backref.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 offset = 0;
  37. struct extent_inode_elem *e;
  38. if (!btrfs_file_extent_compression(eb, fi) &&
  39. !btrfs_file_extent_encryption(eb, fi) &&
  40. !btrfs_file_extent_other_encoding(eb, fi)) {
  41. u64 data_offset;
  42. u64 data_len;
  43. data_offset = btrfs_file_extent_offset(eb, fi);
  44. data_len = btrfs_file_extent_num_bytes(eb, fi);
  45. if (extent_item_pos < data_offset ||
  46. extent_item_pos >= data_offset + data_len)
  47. return 1;
  48. offset = extent_item_pos - data_offset;
  49. }
  50. e = kmalloc(sizeof(*e), GFP_NOFS);
  51. if (!e)
  52. return -ENOMEM;
  53. e->next = *eie;
  54. e->inum = key->objectid;
  55. e->offset = key->offset + offset;
  56. *eie = e;
  57. return 0;
  58. }
  59. static void free_inode_elem_list(struct extent_inode_elem *eie)
  60. {
  61. struct extent_inode_elem *eie_next;
  62. for (; eie; eie = eie_next) {
  63. eie_next = eie->next;
  64. kfree(eie);
  65. }
  66. }
  67. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  68. u64 extent_item_pos,
  69. struct extent_inode_elem **eie)
  70. {
  71. u64 disk_byte;
  72. struct btrfs_key key;
  73. struct btrfs_file_extent_item *fi;
  74. int slot;
  75. int nritems;
  76. int extent_type;
  77. int ret;
  78. /*
  79. * from the shared data ref, we only have the leaf but we need
  80. * the key. thus, we must look into all items and see that we
  81. * find one (some) with a reference to our extent item.
  82. */
  83. nritems = btrfs_header_nritems(eb);
  84. for (slot = 0; slot < nritems; ++slot) {
  85. btrfs_item_key_to_cpu(eb, &key, slot);
  86. if (key.type != BTRFS_EXTENT_DATA_KEY)
  87. continue;
  88. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  89. extent_type = btrfs_file_extent_type(eb, fi);
  90. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  91. continue;
  92. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  93. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  94. if (disk_byte != wanted_disk_byte)
  95. continue;
  96. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  97. if (ret < 0)
  98. return ret;
  99. }
  100. return 0;
  101. }
  102. /*
  103. * this structure records all encountered refs on the way up to the root
  104. */
  105. struct __prelim_ref {
  106. struct list_head list;
  107. u64 root_id;
  108. struct btrfs_key key_for_search;
  109. int level;
  110. int count;
  111. struct extent_inode_elem *inode_list;
  112. u64 parent;
  113. u64 wanted_disk_byte;
  114. };
  115. static struct kmem_cache *btrfs_prelim_ref_cache;
  116. int __init btrfs_prelim_ref_init(void)
  117. {
  118. btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
  119. sizeof(struct __prelim_ref),
  120. 0,
  121. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  122. NULL);
  123. if (!btrfs_prelim_ref_cache)
  124. return -ENOMEM;
  125. return 0;
  126. }
  127. void btrfs_prelim_ref_exit(void)
  128. {
  129. if (btrfs_prelim_ref_cache)
  130. kmem_cache_destroy(btrfs_prelim_ref_cache);
  131. }
  132. /*
  133. * the rules for all callers of this function are:
  134. * - obtaining the parent is the goal
  135. * - if you add a key, you must know that it is a correct key
  136. * - if you cannot add the parent or a correct key, then we will look into the
  137. * block later to set a correct key
  138. *
  139. * delayed refs
  140. * ============
  141. * backref type | shared | indirect | shared | indirect
  142. * information | tree | tree | data | data
  143. * --------------------+--------+----------+--------+----------
  144. * parent logical | y | - | - | -
  145. * key to resolve | - | y | y | y
  146. * tree block logical | - | - | - | -
  147. * root for resolving | y | y | y | y
  148. *
  149. * - column 1: we've the parent -> done
  150. * - column 2, 3, 4: we use the key to find the parent
  151. *
  152. * on disk refs (inline or keyed)
  153. * ==============================
  154. * backref type | shared | indirect | shared | indirect
  155. * information | tree | tree | data | data
  156. * --------------------+--------+----------+--------+----------
  157. * parent logical | y | - | y | -
  158. * key to resolve | - | - | - | y
  159. * tree block logical | y | y | y | y
  160. * root for resolving | - | y | y | y
  161. *
  162. * - column 1, 3: we've the parent -> done
  163. * - column 2: we take the first key from the block to find the parent
  164. * (see __add_missing_keys)
  165. * - column 4: we use the key to find the parent
  166. *
  167. * additional information that's available but not required to find the parent
  168. * block might help in merging entries to gain some speed.
  169. */
  170. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  171. struct btrfs_key *key, int level,
  172. u64 parent, u64 wanted_disk_byte, int count,
  173. gfp_t gfp_mask)
  174. {
  175. struct __prelim_ref *ref;
  176. if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
  177. return 0;
  178. ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
  179. if (!ref)
  180. return -ENOMEM;
  181. ref->root_id = root_id;
  182. if (key)
  183. ref->key_for_search = *key;
  184. else
  185. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  186. ref->inode_list = NULL;
  187. ref->level = level;
  188. ref->count = count;
  189. ref->parent = parent;
  190. ref->wanted_disk_byte = wanted_disk_byte;
  191. list_add_tail(&ref->list, head);
  192. return 0;
  193. }
  194. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  195. struct ulist *parents, struct __prelim_ref *ref,
  196. int level, u64 time_seq, const u64 *extent_item_pos)
  197. {
  198. int ret = 0;
  199. int slot;
  200. struct extent_buffer *eb;
  201. struct btrfs_key key;
  202. struct btrfs_key *key_for_search = &ref->key_for_search;
  203. struct btrfs_file_extent_item *fi;
  204. struct extent_inode_elem *eie = NULL, *old = NULL;
  205. u64 disk_byte;
  206. u64 wanted_disk_byte = ref->wanted_disk_byte;
  207. u64 count = 0;
  208. if (level != 0) {
  209. eb = path->nodes[level];
  210. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  211. if (ret < 0)
  212. return ret;
  213. return 0;
  214. }
  215. /*
  216. * We normally enter this function with the path already pointing to
  217. * the first item to check. But sometimes, we may enter it with
  218. * slot==nritems. In that case, go to the next leaf before we continue.
  219. */
  220. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  221. ret = btrfs_next_old_leaf(root, path, time_seq);
  222. while (!ret && count < ref->count) {
  223. eb = path->nodes[0];
  224. slot = path->slots[0];
  225. btrfs_item_key_to_cpu(eb, &key, slot);
  226. if (key.objectid != key_for_search->objectid ||
  227. key.type != BTRFS_EXTENT_DATA_KEY)
  228. break;
  229. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  230. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  231. if (disk_byte == wanted_disk_byte) {
  232. eie = NULL;
  233. old = NULL;
  234. count++;
  235. if (extent_item_pos) {
  236. ret = check_extent_in_eb(&key, eb, fi,
  237. *extent_item_pos,
  238. &eie);
  239. if (ret < 0)
  240. break;
  241. }
  242. if (ret > 0)
  243. goto next;
  244. ret = ulist_add_merge(parents, eb->start,
  245. (uintptr_t)eie,
  246. (u64 *)&old, GFP_NOFS);
  247. if (ret < 0)
  248. break;
  249. if (!ret && extent_item_pos) {
  250. while (old->next)
  251. old = old->next;
  252. old->next = eie;
  253. }
  254. eie = NULL;
  255. }
  256. next:
  257. ret = btrfs_next_old_item(root, path, time_seq);
  258. }
  259. if (ret > 0)
  260. ret = 0;
  261. else if (ret < 0)
  262. free_inode_elem_list(eie);
  263. return ret;
  264. }
  265. /*
  266. * resolve an indirect backref in the form (root_id, key, level)
  267. * to a logical address
  268. */
  269. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  270. struct btrfs_path *path, u64 time_seq,
  271. struct __prelim_ref *ref,
  272. struct ulist *parents,
  273. const u64 *extent_item_pos)
  274. {
  275. struct btrfs_root *root;
  276. struct btrfs_key root_key;
  277. struct extent_buffer *eb;
  278. int ret = 0;
  279. int root_level;
  280. int level = ref->level;
  281. int index;
  282. root_key.objectid = ref->root_id;
  283. root_key.type = BTRFS_ROOT_ITEM_KEY;
  284. root_key.offset = (u64)-1;
  285. index = srcu_read_lock(&fs_info->subvol_srcu);
  286. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  287. if (IS_ERR(root)) {
  288. srcu_read_unlock(&fs_info->subvol_srcu, index);
  289. ret = PTR_ERR(root);
  290. goto out;
  291. }
  292. root_level = btrfs_old_root_level(root, time_seq);
  293. if (root_level + 1 == level) {
  294. srcu_read_unlock(&fs_info->subvol_srcu, index);
  295. goto out;
  296. }
  297. path->lowest_level = level;
  298. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  299. /* root node has been locked, we can release @subvol_srcu safely here */
  300. srcu_read_unlock(&fs_info->subvol_srcu, index);
  301. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  302. "%d for key (%llu %u %llu)\n",
  303. ref->root_id, level, ref->count, ret,
  304. ref->key_for_search.objectid, ref->key_for_search.type,
  305. ref->key_for_search.offset);
  306. if (ret < 0)
  307. goto out;
  308. eb = path->nodes[level];
  309. while (!eb) {
  310. if (WARN_ON(!level)) {
  311. ret = 1;
  312. goto out;
  313. }
  314. level--;
  315. eb = path->nodes[level];
  316. }
  317. ret = add_all_parents(root, path, parents, ref, level, time_seq,
  318. extent_item_pos);
  319. out:
  320. path->lowest_level = 0;
  321. btrfs_release_path(path);
  322. return ret;
  323. }
  324. /*
  325. * resolve all indirect backrefs from the list
  326. */
  327. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  328. struct btrfs_path *path, u64 time_seq,
  329. struct list_head *head,
  330. const u64 *extent_item_pos)
  331. {
  332. int err;
  333. int ret = 0;
  334. struct __prelim_ref *ref;
  335. struct __prelim_ref *ref_safe;
  336. struct __prelim_ref *new_ref;
  337. struct ulist *parents;
  338. struct ulist_node *node;
  339. struct ulist_iterator uiter;
  340. parents = ulist_alloc(GFP_NOFS);
  341. if (!parents)
  342. return -ENOMEM;
  343. /*
  344. * _safe allows us to insert directly after the current item without
  345. * iterating over the newly inserted items.
  346. * we're also allowed to re-assign ref during iteration.
  347. */
  348. list_for_each_entry_safe(ref, ref_safe, head, list) {
  349. if (ref->parent) /* already direct */
  350. continue;
  351. if (ref->count == 0)
  352. continue;
  353. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  354. parents, extent_item_pos);
  355. /*
  356. * we can only tolerate ENOENT,otherwise,we should catch error
  357. * and return directly.
  358. */
  359. if (err == -ENOENT) {
  360. continue;
  361. } else if (err) {
  362. ret = err;
  363. goto out;
  364. }
  365. /* we put the first parent into the ref at hand */
  366. ULIST_ITER_INIT(&uiter);
  367. node = ulist_next(parents, &uiter);
  368. ref->parent = node ? node->val : 0;
  369. ref->inode_list = node ?
  370. (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
  371. /* additional parents require new refs being added here */
  372. while ((node = ulist_next(parents, &uiter))) {
  373. new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
  374. GFP_NOFS);
  375. if (!new_ref) {
  376. ret = -ENOMEM;
  377. goto out;
  378. }
  379. memcpy(new_ref, ref, sizeof(*ref));
  380. new_ref->parent = node->val;
  381. new_ref->inode_list = (struct extent_inode_elem *)
  382. (uintptr_t)node->aux;
  383. list_add(&new_ref->list, &ref->list);
  384. }
  385. ulist_reinit(parents);
  386. }
  387. out:
  388. ulist_free(parents);
  389. return ret;
  390. }
  391. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  392. struct __prelim_ref *ref2)
  393. {
  394. if (ref1->level != ref2->level)
  395. return 0;
  396. if (ref1->root_id != ref2->root_id)
  397. return 0;
  398. if (ref1->key_for_search.type != ref2->key_for_search.type)
  399. return 0;
  400. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  401. return 0;
  402. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  403. return 0;
  404. if (ref1->parent != ref2->parent)
  405. return 0;
  406. return 1;
  407. }
  408. /*
  409. * read tree blocks and add keys where required.
  410. */
  411. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  412. struct list_head *head)
  413. {
  414. struct list_head *pos;
  415. struct extent_buffer *eb;
  416. list_for_each(pos, head) {
  417. struct __prelim_ref *ref;
  418. ref = list_entry(pos, struct __prelim_ref, list);
  419. if (ref->parent)
  420. continue;
  421. if (ref->key_for_search.type)
  422. continue;
  423. BUG_ON(!ref->wanted_disk_byte);
  424. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  425. fs_info->tree_root->leafsize, 0);
  426. if (!eb || !extent_buffer_uptodate(eb)) {
  427. free_extent_buffer(eb);
  428. return -EIO;
  429. }
  430. btrfs_tree_read_lock(eb);
  431. if (btrfs_header_level(eb) == 0)
  432. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  433. else
  434. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  435. btrfs_tree_read_unlock(eb);
  436. free_extent_buffer(eb);
  437. }
  438. return 0;
  439. }
  440. /*
  441. * merge two lists of backrefs and adjust counts accordingly
  442. *
  443. * mode = 1: merge identical keys, if key is set
  444. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  445. * additionally, we could even add a key range for the blocks we
  446. * looked into to merge even more (-> replace unresolved refs by those
  447. * having a parent).
  448. * mode = 2: merge identical parents
  449. */
  450. static void __merge_refs(struct list_head *head, int mode)
  451. {
  452. struct list_head *pos1;
  453. list_for_each(pos1, head) {
  454. struct list_head *n2;
  455. struct list_head *pos2;
  456. struct __prelim_ref *ref1;
  457. ref1 = list_entry(pos1, struct __prelim_ref, list);
  458. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  459. pos2 = n2, n2 = pos2->next) {
  460. struct __prelim_ref *ref2;
  461. struct __prelim_ref *xchg;
  462. struct extent_inode_elem *eie;
  463. ref2 = list_entry(pos2, struct __prelim_ref, list);
  464. if (mode == 1) {
  465. if (!ref_for_same_block(ref1, ref2))
  466. continue;
  467. if (!ref1->parent && ref2->parent) {
  468. xchg = ref1;
  469. ref1 = ref2;
  470. ref2 = xchg;
  471. }
  472. } else {
  473. if (ref1->parent != ref2->parent)
  474. continue;
  475. }
  476. eie = ref1->inode_list;
  477. while (eie && eie->next)
  478. eie = eie->next;
  479. if (eie)
  480. eie->next = ref2->inode_list;
  481. else
  482. ref1->inode_list = ref2->inode_list;
  483. ref1->count += ref2->count;
  484. list_del(&ref2->list);
  485. kmem_cache_free(btrfs_prelim_ref_cache, ref2);
  486. }
  487. }
  488. }
  489. /*
  490. * add all currently queued delayed refs from this head whose seq nr is
  491. * smaller or equal that seq to the list
  492. */
  493. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  494. struct list_head *prefs)
  495. {
  496. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  497. struct rb_node *n = &head->node.rb_node;
  498. struct btrfs_key key;
  499. struct btrfs_key op_key = {0};
  500. int sgn;
  501. int ret = 0;
  502. if (extent_op && extent_op->update_key)
  503. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  504. spin_lock(&head->lock);
  505. n = rb_first(&head->ref_root);
  506. while (n) {
  507. struct btrfs_delayed_ref_node *node;
  508. node = rb_entry(n, struct btrfs_delayed_ref_node,
  509. rb_node);
  510. n = rb_next(n);
  511. if (node->seq > seq)
  512. continue;
  513. switch (node->action) {
  514. case BTRFS_ADD_DELAYED_EXTENT:
  515. case BTRFS_UPDATE_DELAYED_HEAD:
  516. WARN_ON(1);
  517. continue;
  518. case BTRFS_ADD_DELAYED_REF:
  519. sgn = 1;
  520. break;
  521. case BTRFS_DROP_DELAYED_REF:
  522. sgn = -1;
  523. break;
  524. default:
  525. BUG_ON(1);
  526. }
  527. switch (node->type) {
  528. case BTRFS_TREE_BLOCK_REF_KEY: {
  529. struct btrfs_delayed_tree_ref *ref;
  530. ref = btrfs_delayed_node_to_tree_ref(node);
  531. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  532. ref->level + 1, 0, node->bytenr,
  533. node->ref_mod * sgn, GFP_ATOMIC);
  534. break;
  535. }
  536. case BTRFS_SHARED_BLOCK_REF_KEY: {
  537. struct btrfs_delayed_tree_ref *ref;
  538. ref = btrfs_delayed_node_to_tree_ref(node);
  539. ret = __add_prelim_ref(prefs, ref->root, NULL,
  540. ref->level + 1, ref->parent,
  541. node->bytenr,
  542. node->ref_mod * sgn, GFP_ATOMIC);
  543. break;
  544. }
  545. case BTRFS_EXTENT_DATA_REF_KEY: {
  546. struct btrfs_delayed_data_ref *ref;
  547. ref = btrfs_delayed_node_to_data_ref(node);
  548. key.objectid = ref->objectid;
  549. key.type = BTRFS_EXTENT_DATA_KEY;
  550. key.offset = ref->offset;
  551. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  552. node->bytenr,
  553. node->ref_mod * sgn, GFP_ATOMIC);
  554. break;
  555. }
  556. case BTRFS_SHARED_DATA_REF_KEY: {
  557. struct btrfs_delayed_data_ref *ref;
  558. ref = btrfs_delayed_node_to_data_ref(node);
  559. key.objectid = ref->objectid;
  560. key.type = BTRFS_EXTENT_DATA_KEY;
  561. key.offset = ref->offset;
  562. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  563. ref->parent, node->bytenr,
  564. node->ref_mod * sgn, GFP_ATOMIC);
  565. break;
  566. }
  567. default:
  568. WARN_ON(1);
  569. }
  570. if (ret)
  571. break;
  572. }
  573. spin_unlock(&head->lock);
  574. return ret;
  575. }
  576. /*
  577. * add all inline backrefs for bytenr to the list
  578. */
  579. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  580. struct btrfs_path *path, u64 bytenr,
  581. int *info_level, struct list_head *prefs)
  582. {
  583. int ret = 0;
  584. int slot;
  585. struct extent_buffer *leaf;
  586. struct btrfs_key key;
  587. struct btrfs_key found_key;
  588. unsigned long ptr;
  589. unsigned long end;
  590. struct btrfs_extent_item *ei;
  591. u64 flags;
  592. u64 item_size;
  593. /*
  594. * enumerate all inline refs
  595. */
  596. leaf = path->nodes[0];
  597. slot = path->slots[0];
  598. item_size = btrfs_item_size_nr(leaf, slot);
  599. BUG_ON(item_size < sizeof(*ei));
  600. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  601. flags = btrfs_extent_flags(leaf, ei);
  602. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  603. ptr = (unsigned long)(ei + 1);
  604. end = (unsigned long)ei + item_size;
  605. if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
  606. flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  607. struct btrfs_tree_block_info *info;
  608. info = (struct btrfs_tree_block_info *)ptr;
  609. *info_level = btrfs_tree_block_level(leaf, info);
  610. ptr += sizeof(struct btrfs_tree_block_info);
  611. BUG_ON(ptr > end);
  612. } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
  613. *info_level = found_key.offset;
  614. } else {
  615. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  616. }
  617. while (ptr < end) {
  618. struct btrfs_extent_inline_ref *iref;
  619. u64 offset;
  620. int type;
  621. iref = (struct btrfs_extent_inline_ref *)ptr;
  622. type = btrfs_extent_inline_ref_type(leaf, iref);
  623. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  624. switch (type) {
  625. case BTRFS_SHARED_BLOCK_REF_KEY:
  626. ret = __add_prelim_ref(prefs, 0, NULL,
  627. *info_level + 1, offset,
  628. bytenr, 1, GFP_NOFS);
  629. break;
  630. case BTRFS_SHARED_DATA_REF_KEY: {
  631. struct btrfs_shared_data_ref *sdref;
  632. int count;
  633. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  634. count = btrfs_shared_data_ref_count(leaf, sdref);
  635. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  636. bytenr, count, GFP_NOFS);
  637. break;
  638. }
  639. case BTRFS_TREE_BLOCK_REF_KEY:
  640. ret = __add_prelim_ref(prefs, offset, NULL,
  641. *info_level + 1, 0,
  642. bytenr, 1, GFP_NOFS);
  643. break;
  644. case BTRFS_EXTENT_DATA_REF_KEY: {
  645. struct btrfs_extent_data_ref *dref;
  646. int count;
  647. u64 root;
  648. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  649. count = btrfs_extent_data_ref_count(leaf, dref);
  650. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  651. dref);
  652. key.type = BTRFS_EXTENT_DATA_KEY;
  653. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  654. root = btrfs_extent_data_ref_root(leaf, dref);
  655. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  656. bytenr, count, GFP_NOFS);
  657. break;
  658. }
  659. default:
  660. WARN_ON(1);
  661. }
  662. if (ret)
  663. return ret;
  664. ptr += btrfs_extent_inline_ref_size(type);
  665. }
  666. return 0;
  667. }
  668. /*
  669. * add all non-inline backrefs for bytenr to the list
  670. */
  671. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  672. struct btrfs_path *path, u64 bytenr,
  673. int info_level, struct list_head *prefs)
  674. {
  675. struct btrfs_root *extent_root = fs_info->extent_root;
  676. int ret;
  677. int slot;
  678. struct extent_buffer *leaf;
  679. struct btrfs_key key;
  680. while (1) {
  681. ret = btrfs_next_item(extent_root, path);
  682. if (ret < 0)
  683. break;
  684. if (ret) {
  685. ret = 0;
  686. break;
  687. }
  688. slot = path->slots[0];
  689. leaf = path->nodes[0];
  690. btrfs_item_key_to_cpu(leaf, &key, slot);
  691. if (key.objectid != bytenr)
  692. break;
  693. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  694. continue;
  695. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  696. break;
  697. switch (key.type) {
  698. case BTRFS_SHARED_BLOCK_REF_KEY:
  699. ret = __add_prelim_ref(prefs, 0, NULL,
  700. info_level + 1, key.offset,
  701. bytenr, 1, GFP_NOFS);
  702. break;
  703. case BTRFS_SHARED_DATA_REF_KEY: {
  704. struct btrfs_shared_data_ref *sdref;
  705. int count;
  706. sdref = btrfs_item_ptr(leaf, slot,
  707. struct btrfs_shared_data_ref);
  708. count = btrfs_shared_data_ref_count(leaf, sdref);
  709. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  710. bytenr, count, GFP_NOFS);
  711. break;
  712. }
  713. case BTRFS_TREE_BLOCK_REF_KEY:
  714. ret = __add_prelim_ref(prefs, key.offset, NULL,
  715. info_level + 1, 0,
  716. bytenr, 1, GFP_NOFS);
  717. break;
  718. case BTRFS_EXTENT_DATA_REF_KEY: {
  719. struct btrfs_extent_data_ref *dref;
  720. int count;
  721. u64 root;
  722. dref = btrfs_item_ptr(leaf, slot,
  723. struct btrfs_extent_data_ref);
  724. count = btrfs_extent_data_ref_count(leaf, dref);
  725. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  726. dref);
  727. key.type = BTRFS_EXTENT_DATA_KEY;
  728. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  729. root = btrfs_extent_data_ref_root(leaf, dref);
  730. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  731. bytenr, count, GFP_NOFS);
  732. break;
  733. }
  734. default:
  735. WARN_ON(1);
  736. }
  737. if (ret)
  738. return ret;
  739. }
  740. return ret;
  741. }
  742. /*
  743. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  744. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  745. * indirect refs to their parent bytenr.
  746. * When roots are found, they're added to the roots list
  747. *
  748. * FIXME some caching might speed things up
  749. */
  750. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  751. struct btrfs_fs_info *fs_info, u64 bytenr,
  752. u64 time_seq, struct ulist *refs,
  753. struct ulist *roots, const u64 *extent_item_pos)
  754. {
  755. struct btrfs_key key;
  756. struct btrfs_path *path;
  757. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  758. struct btrfs_delayed_ref_head *head;
  759. int info_level = 0;
  760. int ret;
  761. struct list_head prefs_delayed;
  762. struct list_head prefs;
  763. struct __prelim_ref *ref;
  764. struct extent_inode_elem *eie = NULL;
  765. INIT_LIST_HEAD(&prefs);
  766. INIT_LIST_HEAD(&prefs_delayed);
  767. key.objectid = bytenr;
  768. key.offset = (u64)-1;
  769. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  770. key.type = BTRFS_METADATA_ITEM_KEY;
  771. else
  772. key.type = BTRFS_EXTENT_ITEM_KEY;
  773. path = btrfs_alloc_path();
  774. if (!path)
  775. return -ENOMEM;
  776. if (!trans)
  777. path->search_commit_root = 1;
  778. /*
  779. * grab both a lock on the path and a lock on the delayed ref head.
  780. * We need both to get a consistent picture of how the refs look
  781. * at a specified point in time
  782. */
  783. again:
  784. head = NULL;
  785. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  786. if (ret < 0)
  787. goto out;
  788. BUG_ON(ret == 0);
  789. if (trans) {
  790. /*
  791. * look if there are updates for this ref queued and lock the
  792. * head
  793. */
  794. delayed_refs = &trans->transaction->delayed_refs;
  795. spin_lock(&delayed_refs->lock);
  796. head = btrfs_find_delayed_ref_head(trans, bytenr);
  797. if (head) {
  798. if (!mutex_trylock(&head->mutex)) {
  799. atomic_inc(&head->node.refs);
  800. spin_unlock(&delayed_refs->lock);
  801. btrfs_release_path(path);
  802. /*
  803. * Mutex was contended, block until it's
  804. * released and try again
  805. */
  806. mutex_lock(&head->mutex);
  807. mutex_unlock(&head->mutex);
  808. btrfs_put_delayed_ref(&head->node);
  809. goto again;
  810. }
  811. spin_unlock(&delayed_refs->lock);
  812. ret = __add_delayed_refs(head, time_seq,
  813. &prefs_delayed);
  814. mutex_unlock(&head->mutex);
  815. if (ret)
  816. goto out;
  817. } else {
  818. spin_unlock(&delayed_refs->lock);
  819. }
  820. }
  821. if (path->slots[0]) {
  822. struct extent_buffer *leaf;
  823. int slot;
  824. path->slots[0]--;
  825. leaf = path->nodes[0];
  826. slot = path->slots[0];
  827. btrfs_item_key_to_cpu(leaf, &key, slot);
  828. if (key.objectid == bytenr &&
  829. (key.type == BTRFS_EXTENT_ITEM_KEY ||
  830. key.type == BTRFS_METADATA_ITEM_KEY)) {
  831. ret = __add_inline_refs(fs_info, path, bytenr,
  832. &info_level, &prefs);
  833. if (ret)
  834. goto out;
  835. ret = __add_keyed_refs(fs_info, path, bytenr,
  836. info_level, &prefs);
  837. if (ret)
  838. goto out;
  839. }
  840. }
  841. btrfs_release_path(path);
  842. list_splice_init(&prefs_delayed, &prefs);
  843. ret = __add_missing_keys(fs_info, &prefs);
  844. if (ret)
  845. goto out;
  846. __merge_refs(&prefs, 1);
  847. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  848. extent_item_pos);
  849. if (ret)
  850. goto out;
  851. __merge_refs(&prefs, 2);
  852. while (!list_empty(&prefs)) {
  853. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  854. WARN_ON(ref->count < 0);
  855. if (roots && ref->count && ref->root_id && ref->parent == 0) {
  856. /* no parent == root of tree */
  857. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  858. if (ret < 0)
  859. goto out;
  860. }
  861. if (ref->count && ref->parent) {
  862. if (extent_item_pos && !ref->inode_list) {
  863. u32 bsz;
  864. struct extent_buffer *eb;
  865. bsz = btrfs_level_size(fs_info->extent_root,
  866. info_level);
  867. eb = read_tree_block(fs_info->extent_root,
  868. ref->parent, bsz, 0);
  869. if (!eb || !extent_buffer_uptodate(eb)) {
  870. free_extent_buffer(eb);
  871. ret = -EIO;
  872. goto out;
  873. }
  874. ret = find_extent_in_eb(eb, bytenr,
  875. *extent_item_pos, &eie);
  876. free_extent_buffer(eb);
  877. if (ret < 0)
  878. goto out;
  879. ref->inode_list = eie;
  880. }
  881. ret = ulist_add_merge(refs, ref->parent,
  882. (uintptr_t)ref->inode_list,
  883. (u64 *)&eie, GFP_NOFS);
  884. if (ret < 0)
  885. goto out;
  886. if (!ret && extent_item_pos) {
  887. /*
  888. * we've recorded that parent, so we must extend
  889. * its inode list here
  890. */
  891. BUG_ON(!eie);
  892. while (eie->next)
  893. eie = eie->next;
  894. eie->next = ref->inode_list;
  895. }
  896. eie = NULL;
  897. }
  898. list_del(&ref->list);
  899. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  900. }
  901. out:
  902. btrfs_free_path(path);
  903. while (!list_empty(&prefs)) {
  904. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  905. list_del(&ref->list);
  906. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  907. }
  908. while (!list_empty(&prefs_delayed)) {
  909. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  910. list);
  911. list_del(&ref->list);
  912. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  913. }
  914. if (ret < 0)
  915. free_inode_elem_list(eie);
  916. return ret;
  917. }
  918. static void free_leaf_list(struct ulist *blocks)
  919. {
  920. struct ulist_node *node = NULL;
  921. struct extent_inode_elem *eie;
  922. struct ulist_iterator uiter;
  923. ULIST_ITER_INIT(&uiter);
  924. while ((node = ulist_next(blocks, &uiter))) {
  925. if (!node->aux)
  926. continue;
  927. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  928. free_inode_elem_list(eie);
  929. node->aux = 0;
  930. }
  931. ulist_free(blocks);
  932. }
  933. /*
  934. * Finds all leafs with a reference to the specified combination of bytenr and
  935. * offset. key_list_head will point to a list of corresponding keys (caller must
  936. * free each list element). The leafs will be stored in the leafs ulist, which
  937. * must be freed with ulist_free.
  938. *
  939. * returns 0 on success, <0 on error
  940. */
  941. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  942. struct btrfs_fs_info *fs_info, u64 bytenr,
  943. u64 time_seq, struct ulist **leafs,
  944. const u64 *extent_item_pos)
  945. {
  946. int ret;
  947. *leafs = ulist_alloc(GFP_NOFS);
  948. if (!*leafs)
  949. return -ENOMEM;
  950. ret = find_parent_nodes(trans, fs_info, bytenr,
  951. time_seq, *leafs, NULL, extent_item_pos);
  952. if (ret < 0 && ret != -ENOENT) {
  953. free_leaf_list(*leafs);
  954. return ret;
  955. }
  956. return 0;
  957. }
  958. /*
  959. * walk all backrefs for a given extent to find all roots that reference this
  960. * extent. Walking a backref means finding all extents that reference this
  961. * extent and in turn walk the backrefs of those, too. Naturally this is a
  962. * recursive process, but here it is implemented in an iterative fashion: We
  963. * find all referencing extents for the extent in question and put them on a
  964. * list. In turn, we find all referencing extents for those, further appending
  965. * to the list. The way we iterate the list allows adding more elements after
  966. * the current while iterating. The process stops when we reach the end of the
  967. * list. Found roots are added to the roots list.
  968. *
  969. * returns 0 on success, < 0 on error.
  970. */
  971. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  972. struct btrfs_fs_info *fs_info, u64 bytenr,
  973. u64 time_seq, struct ulist **roots)
  974. {
  975. struct ulist *tmp;
  976. struct ulist_node *node = NULL;
  977. struct ulist_iterator uiter;
  978. int ret;
  979. tmp = ulist_alloc(GFP_NOFS);
  980. if (!tmp)
  981. return -ENOMEM;
  982. *roots = ulist_alloc(GFP_NOFS);
  983. if (!*roots) {
  984. ulist_free(tmp);
  985. return -ENOMEM;
  986. }
  987. ULIST_ITER_INIT(&uiter);
  988. while (1) {
  989. ret = find_parent_nodes(trans, fs_info, bytenr,
  990. time_seq, tmp, *roots, NULL);
  991. if (ret < 0 && ret != -ENOENT) {
  992. ulist_free(tmp);
  993. ulist_free(*roots);
  994. return ret;
  995. }
  996. node = ulist_next(tmp, &uiter);
  997. if (!node)
  998. break;
  999. bytenr = node->val;
  1000. cond_resched();
  1001. }
  1002. ulist_free(tmp);
  1003. return 0;
  1004. }
  1005. /*
  1006. * this makes the path point to (inum INODE_ITEM ioff)
  1007. */
  1008. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1009. struct btrfs_path *path)
  1010. {
  1011. struct btrfs_key key;
  1012. return btrfs_find_item(fs_root, path, inum, ioff,
  1013. BTRFS_INODE_ITEM_KEY, &key);
  1014. }
  1015. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1016. struct btrfs_path *path,
  1017. struct btrfs_key *found_key)
  1018. {
  1019. return btrfs_find_item(fs_root, path, inum, ioff,
  1020. BTRFS_INODE_REF_KEY, found_key);
  1021. }
  1022. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  1023. u64 start_off, struct btrfs_path *path,
  1024. struct btrfs_inode_extref **ret_extref,
  1025. u64 *found_off)
  1026. {
  1027. int ret, slot;
  1028. struct btrfs_key key;
  1029. struct btrfs_key found_key;
  1030. struct btrfs_inode_extref *extref;
  1031. struct extent_buffer *leaf;
  1032. unsigned long ptr;
  1033. key.objectid = inode_objectid;
  1034. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1035. key.offset = start_off;
  1036. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1037. if (ret < 0)
  1038. return ret;
  1039. while (1) {
  1040. leaf = path->nodes[0];
  1041. slot = path->slots[0];
  1042. if (slot >= btrfs_header_nritems(leaf)) {
  1043. /*
  1044. * If the item at offset is not found,
  1045. * btrfs_search_slot will point us to the slot
  1046. * where it should be inserted. In our case
  1047. * that will be the slot directly before the
  1048. * next INODE_REF_KEY_V2 item. In the case
  1049. * that we're pointing to the last slot in a
  1050. * leaf, we must move one leaf over.
  1051. */
  1052. ret = btrfs_next_leaf(root, path);
  1053. if (ret) {
  1054. if (ret >= 1)
  1055. ret = -ENOENT;
  1056. break;
  1057. }
  1058. continue;
  1059. }
  1060. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1061. /*
  1062. * Check that we're still looking at an extended ref key for
  1063. * this particular objectid. If we have different
  1064. * objectid or type then there are no more to be found
  1065. * in the tree and we can exit.
  1066. */
  1067. ret = -ENOENT;
  1068. if (found_key.objectid != inode_objectid)
  1069. break;
  1070. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1071. break;
  1072. ret = 0;
  1073. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1074. extref = (struct btrfs_inode_extref *)ptr;
  1075. *ret_extref = extref;
  1076. if (found_off)
  1077. *found_off = found_key.offset;
  1078. break;
  1079. }
  1080. return ret;
  1081. }
  1082. /*
  1083. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1084. * Elements of the path are separated by '/' and the path is guaranteed to be
  1085. * 0-terminated. the path is only given within the current file system.
  1086. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1087. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1088. * the start point of the resulting string is returned. this pointer is within
  1089. * dest, normally.
  1090. * in case the path buffer would overflow, the pointer is decremented further
  1091. * as if output was written to the buffer, though no more output is actually
  1092. * generated. that way, the caller can determine how much space would be
  1093. * required for the path to fit into the buffer. in that case, the returned
  1094. * value will be smaller than dest. callers must check this!
  1095. */
  1096. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1097. u32 name_len, unsigned long name_off,
  1098. struct extent_buffer *eb_in, u64 parent,
  1099. char *dest, u32 size)
  1100. {
  1101. int slot;
  1102. u64 next_inum;
  1103. int ret;
  1104. s64 bytes_left = ((s64)size) - 1;
  1105. struct extent_buffer *eb = eb_in;
  1106. struct btrfs_key found_key;
  1107. int leave_spinning = path->leave_spinning;
  1108. struct btrfs_inode_ref *iref;
  1109. if (bytes_left >= 0)
  1110. dest[bytes_left] = '\0';
  1111. path->leave_spinning = 1;
  1112. while (1) {
  1113. bytes_left -= name_len;
  1114. if (bytes_left >= 0)
  1115. read_extent_buffer(eb, dest + bytes_left,
  1116. name_off, name_len);
  1117. if (eb != eb_in) {
  1118. btrfs_tree_read_unlock_blocking(eb);
  1119. free_extent_buffer(eb);
  1120. }
  1121. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1122. if (ret > 0)
  1123. ret = -ENOENT;
  1124. if (ret)
  1125. break;
  1126. next_inum = found_key.offset;
  1127. /* regular exit ahead */
  1128. if (parent == next_inum)
  1129. break;
  1130. slot = path->slots[0];
  1131. eb = path->nodes[0];
  1132. /* make sure we can use eb after releasing the path */
  1133. if (eb != eb_in) {
  1134. atomic_inc(&eb->refs);
  1135. btrfs_tree_read_lock(eb);
  1136. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1137. }
  1138. btrfs_release_path(path);
  1139. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1140. name_len = btrfs_inode_ref_name_len(eb, iref);
  1141. name_off = (unsigned long)(iref + 1);
  1142. parent = next_inum;
  1143. --bytes_left;
  1144. if (bytes_left >= 0)
  1145. dest[bytes_left] = '/';
  1146. }
  1147. btrfs_release_path(path);
  1148. path->leave_spinning = leave_spinning;
  1149. if (ret)
  1150. return ERR_PTR(ret);
  1151. return dest + bytes_left;
  1152. }
  1153. /*
  1154. * this makes the path point to (logical EXTENT_ITEM *)
  1155. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1156. * tree blocks and <0 on error.
  1157. */
  1158. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1159. struct btrfs_path *path, struct btrfs_key *found_key,
  1160. u64 *flags_ret)
  1161. {
  1162. int ret;
  1163. u64 flags;
  1164. u64 size = 0;
  1165. u32 item_size;
  1166. struct extent_buffer *eb;
  1167. struct btrfs_extent_item *ei;
  1168. struct btrfs_key key;
  1169. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  1170. key.type = BTRFS_METADATA_ITEM_KEY;
  1171. else
  1172. key.type = BTRFS_EXTENT_ITEM_KEY;
  1173. key.objectid = logical;
  1174. key.offset = (u64)-1;
  1175. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1176. if (ret < 0)
  1177. return ret;
  1178. ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
  1179. if (ret) {
  1180. if (ret > 0)
  1181. ret = -ENOENT;
  1182. return ret;
  1183. }
  1184. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1185. if (found_key->type == BTRFS_METADATA_ITEM_KEY)
  1186. size = fs_info->extent_root->leafsize;
  1187. else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
  1188. size = found_key->offset;
  1189. if (found_key->objectid > logical ||
  1190. found_key->objectid + size <= logical) {
  1191. pr_debug("logical %llu is not within any extent\n", logical);
  1192. return -ENOENT;
  1193. }
  1194. eb = path->nodes[0];
  1195. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1196. BUG_ON(item_size < sizeof(*ei));
  1197. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1198. flags = btrfs_extent_flags(eb, ei);
  1199. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1200. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1201. logical, logical - found_key->objectid, found_key->objectid,
  1202. found_key->offset, flags, item_size);
  1203. WARN_ON(!flags_ret);
  1204. if (flags_ret) {
  1205. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1206. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1207. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1208. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1209. else
  1210. BUG_ON(1);
  1211. return 0;
  1212. }
  1213. return -EIO;
  1214. }
  1215. /*
  1216. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1217. * for the first call and may be modified. it is used to track state.
  1218. * if more refs exist, 0 is returned and the next call to
  1219. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1220. * next ref. after the last ref was processed, 1 is returned.
  1221. * returns <0 on error
  1222. */
  1223. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1224. struct btrfs_extent_item *ei, u32 item_size,
  1225. struct btrfs_extent_inline_ref **out_eiref,
  1226. int *out_type)
  1227. {
  1228. unsigned long end;
  1229. u64 flags;
  1230. struct btrfs_tree_block_info *info;
  1231. if (!*ptr) {
  1232. /* first call */
  1233. flags = btrfs_extent_flags(eb, ei);
  1234. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1235. info = (struct btrfs_tree_block_info *)(ei + 1);
  1236. *out_eiref =
  1237. (struct btrfs_extent_inline_ref *)(info + 1);
  1238. } else {
  1239. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1240. }
  1241. *ptr = (unsigned long)*out_eiref;
  1242. if ((void *)*ptr >= (void *)ei + item_size)
  1243. return -ENOENT;
  1244. }
  1245. end = (unsigned long)ei + item_size;
  1246. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1247. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1248. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1249. WARN_ON(*ptr > end);
  1250. if (*ptr == end)
  1251. return 1; /* last */
  1252. return 0;
  1253. }
  1254. /*
  1255. * reads the tree block backref for an extent. tree level and root are returned
  1256. * through out_level and out_root. ptr must point to a 0 value for the first
  1257. * call and may be modified (see __get_extent_inline_ref comment).
  1258. * returns 0 if data was provided, 1 if there was no more data to provide or
  1259. * <0 on error.
  1260. */
  1261. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1262. struct btrfs_extent_item *ei, u32 item_size,
  1263. u64 *out_root, u8 *out_level)
  1264. {
  1265. int ret;
  1266. int type;
  1267. struct btrfs_tree_block_info *info;
  1268. struct btrfs_extent_inline_ref *eiref;
  1269. if (*ptr == (unsigned long)-1)
  1270. return 1;
  1271. while (1) {
  1272. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1273. &eiref, &type);
  1274. if (ret < 0)
  1275. return ret;
  1276. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1277. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1278. break;
  1279. if (ret == 1)
  1280. return 1;
  1281. }
  1282. /* we can treat both ref types equally here */
  1283. info = (struct btrfs_tree_block_info *)(ei + 1);
  1284. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1285. *out_level = btrfs_tree_block_level(eb, info);
  1286. if (ret == 1)
  1287. *ptr = (unsigned long)-1;
  1288. return 0;
  1289. }
  1290. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1291. u64 root, u64 extent_item_objectid,
  1292. iterate_extent_inodes_t *iterate, void *ctx)
  1293. {
  1294. struct extent_inode_elem *eie;
  1295. int ret = 0;
  1296. for (eie = inode_list; eie; eie = eie->next) {
  1297. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1298. "root %llu\n", extent_item_objectid,
  1299. eie->inum, eie->offset, root);
  1300. ret = iterate(eie->inum, eie->offset, root, ctx);
  1301. if (ret) {
  1302. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1303. extent_item_objectid, ret);
  1304. break;
  1305. }
  1306. }
  1307. return ret;
  1308. }
  1309. /*
  1310. * calls iterate() for every inode that references the extent identified by
  1311. * the given parameters.
  1312. * when the iterator function returns a non-zero value, iteration stops.
  1313. */
  1314. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1315. u64 extent_item_objectid, u64 extent_item_pos,
  1316. int search_commit_root,
  1317. iterate_extent_inodes_t *iterate, void *ctx)
  1318. {
  1319. int ret;
  1320. struct btrfs_trans_handle *trans = NULL;
  1321. struct ulist *refs = NULL;
  1322. struct ulist *roots = NULL;
  1323. struct ulist_node *ref_node = NULL;
  1324. struct ulist_node *root_node = NULL;
  1325. struct seq_list tree_mod_seq_elem = {};
  1326. struct ulist_iterator ref_uiter;
  1327. struct ulist_iterator root_uiter;
  1328. pr_debug("resolving all inodes for extent %llu\n",
  1329. extent_item_objectid);
  1330. if (!search_commit_root) {
  1331. trans = btrfs_join_transaction(fs_info->extent_root);
  1332. if (IS_ERR(trans))
  1333. return PTR_ERR(trans);
  1334. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1335. }
  1336. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1337. tree_mod_seq_elem.seq, &refs,
  1338. &extent_item_pos);
  1339. if (ret)
  1340. goto out;
  1341. ULIST_ITER_INIT(&ref_uiter);
  1342. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1343. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1344. tree_mod_seq_elem.seq, &roots);
  1345. if (ret)
  1346. break;
  1347. ULIST_ITER_INIT(&root_uiter);
  1348. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1349. pr_debug("root %llu references leaf %llu, data list "
  1350. "%#llx\n", root_node->val, ref_node->val,
  1351. ref_node->aux);
  1352. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1353. (uintptr_t)ref_node->aux,
  1354. root_node->val,
  1355. extent_item_objectid,
  1356. iterate, ctx);
  1357. }
  1358. ulist_free(roots);
  1359. }
  1360. free_leaf_list(refs);
  1361. out:
  1362. if (!search_commit_root) {
  1363. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1364. btrfs_end_transaction(trans, fs_info->extent_root);
  1365. }
  1366. return ret;
  1367. }
  1368. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1369. struct btrfs_path *path,
  1370. iterate_extent_inodes_t *iterate, void *ctx)
  1371. {
  1372. int ret;
  1373. u64 extent_item_pos;
  1374. u64 flags = 0;
  1375. struct btrfs_key found_key;
  1376. int search_commit_root = path->search_commit_root;
  1377. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1378. btrfs_release_path(path);
  1379. if (ret < 0)
  1380. return ret;
  1381. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1382. return -EINVAL;
  1383. extent_item_pos = logical - found_key.objectid;
  1384. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1385. extent_item_pos, search_commit_root,
  1386. iterate, ctx);
  1387. return ret;
  1388. }
  1389. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1390. struct extent_buffer *eb, void *ctx);
  1391. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1392. struct btrfs_path *path,
  1393. iterate_irefs_t *iterate, void *ctx)
  1394. {
  1395. int ret = 0;
  1396. int slot;
  1397. u32 cur;
  1398. u32 len;
  1399. u32 name_len;
  1400. u64 parent = 0;
  1401. int found = 0;
  1402. struct extent_buffer *eb;
  1403. struct btrfs_item *item;
  1404. struct btrfs_inode_ref *iref;
  1405. struct btrfs_key found_key;
  1406. while (!ret) {
  1407. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1408. &found_key);
  1409. if (ret < 0)
  1410. break;
  1411. if (ret) {
  1412. ret = found ? 0 : -ENOENT;
  1413. break;
  1414. }
  1415. ++found;
  1416. parent = found_key.offset;
  1417. slot = path->slots[0];
  1418. eb = btrfs_clone_extent_buffer(path->nodes[0]);
  1419. if (!eb) {
  1420. ret = -ENOMEM;
  1421. break;
  1422. }
  1423. extent_buffer_get(eb);
  1424. btrfs_tree_read_lock(eb);
  1425. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1426. btrfs_release_path(path);
  1427. item = btrfs_item_nr(slot);
  1428. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1429. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1430. name_len = btrfs_inode_ref_name_len(eb, iref);
  1431. /* path must be released before calling iterate()! */
  1432. pr_debug("following ref at offset %u for inode %llu in "
  1433. "tree %llu\n", cur, found_key.objectid,
  1434. fs_root->objectid);
  1435. ret = iterate(parent, name_len,
  1436. (unsigned long)(iref + 1), eb, ctx);
  1437. if (ret)
  1438. break;
  1439. len = sizeof(*iref) + name_len;
  1440. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1441. }
  1442. btrfs_tree_read_unlock_blocking(eb);
  1443. free_extent_buffer(eb);
  1444. }
  1445. btrfs_release_path(path);
  1446. return ret;
  1447. }
  1448. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1449. struct btrfs_path *path,
  1450. iterate_irefs_t *iterate, void *ctx)
  1451. {
  1452. int ret;
  1453. int slot;
  1454. u64 offset = 0;
  1455. u64 parent;
  1456. int found = 0;
  1457. struct extent_buffer *eb;
  1458. struct btrfs_inode_extref *extref;
  1459. struct extent_buffer *leaf;
  1460. u32 item_size;
  1461. u32 cur_offset;
  1462. unsigned long ptr;
  1463. while (1) {
  1464. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1465. &offset);
  1466. if (ret < 0)
  1467. break;
  1468. if (ret) {
  1469. ret = found ? 0 : -ENOENT;
  1470. break;
  1471. }
  1472. ++found;
  1473. slot = path->slots[0];
  1474. eb = btrfs_clone_extent_buffer(path->nodes[0]);
  1475. if (!eb) {
  1476. ret = -ENOMEM;
  1477. break;
  1478. }
  1479. extent_buffer_get(eb);
  1480. btrfs_tree_read_lock(eb);
  1481. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1482. btrfs_release_path(path);
  1483. leaf = path->nodes[0];
  1484. item_size = btrfs_item_size_nr(leaf, slot);
  1485. ptr = btrfs_item_ptr_offset(leaf, slot);
  1486. cur_offset = 0;
  1487. while (cur_offset < item_size) {
  1488. u32 name_len;
  1489. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1490. parent = btrfs_inode_extref_parent(eb, extref);
  1491. name_len = btrfs_inode_extref_name_len(eb, extref);
  1492. ret = iterate(parent, name_len,
  1493. (unsigned long)&extref->name, eb, ctx);
  1494. if (ret)
  1495. break;
  1496. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1497. cur_offset += sizeof(*extref);
  1498. }
  1499. btrfs_tree_read_unlock_blocking(eb);
  1500. free_extent_buffer(eb);
  1501. offset++;
  1502. }
  1503. btrfs_release_path(path);
  1504. return ret;
  1505. }
  1506. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1507. struct btrfs_path *path, iterate_irefs_t *iterate,
  1508. void *ctx)
  1509. {
  1510. int ret;
  1511. int found_refs = 0;
  1512. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1513. if (!ret)
  1514. ++found_refs;
  1515. else if (ret != -ENOENT)
  1516. return ret;
  1517. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1518. if (ret == -ENOENT && found_refs)
  1519. return 0;
  1520. return ret;
  1521. }
  1522. /*
  1523. * returns 0 if the path could be dumped (probably truncated)
  1524. * returns <0 in case of an error
  1525. */
  1526. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1527. struct extent_buffer *eb, void *ctx)
  1528. {
  1529. struct inode_fs_paths *ipath = ctx;
  1530. char *fspath;
  1531. char *fspath_min;
  1532. int i = ipath->fspath->elem_cnt;
  1533. const int s_ptr = sizeof(char *);
  1534. u32 bytes_left;
  1535. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1536. ipath->fspath->bytes_left - s_ptr : 0;
  1537. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1538. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1539. name_off, eb, inum, fspath_min, bytes_left);
  1540. if (IS_ERR(fspath))
  1541. return PTR_ERR(fspath);
  1542. if (fspath > fspath_min) {
  1543. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1544. ++ipath->fspath->elem_cnt;
  1545. ipath->fspath->bytes_left = fspath - fspath_min;
  1546. } else {
  1547. ++ipath->fspath->elem_missed;
  1548. ipath->fspath->bytes_missing += fspath_min - fspath;
  1549. ipath->fspath->bytes_left = 0;
  1550. }
  1551. return 0;
  1552. }
  1553. /*
  1554. * this dumps all file system paths to the inode into the ipath struct, provided
  1555. * is has been created large enough. each path is zero-terminated and accessed
  1556. * from ipath->fspath->val[i].
  1557. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1558. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1559. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1560. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1561. * have been needed to return all paths.
  1562. */
  1563. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1564. {
  1565. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1566. inode_to_path, ipath);
  1567. }
  1568. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1569. {
  1570. struct btrfs_data_container *data;
  1571. size_t alloc_bytes;
  1572. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1573. data = vmalloc(alloc_bytes);
  1574. if (!data)
  1575. return ERR_PTR(-ENOMEM);
  1576. if (total_bytes >= sizeof(*data)) {
  1577. data->bytes_left = total_bytes - sizeof(*data);
  1578. data->bytes_missing = 0;
  1579. } else {
  1580. data->bytes_missing = sizeof(*data) - total_bytes;
  1581. data->bytes_left = 0;
  1582. }
  1583. data->elem_cnt = 0;
  1584. data->elem_missed = 0;
  1585. return data;
  1586. }
  1587. /*
  1588. * allocates space to return multiple file system paths for an inode.
  1589. * total_bytes to allocate are passed, note that space usable for actual path
  1590. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1591. * the returned pointer must be freed with free_ipath() in the end.
  1592. */
  1593. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1594. struct btrfs_path *path)
  1595. {
  1596. struct inode_fs_paths *ifp;
  1597. struct btrfs_data_container *fspath;
  1598. fspath = init_data_container(total_bytes);
  1599. if (IS_ERR(fspath))
  1600. return (void *)fspath;
  1601. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1602. if (!ifp) {
  1603. kfree(fspath);
  1604. return ERR_PTR(-ENOMEM);
  1605. }
  1606. ifp->btrfs_path = path;
  1607. ifp->fspath = fspath;
  1608. ifp->fs_root = fs_root;
  1609. return ifp;
  1610. }
  1611. void free_ipath(struct inode_fs_paths *ipath)
  1612. {
  1613. if (!ipath)
  1614. return;
  1615. vfree(ipath->fspath);
  1616. kfree(ipath);
  1617. }