1274. return root;
  1275. }
  1276. int btrfs_init_fs_root(struct btrfs_root *root)
  1277. {
  1278. int ret;
  1279. struct btrfs_subvolume_writers *writers;
  1280. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1281. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1282. GFP_NOFS);
  1283. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1284. ret = -ENOMEM;
  1285. goto fail;
  1286. }
  1287. writers = btrfs_alloc_subvolume_writers();
  1288. if (IS_ERR(writers)) {
  1289. ret = PTR_ERR(writers);
  1290. goto fail;
  1291. }
  1292. root->subv_writers = writers;
  1293. btrfs_init_free_ino_ctl(root);
  1294. spin_lock_init(&root->ino_cache_lock);
  1295. init_waitqueue_head(&root->ino_cache_wait);
  1296. ret = get_anon_bdev(&root->anon_dev);
  1297. if (ret)
  1298. goto fail;
  1299. mutex_lock(&root->objectid_mutex);
  1300. ret = btrfs_find_highest_objectid(root,
  1301. &root->highest_objectid);
  1302. if (ret) {
  1303. mutex_unlock(&root->objectid_mutex);
  1304. goto fail;
  1305. }
  1306. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1307. mutex_unlock(&root->objectid_mutex);
  1308. return 0;
  1309. fail:
  1310. /* the caller is responsible to call free_fs_root */
  1311. return ret;
  1312. }
  1313. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1314. u64 root_id)
  1315. {
  1316. struct btrfs_root *root;
  1317. spin_lock(&fs_info->fs_roots_radix_lock);
  1318. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1319. (unsigned long)root_id);
  1320. spin_unlock(&fs_info->fs_roots_radix_lock);
  1321. return root;
  1322. }
  1323. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1324. struct btrfs_root *root)
  1325. {
  1326. int ret;
  1327. ret = radix_tree_preload(GFP_NOFS);
  1328. if (ret)
  1329. return ret;
  1330. spin_lock(&fs_info->fs_roots_radix_lock);
  1331. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1332. (unsigned long)root->root_key.objectid,
  1333. root);
  1334. if (ret == 0)
  1335. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1336. spin_unlock(&fs_info->fs_roots_radix_lock);
  1337. radix_tree_preload_end();
  1338. return ret;
  1339. }
  1340. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1341. struct btrfs_key *location,
  1342. bool check_ref)
  1343. {
  1344. struct btrfs_root *root;
  1345. struct btrfs_path *path;
  1346. struct btrfs_key key;
  1347. int ret;
  1348. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1349. return fs_info->tree_root;
  1350. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1351. return fs_info->extent_root;
  1352. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1353. return fs_info->chunk_root;
  1354. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1355. return fs_info->dev_root;
  1356. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1357. return fs_info->csum_root;
  1358. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1359. return fs_info->quota_root ? fs_info->quota_root :
  1360. ERR_PTR(-ENOENT);
  1361. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1362. return fs_info->uuid_root ? fs_info->uuid_root :
  1363. ERR_PTR(-ENOENT);
  1364. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1365. return fs_info->free_space_root ? fs_info->free_space_root :
  1366. ERR_PTR(-ENOENT);
  1367. again:
  1368. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1369. if (root) {
  1370. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1371. return ERR_PTR(-ENOENT);
  1372. return root;
  1373. }
  1374. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1375. if (IS_ERR(root))
  1376. return root;
  1377. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1378. ret = -ENOENT;
  1379. goto fail;
  1380. }
  1381. ret = btrfs_init_fs_root(root);
  1382. if (ret)
  1383. goto fail;
  1384. path = btrfs_alloc_path();
  1385. if (!path) {
  1386. ret = -ENOMEM;
  1387. goto fail;
  1388. }
  1389. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1390. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1391. key.offset = location->objectid;
  1392. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1393. btrfs_free_path(path);
  1394. if (ret < 0)
  1395. goto fail;
  1396. if (ret == 0)
  1397. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1398. ret = btrfs_insert_fs_root(fs_info, root);
  1399. if (ret) {
  1400. if (ret == -EEXIST) {
  1401. free_fs_root(root);
  1402. goto again;
  1403. }
  1404. goto fail;
  1405. }
  1406. return root;
  1407. fail:
  1408. free_fs_root(root);
  1409. return ERR_PTR(ret);
  1410. }
  1411. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1412. {
  1413. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1414. int ret = 0;
  1415. struct btrfs_device *device;
  1416. struct backing_dev_info *bdi;
  1417. rcu_read_lock();
  1418. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1419. if (!device->bdev)
  1420. continue;
  1421. bdi = device->bdev->bd_bdi;
  1422. if (bdi_congested(bdi, bdi_bits)) {
  1423. ret = 1;
  1424. break;
  1425. }
  1426. }
  1427. rcu_read_unlock();
  1428. return ret;
  1429. }
  1430. /*
  1431. * called by the kthread helper functions to finally call the bio end_io
  1432. * functions. This is where read checksum verification actually happens
  1433. */
  1434. static void end_workqueue_fn(struct btrfs_work *work)
  1435. {
  1436. struct bio *bio;
  1437. struct btrfs_end_io_wq *end_io_wq;
  1438. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1439. bio = end_io_wq->bio;
  1440. bio->bi_status = end_io_wq->status;
  1441. bio->bi_private = end_io_wq->private;
  1442. bio->bi_end_io = end_io_wq->end_io;
  1443. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1444. bio_endio(bio);
  1445. }
  1446. static int cleaner_kthread(void *arg)
  1447. {
  1448. struct btrfs_root *root = arg;
  1449. struct btrfs_fs_info *fs_info = root->fs_info;
  1450. int again;
  1451. struct btrfs_trans_handle *trans;
  1452. do {
  1453. again = 0;
  1454. /* Make the cleaner go to sleep early. */
  1455. if (btrfs_need_cleaner_sleep(fs_info))
  1456. goto sleep;
  1457. /*
  1458. * Do not do anything if we might cause open_ctree() to block
  1459. * before we have finished mounting the filesystem.
  1460. */
  1461. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1462. goto sleep;
  1463. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1464. goto sleep;
  1465. /*
  1466. * Avoid the problem that we change the status of the fs
  1467. * during the above check and trylock.
  1468. */
  1469. if (btrfs_need_cleaner_sleep(fs_info)) {
  1470. mutex_unlock(&fs_info->cleaner_mutex);
  1471. goto sleep;
  1472. }
  1473. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1474. btrfs_run_delayed_iputs(fs_info);
  1475. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1476. again = btrfs_clean_one_deleted_snapshot(root);
  1477. mutex_unlock(&fs_info->cleaner_mutex);
  1478. /*
  1479. * The defragger has dealt with the R/O remount and umount,
  1480. * needn't do anything special here.
  1481. */
  1482. btrfs_run_defrag_inodes(fs_info);
  1483. /*
  1484. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1485. * with relocation (btrfs_relocate_chunk) and relocation
  1486. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1487. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1488. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1489. * unused block groups.
  1490. */
  1491. btrfs_delete_unused_bgs(fs_info);
  1492. sleep:
  1493. if (!again) {
  1494. set_current_state(TASK_INTERRUPTIBLE);
  1495. if (!kthread_should_stop())
  1496. schedule();
  1497. __set_current_state(TASK_RUNNING);
  1498. }
  1499. } while (!kthread_should_stop());
  1500. /*
  1501. * Transaction kthread is stopped before us and wakes us up.
  1502. * However we might have started a new transaction and COWed some
  1503. * tree blocks when deleting unused block groups for example. So
  1504. * make sure we commit the transaction we started to have a clean
  1505. * shutdown when evicting the btree inode - if it has dirty pages
  1506. * when we do the final iput() on it, eviction will trigger a
  1507. * writeback for it which will fail with null pointer dereferences
  1508. * since work queues and other resources were already released and
  1509. * destroyed by the time the iput/eviction/writeback is made.
  1510. */
  1511. trans = btrfs_attach_transaction(root);
  1512. if (IS_ERR(trans)) {
  1513. if (PTR_ERR(trans) != -ENOENT)
  1514. btrfs_err(fs_info,
  1515. "cleaner transaction attach returned %ld",
  1516. PTR_ERR(trans));
  1517. } else {
  1518. int ret;
  1519. ret = btrfs_commit_transaction(trans);
  1520. if (ret)
  1521. btrfs_err(fs_info,
  1522. "cleaner open transaction commit returned %d",
  1523. ret);
  1524. }
  1525. return 0;
  1526. }
  1527. static int transaction_kthread(void *arg)
  1528. {
  1529. struct btrfs_root *root = arg;
  1530. struct btrfs_fs_info *fs_info = root->fs_info;
  1531. struct btrfs_trans_handle *trans;
  1532. struct btrfs_transaction *cur;
  1533. u64 transid;
  1534. unsigned long now;
  1535. unsigned long delay;
  1536. bool cannot_commit;
  1537. do {
  1538. cannot_commit = false;
  1539. delay = HZ * fs_info->commit_interval;
  1540. mutex_lock(&fs_info->transaction_kthread_mutex);
  1541. spin_lock(&fs_info->trans_lock);
  1542. cur = fs_info->running_transaction;
  1543. if (!cur) {
  1544. spin_unlock(&fs_info->trans_lock);
  1545. goto sleep;
  1546. }
  1547. now = get_seconds();
  1548. if (cur->state < TRANS_STATE_BLOCKED &&
  1549. (now < cur->start_time ||
  1550. now - cur->start_time < fs_info->commit_interval)) {
  1551. spin_unlock(&fs_info->trans_lock);
  1552. delay = HZ * 5;
  1553. goto sleep;
  1554. }
  1555. transid = cur->transid;
  1556. spin_unlock(&fs_info->trans_lock);
  1557. /* If the file system is aborted, this will always fail. */
  1558. trans = btrfs_attach_transaction(root);
  1559. if (IS_ERR(trans)) {
  1560. if (PTR_ERR(trans) != -ENOENT)
  1561. cannot_commit = true;
  1562. goto sleep;
  1563. }
  1564. if (transid == trans->transid) {
  1565. btrfs_commit_transaction(trans);
  1566. } else {
  1567. btrfs_end_transaction(trans);
  1568. }
  1569. sleep:
  1570. wake_up_process(fs_info->cleaner_kthread);
  1571. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1572. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1573. &fs_info->fs_state)))
  1574. btrfs_cleanup_transaction(fs_info);
  1575. set_current_state(TASK_INTERRUPTIBLE);
  1576. if (!kthread_should_stop() &&
  1577. (!btrfs_transaction_blocked(fs_info) ||
  1578. cannot_commit))
  1579. schedule_timeout(delay);
  1580. __set_current_state(TASK_RUNNING);
  1581. } while (!kthread_should_stop());
  1582. return 0;
  1583. }
  1584. /*
  1585. * this will find the highest generation in the array of
  1586. * root backups. The index of the highest array is returned,
  1587. * or -1 if we can't find anything.
  1588. *
  1589. * We check to make sure the array is valid by comparing the
  1590. * generation of the latest root in the array with the generation
  1591. * in the super block. If they don't match we pitch it.
  1592. */
  1593. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1594. {
  1595. u64 cur;
  1596. int newest_index = -1;
  1597. struct btrfs_root_backup *root_backup;
  1598. int i;
  1599. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1600. root_backup = info->super_copy->super_roots + i;
  1601. cur = btrfs_backup_tree_root_gen(root_backup);
  1602. if (cur == newest_gen)
  1603. newest_index = i;
  1604. }
  1605. /* check to see if we actually wrapped around */
  1606. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1607. root_backup = info->super_copy->super_roots;
  1608. cur = btrfs_backup_tree_root_gen(root_backup);
  1609. if (cur == newest_gen)
  1610. newest_index = 0;
  1611. }
  1612. return newest_index;
  1613. }
  1614. /*
  1615. * find the oldest backup so we know where to store new entries
  1616. * in the backup array. This will set the backup_root_index
  1617. * field in the fs_info struct
  1618. */
  1619. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1620. u64 newest_gen)
  1621. {
  1622. int newest_index = -1;
  1623. newest_index = find_newest_super_backup(info, newest_gen);
  1624. /* if there was garbage in there, just move along */
  1625. if (newest_index == -1) {
  1626. info->backup_root_index = 0;
  1627. } else {
  1628. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1629. }
  1630. }
  1631. /*
  1632. * copy all the root pointers into the super backup array.
  1633. * this will bump the backup pointer by one when it is
  1634. * done
  1635. */
  1636. static void backup_super_roots(struct btrfs_fs_info *info)
  1637. {
  1638. int next_backup;
  1639. struct btrfs_root_backup *root_backup;
  1640. int last_backup;
  1641. next_backup = info->backup_root_index;
  1642. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1643. BTRFS_NUM_BACKUP_ROOTS;
  1644. /*
  1645. * just overwrite the last backup if we're at the same generation
  1646. * this happens only at umount
  1647. */
  1648. root_backup = info->super_for_commit->super_roots + last_backup;
  1649. if (btrfs_backup_tree_root_gen(root_backup) ==
  1650. btrfs_header_generation(info->tree_root->node))
  1651. next_backup = last_backup;
  1652. root_backup = info->super_for_commit->super_roots + next_backup;
  1653. /*
  1654. * make sure all of our padding and empty slots get zero filled
  1655. * regardless of which ones we use today
  1656. */
  1657. memset(root_backup, 0, sizeof(*root_backup));
  1658. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1659. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1660. btrfs_set_backup_tree_root_gen(root_backup,
  1661. btrfs_header_generation(info->tree_root->node));
  1662. btrfs_set_backup_tree_root_level(root_backup,
  1663. btrfs_header_level(info->tree_root->node));
  1664. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1665. btrfs_set_backup_chunk_root_gen(root_backup,
  1666. btrfs_header_generation(info->chunk_root->node));
  1667. btrfs_set_backup_chunk_root_level(root_backup,
  1668. btrfs_header_level(info->chunk_root->node));
  1669. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1670. btrfs_set_backup_extent_root_gen(root_backup,
  1671. btrfs_header_generation(info->extent_root->node));
  1672. btrfs_set_backup_extent_root_level(root_backup,
  1673. btrfs_header_level(info->extent_root->node));
  1674. /*
  1675. * we might commit during log recovery, which happens before we set
  1676. * the fs_root. Make sure it is valid before we fill it in.
  1677. */
  1678. if (info->fs_root && info->fs_root->node) {
  1679. btrfs_set_backup_fs_root(root_backup,
  1680. info->fs_root->node->start);
  1681. btrfs_set_backup_fs_root_gen(root_backup,
  1682. btrfs_header_generation(info->fs_root->node));
  1683. btrfs_set_backup_fs_root_level(root_backup,
  1684. btrfs_header_level(info->fs_root->node));
  1685. }
  1686. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1687. btrfs_set_backup_dev_root_gen(root_backup,
  1688. btrfs_header_generation(info->dev_root->node));
  1689. btrfs_set_backup_dev_root_level(root_backup,
  1690. btrfs_header_level(info->dev_root->node));
  1691. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1692. btrfs_set_backup_csum_root_gen(root_backup,
  1693. btrfs_header_generation(info->csum_root->node));
  1694. btrfs_set_backup_csum_root_level(root_backup,
  1695. btrfs_header_level(info->csum_root->node));
  1696. btrfs_set_backup_total_bytes(root_backup,
  1697. btrfs_super_total_bytes(info->super_copy));
  1698. btrfs_set_backup_bytes_used(root_backup,
  1699. btrfs_super_bytes_used(info->super_copy));
  1700. btrfs_set_backup_num_devices(root_backup,
  1701. btrfs_super_num_devices(info->super_copy));
  1702. /*
  1703. * if we don't copy this out to the super_copy, it won't get remembered
  1704. * for the next commit
  1705. */
  1706. memcpy(&info->super_copy->super_roots,
  1707. &info->super_for_commit->super_roots,
  1708. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1709. }
  1710. /*
  1711. * this copies info out of the root backup array and back into
  1712. * the in-memory super block. It is meant to help iterate through
  1713. * the array, so you send it the number of backups you've already
  1714. * tried and the last backup index you used.
  1715. *
  1716. * this returns -1 when it has tried all the backups
  1717. */
  1718. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1719. struct btrfs_super_block *super,
  1720. int *num_backups_tried, int *backup_index)
  1721. {
  1722. struct btrfs_root_backup *root_backup;
  1723. int newest = *backup_index;
  1724. if (*num_backups_tried == 0) {
  1725. u64 gen = btrfs_super_generation(super);
  1726. newest = find_newest_super_backup(info, gen);
  1727. if (newest == -1)
  1728. return -1;
  1729. *backup_index = newest;
  1730. *num_backups_tried = 1;
  1731. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1732. /* we've tried all the backups, all done */
  1733. return -1;
  1734. } else {
  1735. /* jump to the next oldest backup */
  1736. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1737. BTRFS_NUM_BACKUP_ROOTS;
  1738. *backup_index = newest;
  1739. *num_backups_tried += 1;
  1740. }
  1741. root_backup = super->super_roots + newest;
  1742. btrfs_set_super_generation(super,
  1743. btrfs_backup_tree_root_gen(root_backup));
  1744. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1745. btrfs_set_super_root_level(super,
  1746. btrfs_backup_tree_root_level(root_backup));
  1747. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1748. /*
  1749. * fixme: the total bytes and num_devices need to match or we should
  1750. * need a fsck
  1751. */
  1752. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1753. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1754. return 0;
  1755. }
  1756. /* helper to cleanup workers */
  1757. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1758. {
  1759. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1760. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1761. btrfs_destroy_workqueue(fs_info->workers);
  1762. btrfs_destroy_workqueue(fs_info->endio_workers);
  1763. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1764. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1765. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1766. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1767. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1768. btrfs_destroy_workqueue(fs_info->submit_workers);
  1769. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1770. btrfs_destroy_workqueue(fs_info->caching_workers);
  1771. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1772. btrfs_destroy_workqueue(fs_info->flush_workers);
  1773. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1774. btrfs_destroy_workqueue(fs_info->extent_workers);
  1775. /*
  1776. * Now that all other work queues are destroyed, we can safely destroy
  1777. * the queues used for metadata I/O, since tasks from those other work
  1778. * queues can do metadata I/O operations.
  1779. */
  1780. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1781. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1782. }
  1783. static void free_root_extent_buffers(struct btrfs_root *root)
  1784. {
  1785. if (root) {
  1786. free_extent_buffer(root->node);
  1787. free_extent_buffer(root->commit_root);
  1788. root->node = NULL;
  1789. root->commit_root = NULL;
  1790. }
  1791. }
  1792. /* helper to cleanup tree roots */
  1793. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1794. {
  1795. free_root_extent_buffers(info->tree_root);
  1796. free_root_extent_buffers(info->dev_root);
  1797. free_root_extent_buffers(info->extent_root);
  1798. free_root_extent_buffers(info->csum_root);
  1799. free_root_extent_buffers(info->quota_root);
  1800. free_root_extent_buffers(info->uuid_root);
  1801. if (chunk_root)
  1802. free_root_extent_buffers(info->chunk_root);
  1803. free_root_extent_buffers(info->free_space_root);
  1804. }
  1805. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1806. {
  1807. int ret;
  1808. struct btrfs_root *gang[8];
  1809. int i;
  1810. while (!list_empty(&fs_info->dead_roots)) {
  1811. gang[0] = list_entry(fs_info->dead_roots.next,
  1812. struct btrfs_root, root_list);
  1813. list_del(&gang[0]->root_list);
  1814. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1815. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1816. } else {
  1817. free_extent_buffer(gang[0]->node);
  1818. free_extent_buffer(gang[0]->commit_root);
  1819. btrfs_put_fs_root(gang[0]);
  1820. }
  1821. }
  1822. while (1) {
  1823. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1824. (void **)gang, 0,
  1825. ARRAY_SIZE(gang));
  1826. if (!ret)
  1827. break;
  1828. for (i = 0; i < ret; i++)
  1829. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1830. }
  1831. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1832. btrfs_free_log_root_tree(NULL, fs_info);
  1833. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1834. }
  1835. }
  1836. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1837. {
  1838. mutex_init(&fs_info->scrub_lock);
  1839. atomic_set(&fs_info->scrubs_running, 0);
  1840. atomic_set(&fs_info->scrub_pause_req, 0);
  1841. atomic_set(&fs_info->scrubs_paused, 0);
  1842. atomic_set(&fs_info->scrub_cancel_req, 0);
  1843. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1844. fs_info->scrub_workers_refcnt = 0;
  1845. }
  1846. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1847. {
  1848. spin_lock_init(&fs_info->balance_lock);
  1849. mutex_init(&fs_info->balance_mutex);
  1850. atomic_set(&fs_info->balance_running, 0);
  1851. atomic_set(&fs_info->balance_pause_req, 0);
  1852. atomic_set(&fs_info->balance_cancel_req, 0);
  1853. fs_info->balance_ctl = NULL;
  1854. init_waitqueue_head(&fs_info->balance_wait_q);
  1855. }
  1856. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1857. {
  1858. struct inode *inode = fs_info->btree_inode;
  1859. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1860. set_nlink(inode, 1);
  1861. /*
  1862. * we set the i_size on the btree inode to the max possible int.
  1863. * the real end of the address space is determined by all of
  1864. * the devices in the system
  1865. */
  1866. inode->i_size = OFFSET_MAX;
  1867. inode->i_mapping->a_ops = &btree_aops;
  1868. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  1869. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  1870. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  1871. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  1872. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  1873. BTRFS_I(inode)->root = fs_info->tree_root;
  1874. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  1875. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  1876. btrfs_insert_inode_hash(inode);
  1877. }
  1878. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1879. {
  1880. fs_info->dev_replace.lock_owner = 0;
  1881. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1882. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1883. rwlock_init(&fs_info->dev_replace.lock);
  1884. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1885. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1886. init_waitqueue_head(&fs_info->replace_wait);
  1887. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1888. }
  1889. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1890. {
  1891. spin_lock_init(&fs_info->qgroup_lock);
  1892. mutex_init(&fs_info->qgroup_ioctl_lock);
  1893. fs_info->qgroup_tree = RB_ROOT;
  1894. fs_info->qgroup_op_tree = RB_ROOT;
  1895. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1896. fs_info->qgroup_seq = 1;
  1897. fs_info->qgroup_ulist = NULL;
  1898. fs_info->qgroup_rescan_running = false;
  1899. mutex_init(&fs_info->qgroup_rescan_lock);
  1900. }
  1901. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1902. struct btrfs_fs_devices *fs_devices)
  1903. {
  1904. int max_active = fs_info->thread_pool_size;
  1905. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1906. fs_info->workers =
  1907. btrfs_alloc_workqueue(fs_info, "worker",
  1908. flags | WQ_HIGHPRI, max_active, 16);
  1909. fs_info->delalloc_workers =
  1910. btrfs_alloc_workqueue(fs_info, "delalloc",
  1911. flags, max_active, 2);
  1912. fs_info->flush_workers =
  1913. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  1914. flags, max_active, 0);
  1915. fs_info->caching_workers =
  1916. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  1917. /*
  1918. * a higher idle thresh on the submit workers makes it much more
  1919. * likely that bios will be send down in a sane order to the
  1920. * devices
  1921. */
  1922. fs_info->submit_workers =
  1923. btrfs_alloc_workqueue(fs_info, "submit", flags,
  1924. min_t(u64, fs_devices->num_devices,
  1925. max_active), 64);
  1926. fs_info->fixup_workers =
  1927. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  1928. /*
  1929. * endios are largely parallel and should have a very
  1930. * low idle thresh
  1931. */
  1932. fs_info->endio_workers =
  1933. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  1934. fs_info->endio_meta_workers =
  1935. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  1936. max_active, 4);
  1937. fs_info->endio_meta_write_workers =
  1938. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  1939. max_active, 2);
  1940. fs_info->endio_raid56_workers =
  1941. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  1942. max_active, 4);
  1943. fs_info->endio_repair_workers =
  1944. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  1945. fs_info->rmw_workers =
  1946. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  1947. fs_info->endio_write_workers =
  1948. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  1949. max_active, 2);
  1950. fs_info->endio_freespace_worker =
  1951. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  1952. max_active, 0);
  1953. fs_info->delayed_workers =
  1954. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  1955. max_active, 0);
  1956. fs_info->readahead_workers =
  1957. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  1958. max_active, 2);
  1959. fs_info->qgroup_rescan_workers =
  1960. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  1961. fs_info->extent_workers =
  1962. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  1963. min_t(u64, fs_devices->num_devices,
  1964. max_active), 8);
  1965. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1966. fs_info->submit_workers && fs_info->flush_workers &&
  1967. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1968. fs_info->endio_meta_write_workers &&
  1969. fs_info->endio_repair_workers &&
  1970. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  1971. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  1972. fs_info->caching_workers && fs_info->readahead_workers &&
  1973. fs_info->fixup_workers && fs_info->delayed_workers &&
  1974. fs_info->extent_workers &&
  1975. fs_info->qgroup_rescan_workers)) {
  1976. return -ENOMEM;
  1977. }
  1978. return 0;
  1979. }
  1980. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  1981. struct btrfs_fs_devices *fs_devices)
  1982. {
  1983. int ret;
  1984. struct btrfs_root *log_tree_root;
  1985. struct btrfs_super_block *disk_super = fs_info->super_copy;
  1986. u64 bytenr = btrfs_super_log_root(disk_super);
  1987. if (fs_devices->rw_devices == 0) {
  1988. btrfs_warn(fs_info, "log replay required on RO media");
  1989. return -EIO;
  1990. }
  1991. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1992. if (!log_tree_root)
  1993. return -ENOMEM;
  1994. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1995. log_tree_root->node = read_tree_block(fs_info, bytenr,
  1996. fs_info->generation + 1);
  1997. if (IS_ERR(log_tree_root->node)) {
  1998. btrfs_warn(fs_info, "failed to read log tree");
  1999. ret = PTR_ERR(log_tree_root->node);
  2000. kfree(log_tree_root);
  2001. return ret;
  2002. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2003. btrfs_err(fs_info, "failed to read log tree");
  2004. free_extent_buffer(log_tree_root->node);
  2005. kfree(log_tree_root);
  2006. return -EIO;
  2007. }
  2008. /* returns with log_tree_root freed on success */
  2009. ret = btrfs_recover_log_trees(log_tree_root);
  2010. if (ret) {
  2011. btrfs_handle_fs_error(fs_info, ret,
  2012. "Failed to recover log tree");
  2013. free_extent_buffer(log_tree_root->node);
  2014. kfree(log_tree_root);
  2015. return ret;
  2016. }
  2017. if (sb_rdonly(fs_info->sb)) {
  2018. ret = btrfs_commit_super(fs_info);
  2019. if (ret)
  2020. return ret;
  2021. }
  2022. return 0;
  2023. }
  2024. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2025. {
  2026. struct btrfs_root *tree_root = fs_info->tree_root;
  2027. struct btrfs_root *root;
  2028. struct btrfs_key location;
  2029. int ret;
  2030. BUG_ON(!fs_info->tree_root);
  2031. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2032. location.type = BTRFS_ROOT_ITEM_KEY;
  2033. location.offset = 0;
  2034. root = btrfs_read_tree_root(tree_root, &location);
  2035. if (IS_ERR(root))
  2036. return PTR_ERR(root);
  2037. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2038. fs_info->extent_root = root;
  2039. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2040. root = btrfs_read_tree_root(tree_root, &location);
  2041. if (IS_ERR(root))
  2042. return PTR_ERR(root);
  2043. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2044. fs_info->dev_root = root;
  2045. btrfs_init_devices_late(fs_info);
  2046. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2047. root = btrfs_read_tree_root(tree_root, &location);
  2048. if (IS_ERR(root))
  2049. return PTR_ERR(root);
  2050. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2051. fs_info->csum_root = root;
  2052. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2053. root = btrfs_read_tree_root(tree_root, &location);
  2054. if (!IS_ERR(root)) {
  2055. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2056. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2057. fs_info->quota_root = root;
  2058. }
  2059. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2060. root = btrfs_read_tree_root(tree_root, &location);
  2061. if (IS_ERR(root)) {
  2062. ret = PTR_ERR(root);
  2063. if (ret != -ENOENT)
  2064. return ret;
  2065. } else {
  2066. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2067. fs_info->uuid_root = root;
  2068. }
  2069. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2070. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2071. root = btrfs_read_tree_root(tree_root, &location);
  2072. if (IS_ERR(root))
  2073. return PTR_ERR(root);
  2074. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2075. fs_info->free_space_root = root;
  2076. }
  2077. return 0;
  2078. }
  2079. int open_ctree(struct super_block *sb,
  2080. struct btrfs_fs_devices *fs_devices,
  2081. char *options)
  2082. {
  2083. u32 sectorsize;
  2084. u32 nodesize;
  2085. u32 stripesize;
  2086. u64 generation;
  2087. u64 features;
  2088. struct btrfs_key location;
  2089. struct buffer_head *bh;
  2090. struct btrfs_super_block *disk_super;
  2091. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2092. struct btrfs_root *tree_root;
  2093. struct btrfs_root *chunk_root;
  2094. int ret;
  2095. int err = -EINVAL;
  2096. int num_backups_tried = 0;
  2097. int backup_index = 0;
  2098. int max_active;
  2099. int clear_free_space_tree = 0;
  2100. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2101. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2102. if (!tree_root || !chunk_root) {
  2103. err = -ENOMEM;
  2104. goto fail;
  2105. }
  2106. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2107. if (ret) {
  2108. err = ret;
  2109. goto fail;
  2110. }
  2111. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2112. if (ret) {
  2113. err = ret;
  2114. goto fail_srcu;
  2115. }
  2116. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2117. (1 + ilog2(nr_cpu_ids));
  2118. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2119. if (ret) {
  2120. err = ret;
  2121. goto fail_dirty_metadata_bytes;
  2122. }
  2123. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2124. if (ret) {
  2125. err = ret;
  2126. goto fail_delalloc_bytes;
  2127. }
  2128. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2129. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2130. INIT_LIST_HEAD(&fs_info->trans_list);
  2131. INIT_LIST_HEAD(&fs_info->dead_roots);
  2132. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2133. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2134. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2135. spin_lock_init(&fs_info->delalloc_root_lock);
  2136. spin_lock_init(&fs_info->trans_lock);
  2137. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2138. spin_lock_init(&fs_info->delayed_iput_lock);
  2139. spin_lock_init(&fs_info->defrag_inodes_lock);
  2140. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2141. spin_lock_init(&fs_info->super_lock);
  2142. spin_lock_init(&fs_info->qgroup_op_lock);
  2143. spin_lock_init(&fs_info->buffer_lock);
  2144. spin_lock_init(&fs_info->unused_bgs_lock);
  2145. rwlock_init(&fs_info->tree_mod_log_lock);
  2146. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2147. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2148. mutex_init(&fs_info->reloc_mutex);
  2149. mutex_init(&fs_info->delalloc_root_mutex);
  2150. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2151. seqlock_init(&fs_info->profiles_lock);
  2152. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2153. INIT_LIST_HEAD(&fs_info->space_info);
  2154. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2155. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2156. btrfs_mapping_init(&fs_info->mapping_tree);
  2157. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2158. BTRFS_BLOCK_RSV_GLOBAL);
  2159. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2160. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2161. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2162. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2163. BTRFS_BLOCK_RSV_DELOPS);
  2164. atomic_set(&fs_info->async_delalloc_pages, 0);
  2165. atomic_set(&fs_info->defrag_running, 0);
  2166. atomic_set(&fs_info->qgroup_op_seq, 0);
  2167. atomic_set(&fs_info->reada_works_cnt, 0);
  2168. atomic64_set(&fs_info->tree_mod_seq, 0);
  2169. fs_info->sb = sb;
  2170. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2171. fs_info->metadata_ratio = 0;
  2172. fs_info->defrag_inodes = RB_ROOT;
  2173. atomic64_set(&fs_info->free_chunk_space, 0);
  2174. fs_info->tree_mod_log = RB_ROOT;
  2175. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2176. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2177. /* readahead state */
  2178. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2179. spin_lock_init(&fs_info->reada_lock);
  2180. btrfs_init_ref_verify(fs_info);
  2181. fs_info->thread_pool_size = min_t(unsigned long,
  2182. num_online_cpus() + 2, 8);
  2183. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2184. spin_lock_init(&fs_info->ordered_root_lock);
  2185. fs_info->btree_inode = new_inode(sb);
  2186. if (!fs_info->btree_inode) {
  2187. err = -ENOMEM;
  2188. goto fail_bio_counter;
  2189. }
  2190. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2191. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2192. GFP_KERNEL);
  2193. if (!fs_info->delayed_root) {
  2194. err = -ENOMEM;
  2195. goto fail_iput;
  2196. }
  2197. btrfs_init_delayed_root(fs_info->delayed_root);
  2198. btrfs_init_scrub(fs_info);
  2199. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2200. fs_info->check_integrity_print_mask = 0;
  2201. #endif
  2202. btrfs_init_balance(fs_info);
  2203. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2204. sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
  2205. sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
  2206. btrfs_init_btree_inode(fs_info);
  2207. spin_lock_init(&fs_info->block_group_cache_lock);
  2208. fs_info->block_group_cache_tree = RB_ROOT;
  2209. fs_info->first_logical_byte = (u64)-1;
  2210. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2211. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2212. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2213. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2214. mutex_init(&fs_info->ordered_operations_mutex);
  2215. mutex_init(&fs_info->tree_log_mutex);
  2216. mutex_init(&fs_info->chunk_mutex);
  2217. mutex_init(&fs_info->transaction_kthread_mutex);
  2218. mutex_init(&fs_info->cleaner_mutex);
  2219. mutex_init(&fs_info->volume_mutex);
  2220. mutex_init(&fs_info->ro_block_group_mutex);
  2221. init_rwsem(&fs_info->commit_root_sem);
  2222. init_rwsem(&fs_info->cleanup_work_sem);
  2223. init_rwsem(&fs_info->subvol_sem);
  2224. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2225. btrfs_init_dev_replace_locks(fs_info);
  2226. btrfs_init_qgroup(fs_info);
  2227. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2228. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2229. init_waitqueue_head(&fs_info->transaction_throttle);
  2230. init_waitqueue_head(&fs_info->transaction_wait);
  2231. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2232. init_waitqueue_head(&fs_info->async_submit_wait);
  2233. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2234. /* Usable values until the real ones are cached from the superblock */
  2235. fs_info->nodesize = 4096;
  2236. fs_info->sectorsize = 4096;
  2237. fs_info->stripesize = 4096;
  2238. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2239. if (ret) {
  2240. err = ret;
  2241. goto fail_alloc;
  2242. }
  2243. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2244. invalidate_bdev(fs_devices->latest_bdev);
  2245. /*
  2246. * Read super block and check the signature bytes only
  2247. */
  2248. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2249. if (IS_ERR(bh)) {
  2250. err = PTR_ERR(bh);
  2251. goto fail_alloc;
  2252. }
  2253. /*
  2254. * We want to check superblock checksum, the type is stored inside.
  2255. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2256. */
  2257. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2258. btrfs_err(fs_info, "superblock checksum mismatch");
  2259. err = -EINVAL;
  2260. brelse(bh);
  2261. goto fail_alloc;
  2262. }
  2263. /*
  2264. * super_copy is zeroed at allocation time and we never touch the
  2265. * following bytes up to INFO_SIZE, the checksum is calculated from
  2266. * the whole block of INFO_SIZE
  2267. */
  2268. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2269. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2270. sizeof(*fs_info->super_for_commit));
  2271. brelse(bh);
  2272. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2273. ret = btrfs_check_super_valid(fs_info);
  2274. if (ret) {
  2275. btrfs_err(fs_info, "superblock contains fatal errors");
  2276. err = -EINVAL;
  2277. goto fail_alloc;
  2278. }
  2279. disk_super = fs_info->super_copy;
  2280. if (!btrfs_super_root(disk_super))
  2281. goto fail_alloc;
  2282. /* check FS state, whether FS is broken. */
  2283. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2284. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2285. /*
  2286. * run through our array of backup supers and setup
  2287. * our ring pointer to the oldest one
  2288. */
  2289. generation = btrfs_super_generation(disk_super);
  2290. find_oldest_super_backup(fs_info, generation);
  2291. /*
  2292. * In the long term, we'll store the compression type in the super
  2293. * block, and it'll be used for per file compression control.
  2294. */
  2295. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2296. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2297. if (ret) {
  2298. err = ret;
  2299. goto fail_alloc;
  2300. }
  2301. features = btrfs_super_incompat_flags(disk_super) &
  2302. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2303. if (features) {
  2304. btrfs_err(fs_info,
  2305. "cannot mount because of unsupported optional features (%llx)",
  2306. features);
  2307. err = -EINVAL;
  2308. goto fail_alloc;
  2309. }
  2310. features = btrfs_super_incompat_flags(disk_super);
  2311. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2312. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2313. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2314. else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
  2315. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
  2316. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2317. btrfs_info(fs_info, "has skinny extents");
  2318. /*
  2319. * flag our filesystem as having big metadata blocks if
  2320. * they are bigger than the page size
  2321. */
  2322. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2323. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2324. btrfs_info(fs_info,
  2325. "flagging fs with big metadata feature");
  2326. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2327. }
  2328. nodesize = btrfs_super_nodesize(disk_super);
  2329. sectorsize = btrfs_super_sectorsize(disk_super);
  2330. stripesize = sectorsize;
  2331. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2332. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2333. /* Cache block sizes */
  2334. fs_info->nodesize = nodesize;
  2335. fs_info->sectorsize = sectorsize;
  2336. fs_info->stripesize = stripesize;
  2337. /*
  2338. * mixed block groups end up with duplicate but slightly offset
  2339. * extent buffers for the same range. It leads to corruptions
  2340. */
  2341. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2342. (sectorsize != nodesize)) {
  2343. btrfs_err(fs_info,
  2344. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2345. nodesize, sectorsize);
  2346. goto fail_alloc;
  2347. }
  2348. /*
  2349. * Needn't use the lock because there is no other task which will
  2350. * update the flag.
  2351. */
  2352. btrfs_set_super_incompat_flags(disk_super, features);
  2353. features = btrfs_super_compat_ro_flags(disk_super) &
  2354. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2355. if (!sb_rdonly(sb) && features) {
  2356. btrfs_err(fs_info,
  2357. "cannot mount read-write because of unsupported optional features (%llx)",
  2358. features);
  2359. err = -EINVAL;
  2360. goto fail_alloc;
  2361. }
  2362. max_active = fs_info->thread_pool_size;
  2363. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2364. if (ret) {
  2365. err = ret;
  2366. goto fail_sb_buffer;
  2367. }
  2368. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2369. sb->s_bdi->congested_data = fs_info;
  2370. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2371. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
  2372. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2373. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2374. sb->s_blocksize = sectorsize;
  2375. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2376. memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
  2377. mutex_lock(&fs_info->chunk_mutex);
  2378. ret = btrfs_read_sys_array(fs_info);
  2379. mutex_unlock(&fs_info->chunk_mutex);
  2380. if (ret) {
  2381. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2382. goto fail_sb_buffer;
  2383. }
  2384. generation = btrfs_super_chunk_root_generation(disk_super);
  2385. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2386. chunk_root->node = read_tree_block(fs_info,
  2387. btrfs_super_chunk_root(disk_super),
  2388. generation);
  2389. if (IS_ERR(chunk_root->node) ||
  2390. !extent_buffer_uptodate(chunk_root->node)) {
  2391. btrfs_err(fs_info, "failed to read chunk root");
  2392. if (!IS_ERR(chunk_root->node))
  2393. free_extent_buffer(chunk_root->node);
  2394. chunk_root->node = NULL;
  2395. goto fail_tree_roots;
  2396. }
  2397. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2398. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2399. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2400. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2401. ret = btrfs_read_chunk_tree(fs_info);
  2402. if (ret) {
  2403. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2404. goto fail_tree_roots;
  2405. }
  2406. /*
  2407. * keep the device that is marked to be the target device for the
  2408. * dev_replace procedure
  2409. */
  2410. btrfs_close_extra_devices(fs_devices, 0);
  2411. if (!fs_devices->latest_bdev) {
  2412. btrfs_err(fs_info, "failed to read devices");
  2413. goto fail_tree_roots;
  2414. }
  2415. retry_root_backup:
  2416. generation = btrfs_super_generation(disk_super);
  2417. tree_root->node = read_tree_block(fs_info,
  2418. btrfs_super_root(disk_super),
  2419. generation);
  2420. if (IS_ERR(tree_root->node) ||
  2421. !extent_buffer_uptodate(tree_root->node)) {
  2422. btrfs_warn(fs_info, "failed to read tree root");
  2423. if (!IS_ERR(tree_root->node))
  2424. free_extent_buffer(tree_root->node);
  2425. tree_root->node = NULL;
  2426. goto recovery_tree_root;
  2427. }
  2428. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2429. tree_root->commit_root = btrfs_root_node(tree_root);
  2430. btrfs_set_root_refs(&tree_root->root_item, 1);
  2431. mutex_lock(&tree_root->objectid_mutex);
  2432. ret = btrfs_find_highest_objectid(tree_root,
  2433. &tree_root->highest_objectid);
  2434. if (ret) {
  2435. mutex_unlock(&tree_root->objectid_mutex);
  2436. goto recovery_tree_root;
  2437. }
  2438. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2439. mutex_unlock(&tree_root->objectid_mutex);
  2440. ret = btrfs_read_roots(fs_info);
  2441. if (ret)
  2442. goto recovery_tree_root;
  2443. fs_info->generation = generation;
  2444. fs_info->last_trans_committed = generation;
  2445. ret = btrfs_recover_balance(fs_info);
  2446. if (ret) {
  2447. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2448. goto fail_block_groups;
  2449. }
  2450. ret = btrfs_init_dev_stats(fs_info);
  2451. if (ret) {
  2452. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2453. goto fail_block_groups;
  2454. }
  2455. ret = btrfs_init_dev_replace(fs_info);
  2456. if (ret) {
  2457. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2458. goto fail_block_groups;
  2459. }
  2460. btrfs_close_extra_devices(fs_devices, 1);
  2461. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2462. if (ret) {
  2463. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2464. ret);
  2465. goto fail_block_groups;
  2466. }
  2467. ret = btrfs_sysfs_add_device(fs_devices);
  2468. if (ret) {
  2469. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2470. ret);
  2471. goto fail_fsdev_sysfs;
  2472. }
  2473. ret = btrfs_sysfs_add_mounted(fs_info);
  2474. if (ret) {
  2475. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2476. goto fail_fsdev_sysfs;
  2477. }
  2478. ret = btrfs_init_space_info(fs_info);
  2479. if (ret) {
  2480. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2481. goto fail_sysfs;
  2482. }
  2483. ret = btrfs_read_block_groups(fs_info);
  2484. if (ret) {
  2485. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2486. goto fail_sysfs;
  2487. }
  2488. if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
  2489. btrfs_warn(fs_info,
  2490. "writeable mount is not allowed due to too many missing devices");
  2491. goto fail_sysfs;
  2492. }
  2493. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2494. "btrfs-cleaner");
  2495. if (IS_ERR(fs_info->cleaner_kthread))
  2496. goto fail_sysfs;
  2497. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2498. tree_root,
  2499. "btrfs-transaction");
  2500. if (IS_ERR(fs_info->transaction_kthread))
  2501. goto fail_cleaner;
  2502. if (!btrfs_test_opt(fs_info, NOSSD) &&
  2503. !fs_info->fs_devices->rotating) {
  2504. btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
  2505. }
  2506. /*
  2507. * Mount does not set all options immediately, we can do it now and do
  2508. * not have to wait for transaction commit
  2509. */
  2510. btrfs_apply_pending_changes(fs_info);
  2511. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2512. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2513. ret = btrfsic_mount(fs_info, fs_devices,
  2514. btrfs_test_opt(fs_info,
  2515. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2516. 1 : 0,
  2517. fs_info->check_integrity_print_mask);
  2518. if (ret)
  2519. btrfs_warn(fs_info,
  2520. "failed to initialize integrity check module: %d",
  2521. ret);
  2522. }
  2523. #endif
  2524. ret = btrfs_read_qgroup_config(fs_info);
  2525. if (ret)
  2526. goto fail_trans_kthread;
  2527. if (btrfs_build_ref_tree(fs_info))
  2528. btrfs_err(fs_info, "couldn't build ref tree");
  2529. /* do not make disk changes in broken FS or nologreplay is given */
  2530. if (btrfs_super_log_root(disk_super) != 0 &&
  2531. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2532. ret = btrfs_replay_log(fs_info, fs_devices);
  2533. if (ret) {
  2534. err = ret;
  2535. goto fail_qgroup;
  2536. }
  2537. }
  2538. ret = btrfs_find_orphan_roots(fs_info);
  2539. if (ret)
  2540. goto fail_qgroup;
  2541. if (!sb_rdonly(sb)) {
  2542. ret = btrfs_cleanup_fs_roots(fs_info);
  2543. if (ret)
  2544. goto fail_qgroup;
  2545. mutex_lock(&fs_info->cleaner_mutex);
  2546. ret = btrfs_recover_relocation(tree_root);
  2547. mutex_unlock(&fs_info->cleaner_mutex);
  2548. if (ret < 0) {
  2549. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2550. ret);
  2551. err = -EINVAL;
  2552. goto fail_qgroup;
  2553. }
  2554. }
  2555. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2556. location.type = BTRFS_ROOT_ITEM_KEY;
  2557. location.offset = 0;
  2558. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2559. if (IS_ERR(fs_info->fs_root)) {
  2560. err = PTR_ERR(fs_info->fs_root);
  2561. goto fail_qgroup;
  2562. }
  2563. if (sb_rdonly(sb))
  2564. return 0;
  2565. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2566. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2567. clear_free_space_tree = 1;
  2568. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2569. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2570. btrfs_warn(fs_info, "free space tree is invalid");
  2571. clear_free_space_tree = 1;
  2572. }
  2573. if (clear_free_space_tree) {
  2574. btrfs_info(fs_info, "clearing free space tree");
  2575. ret = btrfs_clear_free_space_tree(fs_info);
  2576. if (ret) {
  2577. btrfs_warn(fs_info,
  2578. "failed to clear free space tree: %d", ret);
  2579. close_ctree(fs_info);
  2580. return ret;
  2581. }
  2582. }
  2583. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2584. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2585. btrfs_info(fs_info, "creating free space tree");
  2586. ret = btrfs_create_free_space_tree(fs_info);
  2587. if (ret) {
  2588. btrfs_warn(fs_info,
  2589. "failed to create free space tree: %d", ret);
  2590. close_ctree(fs_info);
  2591. return ret;
  2592. }
  2593. }
  2594. down_read(&fs_info->cleanup_work_sem);
  2595. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2596. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2597. up_read(&fs_info->cleanup_work_sem);
  2598. close_ctree(fs_info);
  2599. return ret;
  2600. }
  2601. up_read(&fs_info->cleanup_work_sem);
  2602. ret = btrfs_resume_balance_async(fs_info);
  2603. if (ret) {
  2604. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2605. close_ctree(fs_info);
  2606. return ret;
  2607. }
  2608. ret = btrfs_resume_dev_replace_async(fs_info);
  2609. if (ret) {
  2610. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2611. close_ctree(fs_info);
  2612. return ret;
  2613. }
  2614. btrfs_qgroup_rescan_resume(fs_info);
  2615. if (!fs_info->uuid_root) {
  2616. btrfs_info(fs_info, "creating UUID tree");
  2617. ret = btrfs_create_uuid_tree(fs_info);
  2618. if (ret) {
  2619. btrfs_warn(fs_info,
  2620. "failed to create the UUID tree: %d", ret);
  2621. close_ctree(fs_info);
  2622. return ret;
  2623. }
  2624. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2625. fs_info->generation !=
  2626. btrfs_super_uuid_tree_generation(disk_super)) {
  2627. btrfs_info(fs_info, "checking UUID tree");
  2628. ret = btrfs_check_uuid_tree(fs_info);
  2629. if (ret) {
  2630. btrfs_warn(fs_info,
  2631. "failed to check the UUID tree: %d", ret);
  2632. close_ctree(fs_info);
  2633. return ret;
  2634. }
  2635. } else {
  2636. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2637. }
  2638. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2639. /*
  2640. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2641. * no need to keep the flag
  2642. */
  2643. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2644. return 0;
  2645. fail_qgroup:
  2646. btrfs_free_qgroup_config(fs_info);
  2647. fail_trans_kthread:
  2648. kthread_stop(fs_info->transaction_kthread);
  2649. btrfs_cleanup_transaction(fs_info);
  2650. btrfs_free_fs_roots(fs_info);
  2651. fail_cleaner:
  2652. kthread_stop(fs_info->cleaner_kthread);
  2653. /*
  2654. * make sure we're done with the btree inode before we stop our
  2655. * kthreads
  2656. */
  2657. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2658. fail_sysfs:
  2659. btrfs_sysfs_remove_mounted(fs_info);
  2660. fail_fsdev_sysfs:
  2661. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2662. fail_block_groups:
  2663. btrfs_put_block_group_cache(fs_info);
  2664. fail_tree_roots:
  2665. free_root_pointers(fs_info, 1);
  2666. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2667. fail_sb_buffer:
  2668. btrfs_stop_all_workers(fs_info);
  2669. btrfs_free_block_groups(fs_info);
  2670. fail_alloc:
  2671. fail_iput:
  2672. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2673. iput(fs_info->btree_inode);
  2674. fail_bio_counter:
  2675. percpu_counter_destroy(&fs_info->bio_counter);
  2676. fail_delalloc_bytes:
  2677. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2678. fail_dirty_metadata_bytes:
  2679. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2680. fail_srcu:
  2681. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2682. fail:
  2683. btrfs_free_stripe_hash_table(fs_info);
  2684. btrfs_close_devices(fs_info->fs_devices);
  2685. return err;
  2686. recovery_tree_root:
  2687. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2688. goto fail_tree_roots;
  2689. free_root_pointers(fs_info, 0);
  2690. /* don't use the log in recovery mode, it won't be valid */
  2691. btrfs_set_super_log_root(disk_super, 0);
  2692. /* we can't trust the free space cache either */
  2693. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2694. ret = next_root_backup(fs_info, fs_info->super_copy,
  2695. &num_backups_tried, &backup_index);
  2696. if (ret == -1)
  2697. goto fail_block_groups;
  2698. goto retry_root_backup;
  2699. }
  2700. ALLOW_ERROR_INJECTION(open_ctree);
  2701. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2702. {
  2703. if (uptodate) {
  2704. set_buffer_uptodate(bh);
  2705. } else {
  2706. struct btrfs_device *device = (struct btrfs_device *)
  2707. bh->b_private;
  2708. btrfs_warn_rl_in_rcu(device->fs_info,
  2709. "lost page write due to IO error on %s",
  2710. rcu_str_deref(device->name));
  2711. /* note, we don't set_buffer_write_io_error because we have
  2712. * our own ways of dealing with the IO errors
  2713. */
  2714. clear_buffer_uptodate(bh);
  2715. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2716. }
  2717. unlock_buffer(bh);
  2718. put_bh(bh);
  2719. }
  2720. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2721. struct buffer_head **bh_ret)
  2722. {
  2723. struct buffer_head *bh;
  2724. struct btrfs_super_block *super;
  2725. u64 bytenr;
  2726. bytenr = btrfs_sb_offset(copy_num);
  2727. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2728. return -EINVAL;
  2729. bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
  2730. /*
  2731. * If we fail to read from the underlying devices, as of now
  2732. * the best option we have is to mark it EIO.
  2733. */
  2734. if (!bh)
  2735. return -EIO;
  2736. super = (struct btrfs_super_block *)bh->b_data;
  2737. if (btrfs_super_bytenr(super) != bytenr ||
  2738. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2739. brelse(bh);
  2740. return -EINVAL;
  2741. }
  2742. *bh_ret = bh;
  2743. return 0;
  2744. }
  2745. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2746. {
  2747. struct buffer_head *bh;
  2748. struct buffer_head *latest = NULL;
  2749. struct btrfs_super_block *super;
  2750. int i;
  2751. u64 transid = 0;
  2752. int ret = -EINVAL;
  2753. /* we would like to check all the supers, but that would make
  2754. * a btrfs mount succeed after a mkfs from a different FS.
  2755. * So, we need to add a special mount option to scan for
  2756. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2757. */
  2758. for (i = 0; i < 1; i++) {
  2759. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2760. if (ret)
  2761. continue;
  2762. super = (struct btrfs_super_block *)bh->b_data;
  2763. if (!latest || btrfs_super_generation(super) > transid) {
  2764. brelse(latest);
  2765. latest = bh;
  2766. transid = btrfs_super_generation(super);
  2767. } else {
  2768. brelse(bh);
  2769. }
  2770. }
  2771. if (!latest)
  2772. return ERR_PTR(ret);
  2773. return latest;
  2774. }
  2775. /*
  2776. * Write superblock @sb to the @device. Do not wait for completion, all the
  2777. * buffer heads we write are pinned.
  2778. *
  2779. * Write @max_mirrors copies of the superblock, where 0 means default that fit
  2780. * the expected device size at commit time. Note that max_mirrors must be
  2781. * same for write and wait phases.
  2782. *
  2783. * Return number of errors when buffer head is not found or submission fails.
  2784. */
  2785. static int write_dev_supers(struct btrfs_device *device,
  2786. struct btrfs_super_block *sb, int max_mirrors)
  2787. {
  2788. struct buffer_head *bh;
  2789. int i;
  2790. int ret;
  2791. int errors = 0;
  2792. u32 crc;
  2793. u64 bytenr;
  2794. int op_flags;
  2795. if (max_mirrors == 0)
  2796. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2797. for (i = 0; i < max_mirrors; i++) {
  2798. bytenr = btrfs_sb_offset(i);
  2799. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2800. device->commit_total_bytes)
  2801. break;
  2802. btrfs_set_super_bytenr(sb, bytenr);
  2803. crc = ~(u32)0;
  2804. crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
  2805. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  2806. btrfs_csum_final(crc, sb->csum);
  2807. /* One reference for us, and we leave it for the caller */
  2808. bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
  2809. BTRFS_SUPER_INFO_SIZE);
  2810. if (!bh) {
  2811. btrfs_err(device->fs_info,
  2812. "couldn't get super buffer head for bytenr %llu",
  2813. bytenr);
  2814. errors++;
  2815. continue;
  2816. }
  2817. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2818. /* one reference for submit_bh */
  2819. get_bh(bh);
  2820. set_buffer_uptodate(bh);
  2821. lock_buffer(bh);
  2822. bh->b_end_io = btrfs_end_buffer_write_sync;
  2823. bh->b_private = device;
  2824. /*
  2825. * we fua the first super. The others we allow
  2826. * to go down lazy.
  2827. */
  2828. op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
  2829. if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
  2830. op_flags |= REQ_FUA;
  2831. ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
  2832. if (ret)
  2833. errors++;
  2834. }
  2835. return errors < i ? 0 : -1;
  2836. }
  2837. /*
  2838. * Wait for write completion of superblocks done by write_dev_supers,
  2839. * @max_mirrors same for write and wait phases.
  2840. *
  2841. * Return number of errors when buffer head is not found or not marked up to
  2842. * date.
  2843. */
  2844. static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
  2845. {
  2846. struct buffer_head *bh;
  2847. int i;
  2848. int errors = 0;
  2849. u64 bytenr;
  2850. if (max_mirrors == 0)
  2851. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2852. for (i = 0; i < max_mirrors; i++) {
  2853. bytenr = btrfs_sb_offset(i);
  2854. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2855. device->commit_total_bytes)
  2856. break;
  2857. bh = __find_get_block(device->bdev,
  2858. bytenr / BTRFS_BDEV_BLOCKSIZE,
  2859. BTRFS_SUPER_INFO_SIZE);
  2860. if (!bh) {
  2861. errors++;
  2862. continue;
  2863. }
  2864. wait_on_buffer(bh);
  2865. if (!buffer_uptodate(bh))
  2866. errors++;
  2867. /* drop our reference */
  2868. brelse(bh);
  2869. /* drop the reference from the writing run */
  2870. brelse(bh);
  2871. }
  2872. return errors < i ? 0 : -1;
  2873. }
  2874. /*
  2875. * endio for the write_dev_flush, this will wake anyone waiting
  2876. * for the barrier when it is done
  2877. */
  2878. static void btrfs_end_empty_barrier(struct bio *bio)
  2879. {
  2880. complete(bio->bi_private);
  2881. }
  2882. /*
  2883. * Submit a flush request to the device if it supports it. Error handling is
  2884. * done in the waiting counterpart.
  2885. */
  2886. static void write_dev_flush(struct btrfs_device *device)
  2887. {
  2888. struct request_queue *q = bdev_get_queue(device->bdev);
  2889. struct bio *bio = device->flush_bio;
  2890. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  2891. return;
  2892. bio_reset(bio);
  2893. bio->bi_end_io = btrfs_end_empty_barrier;
  2894. bio_set_dev(bio, device->bdev);
  2895. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  2896. init_completion(&device->flush_wait);
  2897. bio->bi_private = &device->flush_wait;
  2898. btrfsic_submit_bio(bio);
  2899. device->flush_bio_sent = 1;
  2900. }
  2901. /*
  2902. * If the flush bio has been submitted by write_dev_flush, wait for it.
  2903. */
  2904. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  2905. {
  2906. struct bio *bio = device->flush_bio;
  2907. if (!device->flush_bio_sent)
  2908. return BLK_STS_OK;
  2909. device->flush_bio_sent = 0;
  2910. wait_for_completion_io(&device->flush_wait);
  2911. return bio->bi_status;
  2912. }
  2913. static int check_barrier_error(struct btrfs_fs_info *fs_info)
  2914. {
  2915. if (!btrfs_check_rw_degradable(fs_info))
  2916. return -EIO;
  2917. return 0;
  2918. }
  2919. /*
  2920. * send an empty flush down to each device in parallel,
  2921. * then wait for them
  2922. */
  2923. static int barrier_all_devices(struct btrfs_fs_info *info)
  2924. {
  2925. struct list_head *head;
  2926. struct btrfs_device *dev;
  2927. int errors_wait = 0;
  2928. blk_status_t ret;
  2929. /* send down all the barriers */
  2930. head = &info->fs_devices->devices;
  2931. list_for_each_entry_rcu(dev, head, dev_list) {
  2932. if (dev->missing)
  2933. continue;
  2934. if (!dev->bdev)
  2935. continue;
  2936. if (!dev->in_fs_metadata || !dev->writeable)
  2937. continue;
  2938. write_dev_flush(dev);
  2939. dev->last_flush_error = BLK_STS_OK;
  2940. }
  2941. /* wait for all the barriers */
  2942. list_for_each_entry_rcu(dev, head, dev_list) {
  2943. if (dev->missing)
  2944. continue;
  2945. if (!dev->bdev) {
  2946. errors_wait++;
  2947. continue;
  2948. }
  2949. if (!dev->in_fs_metadata || !dev->writeable)
  2950. continue;
  2951. ret = wait_dev_flush(dev);
  2952. if (ret) {
  2953. dev->last_flush_error = ret;
  2954. btrfs_dev_stat_inc_and_print(dev,
  2955. BTRFS_DEV_STAT_FLUSH_ERRS);
  2956. errors_wait++;
  2957. }
  2958. }
  2959. if (errors_wait) {
  2960. /*
  2961. * At some point we need the status of all disks
  2962. * to arrive at the volume status. So error checking
  2963. * is being pushed to a separate loop.
  2964. */
  2965. return check_barrier_error(info);
  2966. }
  2967. return 0;
  2968. }
  2969. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  2970. {
  2971. int raid_type;
  2972. int min_tolerated = INT_MAX;
  2973. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  2974. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  2975. min_tolerated = min(min_tolerated,
  2976. btrfs_raid_array[BTRFS_RAID_SINGLE].
  2977. tolerated_failures);
  2978. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  2979. if (raid_type == BTRFS_RAID_SINGLE)
  2980. continue;
  2981. if (!(flags & btrfs_raid_group[raid_type]))
  2982. continue;
  2983. min_tolerated = min(min_tolerated,
  2984. btrfs_raid_array[raid_type].
  2985. tolerated_failures);
  2986. }
  2987. if (min_tolerated == INT_MAX) {
  2988. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  2989. min_tolerated = 0;
  2990. }
  2991. return min_tolerated;
  2992. }
  2993. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  2994. {
  2995. struct list_head *head;
  2996. struct btrfs_device *dev;
  2997. struct btrfs_super_block *sb;
  2998. struct btrfs_dev_item *dev_item;
  2999. int ret;
  3000. int do_barriers;
  3001. int max_errors;
  3002. int total_errors = 0;
  3003. u64 flags;
  3004. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3005. /*
  3006. * max_mirrors == 0 indicates we're from commit_transaction,
  3007. * not from fsync where the tree roots in fs_info have not
  3008. * been consistent on disk.
  3009. */
  3010. if (max_mirrors == 0)
  3011. backup_super_roots(fs_info);
  3012. sb = fs_info->super_for_commit;
  3013. dev_item = &sb->dev_item;
  3014. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3015. head = &fs_info->fs_devices->devices;
  3016. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3017. if (do_barriers) {
  3018. ret = barrier_all_devices(fs_info);
  3019. if (ret) {
  3020. mutex_unlock(
  3021. &fs_info->fs_devices->device_list_mutex);
  3022. btrfs_handle_fs_error(fs_info, ret,
  3023. "errors while submitting device barriers.");
  3024. return ret;
  3025. }
  3026. }
  3027. list_for_each_entry_rcu(dev, head, dev_list) {
  3028. if (!dev->bdev) {
  3029. total_errors++;
  3030. continue;
  3031. }
  3032. if (!dev->in_fs_metadata || !dev->writeable)
  3033. continue;
  3034. btrfs_set_stack_device_generation(dev_item, 0);
  3035. btrfs_set_stack_device_type(dev_item, dev->type);
  3036. btrfs_set_stack_device_id(dev_item, dev->devid);
  3037. btrfs_set_stack_device_total_bytes(dev_item,
  3038. dev->commit_total_bytes);
  3039. btrfs_set_stack_device_bytes_used(dev_item,
  3040. dev->commit_bytes_used);
  3041. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3042. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3043. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3044. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3045. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
  3046. flags = btrfs_super_flags(sb);
  3047. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3048. ret = write_dev_supers(dev, sb, max_mirrors);
  3049. if (ret)
  3050. total_errors++;
  3051. }
  3052. if (total_errors > max_errors) {
  3053. btrfs_err(fs_info, "%d errors while writing supers",
  3054. total_errors);
  3055. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3056. /* FUA is masked off if unsupported and can't be the reason */
  3057. btrfs_handle_fs_error(fs_info, -EIO,
  3058. "%d errors while writing supers",
  3059. total_errors);
  3060. return -EIO;
  3061. }
  3062. total_errors = 0;
  3063. list_for_each_entry_rcu(dev, head, dev_list) {
  3064. if (!dev->bdev)
  3065. continue;
  3066. if (!dev->in_fs_metadata || !dev->writeable)
  3067. continue;
  3068. ret = wait_dev_supers(dev, max_mirrors);
  3069. if (ret)
  3070. total_errors++;
  3071. }
  3072. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3073. if (total_errors > max_errors) {
  3074. btrfs_handle_fs_error(fs_info, -EIO,
  3075. "%d errors while writing supers",
  3076. total_errors);
  3077. return -EIO;
  3078. }
  3079. return 0;
  3080. }
  3081. /* Drop a fs root from the radix tree and free it. */
  3082. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3083. struct btrfs_root *root)
  3084. {
  3085. spin_lock(&fs_info->fs_roots_radix_lock);
  3086. radix_tree_delete(&fs_info->fs_roots_radix,
  3087. (unsigned long)root->root_key.objectid);
  3088. spin_unlock(&fs_info->fs_roots_radix_lock);
  3089. if (btrfs_root_refs(&root->root_item) == 0)
  3090. synchronize_srcu(&fs_info->subvol_srcu);
  3091. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3092. btrfs_free_log(NULL, root);
  3093. if (root->reloc_root) {
  3094. free_extent_buffer(root->reloc_root->node);
  3095. free_extent_buffer(root->reloc_root->commit_root);
  3096. btrfs_put_fs_root(root->reloc_root);
  3097. root->reloc_root = NULL;
  3098. }
  3099. }
  3100. if (root->free_ino_pinned)
  3101. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3102. if (root->free_ino_ctl)
  3103. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3104. free_fs_root(root);
  3105. }
  3106. static void free_fs_root(struct btrfs_root *root)
  3107. {
  3108. iput(root->ino_cache_inode);
  3109. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3110. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3111. root->orphan_block_rsv = NULL;
  3112. if (root->anon_dev)
  3113. free_anon_bdev(root->anon_dev);
  3114. if (root->subv_writers)
  3115. btrfs_free_subvolume_writers(root->subv_writers);
  3116. free_extent_buffer(root->node);
  3117. free_extent_buffer(root->commit_root);
  3118. kfree(root->free_ino_ctl);
  3119. kfree(root->free_ino_pinned);
  3120. kfree(root->name);
  3121. btrfs_put_fs_root(root);
  3122. }
  3123. void btrfs_free_fs_root(struct btrfs_root *root)
  3124. {
  3125. free_fs_root(root);
  3126. }
  3127. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3128. {
  3129. u64 root_objectid = 0;
  3130. struct btrfs_root *gang[8];
  3131. int i = 0;
  3132. int err = 0;
  3133. unsigned int ret = 0;
  3134. int index;
  3135. while (1) {
  3136. index = srcu_read_lock(&fs_info->subvol_srcu);
  3137. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3138. (void **)gang, root_objectid,
  3139. ARRAY_SIZE(gang));
  3140. if (!ret) {
  3141. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3142. break;
  3143. }
  3144. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3145. for (i = 0; i < ret; i++) {
  3146. /* Avoid to grab roots in dead_roots */
  3147. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3148. gang[i] = NULL;
  3149. continue;
  3150. }
  3151. /* grab all the search result for later use */
  3152. gang[i] = btrfs_grab_fs_root(gang[i]);
  3153. }
  3154. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3155. for (i = 0; i < ret; i++) {
  3156. if (!gang[i])
  3157. continue;
  3158. root_objectid = gang[i]->root_key.objectid;
  3159. err = btrfs_orphan_cleanup(gang[i]);
  3160. if (err)
  3161. break;
  3162. btrfs_put_fs_root(gang[i]);
  3163. }
  3164. root_objectid++;
  3165. }
  3166. /* release the uncleaned roots due to error */
  3167. for (; i < ret; i++) {
  3168. if (gang[i])
  3169. btrfs_put_fs_root(gang[i]);
  3170. }
  3171. return err;
  3172. }
  3173. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3174. {
  3175. struct btrfs_root *root = fs_info->tree_root;
  3176. struct btrfs_trans_handle *trans;
  3177. mutex_lock(&fs_info->cleaner_mutex);
  3178. btrfs_run_delayed_iputs(fs_info);
  3179. mutex_unlock(&fs_info->cleaner_mutex);
  3180. wake_up_process(fs_info->cleaner_kthread);
  3181. /* wait until ongoing cleanup work done */
  3182. down_write(&fs_info->cleanup_work_sem);
  3183. up_write(&fs_info->cleanup_work_sem);
  3184. trans = btrfs_join_transaction(root);
  3185. if (IS_ERR(trans))
  3186. return PTR_ERR(trans);
  3187. return btrfs_commit_transaction(trans);
  3188. }
  3189. void close_ctree(struct btrfs_fs_info *fs_info)
  3190. {
  3191. struct btrfs_root *root = fs_info->tree_root;
  3192. int ret;
  3193. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3194. /* wait for the qgroup rescan worker to stop */
  3195. btrfs_qgroup_wait_for_completion(fs_info, false);
  3196. /* wait for the uuid_scan task to finish */
  3197. down(&fs_info->uuid_tree_rescan_sem);
  3198. /* avoid complains from lockdep et al., set sem back to initial state */
  3199. up(&fs_info->uuid_tree_rescan_sem);
  3200. /* pause restriper - we want to resume on mount */
  3201. btrfs_pause_balance(fs_info);
  3202. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3203. btrfs_scrub_cancel(fs_info);
  3204. /* wait for any defraggers to finish */
  3205. wait_event(fs_info->transaction_wait,
  3206. (atomic_read(&fs_info->defrag_running) == 0));
  3207. /* clear out the rbtree of defraggable inodes */
  3208. btrfs_cleanup_defrag_inodes(fs_info);
  3209. cancel_work_sync(&fs_info->async_reclaim_work);
  3210. if (!sb_rdonly(fs_info->sb)) {
  3211. /*
  3212. * If the cleaner thread is stopped and there are
  3213. * block groups queued for removal, the deletion will be
  3214. * skipped when we quit the cleaner thread.
  3215. */
  3216. btrfs_delete_unused_bgs(fs_info);
  3217. ret = btrfs_commit_super(fs_info);
  3218. if (ret)
  3219. btrfs_err(fs_info, "commit super ret %d", ret);
  3220. }
  3221. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3222. btrfs_error_commit_super(fs_info);
  3223. kthread_stop(fs_info->transaction_kthread);
  3224. kthread_stop(fs_info->cleaner_kthread);
  3225. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3226. btrfs_free_qgroup_config(fs_info);
  3227. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3228. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3229. percpu_counter_sum(&fs_info->delalloc_bytes));
  3230. }
  3231. btrfs_sysfs_remove_mounted(fs_info);
  3232. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3233. btrfs_free_fs_roots(fs_info);
  3234. btrfs_put_block_group_cache(fs_info);
  3235. /*
  3236. * we must make sure there is not any read request to
  3237. * submit after we stopping all workers.
  3238. */
  3239. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3240. btrfs_stop_all_workers(fs_info);
  3241. btrfs_free_block_groups(fs_info);
  3242. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3243. free_root_pointers(fs_info, 1);
  3244. iput(fs_info->btree_inode);
  3245. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3246. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3247. btrfsic_unmount(fs_info->fs_devices);
  3248. #endif
  3249. btrfs_close_devices(fs_info->fs_devices);
  3250. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3251. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3252. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3253. percpu_counter_destroy(&fs_info->bio_counter);
  3254. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3255. btrfs_free_stripe_hash_table(fs_info);
  3256. btrfs_free_ref_cache(fs_info);
  3257. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3258. root->orphan_block_rsv = NULL;
  3259. while (!list_empty(&fs_info->pinned_chunks)) {
  3260. struct extent_map *em;
  3261. em = list_first_entry(&fs_info->pinned_chunks,
  3262. struct extent_map, list);
  3263. list_del_init(&em->list);
  3264. free_extent_map(em);
  3265. }
  3266. }
  3267. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3268. int atomic)
  3269. {
  3270. int ret;
  3271. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3272. ret = extent_buffer_uptodate(buf);
  3273. if (!ret)
  3274. return ret;
  3275. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3276. parent_transid, atomic);
  3277. if (ret == -EAGAIN)
  3278. return ret;
  3279. return !ret;
  3280. }
  3281. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3282. {
  3283. struct btrfs_fs_info *fs_info;
  3284. struct btrfs_root *root;
  3285. u64 transid = btrfs_header_generation(buf);
  3286. int was_dirty;
  3287. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3288. /*
  3289. * This is a fast path so only do this check if we have sanity tests
  3290. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3291. * outside of the sanity tests.
  3292. */
  3293. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3294. return;
  3295. #endif
  3296. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3297. fs_info = root->fs_info;
  3298. btrfs_assert_tree_locked(buf);
  3299. if (transid != fs_info->generation)
  3300. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3301. buf->start, transid, fs_info->generation);
  3302. was_dirty = set_extent_buffer_dirty(buf);
  3303. if (!was_dirty)
  3304. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3305. buf->len,
  3306. fs_info->dirty_metadata_batch);
  3307. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3308. /*
  3309. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3310. * but item data not updated.
  3311. * So here we should only check item pointers, not item data.
  3312. */
  3313. if (btrfs_header_level(buf) == 0 &&
  3314. btrfs_check_leaf_relaxed(root, buf)) {
  3315. btrfs_print_leaf(buf);
  3316. ASSERT(0);
  3317. }
  3318. #endif
  3319. }
  3320. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3321. int flush_delayed)
  3322. {
  3323. /*
  3324. * looks as though older kernels can get into trouble with
  3325. * this code, they end up stuck in balance_dirty_pages forever
  3326. */
  3327. int ret;
  3328. if (current->flags & PF_MEMALLOC)
  3329. return;
  3330. if (flush_delayed)
  3331. btrfs_balance_delayed_items(fs_info);
  3332. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3333. BTRFS_DIRTY_METADATA_THRESH);
  3334. if (ret > 0) {
  3335. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3336. }
  3337. }
  3338. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3339. {
  3340. __btrfs_btree_balance_dirty(fs_info, 1);
  3341. }
  3342. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3343. {
  3344. __btrfs_btree_balance_dirty(fs_info, 0);
  3345. }
  3346. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3347. {
  3348. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3349. struct btrfs_fs_info *fs_info = root->fs_info;
  3350. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3351. }
  3352. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3353. {
  3354. struct btrfs_super_block *sb = fs_info->super_copy;
  3355. u64 nodesize = btrfs_super_nodesize(sb);
  3356. u64 sectorsize = btrfs_super_sectorsize(sb);
  3357. int ret = 0;
  3358. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3359. btrfs_err(fs_info, "no valid FS found");
  3360. ret = -EINVAL;
  3361. }
  3362. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3363. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3364. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3365. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3366. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3367. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3368. ret = -EINVAL;
  3369. }
  3370. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3371. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3372. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3373. ret = -EINVAL;
  3374. }
  3375. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3376. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3377. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3378. ret = -EINVAL;
  3379. }
  3380. /*
  3381. * Check sectorsize and nodesize first, other check will need it.
  3382. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3383. */
  3384. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3385. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3386. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3387. ret = -EINVAL;
  3388. }
  3389. /* Only PAGE SIZE is supported yet */
  3390. if (sectorsize != PAGE_SIZE) {
  3391. btrfs_err(fs_info,
  3392. "sectorsize %llu not supported yet, only support %lu",
  3393. sectorsize, PAGE_SIZE);
  3394. ret = -EINVAL;
  3395. }
  3396. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3397. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3398. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3399. ret = -EINVAL;
  3400. }
  3401. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3402. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3403. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3404. ret = -EINVAL;
  3405. }
  3406. /* Root alignment check */
  3407. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3408. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3409. btrfs_super_root(sb));
  3410. ret = -EINVAL;
  3411. }
  3412. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3413. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3414. btrfs_super_chunk_root(sb));
  3415. ret = -EINVAL;
  3416. }
  3417. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3418. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3419. btrfs_super_log_root(sb));
  3420. ret = -EINVAL;
  3421. }
  3422. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
  3423. btrfs_err(fs_info,
  3424. "dev_item UUID does not match fsid: %pU != %pU",
  3425. fs_info->fsid, sb->dev_item.fsid);
  3426. ret = -EINVAL;
  3427. }
  3428. /*
  3429. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3430. * done later
  3431. */
  3432. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3433. btrfs_err(fs_info, "bytes_used is too small %llu",
  3434. btrfs_super_bytes_used(sb));
  3435. ret = -EINVAL;
  3436. }
  3437. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3438. btrfs_err(fs_info, "invalid stripesize %u",
  3439. btrfs_super_stripesize(sb));
  3440. ret = -EINVAL;
  3441. }
  3442. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3443. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3444. btrfs_super_num_devices(sb));
  3445. if (btrfs_super_num_devices(sb) == 0) {
  3446. btrfs_err(fs_info, "number of devices is 0");
  3447. ret = -EINVAL;
  3448. }
  3449. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3450. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3451. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3452. ret = -EINVAL;
  3453. }
  3454. /*
  3455. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3456. * and one chunk
  3457. */
  3458. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3459. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3460. btrfs_super_sys_array_size(sb),
  3461. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3462. ret = -EINVAL;
  3463. }
  3464. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3465. + sizeof(struct btrfs_chunk)) {
  3466. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3467. btrfs_super_sys_array_size(sb),
  3468. sizeof(struct btrfs_disk_key)
  3469. + sizeof(struct btrfs_chunk));
  3470. ret = -EINVAL;
  3471. }
  3472. /*
  3473. * The generation is a global counter, we'll trust it more than the others
  3474. * but it's still possible that it's the one that's wrong.
  3475. */
  3476. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3477. btrfs_warn(fs_info,
  3478. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3479. btrfs_super_generation(sb),
  3480. btrfs_super_chunk_root_generation(sb));
  3481. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3482. && btrfs_super_cache_generation(sb) != (u64)-1)
  3483. btrfs_warn(fs_info,
  3484. "suspicious: generation < cache_generation: %llu < %llu",
  3485. btrfs_super_generation(sb),
  3486. btrfs_super_cache_generation(sb));
  3487. return ret;
  3488. }
  3489. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3490. {
  3491. mutex_lock(&fs_info->cleaner_mutex);
  3492. btrfs_run_delayed_iputs(fs_info);
  3493. mutex_unlock(&fs_info->cleaner_mutex);
  3494. down_write(&fs_info->cleanup_work_sem);
  3495. up_write(&fs_info->cleanup_work_sem);
  3496. /* cleanup FS via transaction */
  3497. btrfs_cleanup_transaction(fs_info);
  3498. }
  3499. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3500. {
  3501. struct btrfs_ordered_extent *ordered;
  3502. spin_lock(&root->ordered_extent_lock);
  3503. /*
  3504. * This will just short circuit the ordered completion stuff which will
  3505. * make sure the ordered extent gets properly cleaned up.
  3506. */
  3507. list_for_each_entry(ordered, &root->ordered_extents,
  3508. root_extent_list)
  3509. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3510. spin_unlock(&root->ordered_extent_lock);
  3511. }
  3512. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3513. {
  3514. struct btrfs_root *root;
  3515. struct list_head splice;
  3516. INIT_LIST_HEAD(&splice);
  3517. spin_lock(&fs_info->ordered_root_lock);
  3518. list_splice_init(&fs_info->ordered_roots, &splice);
  3519. while (!list_empty(&splice)) {
  3520. root = list_first_entry(&splice, struct btrfs_root,
  3521. ordered_root);
  3522. list_move_tail(&root->ordered_root,
  3523. &fs_info->ordered_roots);
  3524. spin_unlock(&fs_info->ordered_root_lock);
  3525. btrfs_destroy_ordered_extents(root);
  3526. cond_resched();
  3527. spin_lock(&fs_info->ordered_root_lock);
  3528. }
  3529. spin_unlock(&fs_info->ordered_root_lock);
  3530. }
  3531. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3532. struct btrfs_fs_info *fs_info)
  3533. {
  3534. struct rb_node *node;
  3535. struct btrfs_delayed_ref_root *delayed_refs;
  3536. struct btrfs_delayed_ref_node *ref;
  3537. int ret = 0;
  3538. delayed_refs = &trans->delayed_refs;
  3539. spin_lock(&delayed_refs->lock);
  3540. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3541. spin_unlock(&delayed_refs->lock);
  3542. btrfs_info(fs_info, "delayed_refs has NO entry");
  3543. return ret;
  3544. }
  3545. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3546. struct btrfs_delayed_ref_head *head;
  3547. struct rb_node *n;
  3548. bool pin_bytes = false;
  3549. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3550. href_node);
  3551. if (!mutex_trylock(&head->mutex)) {
  3552. refcount_inc(&head->refs);
  3553. spin_unlock(&delayed_refs->lock);
  3554. mutex_lock(&head->mutex);
  3555. mutex_unlock(&head->mutex);
  3556. btrfs_put_delayed_ref_head(head);
  3557. spin_lock(&delayed_refs->lock);
  3558. continue;
  3559. }
  3560. spin_lock(&head->lock);
  3561. while ((n = rb_first(&head->ref_tree)) != NULL) {
  3562. ref = rb_entry(n, struct btrfs_delayed_ref_node,
  3563. ref_node);
  3564. ref->in_tree = 0;
  3565. rb_erase(&ref->ref_node, &head->ref_tree);
  3566. RB_CLEAR_NODE(&ref->ref_node);
  3567. if (!list_empty(&ref->add_list))
  3568. list_del(&ref->add_list);
  3569. atomic_dec(&delayed_refs->num_entries);
  3570. btrfs_put_delayed_ref(ref);
  3571. }
  3572. if (head->must_insert_reserved)
  3573. pin_bytes = true;
  3574. btrfs_free_delayed_extent_op(head->extent_op);
  3575. delayed_refs->num_heads--;
  3576. if (head->processing == 0)
  3577. delayed_refs->num_heads_ready--;
  3578. atomic_dec(&delayed_refs->num_entries);
  3579. rb_erase(&head->href_node, &delayed_refs->href_root);
  3580. RB_CLEAR_NODE(&head->href_node);
  3581. spin_unlock(&head->lock);
  3582. spin_unlock(&delayed_refs->lock);
  3583. mutex_unlock(&head->mutex);
  3584. if (pin_bytes)
  3585. btrfs_pin_extent(fs_info, head->bytenr,
  3586. head->num_bytes, 1);
  3587. btrfs_put_delayed_ref_head(head);
  3588. cond_resched();
  3589. spin_lock(&delayed_refs->lock);
  3590. }
  3591. spin_unlock(&delayed_refs->lock);
  3592. return ret;
  3593. }
  3594. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3595. {
  3596. struct btrfs_inode *btrfs_inode;
  3597. struct list_head splice;
  3598. INIT_LIST_HEAD(&splice);
  3599. spin_lock(&root->delalloc_lock);
  3600. list_splice_init(&root->delalloc_inodes, &splice);
  3601. while (!list_empty(&splice)) {
  3602. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3603. delalloc_inodes);
  3604. list_del_init(&btrfs_inode->delalloc_inodes);
  3605. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3606. &btrfs_inode->runtime_flags);
  3607. spin_unlock(&root->delalloc_lock);
  3608. btrfs_invalidate_inodes(btrfs_inode->root);
  3609. spin_lock(&root->delalloc_lock);
  3610. }
  3611. spin_unlock(&root->delalloc_lock);
  3612. }
  3613. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3614. {
  3615. struct btrfs_root *root;
  3616. struct list_head splice;
  3617. INIT_LIST_HEAD(&splice);
  3618. spin_lock(&fs_info->delalloc_root_lock);
  3619. list_splice_init(&fs_info->delalloc_roots, &splice);
  3620. while (!list_empty(&splice)) {
  3621. root = list_first_entry(&splice, struct btrfs_root,
  3622. delalloc_root);
  3623. list_del_init(&root->delalloc_root);
  3624. root = btrfs_grab_fs_root(root);
  3625. BUG_ON(!root);
  3626. spin_unlock(&fs_info->delalloc_root_lock);
  3627. btrfs_destroy_delalloc_inodes(root);
  3628. btrfs_put_fs_root(root);
  3629. spin_lock(&fs_info->delalloc_root_lock);
  3630. }
  3631. spin_unlock(&fs_info->delalloc_root_lock);
  3632. }
  3633. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3634. struct extent_io_tree *dirty_pages,
  3635. int mark)
  3636. {
  3637. int ret;
  3638. struct extent_buffer *eb;
  3639. u64 start = 0;
  3640. u64 end;
  3641. while (1) {
  3642. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3643. mark, NULL);
  3644. if (ret)
  3645. break;
  3646. clear_extent_bits(dirty_pages, start, end, mark);
  3647. while (start <= end) {
  3648. eb = find_extent_buffer(fs_info, start);
  3649. start += fs_info->nodesize;
  3650. if (!eb)
  3651. continue;
  3652. wait_on_extent_buffer_writeback(eb);
  3653. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3654. &eb->bflags))
  3655. clear_extent_buffer_dirty(eb);
  3656. free_extent_buffer_stale(eb);
  3657. }
  3658. }
  3659. return ret;
  3660. }
  3661. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3662. struct extent_io_tree *pinned_extents)
  3663. {
  3664. struct extent_io_tree *unpin;
  3665. u64 start;
  3666. u64 end;
  3667. int ret;
  3668. bool loop = true;
  3669. unpin = pinned_extents;
  3670. again:
  3671. while (1) {
  3672. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3673. EXTENT_DIRTY, NULL);
  3674. if (ret)
  3675. break;
  3676. clear_extent_dirty(unpin, start, end);
  3677. btrfs_error_unpin_extent_range(fs_info, start, end);
  3678. cond_resched();
  3679. }
  3680. if (loop) {
  3681. if (unpin == &fs_info->freed_extents[0])
  3682. unpin = &fs_info->freed_extents[1];
  3683. else
  3684. unpin = &fs_info->freed_extents[0];
  3685. loop = false;
  3686. goto again;
  3687. }
  3688. return 0;
  3689. }
  3690. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3691. {
  3692. struct inode *inode;
  3693. inode = cache->io_ctl.inode;
  3694. if (inode) {
  3695. invalidate_inode_pages2(inode->i_mapping);
  3696. BTRFS_I(inode)->generation = 0;
  3697. cache->io_ctl.inode = NULL;
  3698. iput(inode);
  3699. }
  3700. btrfs_put_block_group(cache);
  3701. }
  3702. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3703. struct btrfs_fs_info *fs_info)
  3704. {
  3705. struct btrfs_block_group_cache *cache;
  3706. spin_lock(&cur_trans->dirty_bgs_lock);
  3707. while (!list_empty(&cur_trans->dirty_bgs)) {
  3708. cache = list_first_entry(&cur_trans->dirty_bgs,
  3709. struct btrfs_block_group_cache,
  3710. dirty_list);
  3711. if (!cache) {
  3712. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3713. spin_unlock(&cur_trans->dirty_bgs_lock);
  3714. return;
  3715. }
  3716. if (!list_empty(&cache->io_list)) {
  3717. spin_unlock(&cur_trans->dirty_bgs_lock);
  3718. list_del_init(&cache->io_list);
  3719. btrfs_cleanup_bg_io(cache);
  3720. spin_lock(&cur_trans->dirty_bgs_lock);
  3721. }
  3722. list_del_init(&cache->dirty_list);
  3723. spin_lock(&cache->lock);
  3724. cache->disk_cache_state = BTRFS_DC_ERROR;
  3725. spin_unlock(&cache->lock);
  3726. spin_unlock(&cur_trans->dirty_bgs_lock);
  3727. btrfs_put_block_group(cache);
  3728. spin_lock(&cur_trans->dirty_bgs_lock);
  3729. }
  3730. spin_unlock(&cur_trans->dirty_bgs_lock);
  3731. while (!list_empty(&cur_trans->io_bgs)) {
  3732. cache = list_first_entry(&cur_trans->io_bgs,
  3733. struct btrfs_block_group_cache,
  3734. io_list);
  3735. if (!cache) {
  3736. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3737. return;
  3738. }
  3739. list_del_init(&cache->io_list);
  3740. spin_lock(&cache->lock);
  3741. cache->disk_cache_state = BTRFS_DC_ERROR;
  3742. spin_unlock(&cache->lock);
  3743. btrfs_cleanup_bg_io(cache);
  3744. }
  3745. }
  3746. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3747. struct btrfs_fs_info *fs_info)
  3748. {
  3749. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3750. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3751. ASSERT(list_empty(&cur_trans->io_bgs));
  3752. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3753. cur_trans->state = TRANS_STATE_COMMIT_START;
  3754. wake_up(&fs_info->transaction_blocked_wait);
  3755. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3756. wake_up(&fs_info->transaction_wait);
  3757. btrfs_destroy_delayed_inodes(fs_info);
  3758. btrfs_assert_delayed_root_empty(fs_info);
  3759. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3760. EXTENT_DIRTY);
  3761. btrfs_destroy_pinned_extent(fs_info,
  3762. fs_info->pinned_extents);
  3763. cur_trans->state =TRANS_STATE_COMPLETED;
  3764. wake_up(&cur_trans->commit_wait);
  3765. }
  3766. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3767. {
  3768. struct btrfs_transaction *t;
  3769. mutex_lock(&fs_info->transaction_kthread_mutex);
  3770. spin_lock(&fs_info->trans_lock);
  3771. while (!list_empty(&fs_info->trans_list)) {
  3772. t = list_first_entry(&fs_info->trans_list,
  3773. struct btrfs_transaction, list);
  3774. if (t->state >= TRANS_STATE_COMMIT_START) {
  3775. refcount_inc(&t->use_count);
  3776. spin_unlock(&fs_info->trans_lock);
  3777. btrfs_wait_for_commit(fs_info, t->transid);
  3778. btrfs_put_transaction(t);
  3779. spin_lock(&fs_info->trans_lock);
  3780. continue;
  3781. }
  3782. if (t == fs_info->running_transaction) {
  3783. t->state = TRANS_STATE_COMMIT_DOING;
  3784. spin_unlock(&fs_info->trans_lock);
  3785. /*
  3786. * We wait for 0 num_writers since we don't hold a trans
  3787. * handle open currently for this transaction.
  3788. */
  3789. wait_event(t->writer_wait,
  3790. atomic_read(&t->num_writers) == 0);
  3791. } else {
  3792. spin_unlock(&fs_info->trans_lock);
  3793. }
  3794. btrfs_cleanup_one_transaction(t, fs_info);
  3795. spin_lock(&fs_info->trans_lock);
  3796. if (t == fs_info->running_transaction)
  3797. fs_info->running_transaction = NULL;
  3798. list_del_init(&t->list);
  3799. spin_unlock(&fs_info->trans_lock);
  3800. btrfs_put_transaction(t);
  3801. trace_btrfs_transaction_commit(fs_info->tree_root);
  3802. spin_lock(&fs_info->trans_lock);
  3803. }
  3804. spin_unlock(&fs_info->trans_lock);
  3805. btrfs_destroy_all_ordered_extents(fs_info);
  3806. btrfs_destroy_delayed_inodes(fs_info);
  3807. btrfs_assert_delayed_root_empty(fs_info);
  3808. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3809. btrfs_destroy_all_delalloc_inodes(fs_info);
  3810. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3811. return 0;
  3812. }
  3813. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3814. {
  3815. struct inode *inode = private_data;
  3816. return btrfs_sb(inode->i_sb);
  3817. }
  3818. static const struct extent_io_ops btree_extent_io_ops = {
  3819. /* mandatory callbacks */
  3820. .submit_bio_hook = btree_submit_bio_hook,
  3821. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3822. /* note we're sharing with inode.c for the merge bio hook */
  3823. .merge_bio_hook = btrfs_merge_bio_hook,
  3824. .readpage_io_failed_hook = btree_io_failed_hook,
  3825. .set_range_writeback = btrfs_set_range_writeback,
  3826. .tree_fs_info = btree_fs_info,
  3827. /* optional callbacks */
  3828. };