process.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936
  1. /*
  2. * Derived from "arch/i386/kernel/process.c"
  3. * Copyright (C) 1995 Linus Torvalds
  4. *
  5. * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
  6. * Paul Mackerras (paulus@cs.anu.edu.au)
  7. *
  8. * PowerPC version
  9. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <linux/errno.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/mm.h>
  20. #include <linux/smp.h>
  21. #include <linux/stddef.h>
  22. #include <linux/unistd.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/slab.h>
  25. #include <linux/user.h>
  26. #include <linux/elf.h>
  27. #include <linux/prctl.h>
  28. #include <linux/init_task.h>
  29. #include <linux/export.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/mqueue.h>
  32. #include <linux/hardirq.h>
  33. #include <linux/utsname.h>
  34. #include <linux/ftrace.h>
  35. #include <linux/kernel_stat.h>
  36. #include <linux/personality.h>
  37. #include <linux/random.h>
  38. #include <linux/hw_breakpoint.h>
  39. #include <linux/uaccess.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/io.h>
  42. #include <asm/processor.h>
  43. #include <asm/mmu.h>
  44. #include <asm/prom.h>
  45. #include <asm/machdep.h>
  46. #include <asm/time.h>
  47. #include <asm/runlatch.h>
  48. #include <asm/syscalls.h>
  49. #include <asm/switch_to.h>
  50. #include <asm/tm.h>
  51. #include <asm/debug.h>
  52. #ifdef CONFIG_PPC64
  53. #include <asm/firmware.h>
  54. #endif
  55. #include <asm/code-patching.h>
  56. #include <linux/kprobes.h>
  57. #include <linux/kdebug.h>
  58. /* Transactional Memory debug */
  59. #ifdef TM_DEBUG_SW
  60. #define TM_DEBUG(x...) printk(KERN_INFO x)
  61. #else
  62. #define TM_DEBUG(x...) do { } while(0)
  63. #endif
  64. extern unsigned long _get_SP(void);
  65. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  66. static void check_if_tm_restore_required(struct task_struct *tsk)
  67. {
  68. /*
  69. * If we are saving the current thread's registers, and the
  70. * thread is in a transactional state, set the TIF_RESTORE_TM
  71. * bit so that we know to restore the registers before
  72. * returning to userspace.
  73. */
  74. if (tsk == current && tsk->thread.regs &&
  75. MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  76. !test_thread_flag(TIF_RESTORE_TM)) {
  77. tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
  78. set_thread_flag(TIF_RESTORE_TM);
  79. }
  80. }
  81. #else
  82. static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
  83. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  84. bool strict_msr_control;
  85. EXPORT_SYMBOL(strict_msr_control);
  86. static int __init enable_strict_msr_control(char *str)
  87. {
  88. strict_msr_control = true;
  89. pr_info("Enabling strict facility control\n");
  90. return 0;
  91. }
  92. early_param("ppc_strict_facility_enable", enable_strict_msr_control);
  93. void msr_check_and_set(unsigned long bits)
  94. {
  95. unsigned long oldmsr = mfmsr();
  96. unsigned long newmsr;
  97. newmsr = oldmsr | bits;
  98. #ifdef CONFIG_VSX
  99. if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
  100. newmsr |= MSR_VSX;
  101. #endif
  102. if (oldmsr != newmsr)
  103. mtmsr_isync(newmsr);
  104. }
  105. void __msr_check_and_clear(unsigned long bits)
  106. {
  107. unsigned long oldmsr = mfmsr();
  108. unsigned long newmsr;
  109. newmsr = oldmsr & ~bits;
  110. #ifdef CONFIG_VSX
  111. if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
  112. newmsr &= ~MSR_VSX;
  113. #endif
  114. if (oldmsr != newmsr)
  115. mtmsr_isync(newmsr);
  116. }
  117. EXPORT_SYMBOL(__msr_check_and_clear);
  118. #ifdef CONFIG_PPC_FPU
  119. void __giveup_fpu(struct task_struct *tsk)
  120. {
  121. save_fpu(tsk);
  122. tsk->thread.regs->msr &= ~MSR_FP;
  123. #ifdef CONFIG_VSX
  124. if (cpu_has_feature(CPU_FTR_VSX))
  125. tsk->thread.regs->msr &= ~MSR_VSX;
  126. #endif
  127. }
  128. void giveup_fpu(struct task_struct *tsk)
  129. {
  130. check_if_tm_restore_required(tsk);
  131. msr_check_and_set(MSR_FP);
  132. __giveup_fpu(tsk);
  133. msr_check_and_clear(MSR_FP);
  134. }
  135. EXPORT_SYMBOL(giveup_fpu);
  136. /*
  137. * Make sure the floating-point register state in the
  138. * the thread_struct is up to date for task tsk.
  139. */
  140. void flush_fp_to_thread(struct task_struct *tsk)
  141. {
  142. if (tsk->thread.regs) {
  143. /*
  144. * We need to disable preemption here because if we didn't,
  145. * another process could get scheduled after the regs->msr
  146. * test but before we have finished saving the FP registers
  147. * to the thread_struct. That process could take over the
  148. * FPU, and then when we get scheduled again we would store
  149. * bogus values for the remaining FP registers.
  150. */
  151. preempt_disable();
  152. if (tsk->thread.regs->msr & MSR_FP) {
  153. /*
  154. * This should only ever be called for current or
  155. * for a stopped child process. Since we save away
  156. * the FP register state on context switch,
  157. * there is something wrong if a stopped child appears
  158. * to still have its FP state in the CPU registers.
  159. */
  160. BUG_ON(tsk != current);
  161. giveup_fpu(tsk);
  162. }
  163. preempt_enable();
  164. }
  165. }
  166. EXPORT_SYMBOL_GPL(flush_fp_to_thread);
  167. void enable_kernel_fp(void)
  168. {
  169. WARN_ON(preemptible());
  170. msr_check_and_set(MSR_FP);
  171. if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
  172. check_if_tm_restore_required(current);
  173. __giveup_fpu(current);
  174. }
  175. }
  176. EXPORT_SYMBOL(enable_kernel_fp);
  177. static int restore_fp(struct task_struct *tsk) {
  178. if (tsk->thread.load_fp) {
  179. load_fp_state(&current->thread.fp_state);
  180. current->thread.load_fp++;
  181. return 1;
  182. }
  183. return 0;
  184. }
  185. #else
  186. static int restore_fp(struct task_struct *tsk) { return 0; }
  187. #endif /* CONFIG_PPC_FPU */
  188. #ifdef CONFIG_ALTIVEC
  189. #define loadvec(thr) ((thr).load_vec)
  190. static void __giveup_altivec(struct task_struct *tsk)
  191. {
  192. save_altivec(tsk);
  193. tsk->thread.regs->msr &= ~MSR_VEC;
  194. #ifdef CONFIG_VSX
  195. if (cpu_has_feature(CPU_FTR_VSX))
  196. tsk->thread.regs->msr &= ~MSR_VSX;
  197. #endif
  198. }
  199. void giveup_altivec(struct task_struct *tsk)
  200. {
  201. check_if_tm_restore_required(tsk);
  202. msr_check_and_set(MSR_VEC);
  203. __giveup_altivec(tsk);
  204. msr_check_and_clear(MSR_VEC);
  205. }
  206. EXPORT_SYMBOL(giveup_altivec);
  207. void enable_kernel_altivec(void)
  208. {
  209. WARN_ON(preemptible());
  210. msr_check_and_set(MSR_VEC);
  211. if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
  212. check_if_tm_restore_required(current);
  213. __giveup_altivec(current);
  214. }
  215. }
  216. EXPORT_SYMBOL(enable_kernel_altivec);
  217. /*
  218. * Make sure the VMX/Altivec register state in the
  219. * the thread_struct is up to date for task tsk.
  220. */
  221. void flush_altivec_to_thread(struct task_struct *tsk)
  222. {
  223. if (tsk->thread.regs) {
  224. preempt_disable();
  225. if (tsk->thread.regs->msr & MSR_VEC) {
  226. BUG_ON(tsk != current);
  227. giveup_altivec(tsk);
  228. }
  229. preempt_enable();
  230. }
  231. }
  232. EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
  233. static int restore_altivec(struct task_struct *tsk)
  234. {
  235. if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
  236. load_vr_state(&tsk->thread.vr_state);
  237. tsk->thread.used_vr = 1;
  238. tsk->thread.load_vec++;
  239. return 1;
  240. }
  241. return 0;
  242. }
  243. #else
  244. #define loadvec(thr) 0
  245. static inline int restore_altivec(struct task_struct *tsk) { return 0; }
  246. #endif /* CONFIG_ALTIVEC */
  247. #ifdef CONFIG_VSX
  248. static void __giveup_vsx(struct task_struct *tsk)
  249. {
  250. if (tsk->thread.regs->msr & MSR_FP)
  251. __giveup_fpu(tsk);
  252. if (tsk->thread.regs->msr & MSR_VEC)
  253. __giveup_altivec(tsk);
  254. tsk->thread.regs->msr &= ~MSR_VSX;
  255. }
  256. static void giveup_vsx(struct task_struct *tsk)
  257. {
  258. check_if_tm_restore_required(tsk);
  259. msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
  260. __giveup_vsx(tsk);
  261. msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
  262. }
  263. static void save_vsx(struct task_struct *tsk)
  264. {
  265. if (tsk->thread.regs->msr & MSR_FP)
  266. save_fpu(tsk);
  267. if (tsk->thread.regs->msr & MSR_VEC)
  268. save_altivec(tsk);
  269. }
  270. void enable_kernel_vsx(void)
  271. {
  272. WARN_ON(preemptible());
  273. msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
  274. if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
  275. check_if_tm_restore_required(current);
  276. if (current->thread.regs->msr & MSR_FP)
  277. __giveup_fpu(current);
  278. if (current->thread.regs->msr & MSR_VEC)
  279. __giveup_altivec(current);
  280. __giveup_vsx(current);
  281. }
  282. }
  283. EXPORT_SYMBOL(enable_kernel_vsx);
  284. void flush_vsx_to_thread(struct task_struct *tsk)
  285. {
  286. if (tsk->thread.regs) {
  287. preempt_disable();
  288. if (tsk->thread.regs->msr & MSR_VSX) {
  289. BUG_ON(tsk != current);
  290. giveup_vsx(tsk);
  291. }
  292. preempt_enable();
  293. }
  294. }
  295. EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
  296. static int restore_vsx(struct task_struct *tsk)
  297. {
  298. if (cpu_has_feature(CPU_FTR_VSX)) {
  299. tsk->thread.used_vsr = 1;
  300. return 1;
  301. }
  302. return 0;
  303. }
  304. #else
  305. static inline int restore_vsx(struct task_struct *tsk) { return 0; }
  306. static inline void save_vsx(struct task_struct *tsk) { }
  307. #endif /* CONFIG_VSX */
  308. #ifdef CONFIG_SPE
  309. void giveup_spe(struct task_struct *tsk)
  310. {
  311. check_if_tm_restore_required(tsk);
  312. msr_check_and_set(MSR_SPE);
  313. __giveup_spe(tsk);
  314. msr_check_and_clear(MSR_SPE);
  315. }
  316. EXPORT_SYMBOL(giveup_spe);
  317. void enable_kernel_spe(void)
  318. {
  319. WARN_ON(preemptible());
  320. msr_check_and_set(MSR_SPE);
  321. if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
  322. check_if_tm_restore_required(current);
  323. __giveup_spe(current);
  324. }
  325. }
  326. EXPORT_SYMBOL(enable_kernel_spe);
  327. void flush_spe_to_thread(struct task_struct *tsk)
  328. {
  329. if (tsk->thread.regs) {
  330. preempt_disable();
  331. if (tsk->thread.regs->msr & MSR_SPE) {
  332. BUG_ON(tsk != current);
  333. tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
  334. giveup_spe(tsk);
  335. }
  336. preempt_enable();
  337. }
  338. }
  339. #endif /* CONFIG_SPE */
  340. static unsigned long msr_all_available;
  341. static int __init init_msr_all_available(void)
  342. {
  343. #ifdef CONFIG_PPC_FPU
  344. msr_all_available |= MSR_FP;
  345. #endif
  346. #ifdef CONFIG_ALTIVEC
  347. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  348. msr_all_available |= MSR_VEC;
  349. #endif
  350. #ifdef CONFIG_VSX
  351. if (cpu_has_feature(CPU_FTR_VSX))
  352. msr_all_available |= MSR_VSX;
  353. #endif
  354. #ifdef CONFIG_SPE
  355. if (cpu_has_feature(CPU_FTR_SPE))
  356. msr_all_available |= MSR_SPE;
  357. #endif
  358. return 0;
  359. }
  360. early_initcall(init_msr_all_available);
  361. void giveup_all(struct task_struct *tsk)
  362. {
  363. unsigned long usermsr;
  364. if (!tsk->thread.regs)
  365. return;
  366. usermsr = tsk->thread.regs->msr;
  367. if ((usermsr & msr_all_available) == 0)
  368. return;
  369. msr_check_and_set(msr_all_available);
  370. #ifdef CONFIG_PPC_FPU
  371. if (usermsr & MSR_FP)
  372. __giveup_fpu(tsk);
  373. #endif
  374. #ifdef CONFIG_ALTIVEC
  375. if (usermsr & MSR_VEC)
  376. __giveup_altivec(tsk);
  377. #endif
  378. #ifdef CONFIG_VSX
  379. if (usermsr & MSR_VSX)
  380. __giveup_vsx(tsk);
  381. #endif
  382. #ifdef CONFIG_SPE
  383. if (usermsr & MSR_SPE)
  384. __giveup_spe(tsk);
  385. #endif
  386. msr_check_and_clear(msr_all_available);
  387. }
  388. EXPORT_SYMBOL(giveup_all);
  389. void restore_math(struct pt_regs *regs)
  390. {
  391. unsigned long msr;
  392. if (!current->thread.load_fp && !loadvec(current->thread))
  393. return;
  394. msr = regs->msr;
  395. msr_check_and_set(msr_all_available);
  396. /*
  397. * Only reload if the bit is not set in the user MSR, the bit BEING set
  398. * indicates that the registers are hot
  399. */
  400. if ((!(msr & MSR_FP)) && restore_fp(current))
  401. msr |= MSR_FP | current->thread.fpexc_mode;
  402. if ((!(msr & MSR_VEC)) && restore_altivec(current))
  403. msr |= MSR_VEC;
  404. if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
  405. restore_vsx(current)) {
  406. msr |= MSR_VSX;
  407. }
  408. msr_check_and_clear(msr_all_available);
  409. regs->msr = msr;
  410. }
  411. void save_all(struct task_struct *tsk)
  412. {
  413. unsigned long usermsr;
  414. if (!tsk->thread.regs)
  415. return;
  416. usermsr = tsk->thread.regs->msr;
  417. if ((usermsr & msr_all_available) == 0)
  418. return;
  419. msr_check_and_set(msr_all_available);
  420. /*
  421. * Saving the way the register space is in hardware, save_vsx boils
  422. * down to a save_fpu() and save_altivec()
  423. */
  424. if (usermsr & MSR_VSX) {
  425. save_vsx(tsk);
  426. } else {
  427. if (usermsr & MSR_FP)
  428. save_fpu(tsk);
  429. if (usermsr & MSR_VEC)
  430. save_altivec(tsk);
  431. }
  432. if (usermsr & MSR_SPE)
  433. __giveup_spe(tsk);
  434. msr_check_and_clear(msr_all_available);
  435. }
  436. void flush_all_to_thread(struct task_struct *tsk)
  437. {
  438. if (tsk->thread.regs) {
  439. preempt_disable();
  440. BUG_ON(tsk != current);
  441. save_all(tsk);
  442. #ifdef CONFIG_SPE
  443. if (tsk->thread.regs->msr & MSR_SPE)
  444. tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
  445. #endif
  446. preempt_enable();
  447. }
  448. }
  449. EXPORT_SYMBOL(flush_all_to_thread);
  450. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  451. void do_send_trap(struct pt_regs *regs, unsigned long address,
  452. unsigned long error_code, int signal_code, int breakpt)
  453. {
  454. siginfo_t info;
  455. current->thread.trap_nr = signal_code;
  456. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  457. 11, SIGSEGV) == NOTIFY_STOP)
  458. return;
  459. /* Deliver the signal to userspace */
  460. info.si_signo = SIGTRAP;
  461. info.si_errno = breakpt; /* breakpoint or watchpoint id */
  462. info.si_code = signal_code;
  463. info.si_addr = (void __user *)address;
  464. force_sig_info(SIGTRAP, &info, current);
  465. }
  466. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  467. void do_break (struct pt_regs *regs, unsigned long address,
  468. unsigned long error_code)
  469. {
  470. siginfo_t info;
  471. current->thread.trap_nr = TRAP_HWBKPT;
  472. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  473. 11, SIGSEGV) == NOTIFY_STOP)
  474. return;
  475. if (debugger_break_match(regs))
  476. return;
  477. /* Clear the breakpoint */
  478. hw_breakpoint_disable();
  479. /* Deliver the signal to userspace */
  480. info.si_signo = SIGTRAP;
  481. info.si_errno = 0;
  482. info.si_code = TRAP_HWBKPT;
  483. info.si_addr = (void __user *)address;
  484. force_sig_info(SIGTRAP, &info, current);
  485. }
  486. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  487. static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
  488. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  489. /*
  490. * Set the debug registers back to their default "safe" values.
  491. */
  492. static void set_debug_reg_defaults(struct thread_struct *thread)
  493. {
  494. thread->debug.iac1 = thread->debug.iac2 = 0;
  495. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  496. thread->debug.iac3 = thread->debug.iac4 = 0;
  497. #endif
  498. thread->debug.dac1 = thread->debug.dac2 = 0;
  499. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  500. thread->debug.dvc1 = thread->debug.dvc2 = 0;
  501. #endif
  502. thread->debug.dbcr0 = 0;
  503. #ifdef CONFIG_BOOKE
  504. /*
  505. * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
  506. */
  507. thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
  508. DBCR1_IAC3US | DBCR1_IAC4US;
  509. /*
  510. * Force Data Address Compare User/Supervisor bits to be User-only
  511. * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
  512. */
  513. thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
  514. #else
  515. thread->debug.dbcr1 = 0;
  516. #endif
  517. }
  518. static void prime_debug_regs(struct debug_reg *debug)
  519. {
  520. /*
  521. * We could have inherited MSR_DE from userspace, since
  522. * it doesn't get cleared on exception entry. Make sure
  523. * MSR_DE is clear before we enable any debug events.
  524. */
  525. mtmsr(mfmsr() & ~MSR_DE);
  526. mtspr(SPRN_IAC1, debug->iac1);
  527. mtspr(SPRN_IAC2, debug->iac2);
  528. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  529. mtspr(SPRN_IAC3, debug->iac3);
  530. mtspr(SPRN_IAC4, debug->iac4);
  531. #endif
  532. mtspr(SPRN_DAC1, debug->dac1);
  533. mtspr(SPRN_DAC2, debug->dac2);
  534. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  535. mtspr(SPRN_DVC1, debug->dvc1);
  536. mtspr(SPRN_DVC2, debug->dvc2);
  537. #endif
  538. mtspr(SPRN_DBCR0, debug->dbcr0);
  539. mtspr(SPRN_DBCR1, debug->dbcr1);
  540. #ifdef CONFIG_BOOKE
  541. mtspr(SPRN_DBCR2, debug->dbcr2);
  542. #endif
  543. }
  544. /*
  545. * Unless neither the old or new thread are making use of the
  546. * debug registers, set the debug registers from the values
  547. * stored in the new thread.
  548. */
  549. void switch_booke_debug_regs(struct debug_reg *new_debug)
  550. {
  551. if ((current->thread.debug.dbcr0 & DBCR0_IDM)
  552. || (new_debug->dbcr0 & DBCR0_IDM))
  553. prime_debug_regs(new_debug);
  554. }
  555. EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
  556. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  557. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  558. static void set_debug_reg_defaults(struct thread_struct *thread)
  559. {
  560. thread->hw_brk.address = 0;
  561. thread->hw_brk.type = 0;
  562. set_breakpoint(&thread->hw_brk);
  563. }
  564. #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
  565. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  566. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  567. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  568. {
  569. mtspr(SPRN_DAC1, dabr);
  570. #ifdef CONFIG_PPC_47x
  571. isync();
  572. #endif
  573. return 0;
  574. }
  575. #elif defined(CONFIG_PPC_BOOK3S)
  576. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  577. {
  578. mtspr(SPRN_DABR, dabr);
  579. if (cpu_has_feature(CPU_FTR_DABRX))
  580. mtspr(SPRN_DABRX, dabrx);
  581. return 0;
  582. }
  583. #else
  584. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  585. {
  586. return -EINVAL;
  587. }
  588. #endif
  589. static inline int set_dabr(struct arch_hw_breakpoint *brk)
  590. {
  591. unsigned long dabr, dabrx;
  592. dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
  593. dabrx = ((brk->type >> 3) & 0x7);
  594. if (ppc_md.set_dabr)
  595. return ppc_md.set_dabr(dabr, dabrx);
  596. return __set_dabr(dabr, dabrx);
  597. }
  598. static inline int set_dawr(struct arch_hw_breakpoint *brk)
  599. {
  600. unsigned long dawr, dawrx, mrd;
  601. dawr = brk->address;
  602. dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
  603. << (63 - 58); //* read/write bits */
  604. dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
  605. << (63 - 59); //* translate */
  606. dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
  607. >> 3; //* PRIM bits */
  608. /* dawr length is stored in field MDR bits 48:53. Matches range in
  609. doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
  610. 0b111111=64DW.
  611. brk->len is in bytes.
  612. This aligns up to double word size, shifts and does the bias.
  613. */
  614. mrd = ((brk->len + 7) >> 3) - 1;
  615. dawrx |= (mrd & 0x3f) << (63 - 53);
  616. if (ppc_md.set_dawr)
  617. return ppc_md.set_dawr(dawr, dawrx);
  618. mtspr(SPRN_DAWR, dawr);
  619. mtspr(SPRN_DAWRX, dawrx);
  620. return 0;
  621. }
  622. void __set_breakpoint(struct arch_hw_breakpoint *brk)
  623. {
  624. memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
  625. if (cpu_has_feature(CPU_FTR_DAWR))
  626. set_dawr(brk);
  627. else
  628. set_dabr(brk);
  629. }
  630. void set_breakpoint(struct arch_hw_breakpoint *brk)
  631. {
  632. preempt_disable();
  633. __set_breakpoint(brk);
  634. preempt_enable();
  635. }
  636. #ifdef CONFIG_PPC64
  637. DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
  638. #endif
  639. static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
  640. struct arch_hw_breakpoint *b)
  641. {
  642. if (a->address != b->address)
  643. return false;
  644. if (a->type != b->type)
  645. return false;
  646. if (a->len != b->len)
  647. return false;
  648. return true;
  649. }
  650. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  651. static void tm_reclaim_thread(struct thread_struct *thr,
  652. struct thread_info *ti, uint8_t cause)
  653. {
  654. unsigned long msr_diff = 0;
  655. /*
  656. * If FP/VSX registers have been already saved to the
  657. * thread_struct, move them to the transact_fp array.
  658. * We clear the TIF_RESTORE_TM bit since after the reclaim
  659. * the thread will no longer be transactional.
  660. */
  661. if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
  662. msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
  663. if (msr_diff & MSR_FP)
  664. memcpy(&thr->transact_fp, &thr->fp_state,
  665. sizeof(struct thread_fp_state));
  666. if (msr_diff & MSR_VEC)
  667. memcpy(&thr->transact_vr, &thr->vr_state,
  668. sizeof(struct thread_vr_state));
  669. clear_ti_thread_flag(ti, TIF_RESTORE_TM);
  670. msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
  671. }
  672. /*
  673. * Use the current MSR TM suspended bit to track if we have
  674. * checkpointed state outstanding.
  675. * On signal delivery, we'd normally reclaim the checkpointed
  676. * state to obtain stack pointer (see:get_tm_stackpointer()).
  677. * This will then directly return to userspace without going
  678. * through __switch_to(). However, if the stack frame is bad,
  679. * we need to exit this thread which calls __switch_to() which
  680. * will again attempt to reclaim the already saved tm state.
  681. * Hence we need to check that we've not already reclaimed
  682. * this state.
  683. * We do this using the current MSR, rather tracking it in
  684. * some specific thread_struct bit, as it has the additional
  685. * benifit of checking for a potential TM bad thing exception.
  686. */
  687. if (!MSR_TM_SUSPENDED(mfmsr()))
  688. return;
  689. tm_reclaim(thr, thr->regs->msr, cause);
  690. /* Having done the reclaim, we now have the checkpointed
  691. * FP/VSX values in the registers. These might be valid
  692. * even if we have previously called enable_kernel_fp() or
  693. * flush_fp_to_thread(), so update thr->regs->msr to
  694. * indicate their current validity.
  695. */
  696. thr->regs->msr |= msr_diff;
  697. }
  698. void tm_reclaim_current(uint8_t cause)
  699. {
  700. tm_enable();
  701. tm_reclaim_thread(&current->thread, current_thread_info(), cause);
  702. }
  703. static inline void tm_reclaim_task(struct task_struct *tsk)
  704. {
  705. /* We have to work out if we're switching from/to a task that's in the
  706. * middle of a transaction.
  707. *
  708. * In switching we need to maintain a 2nd register state as
  709. * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
  710. * checkpointed (tbegin) state in ckpt_regs and saves the transactional
  711. * (current) FPRs into oldtask->thread.transact_fpr[].
  712. *
  713. * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
  714. */
  715. struct thread_struct *thr = &tsk->thread;
  716. if (!thr->regs)
  717. return;
  718. if (!MSR_TM_ACTIVE(thr->regs->msr))
  719. goto out_and_saveregs;
  720. /* Stash the original thread MSR, as giveup_fpu et al will
  721. * modify it. We hold onto it to see whether the task used
  722. * FP & vector regs. If the TIF_RESTORE_TM flag is set,
  723. * ckpt_regs.msr is already set.
  724. */
  725. if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
  726. thr->ckpt_regs.msr = thr->regs->msr;
  727. TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
  728. "ccr=%lx, msr=%lx, trap=%lx)\n",
  729. tsk->pid, thr->regs->nip,
  730. thr->regs->ccr, thr->regs->msr,
  731. thr->regs->trap);
  732. tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
  733. TM_DEBUG("--- tm_reclaim on pid %d complete\n",
  734. tsk->pid);
  735. out_and_saveregs:
  736. /* Always save the regs here, even if a transaction's not active.
  737. * This context-switches a thread's TM info SPRs. We do it here to
  738. * be consistent with the restore path (in recheckpoint) which
  739. * cannot happen later in _switch().
  740. */
  741. tm_save_sprs(thr);
  742. }
  743. extern void __tm_recheckpoint(struct thread_struct *thread,
  744. unsigned long orig_msr);
  745. void tm_recheckpoint(struct thread_struct *thread,
  746. unsigned long orig_msr)
  747. {
  748. unsigned long flags;
  749. /* We really can't be interrupted here as the TEXASR registers can't
  750. * change and later in the trecheckpoint code, we have a userspace R1.
  751. * So let's hard disable over this region.
  752. */
  753. local_irq_save(flags);
  754. hard_irq_disable();
  755. /* The TM SPRs are restored here, so that TEXASR.FS can be set
  756. * before the trecheckpoint and no explosion occurs.
  757. */
  758. tm_restore_sprs(thread);
  759. __tm_recheckpoint(thread, orig_msr);
  760. local_irq_restore(flags);
  761. }
  762. static inline void tm_recheckpoint_new_task(struct task_struct *new)
  763. {
  764. unsigned long msr;
  765. if (!cpu_has_feature(CPU_FTR_TM))
  766. return;
  767. /* Recheckpoint the registers of the thread we're about to switch to.
  768. *
  769. * If the task was using FP, we non-lazily reload both the original and
  770. * the speculative FP register states. This is because the kernel
  771. * doesn't see if/when a TM rollback occurs, so if we take an FP
  772. * unavoidable later, we are unable to determine which set of FP regs
  773. * need to be restored.
  774. */
  775. if (!new->thread.regs)
  776. return;
  777. if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
  778. tm_restore_sprs(&new->thread);
  779. return;
  780. }
  781. msr = new->thread.ckpt_regs.msr;
  782. /* Recheckpoint to restore original checkpointed register state. */
  783. TM_DEBUG("*** tm_recheckpoint of pid %d "
  784. "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
  785. new->pid, new->thread.regs->msr, msr);
  786. /* This loads the checkpointed FP/VEC state, if used */
  787. tm_recheckpoint(&new->thread, msr);
  788. /* This loads the speculative FP/VEC state, if used */
  789. if (msr & MSR_FP) {
  790. do_load_up_transact_fpu(&new->thread);
  791. new->thread.regs->msr |=
  792. (MSR_FP | new->thread.fpexc_mode);
  793. }
  794. #ifdef CONFIG_ALTIVEC
  795. if (msr & MSR_VEC) {
  796. do_load_up_transact_altivec(&new->thread);
  797. new->thread.regs->msr |= MSR_VEC;
  798. }
  799. #endif
  800. /* We may as well turn on VSX too since all the state is restored now */
  801. if (msr & MSR_VSX)
  802. new->thread.regs->msr |= MSR_VSX;
  803. TM_DEBUG("*** tm_recheckpoint of pid %d complete "
  804. "(kernel msr 0x%lx)\n",
  805. new->pid, mfmsr());
  806. }
  807. static inline void __switch_to_tm(struct task_struct *prev)
  808. {
  809. if (cpu_has_feature(CPU_FTR_TM)) {
  810. tm_enable();
  811. tm_reclaim_task(prev);
  812. }
  813. }
  814. /*
  815. * This is called if we are on the way out to userspace and the
  816. * TIF_RESTORE_TM flag is set. It checks if we need to reload
  817. * FP and/or vector state and does so if necessary.
  818. * If userspace is inside a transaction (whether active or
  819. * suspended) and FP/VMX/VSX instructions have ever been enabled
  820. * inside that transaction, then we have to keep them enabled
  821. * and keep the FP/VMX/VSX state loaded while ever the transaction
  822. * continues. The reason is that if we didn't, and subsequently
  823. * got a FP/VMX/VSX unavailable interrupt inside a transaction,
  824. * we don't know whether it's the same transaction, and thus we
  825. * don't know which of the checkpointed state and the transactional
  826. * state to use.
  827. */
  828. void restore_tm_state(struct pt_regs *regs)
  829. {
  830. unsigned long msr_diff;
  831. clear_thread_flag(TIF_RESTORE_TM);
  832. if (!MSR_TM_ACTIVE(regs->msr))
  833. return;
  834. msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
  835. msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
  836. restore_math(regs);
  837. regs->msr |= msr_diff;
  838. }
  839. #else
  840. #define tm_recheckpoint_new_task(new)
  841. #define __switch_to_tm(prev)
  842. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  843. static inline void save_sprs(struct thread_struct *t)
  844. {
  845. #ifdef CONFIG_ALTIVEC
  846. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  847. t->vrsave = mfspr(SPRN_VRSAVE);
  848. #endif
  849. #ifdef CONFIG_PPC_BOOK3S_64
  850. if (cpu_has_feature(CPU_FTR_DSCR))
  851. t->dscr = mfspr(SPRN_DSCR);
  852. if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
  853. t->bescr = mfspr(SPRN_BESCR);
  854. t->ebbhr = mfspr(SPRN_EBBHR);
  855. t->ebbrr = mfspr(SPRN_EBBRR);
  856. t->fscr = mfspr(SPRN_FSCR);
  857. /*
  858. * Note that the TAR is not available for use in the kernel.
  859. * (To provide this, the TAR should be backed up/restored on
  860. * exception entry/exit instead, and be in pt_regs. FIXME,
  861. * this should be in pt_regs anyway (for debug).)
  862. */
  863. t->tar = mfspr(SPRN_TAR);
  864. }
  865. #endif
  866. }
  867. static inline void restore_sprs(struct thread_struct *old_thread,
  868. struct thread_struct *new_thread)
  869. {
  870. #ifdef CONFIG_ALTIVEC
  871. if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
  872. old_thread->vrsave != new_thread->vrsave)
  873. mtspr(SPRN_VRSAVE, new_thread->vrsave);
  874. #endif
  875. #ifdef CONFIG_PPC_BOOK3S_64
  876. if (cpu_has_feature(CPU_FTR_DSCR)) {
  877. u64 dscr = get_paca()->dscr_default;
  878. u64 fscr = old_thread->fscr & ~FSCR_DSCR;
  879. if (new_thread->dscr_inherit) {
  880. dscr = new_thread->dscr;
  881. fscr |= FSCR_DSCR;
  882. }
  883. if (old_thread->dscr != dscr)
  884. mtspr(SPRN_DSCR, dscr);
  885. if (old_thread->fscr != fscr)
  886. mtspr(SPRN_FSCR, fscr);
  887. }
  888. if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
  889. if (old_thread->bescr != new_thread->bescr)
  890. mtspr(SPRN_BESCR, new_thread->bescr);
  891. if (old_thread->ebbhr != new_thread->ebbhr)
  892. mtspr(SPRN_EBBHR, new_thread->ebbhr);
  893. if (old_thread->ebbrr != new_thread->ebbrr)
  894. mtspr(SPRN_EBBRR, new_thread->ebbrr);
  895. if (old_thread->tar != new_thread->tar)
  896. mtspr(SPRN_TAR, new_thread->tar);
  897. }
  898. #endif
  899. }
  900. struct task_struct *__switch_to(struct task_struct *prev,
  901. struct task_struct *new)
  902. {
  903. struct thread_struct *new_thread, *old_thread;
  904. struct task_struct *last;
  905. #ifdef CONFIG_PPC_BOOK3S_64
  906. struct ppc64_tlb_batch *batch;
  907. #endif
  908. new_thread = &new->thread;
  909. old_thread = &current->thread;
  910. WARN_ON(!irqs_disabled());
  911. #ifdef CONFIG_PPC64
  912. /*
  913. * Collect processor utilization data per process
  914. */
  915. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  916. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  917. long unsigned start_tb, current_tb;
  918. start_tb = old_thread->start_tb;
  919. cu->current_tb = current_tb = mfspr(SPRN_PURR);
  920. old_thread->accum_tb += (current_tb - start_tb);
  921. new_thread->start_tb = current_tb;
  922. }
  923. #endif /* CONFIG_PPC64 */
  924. #ifdef CONFIG_PPC_BOOK3S_64
  925. batch = this_cpu_ptr(&ppc64_tlb_batch);
  926. if (batch->active) {
  927. current_thread_info()->local_flags |= _TLF_LAZY_MMU;
  928. if (batch->index)
  929. __flush_tlb_pending(batch);
  930. batch->active = 0;
  931. }
  932. #endif /* CONFIG_PPC_BOOK3S_64 */
  933. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  934. switch_booke_debug_regs(&new->thread.debug);
  935. #else
  936. /*
  937. * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
  938. * schedule DABR
  939. */
  940. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  941. if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
  942. __set_breakpoint(&new->thread.hw_brk);
  943. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  944. #endif
  945. /*
  946. * We need to save SPRs before treclaim/trecheckpoint as these will
  947. * change a number of them.
  948. */
  949. save_sprs(&prev->thread);
  950. __switch_to_tm(prev);
  951. /* Save FPU, Altivec, VSX and SPE state */
  952. giveup_all(prev);
  953. /*
  954. * We can't take a PMU exception inside _switch() since there is a
  955. * window where the kernel stack SLB and the kernel stack are out
  956. * of sync. Hard disable here.
  957. */
  958. hard_irq_disable();
  959. tm_recheckpoint_new_task(new);
  960. /*
  961. * Call restore_sprs() before calling _switch(). If we move it after
  962. * _switch() then we miss out on calling it for new tasks. The reason
  963. * for this is we manually create a stack frame for new tasks that
  964. * directly returns through ret_from_fork() or
  965. * ret_from_kernel_thread(). See copy_thread() for details.
  966. */
  967. restore_sprs(old_thread, new_thread);
  968. last = _switch(old_thread, new_thread);
  969. #ifdef CONFIG_PPC_BOOK3S_64
  970. if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
  971. current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
  972. batch = this_cpu_ptr(&ppc64_tlb_batch);
  973. batch->active = 1;
  974. }
  975. if (current_thread_info()->task->thread.regs)
  976. restore_math(current_thread_info()->task->thread.regs);
  977. #endif /* CONFIG_PPC_BOOK3S_64 */
  978. return last;
  979. }
  980. static int instructions_to_print = 16;
  981. static void show_instructions(struct pt_regs *regs)
  982. {
  983. int i;
  984. unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
  985. sizeof(int));
  986. printk("Instruction dump:");
  987. for (i = 0; i < instructions_to_print; i++) {
  988. int instr;
  989. if (!(i % 8))
  990. printk("\n");
  991. #if !defined(CONFIG_BOOKE)
  992. /* If executing with the IMMU off, adjust pc rather
  993. * than print XXXXXXXX.
  994. */
  995. if (!(regs->msr & MSR_IR))
  996. pc = (unsigned long)phys_to_virt(pc);
  997. #endif
  998. if (!__kernel_text_address(pc) ||
  999. probe_kernel_address((unsigned int __user *)pc, instr)) {
  1000. printk(KERN_CONT "XXXXXXXX ");
  1001. } else {
  1002. if (regs->nip == pc)
  1003. printk(KERN_CONT "<%08x> ", instr);
  1004. else
  1005. printk(KERN_CONT "%08x ", instr);
  1006. }
  1007. pc += sizeof(int);
  1008. }
  1009. printk("\n");
  1010. }
  1011. struct regbit {
  1012. unsigned long bit;
  1013. const char *name;
  1014. };
  1015. static struct regbit msr_bits[] = {
  1016. #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
  1017. {MSR_SF, "SF"},
  1018. {MSR_HV, "HV"},
  1019. #endif
  1020. {MSR_VEC, "VEC"},
  1021. {MSR_VSX, "VSX"},
  1022. #ifdef CONFIG_BOOKE
  1023. {MSR_CE, "CE"},
  1024. #endif
  1025. {MSR_EE, "EE"},
  1026. {MSR_PR, "PR"},
  1027. {MSR_FP, "FP"},
  1028. {MSR_ME, "ME"},
  1029. #ifdef CONFIG_BOOKE
  1030. {MSR_DE, "DE"},
  1031. #else
  1032. {MSR_SE, "SE"},
  1033. {MSR_BE, "BE"},
  1034. #endif
  1035. {MSR_IR, "IR"},
  1036. {MSR_DR, "DR"},
  1037. {MSR_PMM, "PMM"},
  1038. #ifndef CONFIG_BOOKE
  1039. {MSR_RI, "RI"},
  1040. {MSR_LE, "LE"},
  1041. #endif
  1042. {0, NULL}
  1043. };
  1044. static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
  1045. {
  1046. const char *s = "";
  1047. for (; bits->bit; ++bits)
  1048. if (val & bits->bit) {
  1049. printk("%s%s", s, bits->name);
  1050. s = sep;
  1051. }
  1052. }
  1053. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1054. static struct regbit msr_tm_bits[] = {
  1055. {MSR_TS_T, "T"},
  1056. {MSR_TS_S, "S"},
  1057. {MSR_TM, "E"},
  1058. {0, NULL}
  1059. };
  1060. static void print_tm_bits(unsigned long val)
  1061. {
  1062. /*
  1063. * This only prints something if at least one of the TM bit is set.
  1064. * Inside the TM[], the output means:
  1065. * E: Enabled (bit 32)
  1066. * S: Suspended (bit 33)
  1067. * T: Transactional (bit 34)
  1068. */
  1069. if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
  1070. printk(",TM[");
  1071. print_bits(val, msr_tm_bits, "");
  1072. printk("]");
  1073. }
  1074. }
  1075. #else
  1076. static void print_tm_bits(unsigned long val) {}
  1077. #endif
  1078. static void print_msr_bits(unsigned long val)
  1079. {
  1080. printk("<");
  1081. print_bits(val, msr_bits, ",");
  1082. print_tm_bits(val);
  1083. printk(">");
  1084. }
  1085. #ifdef CONFIG_PPC64
  1086. #define REG "%016lx"
  1087. #define REGS_PER_LINE 4
  1088. #define LAST_VOLATILE 13
  1089. #else
  1090. #define REG "%08lx"
  1091. #define REGS_PER_LINE 8
  1092. #define LAST_VOLATILE 12
  1093. #endif
  1094. void show_regs(struct pt_regs * regs)
  1095. {
  1096. int i, trap;
  1097. show_regs_print_info(KERN_DEFAULT);
  1098. printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
  1099. regs->nip, regs->link, regs->ctr);
  1100. printk("REGS: %p TRAP: %04lx %s (%s)\n",
  1101. regs, regs->trap, print_tainted(), init_utsname()->release);
  1102. printk("MSR: "REG" ", regs->msr);
  1103. print_msr_bits(regs->msr);
  1104. printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
  1105. trap = TRAP(regs);
  1106. if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
  1107. printk("CFAR: "REG" ", regs->orig_gpr3);
  1108. if (trap == 0x200 || trap == 0x300 || trap == 0x600)
  1109. #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
  1110. printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
  1111. #else
  1112. printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
  1113. #endif
  1114. #ifdef CONFIG_PPC64
  1115. printk("SOFTE: %ld ", regs->softe);
  1116. #endif
  1117. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1118. if (MSR_TM_ACTIVE(regs->msr))
  1119. printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
  1120. #endif
  1121. for (i = 0; i < 32; i++) {
  1122. if ((i % REGS_PER_LINE) == 0)
  1123. printk("\nGPR%02d: ", i);
  1124. printk(REG " ", regs->gpr[i]);
  1125. if (i == LAST_VOLATILE && !FULL_REGS(regs))
  1126. break;
  1127. }
  1128. printk("\n");
  1129. #ifdef CONFIG_KALLSYMS
  1130. /*
  1131. * Lookup NIP late so we have the best change of getting the
  1132. * above info out without failing
  1133. */
  1134. printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
  1135. printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
  1136. #endif
  1137. show_stack(current, (unsigned long *) regs->gpr[1]);
  1138. if (!user_mode(regs))
  1139. show_instructions(regs);
  1140. }
  1141. void exit_thread(void)
  1142. {
  1143. }
  1144. void flush_thread(void)
  1145. {
  1146. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  1147. flush_ptrace_hw_breakpoint(current);
  1148. #else /* CONFIG_HAVE_HW_BREAKPOINT */
  1149. set_debug_reg_defaults(&current->thread);
  1150. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  1151. }
  1152. void
  1153. release_thread(struct task_struct *t)
  1154. {
  1155. }
  1156. /*
  1157. * this gets called so that we can store coprocessor state into memory and
  1158. * copy the current task into the new thread.
  1159. */
  1160. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  1161. {
  1162. flush_all_to_thread(src);
  1163. /*
  1164. * Flush TM state out so we can copy it. __switch_to_tm() does this
  1165. * flush but it removes the checkpointed state from the current CPU and
  1166. * transitions the CPU out of TM mode. Hence we need to call
  1167. * tm_recheckpoint_new_task() (on the same task) to restore the
  1168. * checkpointed state back and the TM mode.
  1169. */
  1170. __switch_to_tm(src);
  1171. tm_recheckpoint_new_task(src);
  1172. *dst = *src;
  1173. clear_task_ebb(dst);
  1174. return 0;
  1175. }
  1176. static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
  1177. {
  1178. #ifdef CONFIG_PPC_STD_MMU_64
  1179. unsigned long sp_vsid;
  1180. unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
  1181. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1182. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
  1183. << SLB_VSID_SHIFT_1T;
  1184. else
  1185. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
  1186. << SLB_VSID_SHIFT;
  1187. sp_vsid |= SLB_VSID_KERNEL | llp;
  1188. p->thread.ksp_vsid = sp_vsid;
  1189. #endif
  1190. }
  1191. /*
  1192. * Copy a thread..
  1193. */
  1194. /*
  1195. * Copy architecture-specific thread state
  1196. */
  1197. int copy_thread(unsigned long clone_flags, unsigned long usp,
  1198. unsigned long kthread_arg, struct task_struct *p)
  1199. {
  1200. struct pt_regs *childregs, *kregs;
  1201. extern void ret_from_fork(void);
  1202. extern void ret_from_kernel_thread(void);
  1203. void (*f)(void);
  1204. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  1205. /* Copy registers */
  1206. sp -= sizeof(struct pt_regs);
  1207. childregs = (struct pt_regs *) sp;
  1208. if (unlikely(p->flags & PF_KTHREAD)) {
  1209. /* kernel thread */
  1210. struct thread_info *ti = (void *)task_stack_page(p);
  1211. memset(childregs, 0, sizeof(struct pt_regs));
  1212. childregs->gpr[1] = sp + sizeof(struct pt_regs);
  1213. /* function */
  1214. if (usp)
  1215. childregs->gpr[14] = ppc_function_entry((void *)usp);
  1216. #ifdef CONFIG_PPC64
  1217. clear_tsk_thread_flag(p, TIF_32BIT);
  1218. childregs->softe = 1;
  1219. #endif
  1220. childregs->gpr[15] = kthread_arg;
  1221. p->thread.regs = NULL; /* no user register state */
  1222. ti->flags |= _TIF_RESTOREALL;
  1223. f = ret_from_kernel_thread;
  1224. } else {
  1225. /* user thread */
  1226. struct pt_regs *regs = current_pt_regs();
  1227. CHECK_FULL_REGS(regs);
  1228. *childregs = *regs;
  1229. if (usp)
  1230. childregs->gpr[1] = usp;
  1231. p->thread.regs = childregs;
  1232. childregs->gpr[3] = 0; /* Result from fork() */
  1233. if (clone_flags & CLONE_SETTLS) {
  1234. #ifdef CONFIG_PPC64
  1235. if (!is_32bit_task())
  1236. childregs->gpr[13] = childregs->gpr[6];
  1237. else
  1238. #endif
  1239. childregs->gpr[2] = childregs->gpr[6];
  1240. }
  1241. f = ret_from_fork;
  1242. }
  1243. childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
  1244. sp -= STACK_FRAME_OVERHEAD;
  1245. /*
  1246. * The way this works is that at some point in the future
  1247. * some task will call _switch to switch to the new task.
  1248. * That will pop off the stack frame created below and start
  1249. * the new task running at ret_from_fork. The new task will
  1250. * do some house keeping and then return from the fork or clone
  1251. * system call, using the stack frame created above.
  1252. */
  1253. ((unsigned long *)sp)[0] = 0;
  1254. sp -= sizeof(struct pt_regs);
  1255. kregs = (struct pt_regs *) sp;
  1256. sp -= STACK_FRAME_OVERHEAD;
  1257. p->thread.ksp = sp;
  1258. #ifdef CONFIG_PPC32
  1259. p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
  1260. _ALIGN_UP(sizeof(struct thread_info), 16);
  1261. #endif
  1262. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  1263. p->thread.ptrace_bps[0] = NULL;
  1264. #endif
  1265. p->thread.fp_save_area = NULL;
  1266. #ifdef CONFIG_ALTIVEC
  1267. p->thread.vr_save_area = NULL;
  1268. #endif
  1269. setup_ksp_vsid(p, sp);
  1270. #ifdef CONFIG_PPC64
  1271. if (cpu_has_feature(CPU_FTR_DSCR)) {
  1272. p->thread.dscr_inherit = current->thread.dscr_inherit;
  1273. p->thread.dscr = mfspr(SPRN_DSCR);
  1274. }
  1275. if (cpu_has_feature(CPU_FTR_HAS_PPR))
  1276. p->thread.ppr = INIT_PPR;
  1277. #endif
  1278. kregs->nip = ppc_function_entry(f);
  1279. return 0;
  1280. }
  1281. /*
  1282. * Set up a thread for executing a new program
  1283. */
  1284. void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
  1285. {
  1286. #ifdef CONFIG_PPC64
  1287. unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
  1288. #endif
  1289. /*
  1290. * If we exec out of a kernel thread then thread.regs will not be
  1291. * set. Do it now.
  1292. */
  1293. if (!current->thread.regs) {
  1294. struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
  1295. current->thread.regs = regs - 1;
  1296. }
  1297. memset(regs->gpr, 0, sizeof(regs->gpr));
  1298. regs->ctr = 0;
  1299. regs->link = 0;
  1300. regs->xer = 0;
  1301. regs->ccr = 0;
  1302. regs->gpr[1] = sp;
  1303. /*
  1304. * We have just cleared all the nonvolatile GPRs, so make
  1305. * FULL_REGS(regs) return true. This is necessary to allow
  1306. * ptrace to examine the thread immediately after exec.
  1307. */
  1308. regs->trap &= ~1UL;
  1309. #ifdef CONFIG_PPC32
  1310. regs->mq = 0;
  1311. regs->nip = start;
  1312. regs->msr = MSR_USER;
  1313. #else
  1314. if (!is_32bit_task()) {
  1315. unsigned long entry;
  1316. if (is_elf2_task()) {
  1317. /* Look ma, no function descriptors! */
  1318. entry = start;
  1319. /*
  1320. * Ulrich says:
  1321. * The latest iteration of the ABI requires that when
  1322. * calling a function (at its global entry point),
  1323. * the caller must ensure r12 holds the entry point
  1324. * address (so that the function can quickly
  1325. * establish addressability).
  1326. */
  1327. regs->gpr[12] = start;
  1328. /* Make sure that's restored on entry to userspace. */
  1329. set_thread_flag(TIF_RESTOREALL);
  1330. } else {
  1331. unsigned long toc;
  1332. /* start is a relocated pointer to the function
  1333. * descriptor for the elf _start routine. The first
  1334. * entry in the function descriptor is the entry
  1335. * address of _start and the second entry is the TOC
  1336. * value we need to use.
  1337. */
  1338. __get_user(entry, (unsigned long __user *)start);
  1339. __get_user(toc, (unsigned long __user *)start+1);
  1340. /* Check whether the e_entry function descriptor entries
  1341. * need to be relocated before we can use them.
  1342. */
  1343. if (load_addr != 0) {
  1344. entry += load_addr;
  1345. toc += load_addr;
  1346. }
  1347. regs->gpr[2] = toc;
  1348. }
  1349. regs->nip = entry;
  1350. regs->msr = MSR_USER64;
  1351. } else {
  1352. regs->nip = start;
  1353. regs->gpr[2] = 0;
  1354. regs->msr = MSR_USER32;
  1355. }
  1356. #endif
  1357. #ifdef CONFIG_VSX
  1358. current->thread.used_vsr = 0;
  1359. #endif
  1360. memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
  1361. current->thread.fp_save_area = NULL;
  1362. #ifdef CONFIG_ALTIVEC
  1363. memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
  1364. current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
  1365. current->thread.vr_save_area = NULL;
  1366. current->thread.vrsave = 0;
  1367. current->thread.used_vr = 0;
  1368. #endif /* CONFIG_ALTIVEC */
  1369. #ifdef CONFIG_SPE
  1370. memset(current->thread.evr, 0, sizeof(current->thread.evr));
  1371. current->thread.acc = 0;
  1372. current->thread.spefscr = 0;
  1373. current->thread.used_spe = 0;
  1374. #endif /* CONFIG_SPE */
  1375. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1376. if (cpu_has_feature(CPU_FTR_TM))
  1377. regs->msr |= MSR_TM;
  1378. current->thread.tm_tfhar = 0;
  1379. current->thread.tm_texasr = 0;
  1380. current->thread.tm_tfiar = 0;
  1381. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  1382. }
  1383. EXPORT_SYMBOL(start_thread);
  1384. #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
  1385. | PR_FP_EXC_RES | PR_FP_EXC_INV)
  1386. int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
  1387. {
  1388. struct pt_regs *regs = tsk->thread.regs;
  1389. /* This is a bit hairy. If we are an SPE enabled processor
  1390. * (have embedded fp) we store the IEEE exception enable flags in
  1391. * fpexc_mode. fpexc_mode is also used for setting FP exception
  1392. * mode (asyn, precise, disabled) for 'Classic' FP. */
  1393. if (val & PR_FP_EXC_SW_ENABLE) {
  1394. #ifdef CONFIG_SPE
  1395. if (cpu_has_feature(CPU_FTR_SPE)) {
  1396. /*
  1397. * When the sticky exception bits are set
  1398. * directly by userspace, it must call prctl
  1399. * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
  1400. * in the existing prctl settings) or
  1401. * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
  1402. * the bits being set). <fenv.h> functions
  1403. * saving and restoring the whole
  1404. * floating-point environment need to do so
  1405. * anyway to restore the prctl settings from
  1406. * the saved environment.
  1407. */
  1408. tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
  1409. tsk->thread.fpexc_mode = val &
  1410. (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
  1411. return 0;
  1412. } else {
  1413. return -EINVAL;
  1414. }
  1415. #else
  1416. return -EINVAL;
  1417. #endif
  1418. }
  1419. /* on a CONFIG_SPE this does not hurt us. The bits that
  1420. * __pack_fe01 use do not overlap with bits used for
  1421. * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
  1422. * on CONFIG_SPE implementations are reserved so writing to
  1423. * them does not change anything */
  1424. if (val > PR_FP_EXC_PRECISE)
  1425. return -EINVAL;
  1426. tsk->thread.fpexc_mode = __pack_fe01(val);
  1427. if (regs != NULL && (regs->msr & MSR_FP) != 0)
  1428. regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
  1429. | tsk->thread.fpexc_mode;
  1430. return 0;
  1431. }
  1432. int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
  1433. {
  1434. unsigned int val;
  1435. if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
  1436. #ifdef CONFIG_SPE
  1437. if (cpu_has_feature(CPU_FTR_SPE)) {
  1438. /*
  1439. * When the sticky exception bits are set
  1440. * directly by userspace, it must call prctl
  1441. * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
  1442. * in the existing prctl settings) or
  1443. * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
  1444. * the bits being set). <fenv.h> functions
  1445. * saving and restoring the whole
  1446. * floating-point environment need to do so
  1447. * anyway to restore the prctl settings from
  1448. * the saved environment.
  1449. */
  1450. tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
  1451. val = tsk->thread.fpexc_mode;
  1452. } else
  1453. return -EINVAL;
  1454. #else
  1455. return -EINVAL;
  1456. #endif
  1457. else
  1458. val = __unpack_fe01(tsk->thread.fpexc_mode);
  1459. return put_user(val, (unsigned int __user *) adr);
  1460. }
  1461. int set_endian(struct task_struct *tsk, unsigned int val)
  1462. {
  1463. struct pt_regs *regs = tsk->thread.regs;
  1464. if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
  1465. (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
  1466. return -EINVAL;
  1467. if (regs == NULL)
  1468. return -EINVAL;
  1469. if (val == PR_ENDIAN_BIG)
  1470. regs->msr &= ~MSR_LE;
  1471. else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
  1472. regs->msr |= MSR_LE;
  1473. else
  1474. return -EINVAL;
  1475. return 0;
  1476. }
  1477. int get_endian(struct task_struct *tsk, unsigned long adr)
  1478. {
  1479. struct pt_regs *regs = tsk->thread.regs;
  1480. unsigned int val;
  1481. if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
  1482. !cpu_has_feature(CPU_FTR_REAL_LE))
  1483. return -EINVAL;
  1484. if (regs == NULL)
  1485. return -EINVAL;
  1486. if (regs->msr & MSR_LE) {
  1487. if (cpu_has_feature(CPU_FTR_REAL_LE))
  1488. val = PR_ENDIAN_LITTLE;
  1489. else
  1490. val = PR_ENDIAN_PPC_LITTLE;
  1491. } else
  1492. val = PR_ENDIAN_BIG;
  1493. return put_user(val, (unsigned int __user *)adr);
  1494. }
  1495. int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
  1496. {
  1497. tsk->thread.align_ctl = val;
  1498. return 0;
  1499. }
  1500. int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
  1501. {
  1502. return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
  1503. }
  1504. static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
  1505. unsigned long nbytes)
  1506. {
  1507. unsigned long stack_page;
  1508. unsigned long cpu = task_cpu(p);
  1509. /*
  1510. * Avoid crashing if the stack has overflowed and corrupted
  1511. * task_cpu(p), which is in the thread_info struct.
  1512. */
  1513. if (cpu < NR_CPUS && cpu_possible(cpu)) {
  1514. stack_page = (unsigned long) hardirq_ctx[cpu];
  1515. if (sp >= stack_page + sizeof(struct thread_struct)
  1516. && sp <= stack_page + THREAD_SIZE - nbytes)
  1517. return 1;
  1518. stack_page = (unsigned long) softirq_ctx[cpu];
  1519. if (sp >= stack_page + sizeof(struct thread_struct)
  1520. && sp <= stack_page + THREAD_SIZE - nbytes)
  1521. return 1;
  1522. }
  1523. return 0;
  1524. }
  1525. int validate_sp(unsigned long sp, struct task_struct *p,
  1526. unsigned long nbytes)
  1527. {
  1528. unsigned long stack_page = (unsigned long)task_stack_page(p);
  1529. if (sp >= stack_page + sizeof(struct thread_struct)
  1530. && sp <= stack_page + THREAD_SIZE - nbytes)
  1531. return 1;
  1532. return valid_irq_stack(sp, p, nbytes);
  1533. }
  1534. EXPORT_SYMBOL(validate_sp);
  1535. unsigned long get_wchan(struct task_struct *p)
  1536. {
  1537. unsigned long ip, sp;
  1538. int count = 0;
  1539. if (!p || p == current || p->state == TASK_RUNNING)
  1540. return 0;
  1541. sp = p->thread.ksp;
  1542. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1543. return 0;
  1544. do {
  1545. sp = *(unsigned long *)sp;
  1546. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1547. return 0;
  1548. if (count > 0) {
  1549. ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
  1550. if (!in_sched_functions(ip))
  1551. return ip;
  1552. }
  1553. } while (count++ < 16);
  1554. return 0;
  1555. }
  1556. static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
  1557. void show_stack(struct task_struct *tsk, unsigned long *stack)
  1558. {
  1559. unsigned long sp, ip, lr, newsp;
  1560. int count = 0;
  1561. int firstframe = 1;
  1562. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1563. int curr_frame = current->curr_ret_stack;
  1564. extern void return_to_handler(void);
  1565. unsigned long rth = (unsigned long)return_to_handler;
  1566. #endif
  1567. sp = (unsigned long) stack;
  1568. if (tsk == NULL)
  1569. tsk = current;
  1570. if (sp == 0) {
  1571. if (tsk == current)
  1572. sp = current_stack_pointer();
  1573. else
  1574. sp = tsk->thread.ksp;
  1575. }
  1576. lr = 0;
  1577. printk("Call Trace:\n");
  1578. do {
  1579. if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
  1580. return;
  1581. stack = (unsigned long *) sp;
  1582. newsp = stack[0];
  1583. ip = stack[STACK_FRAME_LR_SAVE];
  1584. if (!firstframe || ip != lr) {
  1585. printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
  1586. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1587. if ((ip == rth) && curr_frame >= 0) {
  1588. printk(" (%pS)",
  1589. (void *)current->ret_stack[curr_frame].ret);
  1590. curr_frame--;
  1591. }
  1592. #endif
  1593. if (firstframe)
  1594. printk(" (unreliable)");
  1595. printk("\n");
  1596. }
  1597. firstframe = 0;
  1598. /*
  1599. * See if this is an exception frame.
  1600. * We look for the "regshere" marker in the current frame.
  1601. */
  1602. if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
  1603. && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  1604. struct pt_regs *regs = (struct pt_regs *)
  1605. (sp + STACK_FRAME_OVERHEAD);
  1606. lr = regs->link;
  1607. printk("--- interrupt: %lx at %pS\n LR = %pS\n",
  1608. regs->trap, (void *)regs->nip, (void *)lr);
  1609. firstframe = 1;
  1610. }
  1611. sp = newsp;
  1612. } while (count++ < kstack_depth_to_print);
  1613. }
  1614. #ifdef CONFIG_PPC64
  1615. /* Called with hard IRQs off */
  1616. void notrace __ppc64_runlatch_on(void)
  1617. {
  1618. struct thread_info *ti = current_thread_info();
  1619. unsigned long ctrl;
  1620. ctrl = mfspr(SPRN_CTRLF);
  1621. ctrl |= CTRL_RUNLATCH;
  1622. mtspr(SPRN_CTRLT, ctrl);
  1623. ti->local_flags |= _TLF_RUNLATCH;
  1624. }
  1625. /* Called with hard IRQs off */
  1626. void notrace __ppc64_runlatch_off(void)
  1627. {
  1628. struct thread_info *ti = current_thread_info();
  1629. unsigned long ctrl;
  1630. ti->local_flags &= ~_TLF_RUNLATCH;
  1631. ctrl = mfspr(SPRN_CTRLF);
  1632. ctrl &= ~CTRL_RUNLATCH;
  1633. mtspr(SPRN_CTRLT, ctrl);
  1634. }
  1635. #endif /* CONFIG_PPC64 */
  1636. unsigned long arch_align_stack(unsigned long sp)
  1637. {
  1638. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  1639. sp -= get_random_int() & ~PAGE_MASK;
  1640. return sp & ~0xf;
  1641. }
  1642. static inline unsigned long brk_rnd(void)
  1643. {
  1644. unsigned long rnd = 0;
  1645. /* 8MB for 32bit, 1GB for 64bit */
  1646. if (is_32bit_task())
  1647. rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
  1648. else
  1649. rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
  1650. return rnd << PAGE_SHIFT;
  1651. }
  1652. unsigned long arch_randomize_brk(struct mm_struct *mm)
  1653. {
  1654. unsigned long base = mm->brk;
  1655. unsigned long ret;
  1656. #ifdef CONFIG_PPC_STD_MMU_64
  1657. /*
  1658. * If we are using 1TB segments and we are allowed to randomise
  1659. * the heap, we can put it above 1TB so it is backed by a 1TB
  1660. * segment. Otherwise the heap will be in the bottom 1TB
  1661. * which always uses 256MB segments and this may result in a
  1662. * performance penalty.
  1663. */
  1664. if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
  1665. base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
  1666. #endif
  1667. ret = PAGE_ALIGN(base + brk_rnd());
  1668. if (ret < mm->brk)
  1669. return mm->brk;
  1670. return ret;
  1671. }