file.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/aio.h>
  27. #include <linux/falloc.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/statfs.h>
  31. #include <linux/compat.h>
  32. #include <linux/slab.h>
  33. #include <linux/btrfs.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static int __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. return -EEXIST;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return 0;
  120. }
  121. static inline int __need_auto_defrag(struct btrfs_root *root)
  122. {
  123. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  124. return 0;
  125. if (btrfs_fs_closing(root->fs_info))
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * insert a defrag record for this inode if auto defrag is
  131. * enabled
  132. */
  133. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  134. struct inode *inode)
  135. {
  136. struct btrfs_root *root = BTRFS_I(inode)->root;
  137. struct inode_defrag *defrag;
  138. u64 transid;
  139. int ret;
  140. if (!__need_auto_defrag(root))
  141. return 0;
  142. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  143. return 0;
  144. if (trans)
  145. transid = trans->transid;
  146. else
  147. transid = BTRFS_I(inode)->root->last_trans;
  148. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  149. if (!defrag)
  150. return -ENOMEM;
  151. defrag->ino = btrfs_ino(inode);
  152. defrag->transid = transid;
  153. defrag->root = root->root_key.objectid;
  154. spin_lock(&root->fs_info->defrag_inodes_lock);
  155. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  156. /*
  157. * If we set IN_DEFRAG flag and evict the inode from memory,
  158. * and then re-read this inode, this new inode doesn't have
  159. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  160. */
  161. ret = __btrfs_add_inode_defrag(inode, defrag);
  162. if (ret)
  163. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  164. } else {
  165. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  166. }
  167. spin_unlock(&root->fs_info->defrag_inodes_lock);
  168. return 0;
  169. }
  170. /*
  171. * Requeue the defrag object. If there is a defrag object that points to
  172. * the same inode in the tree, we will merge them together (by
  173. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  174. */
  175. static void btrfs_requeue_inode_defrag(struct inode *inode,
  176. struct inode_defrag *defrag)
  177. {
  178. struct btrfs_root *root = BTRFS_I(inode)->root;
  179. int ret;
  180. if (!__need_auto_defrag(root))
  181. goto out;
  182. /*
  183. * Here we don't check the IN_DEFRAG flag, because we need merge
  184. * them together.
  185. */
  186. spin_lock(&root->fs_info->defrag_inodes_lock);
  187. ret = __btrfs_add_inode_defrag(inode, defrag);
  188. spin_unlock(&root->fs_info->defrag_inodes_lock);
  189. if (ret)
  190. goto out;
  191. return;
  192. out:
  193. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  194. }
  195. /*
  196. * pick the defragable inode that we want, if it doesn't exist, we will get
  197. * the next one.
  198. */
  199. static struct inode_defrag *
  200. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  201. {
  202. struct inode_defrag *entry = NULL;
  203. struct inode_defrag tmp;
  204. struct rb_node *p;
  205. struct rb_node *parent = NULL;
  206. int ret;
  207. tmp.ino = ino;
  208. tmp.root = root;
  209. spin_lock(&fs_info->defrag_inodes_lock);
  210. p = fs_info->defrag_inodes.rb_node;
  211. while (p) {
  212. parent = p;
  213. entry = rb_entry(parent, struct inode_defrag, rb_node);
  214. ret = __compare_inode_defrag(&tmp, entry);
  215. if (ret < 0)
  216. p = parent->rb_left;
  217. else if (ret > 0)
  218. p = parent->rb_right;
  219. else
  220. goto out;
  221. }
  222. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  223. parent = rb_next(parent);
  224. if (parent)
  225. entry = rb_entry(parent, struct inode_defrag, rb_node);
  226. else
  227. entry = NULL;
  228. }
  229. out:
  230. if (entry)
  231. rb_erase(parent, &fs_info->defrag_inodes);
  232. spin_unlock(&fs_info->defrag_inodes_lock);
  233. return entry;
  234. }
  235. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  236. {
  237. struct inode_defrag *defrag;
  238. struct rb_node *node;
  239. spin_lock(&fs_info->defrag_inodes_lock);
  240. node = rb_first(&fs_info->defrag_inodes);
  241. while (node) {
  242. rb_erase(node, &fs_info->defrag_inodes);
  243. defrag = rb_entry(node, struct inode_defrag, rb_node);
  244. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  245. if (need_resched()) {
  246. spin_unlock(&fs_info->defrag_inodes_lock);
  247. cond_resched();
  248. spin_lock(&fs_info->defrag_inodes_lock);
  249. }
  250. node = rb_first(&fs_info->defrag_inodes);
  251. }
  252. spin_unlock(&fs_info->defrag_inodes_lock);
  253. }
  254. #define BTRFS_DEFRAG_BATCH 1024
  255. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  256. struct inode_defrag *defrag)
  257. {
  258. struct btrfs_root *inode_root;
  259. struct inode *inode;
  260. struct btrfs_key key;
  261. struct btrfs_ioctl_defrag_range_args range;
  262. int num_defrag;
  263. int index;
  264. int ret;
  265. /* get the inode */
  266. key.objectid = defrag->root;
  267. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  268. key.offset = (u64)-1;
  269. index = srcu_read_lock(&fs_info->subvol_srcu);
  270. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  271. if (IS_ERR(inode_root)) {
  272. ret = PTR_ERR(inode_root);
  273. goto cleanup;
  274. }
  275. key.objectid = defrag->ino;
  276. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  277. key.offset = 0;
  278. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  279. if (IS_ERR(inode)) {
  280. ret = PTR_ERR(inode);
  281. goto cleanup;
  282. }
  283. srcu_read_unlock(&fs_info->subvol_srcu, index);
  284. /* do a chunk of defrag */
  285. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  286. memset(&range, 0, sizeof(range));
  287. range.len = (u64)-1;
  288. range.start = defrag->last_offset;
  289. sb_start_write(fs_info->sb);
  290. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  291. BTRFS_DEFRAG_BATCH);
  292. sb_end_write(fs_info->sb);
  293. /*
  294. * if we filled the whole defrag batch, there
  295. * must be more work to do. Queue this defrag
  296. * again
  297. */
  298. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  299. defrag->last_offset = range.start;
  300. btrfs_requeue_inode_defrag(inode, defrag);
  301. } else if (defrag->last_offset && !defrag->cycled) {
  302. /*
  303. * we didn't fill our defrag batch, but
  304. * we didn't start at zero. Make sure we loop
  305. * around to the start of the file.
  306. */
  307. defrag->last_offset = 0;
  308. defrag->cycled = 1;
  309. btrfs_requeue_inode_defrag(inode, defrag);
  310. } else {
  311. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  312. }
  313. iput(inode);
  314. return 0;
  315. cleanup:
  316. srcu_read_unlock(&fs_info->subvol_srcu, index);
  317. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  318. return ret;
  319. }
  320. /*
  321. * run through the list of inodes in the FS that need
  322. * defragging
  323. */
  324. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  325. {
  326. struct inode_defrag *defrag;
  327. u64 first_ino = 0;
  328. u64 root_objectid = 0;
  329. atomic_inc(&fs_info->defrag_running);
  330. while (1) {
  331. /* Pause the auto defragger. */
  332. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  333. &fs_info->fs_state))
  334. break;
  335. if (!__need_auto_defrag(fs_info->tree_root))
  336. break;
  337. /* find an inode to defrag */
  338. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  339. first_ino);
  340. if (!defrag) {
  341. if (root_objectid || first_ino) {
  342. root_objectid = 0;
  343. first_ino = 0;
  344. continue;
  345. } else {
  346. break;
  347. }
  348. }
  349. first_ino = defrag->ino + 1;
  350. root_objectid = defrag->root;
  351. __btrfs_run_defrag_inode(fs_info, defrag);
  352. }
  353. atomic_dec(&fs_info->defrag_running);
  354. /*
  355. * during unmount, we use the transaction_wait queue to
  356. * wait for the defragger to stop
  357. */
  358. wake_up(&fs_info->transaction_wait);
  359. return 0;
  360. }
  361. /* simple helper to fault in pages and copy. This should go away
  362. * and be replaced with calls into generic code.
  363. */
  364. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  365. size_t write_bytes,
  366. struct page **prepared_pages,
  367. struct iov_iter *i)
  368. {
  369. size_t copied = 0;
  370. size_t total_copied = 0;
  371. int pg = 0;
  372. int offset = pos & (PAGE_CACHE_SIZE - 1);
  373. while (write_bytes > 0) {
  374. size_t count = min_t(size_t,
  375. PAGE_CACHE_SIZE - offset, write_bytes);
  376. struct page *page = prepared_pages[pg];
  377. /*
  378. * Copy data from userspace to the current page
  379. *
  380. * Disable pagefault to avoid recursive lock since
  381. * the pages are already locked
  382. */
  383. pagefault_disable();
  384. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  385. pagefault_enable();
  386. /* Flush processor's dcache for this page */
  387. flush_dcache_page(page);
  388. /*
  389. * if we get a partial write, we can end up with
  390. * partially up to date pages. These add
  391. * a lot of complexity, so make sure they don't
  392. * happen by forcing this copy to be retried.
  393. *
  394. * The rest of the btrfs_file_write code will fall
  395. * back to page at a time copies after we return 0.
  396. */
  397. if (!PageUptodate(page) && copied < count)
  398. copied = 0;
  399. iov_iter_advance(i, copied);
  400. write_bytes -= copied;
  401. total_copied += copied;
  402. /* Return to btrfs_file_aio_write to fault page */
  403. if (unlikely(copied == 0))
  404. break;
  405. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  406. offset += copied;
  407. } else {
  408. pg++;
  409. offset = 0;
  410. }
  411. }
  412. return total_copied;
  413. }
  414. /*
  415. * unlocks pages after btrfs_file_write is done with them
  416. */
  417. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  418. {
  419. size_t i;
  420. for (i = 0; i < num_pages; i++) {
  421. /* page checked is some magic around finding pages that
  422. * have been modified without going through btrfs_set_page_dirty
  423. * clear it here
  424. */
  425. ClearPageChecked(pages[i]);
  426. unlock_page(pages[i]);
  427. mark_page_accessed(pages[i]);
  428. page_cache_release(pages[i]);
  429. }
  430. }
  431. /*
  432. * after copy_from_user, pages need to be dirtied and we need to make
  433. * sure holes are created between the current EOF and the start of
  434. * any next extents (if required).
  435. *
  436. * this also makes the decision about creating an inline extent vs
  437. * doing real data extents, marking pages dirty and delalloc as required.
  438. */
  439. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  440. struct page **pages, size_t num_pages,
  441. loff_t pos, size_t write_bytes,
  442. struct extent_state **cached)
  443. {
  444. int err = 0;
  445. int i;
  446. u64 num_bytes;
  447. u64 start_pos;
  448. u64 end_of_last_block;
  449. u64 end_pos = pos + write_bytes;
  450. loff_t isize = i_size_read(inode);
  451. start_pos = pos & ~((u64)root->sectorsize - 1);
  452. num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
  453. end_of_last_block = start_pos + num_bytes - 1;
  454. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  455. cached);
  456. if (err)
  457. return err;
  458. for (i = 0; i < num_pages; i++) {
  459. struct page *p = pages[i];
  460. SetPageUptodate(p);
  461. ClearPageChecked(p);
  462. set_page_dirty(p);
  463. }
  464. /*
  465. * we've only changed i_size in ram, and we haven't updated
  466. * the disk i_size. There is no need to log the inode
  467. * at this time.
  468. */
  469. if (end_pos > isize)
  470. i_size_write(inode, end_pos);
  471. return 0;
  472. }
  473. /*
  474. * this drops all the extents in the cache that intersect the range
  475. * [start, end]. Existing extents are split as required.
  476. */
  477. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  478. int skip_pinned)
  479. {
  480. struct extent_map *em;
  481. struct extent_map *split = NULL;
  482. struct extent_map *split2 = NULL;
  483. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  484. u64 len = end - start + 1;
  485. u64 gen;
  486. int ret;
  487. int testend = 1;
  488. unsigned long flags;
  489. int compressed = 0;
  490. bool modified;
  491. WARN_ON(end < start);
  492. if (end == (u64)-1) {
  493. len = (u64)-1;
  494. testend = 0;
  495. }
  496. while (1) {
  497. int no_splits = 0;
  498. modified = false;
  499. if (!split)
  500. split = alloc_extent_map();
  501. if (!split2)
  502. split2 = alloc_extent_map();
  503. if (!split || !split2)
  504. no_splits = 1;
  505. write_lock(&em_tree->lock);
  506. em = lookup_extent_mapping(em_tree, start, len);
  507. if (!em) {
  508. write_unlock(&em_tree->lock);
  509. break;
  510. }
  511. flags = em->flags;
  512. gen = em->generation;
  513. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  514. if (testend && em->start + em->len >= start + len) {
  515. free_extent_map(em);
  516. write_unlock(&em_tree->lock);
  517. break;
  518. }
  519. start = em->start + em->len;
  520. if (testend)
  521. len = start + len - (em->start + em->len);
  522. free_extent_map(em);
  523. write_unlock(&em_tree->lock);
  524. continue;
  525. }
  526. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  527. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  528. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  529. modified = !list_empty(&em->list);
  530. remove_extent_mapping(em_tree, em);
  531. if (no_splits)
  532. goto next;
  533. if (em->start < start) {
  534. split->start = em->start;
  535. split->len = start - em->start;
  536. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  537. split->orig_start = em->orig_start;
  538. split->block_start = em->block_start;
  539. if (compressed)
  540. split->block_len = em->block_len;
  541. else
  542. split->block_len = split->len;
  543. split->orig_block_len = max(split->block_len,
  544. em->orig_block_len);
  545. split->ram_bytes = em->ram_bytes;
  546. } else {
  547. split->orig_start = split->start;
  548. split->block_len = 0;
  549. split->block_start = em->block_start;
  550. split->orig_block_len = 0;
  551. split->ram_bytes = split->len;
  552. }
  553. split->generation = gen;
  554. split->bdev = em->bdev;
  555. split->flags = flags;
  556. split->compress_type = em->compress_type;
  557. ret = add_extent_mapping(em_tree, split, modified);
  558. BUG_ON(ret); /* Logic error */
  559. free_extent_map(split);
  560. split = split2;
  561. split2 = NULL;
  562. }
  563. if (testend && em->start + em->len > start + len) {
  564. u64 diff = start + len - em->start;
  565. split->start = start + len;
  566. split->len = em->start + em->len - (start + len);
  567. split->bdev = em->bdev;
  568. split->flags = flags;
  569. split->compress_type = em->compress_type;
  570. split->generation = gen;
  571. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  572. split->orig_block_len = max(em->block_len,
  573. em->orig_block_len);
  574. split->ram_bytes = em->ram_bytes;
  575. if (compressed) {
  576. split->block_len = em->block_len;
  577. split->block_start = em->block_start;
  578. split->orig_start = em->orig_start;
  579. } else {
  580. split->block_len = split->len;
  581. split->block_start = em->block_start
  582. + diff;
  583. split->orig_start = em->orig_start;
  584. }
  585. } else {
  586. split->ram_bytes = split->len;
  587. split->orig_start = split->start;
  588. split->block_len = 0;
  589. split->block_start = em->block_start;
  590. split->orig_block_len = 0;
  591. }
  592. ret = add_extent_mapping(em_tree, split, modified);
  593. BUG_ON(ret); /* Logic error */
  594. free_extent_map(split);
  595. split = NULL;
  596. }
  597. next:
  598. write_unlock(&em_tree->lock);
  599. /* once for us */
  600. free_extent_map(em);
  601. /* once for the tree*/
  602. free_extent_map(em);
  603. }
  604. if (split)
  605. free_extent_map(split);
  606. if (split2)
  607. free_extent_map(split2);
  608. }
  609. /*
  610. * this is very complex, but the basic idea is to drop all extents
  611. * in the range start - end. hint_block is filled in with a block number
  612. * that would be a good hint to the block allocator for this file.
  613. *
  614. * If an extent intersects the range but is not entirely inside the range
  615. * it is either truncated or split. Anything entirely inside the range
  616. * is deleted from the tree.
  617. */
  618. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  619. struct btrfs_root *root, struct inode *inode,
  620. struct btrfs_path *path, u64 start, u64 end,
  621. u64 *drop_end, int drop_cache,
  622. int replace_extent,
  623. u32 extent_item_size,
  624. int *key_inserted)
  625. {
  626. struct extent_buffer *leaf;
  627. struct btrfs_file_extent_item *fi;
  628. struct btrfs_key key;
  629. struct btrfs_key new_key;
  630. u64 ino = btrfs_ino(inode);
  631. u64 search_start = start;
  632. u64 disk_bytenr = 0;
  633. u64 num_bytes = 0;
  634. u64 extent_offset = 0;
  635. u64 extent_end = 0;
  636. int del_nr = 0;
  637. int del_slot = 0;
  638. int extent_type;
  639. int recow;
  640. int ret;
  641. int modify_tree = -1;
  642. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  643. int found = 0;
  644. int leafs_visited = 0;
  645. if (drop_cache)
  646. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  647. if (start >= BTRFS_I(inode)->disk_i_size)
  648. modify_tree = 0;
  649. while (1) {
  650. recow = 0;
  651. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  652. search_start, modify_tree);
  653. if (ret < 0)
  654. break;
  655. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  656. leaf = path->nodes[0];
  657. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  658. if (key.objectid == ino &&
  659. key.type == BTRFS_EXTENT_DATA_KEY)
  660. path->slots[0]--;
  661. }
  662. ret = 0;
  663. leafs_visited++;
  664. next_slot:
  665. leaf = path->nodes[0];
  666. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  667. BUG_ON(del_nr > 0);
  668. ret = btrfs_next_leaf(root, path);
  669. if (ret < 0)
  670. break;
  671. if (ret > 0) {
  672. ret = 0;
  673. break;
  674. }
  675. leafs_visited++;
  676. leaf = path->nodes[0];
  677. recow = 1;
  678. }
  679. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  680. if (key.objectid > ino ||
  681. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  682. break;
  683. fi = btrfs_item_ptr(leaf, path->slots[0],
  684. struct btrfs_file_extent_item);
  685. extent_type = btrfs_file_extent_type(leaf, fi);
  686. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  687. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  688. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  689. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  690. extent_offset = btrfs_file_extent_offset(leaf, fi);
  691. extent_end = key.offset +
  692. btrfs_file_extent_num_bytes(leaf, fi);
  693. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  694. extent_end = key.offset +
  695. btrfs_file_extent_inline_len(leaf, fi);
  696. } else {
  697. WARN_ON(1);
  698. extent_end = search_start;
  699. }
  700. if (extent_end <= search_start) {
  701. path->slots[0]++;
  702. goto next_slot;
  703. }
  704. found = 1;
  705. search_start = max(key.offset, start);
  706. if (recow || !modify_tree) {
  707. modify_tree = -1;
  708. btrfs_release_path(path);
  709. continue;
  710. }
  711. /*
  712. * | - range to drop - |
  713. * | -------- extent -------- |
  714. */
  715. if (start > key.offset && end < extent_end) {
  716. BUG_ON(del_nr > 0);
  717. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  718. memcpy(&new_key, &key, sizeof(new_key));
  719. new_key.offset = start;
  720. ret = btrfs_duplicate_item(trans, root, path,
  721. &new_key);
  722. if (ret == -EAGAIN) {
  723. btrfs_release_path(path);
  724. continue;
  725. }
  726. if (ret < 0)
  727. break;
  728. leaf = path->nodes[0];
  729. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  730. struct btrfs_file_extent_item);
  731. btrfs_set_file_extent_num_bytes(leaf, fi,
  732. start - key.offset);
  733. fi = btrfs_item_ptr(leaf, path->slots[0],
  734. struct btrfs_file_extent_item);
  735. extent_offset += start - key.offset;
  736. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  737. btrfs_set_file_extent_num_bytes(leaf, fi,
  738. extent_end - start);
  739. btrfs_mark_buffer_dirty(leaf);
  740. if (update_refs && disk_bytenr > 0) {
  741. ret = btrfs_inc_extent_ref(trans, root,
  742. disk_bytenr, num_bytes, 0,
  743. root->root_key.objectid,
  744. new_key.objectid,
  745. start - extent_offset, 0);
  746. BUG_ON(ret); /* -ENOMEM */
  747. }
  748. key.offset = start;
  749. }
  750. /*
  751. * | ---- range to drop ----- |
  752. * | -------- extent -------- |
  753. */
  754. if (start <= key.offset && end < extent_end) {
  755. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  756. memcpy(&new_key, &key, sizeof(new_key));
  757. new_key.offset = end;
  758. btrfs_set_item_key_safe(root, path, &new_key);
  759. extent_offset += end - key.offset;
  760. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  761. btrfs_set_file_extent_num_bytes(leaf, fi,
  762. extent_end - end);
  763. btrfs_mark_buffer_dirty(leaf);
  764. if (update_refs && disk_bytenr > 0)
  765. inode_sub_bytes(inode, end - key.offset);
  766. break;
  767. }
  768. search_start = extent_end;
  769. /*
  770. * | ---- range to drop ----- |
  771. * | -------- extent -------- |
  772. */
  773. if (start > key.offset && end >= extent_end) {
  774. BUG_ON(del_nr > 0);
  775. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  776. btrfs_set_file_extent_num_bytes(leaf, fi,
  777. start - key.offset);
  778. btrfs_mark_buffer_dirty(leaf);
  779. if (update_refs && disk_bytenr > 0)
  780. inode_sub_bytes(inode, extent_end - start);
  781. if (end == extent_end)
  782. break;
  783. path->slots[0]++;
  784. goto next_slot;
  785. }
  786. /*
  787. * | ---- range to drop ----- |
  788. * | ------ extent ------ |
  789. */
  790. if (start <= key.offset && end >= extent_end) {
  791. if (del_nr == 0) {
  792. del_slot = path->slots[0];
  793. del_nr = 1;
  794. } else {
  795. BUG_ON(del_slot + del_nr != path->slots[0]);
  796. del_nr++;
  797. }
  798. if (update_refs &&
  799. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  800. inode_sub_bytes(inode,
  801. extent_end - key.offset);
  802. extent_end = ALIGN(extent_end,
  803. root->sectorsize);
  804. } else if (update_refs && disk_bytenr > 0) {
  805. ret = btrfs_free_extent(trans, root,
  806. disk_bytenr, num_bytes, 0,
  807. root->root_key.objectid,
  808. key.objectid, key.offset -
  809. extent_offset, 0);
  810. BUG_ON(ret); /* -ENOMEM */
  811. inode_sub_bytes(inode,
  812. extent_end - key.offset);
  813. }
  814. if (end == extent_end)
  815. break;
  816. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  817. path->slots[0]++;
  818. goto next_slot;
  819. }
  820. ret = btrfs_del_items(trans, root, path, del_slot,
  821. del_nr);
  822. if (ret) {
  823. btrfs_abort_transaction(trans, root, ret);
  824. break;
  825. }
  826. del_nr = 0;
  827. del_slot = 0;
  828. btrfs_release_path(path);
  829. continue;
  830. }
  831. BUG_ON(1);
  832. }
  833. if (!ret && del_nr > 0) {
  834. /*
  835. * Set path->slots[0] to first slot, so that after the delete
  836. * if items are move off from our leaf to its immediate left or
  837. * right neighbor leafs, we end up with a correct and adjusted
  838. * path->slots[0] for our insertion.
  839. */
  840. path->slots[0] = del_slot;
  841. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  842. if (ret)
  843. btrfs_abort_transaction(trans, root, ret);
  844. leaf = path->nodes[0];
  845. /*
  846. * leaf eb has flag EXTENT_BUFFER_STALE if it was deleted (that
  847. * is, its contents got pushed to its neighbors), in which case
  848. * it means path->locks[0] == 0
  849. */
  850. if (!ret && replace_extent && leafs_visited == 1 &&
  851. path->locks[0] &&
  852. btrfs_leaf_free_space(root, leaf) >=
  853. sizeof(struct btrfs_item) + extent_item_size) {
  854. key.objectid = ino;
  855. key.type = BTRFS_EXTENT_DATA_KEY;
  856. key.offset = start;
  857. setup_items_for_insert(root, path, &key,
  858. &extent_item_size,
  859. extent_item_size,
  860. sizeof(struct btrfs_item) +
  861. extent_item_size, 1);
  862. *key_inserted = 1;
  863. }
  864. }
  865. if (!replace_extent || !(*key_inserted))
  866. btrfs_release_path(path);
  867. if (drop_end)
  868. *drop_end = found ? min(end, extent_end) : end;
  869. return ret;
  870. }
  871. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  872. struct btrfs_root *root, struct inode *inode, u64 start,
  873. u64 end, int drop_cache)
  874. {
  875. struct btrfs_path *path;
  876. int ret;
  877. path = btrfs_alloc_path();
  878. if (!path)
  879. return -ENOMEM;
  880. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  881. drop_cache, 0, 0, NULL);
  882. btrfs_free_path(path);
  883. return ret;
  884. }
  885. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  886. u64 objectid, u64 bytenr, u64 orig_offset,
  887. u64 *start, u64 *end)
  888. {
  889. struct btrfs_file_extent_item *fi;
  890. struct btrfs_key key;
  891. u64 extent_end;
  892. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  893. return 0;
  894. btrfs_item_key_to_cpu(leaf, &key, slot);
  895. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  896. return 0;
  897. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  898. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  899. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  900. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  901. btrfs_file_extent_compression(leaf, fi) ||
  902. btrfs_file_extent_encryption(leaf, fi) ||
  903. btrfs_file_extent_other_encoding(leaf, fi))
  904. return 0;
  905. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  906. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  907. return 0;
  908. *start = key.offset;
  909. *end = extent_end;
  910. return 1;
  911. }
  912. /*
  913. * Mark extent in the range start - end as written.
  914. *
  915. * This changes extent type from 'pre-allocated' to 'regular'. If only
  916. * part of extent is marked as written, the extent will be split into
  917. * two or three.
  918. */
  919. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  920. struct inode *inode, u64 start, u64 end)
  921. {
  922. struct btrfs_root *root = BTRFS_I(inode)->root;
  923. struct extent_buffer *leaf;
  924. struct btrfs_path *path;
  925. struct btrfs_file_extent_item *fi;
  926. struct btrfs_key key;
  927. struct btrfs_key new_key;
  928. u64 bytenr;
  929. u64 num_bytes;
  930. u64 extent_end;
  931. u64 orig_offset;
  932. u64 other_start;
  933. u64 other_end;
  934. u64 split;
  935. int del_nr = 0;
  936. int del_slot = 0;
  937. int recow;
  938. int ret;
  939. u64 ino = btrfs_ino(inode);
  940. path = btrfs_alloc_path();
  941. if (!path)
  942. return -ENOMEM;
  943. again:
  944. recow = 0;
  945. split = start;
  946. key.objectid = ino;
  947. key.type = BTRFS_EXTENT_DATA_KEY;
  948. key.offset = split;
  949. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  950. if (ret < 0)
  951. goto out;
  952. if (ret > 0 && path->slots[0] > 0)
  953. path->slots[0]--;
  954. leaf = path->nodes[0];
  955. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  956. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  957. fi = btrfs_item_ptr(leaf, path->slots[0],
  958. struct btrfs_file_extent_item);
  959. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  960. BTRFS_FILE_EXTENT_PREALLOC);
  961. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  962. BUG_ON(key.offset > start || extent_end < end);
  963. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  964. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  965. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  966. memcpy(&new_key, &key, sizeof(new_key));
  967. if (start == key.offset && end < extent_end) {
  968. other_start = 0;
  969. other_end = start;
  970. if (extent_mergeable(leaf, path->slots[0] - 1,
  971. ino, bytenr, orig_offset,
  972. &other_start, &other_end)) {
  973. new_key.offset = end;
  974. btrfs_set_item_key_safe(root, path, &new_key);
  975. fi = btrfs_item_ptr(leaf, path->slots[0],
  976. struct btrfs_file_extent_item);
  977. btrfs_set_file_extent_generation(leaf, fi,
  978. trans->transid);
  979. btrfs_set_file_extent_num_bytes(leaf, fi,
  980. extent_end - end);
  981. btrfs_set_file_extent_offset(leaf, fi,
  982. end - orig_offset);
  983. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  984. struct btrfs_file_extent_item);
  985. btrfs_set_file_extent_generation(leaf, fi,
  986. trans->transid);
  987. btrfs_set_file_extent_num_bytes(leaf, fi,
  988. end - other_start);
  989. btrfs_mark_buffer_dirty(leaf);
  990. goto out;
  991. }
  992. }
  993. if (start > key.offset && end == extent_end) {
  994. other_start = end;
  995. other_end = 0;
  996. if (extent_mergeable(leaf, path->slots[0] + 1,
  997. ino, bytenr, orig_offset,
  998. &other_start, &other_end)) {
  999. fi = btrfs_item_ptr(leaf, path->slots[0],
  1000. struct btrfs_file_extent_item);
  1001. btrfs_set_file_extent_num_bytes(leaf, fi,
  1002. start - key.offset);
  1003. btrfs_set_file_extent_generation(leaf, fi,
  1004. trans->transid);
  1005. path->slots[0]++;
  1006. new_key.offset = start;
  1007. btrfs_set_item_key_safe(root, path, &new_key);
  1008. fi = btrfs_item_ptr(leaf, path->slots[0],
  1009. struct btrfs_file_extent_item);
  1010. btrfs_set_file_extent_generation(leaf, fi,
  1011. trans->transid);
  1012. btrfs_set_file_extent_num_bytes(leaf, fi,
  1013. other_end - start);
  1014. btrfs_set_file_extent_offset(leaf, fi,
  1015. start - orig_offset);
  1016. btrfs_mark_buffer_dirty(leaf);
  1017. goto out;
  1018. }
  1019. }
  1020. while (start > key.offset || end < extent_end) {
  1021. if (key.offset == start)
  1022. split = end;
  1023. new_key.offset = split;
  1024. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  1025. if (ret == -EAGAIN) {
  1026. btrfs_release_path(path);
  1027. goto again;
  1028. }
  1029. if (ret < 0) {
  1030. btrfs_abort_transaction(trans, root, ret);
  1031. goto out;
  1032. }
  1033. leaf = path->nodes[0];
  1034. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1035. struct btrfs_file_extent_item);
  1036. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1037. btrfs_set_file_extent_num_bytes(leaf, fi,
  1038. split - key.offset);
  1039. fi = btrfs_item_ptr(leaf, path->slots[0],
  1040. struct btrfs_file_extent_item);
  1041. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1042. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1043. btrfs_set_file_extent_num_bytes(leaf, fi,
  1044. extent_end - split);
  1045. btrfs_mark_buffer_dirty(leaf);
  1046. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  1047. root->root_key.objectid,
  1048. ino, orig_offset, 0);
  1049. BUG_ON(ret); /* -ENOMEM */
  1050. if (split == start) {
  1051. key.offset = start;
  1052. } else {
  1053. BUG_ON(start != key.offset);
  1054. path->slots[0]--;
  1055. extent_end = end;
  1056. }
  1057. recow = 1;
  1058. }
  1059. other_start = end;
  1060. other_end = 0;
  1061. if (extent_mergeable(leaf, path->slots[0] + 1,
  1062. ino, bytenr, orig_offset,
  1063. &other_start, &other_end)) {
  1064. if (recow) {
  1065. btrfs_release_path(path);
  1066. goto again;
  1067. }
  1068. extent_end = other_end;
  1069. del_slot = path->slots[0] + 1;
  1070. del_nr++;
  1071. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1072. 0, root->root_key.objectid,
  1073. ino, orig_offset, 0);
  1074. BUG_ON(ret); /* -ENOMEM */
  1075. }
  1076. other_start = 0;
  1077. other_end = start;
  1078. if (extent_mergeable(leaf, path->slots[0] - 1,
  1079. ino, bytenr, orig_offset,
  1080. &other_start, &other_end)) {
  1081. if (recow) {
  1082. btrfs_release_path(path);
  1083. goto again;
  1084. }
  1085. key.offset = other_start;
  1086. del_slot = path->slots[0];
  1087. del_nr++;
  1088. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1089. 0, root->root_key.objectid,
  1090. ino, orig_offset, 0);
  1091. BUG_ON(ret); /* -ENOMEM */
  1092. }
  1093. if (del_nr == 0) {
  1094. fi = btrfs_item_ptr(leaf, path->slots[0],
  1095. struct btrfs_file_extent_item);
  1096. btrfs_set_file_extent_type(leaf, fi,
  1097. BTRFS_FILE_EXTENT_REG);
  1098. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1099. btrfs_mark_buffer_dirty(leaf);
  1100. } else {
  1101. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1102. struct btrfs_file_extent_item);
  1103. btrfs_set_file_extent_type(leaf, fi,
  1104. BTRFS_FILE_EXTENT_REG);
  1105. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1106. btrfs_set_file_extent_num_bytes(leaf, fi,
  1107. extent_end - key.offset);
  1108. btrfs_mark_buffer_dirty(leaf);
  1109. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1110. if (ret < 0) {
  1111. btrfs_abort_transaction(trans, root, ret);
  1112. goto out;
  1113. }
  1114. }
  1115. out:
  1116. btrfs_free_path(path);
  1117. return 0;
  1118. }
  1119. /*
  1120. * on error we return an unlocked page and the error value
  1121. * on success we return a locked page and 0
  1122. */
  1123. static int prepare_uptodate_page(struct page *page, u64 pos,
  1124. bool force_uptodate)
  1125. {
  1126. int ret = 0;
  1127. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1128. !PageUptodate(page)) {
  1129. ret = btrfs_readpage(NULL, page);
  1130. if (ret)
  1131. return ret;
  1132. lock_page(page);
  1133. if (!PageUptodate(page)) {
  1134. unlock_page(page);
  1135. return -EIO;
  1136. }
  1137. }
  1138. return 0;
  1139. }
  1140. /*
  1141. * this just gets pages into the page cache and locks them down.
  1142. */
  1143. static noinline int prepare_pages(struct inode *inode, struct page **pages,
  1144. size_t num_pages, loff_t pos,
  1145. size_t write_bytes, bool force_uptodate)
  1146. {
  1147. int i;
  1148. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1149. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1150. int err = 0;
  1151. int faili;
  1152. for (i = 0; i < num_pages; i++) {
  1153. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1154. mask | __GFP_WRITE);
  1155. if (!pages[i]) {
  1156. faili = i - 1;
  1157. err = -ENOMEM;
  1158. goto fail;
  1159. }
  1160. if (i == 0)
  1161. err = prepare_uptodate_page(pages[i], pos,
  1162. force_uptodate);
  1163. if (i == num_pages - 1)
  1164. err = prepare_uptodate_page(pages[i],
  1165. pos + write_bytes, false);
  1166. if (err) {
  1167. page_cache_release(pages[i]);
  1168. faili = i - 1;
  1169. goto fail;
  1170. }
  1171. wait_on_page_writeback(pages[i]);
  1172. }
  1173. return 0;
  1174. fail:
  1175. while (faili >= 0) {
  1176. unlock_page(pages[faili]);
  1177. page_cache_release(pages[faili]);
  1178. faili--;
  1179. }
  1180. return err;
  1181. }
  1182. /*
  1183. * This function locks the extent and properly waits for data=ordered extents
  1184. * to finish before allowing the pages to be modified if need.
  1185. *
  1186. * The return value:
  1187. * 1 - the extent is locked
  1188. * 0 - the extent is not locked, and everything is OK
  1189. * -EAGAIN - need re-prepare the pages
  1190. * the other < 0 number - Something wrong happens
  1191. */
  1192. static noinline int
  1193. lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
  1194. size_t num_pages, loff_t pos,
  1195. u64 *lockstart, u64 *lockend,
  1196. struct extent_state **cached_state)
  1197. {
  1198. u64 start_pos;
  1199. u64 last_pos;
  1200. int i;
  1201. int ret = 0;
  1202. start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
  1203. last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
  1204. if (start_pos < inode->i_size) {
  1205. struct btrfs_ordered_extent *ordered;
  1206. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1207. start_pos, last_pos, 0, cached_state);
  1208. ordered = btrfs_lookup_first_ordered_extent(inode, last_pos);
  1209. if (ordered &&
  1210. ordered->file_offset + ordered->len > start_pos &&
  1211. ordered->file_offset <= last_pos) {
  1212. btrfs_put_ordered_extent(ordered);
  1213. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1214. start_pos, last_pos,
  1215. cached_state, GFP_NOFS);
  1216. for (i = 0; i < num_pages; i++) {
  1217. unlock_page(pages[i]);
  1218. page_cache_release(pages[i]);
  1219. }
  1220. ret = btrfs_wait_ordered_range(inode, start_pos,
  1221. last_pos - start_pos + 1);
  1222. if (ret)
  1223. return ret;
  1224. else
  1225. return -EAGAIN;
  1226. }
  1227. if (ordered)
  1228. btrfs_put_ordered_extent(ordered);
  1229. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1230. last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
  1231. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1232. 0, 0, cached_state, GFP_NOFS);
  1233. *lockstart = start_pos;
  1234. *lockend = last_pos;
  1235. ret = 1;
  1236. }
  1237. for (i = 0; i < num_pages; i++) {
  1238. if (clear_page_dirty_for_io(pages[i]))
  1239. account_page_redirty(pages[i]);
  1240. set_page_extent_mapped(pages[i]);
  1241. WARN_ON(!PageLocked(pages[i]));
  1242. }
  1243. return ret;
  1244. }
  1245. static noinline int check_can_nocow(struct inode *inode, loff_t pos,
  1246. size_t *write_bytes)
  1247. {
  1248. struct btrfs_root *root = BTRFS_I(inode)->root;
  1249. struct btrfs_ordered_extent *ordered;
  1250. u64 lockstart, lockend;
  1251. u64 num_bytes;
  1252. int ret;
  1253. lockstart = round_down(pos, root->sectorsize);
  1254. lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
  1255. while (1) {
  1256. lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1257. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1258. lockend - lockstart + 1);
  1259. if (!ordered) {
  1260. break;
  1261. }
  1262. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1263. btrfs_start_ordered_extent(inode, ordered, 1);
  1264. btrfs_put_ordered_extent(ordered);
  1265. }
  1266. num_bytes = lockend - lockstart + 1;
  1267. ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
  1268. if (ret <= 0) {
  1269. ret = 0;
  1270. } else {
  1271. clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1272. EXTENT_DIRTY | EXTENT_DELALLOC |
  1273. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
  1274. NULL, GFP_NOFS);
  1275. *write_bytes = min_t(size_t, *write_bytes, num_bytes);
  1276. }
  1277. unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
  1278. return ret;
  1279. }
  1280. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1281. struct iov_iter *i,
  1282. loff_t pos)
  1283. {
  1284. struct inode *inode = file_inode(file);
  1285. struct btrfs_root *root = BTRFS_I(inode)->root;
  1286. struct page **pages = NULL;
  1287. struct extent_state *cached_state = NULL;
  1288. u64 release_bytes = 0;
  1289. u64 lockstart;
  1290. u64 lockend;
  1291. unsigned long first_index;
  1292. size_t num_written = 0;
  1293. int nrptrs;
  1294. int ret = 0;
  1295. bool only_release_metadata = false;
  1296. bool force_page_uptodate = false;
  1297. bool need_unlock;
  1298. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1299. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1300. (sizeof(struct page *)));
  1301. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1302. nrptrs = max(nrptrs, 8);
  1303. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1304. if (!pages)
  1305. return -ENOMEM;
  1306. first_index = pos >> PAGE_CACHE_SHIFT;
  1307. while (iov_iter_count(i) > 0) {
  1308. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1309. size_t write_bytes = min(iov_iter_count(i),
  1310. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1311. offset);
  1312. size_t num_pages = (write_bytes + offset +
  1313. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1314. size_t reserve_bytes;
  1315. size_t dirty_pages;
  1316. size_t copied;
  1317. WARN_ON(num_pages > nrptrs);
  1318. /*
  1319. * Fault pages before locking them in prepare_pages
  1320. * to avoid recursive lock
  1321. */
  1322. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1323. ret = -EFAULT;
  1324. break;
  1325. }
  1326. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1327. ret = btrfs_check_data_free_space(inode, reserve_bytes);
  1328. if (ret == -ENOSPC &&
  1329. (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1330. BTRFS_INODE_PREALLOC))) {
  1331. ret = check_can_nocow(inode, pos, &write_bytes);
  1332. if (ret > 0) {
  1333. only_release_metadata = true;
  1334. /*
  1335. * our prealloc extent may be smaller than
  1336. * write_bytes, so scale down.
  1337. */
  1338. num_pages = (write_bytes + offset +
  1339. PAGE_CACHE_SIZE - 1) >>
  1340. PAGE_CACHE_SHIFT;
  1341. reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
  1342. ret = 0;
  1343. } else {
  1344. ret = -ENOSPC;
  1345. }
  1346. }
  1347. if (ret)
  1348. break;
  1349. ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
  1350. if (ret) {
  1351. if (!only_release_metadata)
  1352. btrfs_free_reserved_data_space(inode,
  1353. reserve_bytes);
  1354. break;
  1355. }
  1356. release_bytes = reserve_bytes;
  1357. need_unlock = false;
  1358. again:
  1359. /*
  1360. * This is going to setup the pages array with the number of
  1361. * pages we want, so we don't really need to worry about the
  1362. * contents of pages from loop to loop
  1363. */
  1364. ret = prepare_pages(inode, pages, num_pages,
  1365. pos, write_bytes,
  1366. force_page_uptodate);
  1367. if (ret)
  1368. break;
  1369. ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
  1370. pos, &lockstart, &lockend,
  1371. &cached_state);
  1372. if (ret < 0) {
  1373. if (ret == -EAGAIN)
  1374. goto again;
  1375. break;
  1376. } else if (ret > 0) {
  1377. need_unlock = true;
  1378. ret = 0;
  1379. }
  1380. copied = btrfs_copy_from_user(pos, num_pages,
  1381. write_bytes, pages, i);
  1382. /*
  1383. * if we have trouble faulting in the pages, fall
  1384. * back to one page at a time
  1385. */
  1386. if (copied < write_bytes)
  1387. nrptrs = 1;
  1388. if (copied == 0) {
  1389. force_page_uptodate = true;
  1390. dirty_pages = 0;
  1391. } else {
  1392. force_page_uptodate = false;
  1393. dirty_pages = (copied + offset +
  1394. PAGE_CACHE_SIZE - 1) >>
  1395. PAGE_CACHE_SHIFT;
  1396. }
  1397. /*
  1398. * If we had a short copy we need to release the excess delaloc
  1399. * bytes we reserved. We need to increment outstanding_extents
  1400. * because btrfs_delalloc_release_space will decrement it, but
  1401. * we still have an outstanding extent for the chunk we actually
  1402. * managed to copy.
  1403. */
  1404. if (num_pages > dirty_pages) {
  1405. release_bytes = (num_pages - dirty_pages) <<
  1406. PAGE_CACHE_SHIFT;
  1407. if (copied > 0) {
  1408. spin_lock(&BTRFS_I(inode)->lock);
  1409. BTRFS_I(inode)->outstanding_extents++;
  1410. spin_unlock(&BTRFS_I(inode)->lock);
  1411. }
  1412. if (only_release_metadata)
  1413. btrfs_delalloc_release_metadata(inode,
  1414. release_bytes);
  1415. else
  1416. btrfs_delalloc_release_space(inode,
  1417. release_bytes);
  1418. }
  1419. release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
  1420. if (copied > 0)
  1421. ret = btrfs_dirty_pages(root, inode, pages,
  1422. dirty_pages, pos, copied,
  1423. NULL);
  1424. if (need_unlock)
  1425. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1426. lockstart, lockend, &cached_state,
  1427. GFP_NOFS);
  1428. btrfs_drop_pages(pages, num_pages);
  1429. if (ret)
  1430. break;
  1431. release_bytes = 0;
  1432. if (only_release_metadata && copied > 0) {
  1433. u64 lockstart = round_down(pos, root->sectorsize);
  1434. u64 lockend = lockstart +
  1435. (dirty_pages << PAGE_CACHE_SHIFT) - 1;
  1436. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1437. lockend, EXTENT_NORESERVE, NULL,
  1438. NULL, GFP_NOFS);
  1439. only_release_metadata = false;
  1440. }
  1441. cond_resched();
  1442. balance_dirty_pages_ratelimited(inode->i_mapping);
  1443. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1444. btrfs_btree_balance_dirty(root);
  1445. pos += copied;
  1446. num_written += copied;
  1447. }
  1448. kfree(pages);
  1449. if (release_bytes) {
  1450. if (only_release_metadata)
  1451. btrfs_delalloc_release_metadata(inode, release_bytes);
  1452. else
  1453. btrfs_delalloc_release_space(inode, release_bytes);
  1454. }
  1455. return num_written ? num_written : ret;
  1456. }
  1457. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1458. const struct iovec *iov,
  1459. unsigned long nr_segs, loff_t pos,
  1460. loff_t *ppos, size_t count, size_t ocount)
  1461. {
  1462. struct file *file = iocb->ki_filp;
  1463. struct iov_iter i;
  1464. ssize_t written;
  1465. ssize_t written_buffered;
  1466. loff_t endbyte;
  1467. int err;
  1468. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1469. count, ocount);
  1470. if (written < 0 || written == count)
  1471. return written;
  1472. pos += written;
  1473. count -= written;
  1474. iov_iter_init(&i, iov, nr_segs, count, written);
  1475. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1476. if (written_buffered < 0) {
  1477. err = written_buffered;
  1478. goto out;
  1479. }
  1480. endbyte = pos + written_buffered - 1;
  1481. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1482. if (err)
  1483. goto out;
  1484. written += written_buffered;
  1485. *ppos = pos + written_buffered;
  1486. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1487. endbyte >> PAGE_CACHE_SHIFT);
  1488. out:
  1489. return written ? written : err;
  1490. }
  1491. static void update_time_for_write(struct inode *inode)
  1492. {
  1493. struct timespec now;
  1494. if (IS_NOCMTIME(inode))
  1495. return;
  1496. now = current_fs_time(inode->i_sb);
  1497. if (!timespec_equal(&inode->i_mtime, &now))
  1498. inode->i_mtime = now;
  1499. if (!timespec_equal(&inode->i_ctime, &now))
  1500. inode->i_ctime = now;
  1501. if (IS_I_VERSION(inode))
  1502. inode_inc_iversion(inode);
  1503. }
  1504. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1505. const struct iovec *iov,
  1506. unsigned long nr_segs, loff_t pos)
  1507. {
  1508. struct file *file = iocb->ki_filp;
  1509. struct inode *inode = file_inode(file);
  1510. struct btrfs_root *root = BTRFS_I(inode)->root;
  1511. loff_t *ppos = &iocb->ki_pos;
  1512. u64 start_pos;
  1513. ssize_t num_written = 0;
  1514. ssize_t err = 0;
  1515. size_t count, ocount;
  1516. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1517. mutex_lock(&inode->i_mutex);
  1518. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1519. if (err) {
  1520. mutex_unlock(&inode->i_mutex);
  1521. goto out;
  1522. }
  1523. count = ocount;
  1524. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1525. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1526. if (err) {
  1527. mutex_unlock(&inode->i_mutex);
  1528. goto out;
  1529. }
  1530. if (count == 0) {
  1531. mutex_unlock(&inode->i_mutex);
  1532. goto out;
  1533. }
  1534. err = file_remove_suid(file);
  1535. if (err) {
  1536. mutex_unlock(&inode->i_mutex);
  1537. goto out;
  1538. }
  1539. /*
  1540. * If BTRFS flips readonly due to some impossible error
  1541. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1542. * although we have opened a file as writable, we have
  1543. * to stop this write operation to ensure FS consistency.
  1544. */
  1545. if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
  1546. mutex_unlock(&inode->i_mutex);
  1547. err = -EROFS;
  1548. goto out;
  1549. }
  1550. /*
  1551. * We reserve space for updating the inode when we reserve space for the
  1552. * extent we are going to write, so we will enospc out there. We don't
  1553. * need to start yet another transaction to update the inode as we will
  1554. * update the inode when we finish writing whatever data we write.
  1555. */
  1556. update_time_for_write(inode);
  1557. start_pos = round_down(pos, root->sectorsize);
  1558. if (start_pos > i_size_read(inode)) {
  1559. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1560. if (err) {
  1561. mutex_unlock(&inode->i_mutex);
  1562. goto out;
  1563. }
  1564. }
  1565. if (sync)
  1566. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1567. if (unlikely(file->f_flags & O_DIRECT)) {
  1568. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1569. pos, ppos, count, ocount);
  1570. } else {
  1571. struct iov_iter i;
  1572. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1573. num_written = __btrfs_buffered_write(file, &i, pos);
  1574. if (num_written > 0)
  1575. *ppos = pos + num_written;
  1576. }
  1577. mutex_unlock(&inode->i_mutex);
  1578. /*
  1579. * we want to make sure fsync finds this change
  1580. * but we haven't joined a transaction running right now.
  1581. *
  1582. * Later on, someone is sure to update the inode and get the
  1583. * real transid recorded.
  1584. *
  1585. * We set last_trans now to the fs_info generation + 1,
  1586. * this will either be one more than the running transaction
  1587. * or the generation used for the next transaction if there isn't
  1588. * one running right now.
  1589. *
  1590. * We also have to set last_sub_trans to the current log transid,
  1591. * otherwise subsequent syncs to a file that's been synced in this
  1592. * transaction will appear to have already occured.
  1593. */
  1594. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1595. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1596. if (num_written > 0) {
  1597. err = generic_write_sync(file, pos, num_written);
  1598. if (err < 0 && num_written > 0)
  1599. num_written = err;
  1600. }
  1601. if (sync)
  1602. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1603. out:
  1604. current->backing_dev_info = NULL;
  1605. return num_written ? num_written : err;
  1606. }
  1607. int btrfs_release_file(struct inode *inode, struct file *filp)
  1608. {
  1609. /*
  1610. * ordered_data_close is set by settattr when we are about to truncate
  1611. * a file from a non-zero size to a zero size. This tries to
  1612. * flush down new bytes that may have been written if the
  1613. * application were using truncate to replace a file in place.
  1614. */
  1615. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1616. &BTRFS_I(inode)->runtime_flags)) {
  1617. struct btrfs_trans_handle *trans;
  1618. struct btrfs_root *root = BTRFS_I(inode)->root;
  1619. /*
  1620. * We need to block on a committing transaction to keep us from
  1621. * throwing a ordered operation on to the list and causing
  1622. * something like sync to deadlock trying to flush out this
  1623. * inode.
  1624. */
  1625. trans = btrfs_start_transaction(root, 0);
  1626. if (IS_ERR(trans))
  1627. return PTR_ERR(trans);
  1628. btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
  1629. btrfs_end_transaction(trans, root);
  1630. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1631. filemap_flush(inode->i_mapping);
  1632. }
  1633. if (filp->private_data)
  1634. btrfs_ioctl_trans_end(filp);
  1635. return 0;
  1636. }
  1637. /*
  1638. * fsync call for both files and directories. This logs the inode into
  1639. * the tree log instead of forcing full commits whenever possible.
  1640. *
  1641. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1642. * in the metadata btree are up to date for copying to the log.
  1643. *
  1644. * It drops the inode mutex before doing the tree log commit. This is an
  1645. * important optimization for directories because holding the mutex prevents
  1646. * new operations on the dir while we write to disk.
  1647. */
  1648. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1649. {
  1650. struct dentry *dentry = file->f_path.dentry;
  1651. struct inode *inode = dentry->d_inode;
  1652. struct btrfs_root *root = BTRFS_I(inode)->root;
  1653. int ret = 0;
  1654. struct btrfs_trans_handle *trans;
  1655. bool full_sync = 0;
  1656. trace_btrfs_sync_file(file, datasync);
  1657. /*
  1658. * We write the dirty pages in the range and wait until they complete
  1659. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1660. * multi-task, and make the performance up. See
  1661. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1662. */
  1663. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1664. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1665. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  1666. &BTRFS_I(inode)->runtime_flags))
  1667. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  1668. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1669. if (ret)
  1670. return ret;
  1671. mutex_lock(&inode->i_mutex);
  1672. /*
  1673. * We flush the dirty pages again to avoid some dirty pages in the
  1674. * range being left.
  1675. */
  1676. atomic_inc(&root->log_batch);
  1677. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1678. &BTRFS_I(inode)->runtime_flags);
  1679. if (full_sync) {
  1680. ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
  1681. if (ret) {
  1682. mutex_unlock(&inode->i_mutex);
  1683. goto out;
  1684. }
  1685. }
  1686. atomic_inc(&root->log_batch);
  1687. /*
  1688. * check the transaction that last modified this inode
  1689. * and see if its already been committed
  1690. */
  1691. if (!BTRFS_I(inode)->last_trans) {
  1692. mutex_unlock(&inode->i_mutex);
  1693. goto out;
  1694. }
  1695. /*
  1696. * if the last transaction that changed this file was before
  1697. * the current transaction, we can bail out now without any
  1698. * syncing
  1699. */
  1700. smp_mb();
  1701. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1702. BTRFS_I(inode)->last_trans <=
  1703. root->fs_info->last_trans_committed) {
  1704. BTRFS_I(inode)->last_trans = 0;
  1705. /*
  1706. * We'v had everything committed since the last time we were
  1707. * modified so clear this flag in case it was set for whatever
  1708. * reason, it's no longer relevant.
  1709. */
  1710. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1711. &BTRFS_I(inode)->runtime_flags);
  1712. mutex_unlock(&inode->i_mutex);
  1713. goto out;
  1714. }
  1715. /*
  1716. * ok we haven't committed the transaction yet, lets do a commit
  1717. */
  1718. if (file->private_data)
  1719. btrfs_ioctl_trans_end(file);
  1720. /*
  1721. * We use start here because we will need to wait on the IO to complete
  1722. * in btrfs_sync_log, which could require joining a transaction (for
  1723. * example checking cross references in the nocow path). If we use join
  1724. * here we could get into a situation where we're waiting on IO to
  1725. * happen that is blocked on a transaction trying to commit. With start
  1726. * we inc the extwriter counter, so we wait for all extwriters to exit
  1727. * before we start blocking join'ers. This comment is to keep somebody
  1728. * from thinking they are super smart and changing this to
  1729. * btrfs_join_transaction *cough*Josef*cough*.
  1730. */
  1731. trans = btrfs_start_transaction(root, 0);
  1732. if (IS_ERR(trans)) {
  1733. ret = PTR_ERR(trans);
  1734. mutex_unlock(&inode->i_mutex);
  1735. goto out;
  1736. }
  1737. trans->sync = true;
  1738. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1739. if (ret < 0) {
  1740. /* Fallthrough and commit/free transaction. */
  1741. ret = 1;
  1742. }
  1743. /* we've logged all the items and now have a consistent
  1744. * version of the file in the log. It is possible that
  1745. * someone will come in and modify the file, but that's
  1746. * fine because the log is consistent on disk, and we
  1747. * have references to all of the file's extents
  1748. *
  1749. * It is possible that someone will come in and log the
  1750. * file again, but that will end up using the synchronization
  1751. * inside btrfs_sync_log to keep things safe.
  1752. */
  1753. mutex_unlock(&inode->i_mutex);
  1754. if (ret != BTRFS_NO_LOG_SYNC) {
  1755. if (!ret) {
  1756. ret = btrfs_sync_log(trans, root);
  1757. if (!ret) {
  1758. ret = btrfs_end_transaction(trans, root);
  1759. goto out;
  1760. }
  1761. }
  1762. if (!full_sync) {
  1763. ret = btrfs_wait_ordered_range(inode, start,
  1764. end - start + 1);
  1765. if (ret)
  1766. goto out;
  1767. }
  1768. ret = btrfs_commit_transaction(trans, root);
  1769. } else {
  1770. ret = btrfs_end_transaction(trans, root);
  1771. }
  1772. out:
  1773. return ret > 0 ? -EIO : ret;
  1774. }
  1775. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1776. .fault = filemap_fault,
  1777. .page_mkwrite = btrfs_page_mkwrite,
  1778. .remap_pages = generic_file_remap_pages,
  1779. };
  1780. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1781. {
  1782. struct address_space *mapping = filp->f_mapping;
  1783. if (!mapping->a_ops->readpage)
  1784. return -ENOEXEC;
  1785. file_accessed(filp);
  1786. vma->vm_ops = &btrfs_file_vm_ops;
  1787. return 0;
  1788. }
  1789. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1790. int slot, u64 start, u64 end)
  1791. {
  1792. struct btrfs_file_extent_item *fi;
  1793. struct btrfs_key key;
  1794. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1795. return 0;
  1796. btrfs_item_key_to_cpu(leaf, &key, slot);
  1797. if (key.objectid != btrfs_ino(inode) ||
  1798. key.type != BTRFS_EXTENT_DATA_KEY)
  1799. return 0;
  1800. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1801. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1802. return 0;
  1803. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1804. return 0;
  1805. if (key.offset == end)
  1806. return 1;
  1807. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1808. return 1;
  1809. return 0;
  1810. }
  1811. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1812. struct btrfs_path *path, u64 offset, u64 end)
  1813. {
  1814. struct btrfs_root *root = BTRFS_I(inode)->root;
  1815. struct extent_buffer *leaf;
  1816. struct btrfs_file_extent_item *fi;
  1817. struct extent_map *hole_em;
  1818. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1819. struct btrfs_key key;
  1820. int ret;
  1821. if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
  1822. goto out;
  1823. key.objectid = btrfs_ino(inode);
  1824. key.type = BTRFS_EXTENT_DATA_KEY;
  1825. key.offset = offset;
  1826. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1827. if (ret < 0)
  1828. return ret;
  1829. BUG_ON(!ret);
  1830. leaf = path->nodes[0];
  1831. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1832. u64 num_bytes;
  1833. path->slots[0]--;
  1834. fi = btrfs_item_ptr(leaf, path->slots[0],
  1835. struct btrfs_file_extent_item);
  1836. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1837. end - offset;
  1838. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1839. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1840. btrfs_set_file_extent_offset(leaf, fi, 0);
  1841. btrfs_mark_buffer_dirty(leaf);
  1842. goto out;
  1843. }
  1844. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1845. u64 num_bytes;
  1846. path->slots[0]++;
  1847. key.offset = offset;
  1848. btrfs_set_item_key_safe(root, path, &key);
  1849. fi = btrfs_item_ptr(leaf, path->slots[0],
  1850. struct btrfs_file_extent_item);
  1851. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1852. offset;
  1853. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1854. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1855. btrfs_set_file_extent_offset(leaf, fi, 0);
  1856. btrfs_mark_buffer_dirty(leaf);
  1857. goto out;
  1858. }
  1859. btrfs_release_path(path);
  1860. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1861. 0, 0, end - offset, 0, end - offset,
  1862. 0, 0, 0);
  1863. if (ret)
  1864. return ret;
  1865. out:
  1866. btrfs_release_path(path);
  1867. hole_em = alloc_extent_map();
  1868. if (!hole_em) {
  1869. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1870. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1871. &BTRFS_I(inode)->runtime_flags);
  1872. } else {
  1873. hole_em->start = offset;
  1874. hole_em->len = end - offset;
  1875. hole_em->ram_bytes = hole_em->len;
  1876. hole_em->orig_start = offset;
  1877. hole_em->block_start = EXTENT_MAP_HOLE;
  1878. hole_em->block_len = 0;
  1879. hole_em->orig_block_len = 0;
  1880. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1881. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1882. hole_em->generation = trans->transid;
  1883. do {
  1884. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1885. write_lock(&em_tree->lock);
  1886. ret = add_extent_mapping(em_tree, hole_em, 1);
  1887. write_unlock(&em_tree->lock);
  1888. } while (ret == -EEXIST);
  1889. free_extent_map(hole_em);
  1890. if (ret)
  1891. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1892. &BTRFS_I(inode)->runtime_flags);
  1893. }
  1894. return 0;
  1895. }
  1896. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1897. {
  1898. struct btrfs_root *root = BTRFS_I(inode)->root;
  1899. struct extent_state *cached_state = NULL;
  1900. struct btrfs_path *path;
  1901. struct btrfs_block_rsv *rsv;
  1902. struct btrfs_trans_handle *trans;
  1903. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1904. u64 lockend = round_down(offset + len,
  1905. BTRFS_I(inode)->root->sectorsize) - 1;
  1906. u64 cur_offset = lockstart;
  1907. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1908. u64 drop_end;
  1909. int ret = 0;
  1910. int err = 0;
  1911. int rsv_count;
  1912. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1913. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1914. bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
  1915. ret = btrfs_wait_ordered_range(inode, offset, len);
  1916. if (ret)
  1917. return ret;
  1918. mutex_lock(&inode->i_mutex);
  1919. /*
  1920. * We needn't truncate any page which is beyond the end of the file
  1921. * because we are sure there is no data there.
  1922. */
  1923. /*
  1924. * Only do this if we are in the same page and we aren't doing the
  1925. * entire page.
  1926. */
  1927. if (same_page && len < PAGE_CACHE_SIZE) {
  1928. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1929. ret = btrfs_truncate_page(inode, offset, len, 0);
  1930. mutex_unlock(&inode->i_mutex);
  1931. return ret;
  1932. }
  1933. /* zero back part of the first page */
  1934. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1935. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1936. if (ret) {
  1937. mutex_unlock(&inode->i_mutex);
  1938. return ret;
  1939. }
  1940. }
  1941. /* zero the front end of the last page */
  1942. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1943. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1944. if (ret) {
  1945. mutex_unlock(&inode->i_mutex);
  1946. return ret;
  1947. }
  1948. }
  1949. if (lockend < lockstart) {
  1950. mutex_unlock(&inode->i_mutex);
  1951. return 0;
  1952. }
  1953. while (1) {
  1954. struct btrfs_ordered_extent *ordered;
  1955. truncate_pagecache_range(inode, lockstart, lockend);
  1956. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1957. 0, &cached_state);
  1958. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1959. /*
  1960. * We need to make sure we have no ordered extents in this range
  1961. * and nobody raced in and read a page in this range, if we did
  1962. * we need to try again.
  1963. */
  1964. if ((!ordered ||
  1965. (ordered->file_offset + ordered->len <= lockstart ||
  1966. ordered->file_offset > lockend)) &&
  1967. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1968. lockend, EXTENT_UPTODATE, 0,
  1969. cached_state)) {
  1970. if (ordered)
  1971. btrfs_put_ordered_extent(ordered);
  1972. break;
  1973. }
  1974. if (ordered)
  1975. btrfs_put_ordered_extent(ordered);
  1976. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1977. lockend, &cached_state, GFP_NOFS);
  1978. ret = btrfs_wait_ordered_range(inode, lockstart,
  1979. lockend - lockstart + 1);
  1980. if (ret) {
  1981. mutex_unlock(&inode->i_mutex);
  1982. return ret;
  1983. }
  1984. }
  1985. path = btrfs_alloc_path();
  1986. if (!path) {
  1987. ret = -ENOMEM;
  1988. goto out;
  1989. }
  1990. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1991. if (!rsv) {
  1992. ret = -ENOMEM;
  1993. goto out_free;
  1994. }
  1995. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1996. rsv->failfast = 1;
  1997. /*
  1998. * 1 - update the inode
  1999. * 1 - removing the extents in the range
  2000. * 1 - adding the hole extent if no_holes isn't set
  2001. */
  2002. rsv_count = no_holes ? 2 : 3;
  2003. trans = btrfs_start_transaction(root, rsv_count);
  2004. if (IS_ERR(trans)) {
  2005. err = PTR_ERR(trans);
  2006. goto out_free;
  2007. }
  2008. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  2009. min_size);
  2010. BUG_ON(ret);
  2011. trans->block_rsv = rsv;
  2012. while (cur_offset < lockend) {
  2013. ret = __btrfs_drop_extents(trans, root, inode, path,
  2014. cur_offset, lockend + 1,
  2015. &drop_end, 1, 0, 0, NULL);
  2016. if (ret != -ENOSPC)
  2017. break;
  2018. trans->block_rsv = &root->fs_info->trans_block_rsv;
  2019. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  2020. if (ret) {
  2021. err = ret;
  2022. break;
  2023. }
  2024. cur_offset = drop_end;
  2025. ret = btrfs_update_inode(trans, root, inode);
  2026. if (ret) {
  2027. err = ret;
  2028. break;
  2029. }
  2030. btrfs_end_transaction(trans, root);
  2031. btrfs_btree_balance_dirty(root);
  2032. trans = btrfs_start_transaction(root, rsv_count);
  2033. if (IS_ERR(trans)) {
  2034. ret = PTR_ERR(trans);
  2035. trans = NULL;
  2036. break;
  2037. }
  2038. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  2039. rsv, min_size);
  2040. BUG_ON(ret); /* shouldn't happen */
  2041. trans->block_rsv = rsv;
  2042. }
  2043. if (ret) {
  2044. err = ret;
  2045. goto out_trans;
  2046. }
  2047. trans->block_rsv = &root->fs_info->trans_block_rsv;
  2048. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  2049. if (ret) {
  2050. err = ret;
  2051. goto out_trans;
  2052. }
  2053. out_trans:
  2054. if (!trans)
  2055. goto out_free;
  2056. inode_inc_iversion(inode);
  2057. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  2058. trans->block_rsv = &root->fs_info->trans_block_rsv;
  2059. ret = btrfs_update_inode(trans, root, inode);
  2060. btrfs_end_transaction(trans, root);
  2061. btrfs_btree_balance_dirty(root);
  2062. out_free:
  2063. btrfs_free_path(path);
  2064. btrfs_free_block_rsv(root, rsv);
  2065. out:
  2066. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2067. &cached_state, GFP_NOFS);
  2068. mutex_unlock(&inode->i_mutex);
  2069. if (ret && !err)
  2070. err = ret;
  2071. return err;
  2072. }
  2073. static long btrfs_fallocate(struct file *file, int mode,
  2074. loff_t offset, loff_t len)
  2075. {
  2076. struct inode *inode = file_inode(file);
  2077. struct extent_state *cached_state = NULL;
  2078. struct btrfs_root *root = BTRFS_I(inode)->root;
  2079. u64 cur_offset;
  2080. u64 last_byte;
  2081. u64 alloc_start;
  2082. u64 alloc_end;
  2083. u64 alloc_hint = 0;
  2084. u64 locked_end;
  2085. struct extent_map *em;
  2086. int blocksize = BTRFS_I(inode)->root->sectorsize;
  2087. int ret;
  2088. alloc_start = round_down(offset, blocksize);
  2089. alloc_end = round_up(offset + len, blocksize);
  2090. /* Make sure we aren't being give some crap mode */
  2091. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  2092. return -EOPNOTSUPP;
  2093. if (mode & FALLOC_FL_PUNCH_HOLE)
  2094. return btrfs_punch_hole(inode, offset, len);
  2095. /*
  2096. * Make sure we have enough space before we do the
  2097. * allocation.
  2098. */
  2099. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  2100. if (ret)
  2101. return ret;
  2102. if (root->fs_info->quota_enabled) {
  2103. ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
  2104. if (ret)
  2105. goto out_reserve_fail;
  2106. }
  2107. mutex_lock(&inode->i_mutex);
  2108. ret = inode_newsize_ok(inode, alloc_end);
  2109. if (ret)
  2110. goto out;
  2111. if (alloc_start > inode->i_size) {
  2112. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2113. alloc_start);
  2114. if (ret)
  2115. goto out;
  2116. } else {
  2117. /*
  2118. * If we are fallocating from the end of the file onward we
  2119. * need to zero out the end of the page if i_size lands in the
  2120. * middle of a page.
  2121. */
  2122. ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
  2123. if (ret)
  2124. goto out;
  2125. }
  2126. /*
  2127. * wait for ordered IO before we have any locks. We'll loop again
  2128. * below with the locks held.
  2129. */
  2130. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2131. alloc_end - alloc_start);
  2132. if (ret)
  2133. goto out;
  2134. locked_end = alloc_end - 1;
  2135. while (1) {
  2136. struct btrfs_ordered_extent *ordered;
  2137. /* the extent lock is ordered inside the running
  2138. * transaction
  2139. */
  2140. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2141. locked_end, 0, &cached_state);
  2142. ordered = btrfs_lookup_first_ordered_extent(inode,
  2143. alloc_end - 1);
  2144. if (ordered &&
  2145. ordered->file_offset + ordered->len > alloc_start &&
  2146. ordered->file_offset < alloc_end) {
  2147. btrfs_put_ordered_extent(ordered);
  2148. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2149. alloc_start, locked_end,
  2150. &cached_state, GFP_NOFS);
  2151. /*
  2152. * we can't wait on the range with the transaction
  2153. * running or with the extent lock held
  2154. */
  2155. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2156. alloc_end - alloc_start);
  2157. if (ret)
  2158. goto out;
  2159. } else {
  2160. if (ordered)
  2161. btrfs_put_ordered_extent(ordered);
  2162. break;
  2163. }
  2164. }
  2165. cur_offset = alloc_start;
  2166. while (1) {
  2167. u64 actual_end;
  2168. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  2169. alloc_end - cur_offset, 0);
  2170. if (IS_ERR_OR_NULL(em)) {
  2171. if (!em)
  2172. ret = -ENOMEM;
  2173. else
  2174. ret = PTR_ERR(em);
  2175. break;
  2176. }
  2177. last_byte = min(extent_map_end(em), alloc_end);
  2178. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2179. last_byte = ALIGN(last_byte, blocksize);
  2180. if (em->block_start == EXTENT_MAP_HOLE ||
  2181. (cur_offset >= inode->i_size &&
  2182. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2183. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  2184. last_byte - cur_offset,
  2185. 1 << inode->i_blkbits,
  2186. offset + len,
  2187. &alloc_hint);
  2188. if (ret < 0) {
  2189. free_extent_map(em);
  2190. break;
  2191. }
  2192. } else if (actual_end > inode->i_size &&
  2193. !(mode & FALLOC_FL_KEEP_SIZE)) {
  2194. /*
  2195. * We didn't need to allocate any more space, but we
  2196. * still extended the size of the file so we need to
  2197. * update i_size.
  2198. */
  2199. inode->i_ctime = CURRENT_TIME;
  2200. i_size_write(inode, actual_end);
  2201. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  2202. }
  2203. free_extent_map(em);
  2204. cur_offset = last_byte;
  2205. if (cur_offset >= alloc_end) {
  2206. ret = 0;
  2207. break;
  2208. }
  2209. }
  2210. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2211. &cached_state, GFP_NOFS);
  2212. out:
  2213. mutex_unlock(&inode->i_mutex);
  2214. if (root->fs_info->quota_enabled)
  2215. btrfs_qgroup_free(root, alloc_end - alloc_start);
  2216. out_reserve_fail:
  2217. /* Let go of our reservation. */
  2218. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  2219. return ret;
  2220. }
  2221. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2222. {
  2223. struct btrfs_root *root = BTRFS_I(inode)->root;
  2224. struct extent_map *em = NULL;
  2225. struct extent_state *cached_state = NULL;
  2226. u64 lockstart = *offset;
  2227. u64 lockend = i_size_read(inode);
  2228. u64 start = *offset;
  2229. u64 len = i_size_read(inode);
  2230. int ret = 0;
  2231. lockend = max_t(u64, root->sectorsize, lockend);
  2232. if (lockend <= lockstart)
  2233. lockend = lockstart + root->sectorsize;
  2234. lockend--;
  2235. len = lockend - lockstart + 1;
  2236. len = max_t(u64, len, root->sectorsize);
  2237. if (inode->i_size == 0)
  2238. return -ENXIO;
  2239. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  2240. &cached_state);
  2241. while (start < inode->i_size) {
  2242. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2243. if (IS_ERR(em)) {
  2244. ret = PTR_ERR(em);
  2245. em = NULL;
  2246. break;
  2247. }
  2248. if (whence == SEEK_HOLE &&
  2249. (em->block_start == EXTENT_MAP_HOLE ||
  2250. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2251. break;
  2252. else if (whence == SEEK_DATA &&
  2253. (em->block_start != EXTENT_MAP_HOLE &&
  2254. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2255. break;
  2256. start = em->start + em->len;
  2257. free_extent_map(em);
  2258. em = NULL;
  2259. cond_resched();
  2260. }
  2261. free_extent_map(em);
  2262. if (!ret) {
  2263. if (whence == SEEK_DATA && start >= inode->i_size)
  2264. ret = -ENXIO;
  2265. else
  2266. *offset = min_t(loff_t, start, inode->i_size);
  2267. }
  2268. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2269. &cached_state, GFP_NOFS);
  2270. return ret;
  2271. }
  2272. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2273. {
  2274. struct inode *inode = file->f_mapping->host;
  2275. int ret;
  2276. mutex_lock(&inode->i_mutex);
  2277. switch (whence) {
  2278. case SEEK_END:
  2279. case SEEK_CUR:
  2280. offset = generic_file_llseek(file, offset, whence);
  2281. goto out;
  2282. case SEEK_DATA:
  2283. case SEEK_HOLE:
  2284. if (offset >= i_size_read(inode)) {
  2285. mutex_unlock(&inode->i_mutex);
  2286. return -ENXIO;
  2287. }
  2288. ret = find_desired_extent(inode, &offset, whence);
  2289. if (ret) {
  2290. mutex_unlock(&inode->i_mutex);
  2291. return ret;
  2292. }
  2293. }
  2294. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  2295. out:
  2296. mutex_unlock(&inode->i_mutex);
  2297. return offset;
  2298. }
  2299. const struct file_operations btrfs_file_operations = {
  2300. .llseek = btrfs_file_llseek,
  2301. .read = do_sync_read,
  2302. .write = do_sync_write,
  2303. .aio_read = generic_file_aio_read,
  2304. .splice_read = generic_file_splice_read,
  2305. .aio_write = btrfs_file_aio_write,
  2306. .mmap = btrfs_file_mmap,
  2307. .open = generic_file_open,
  2308. .release = btrfs_release_file,
  2309. .fsync = btrfs_sync_file,
  2310. .fallocate = btrfs_fallocate,
  2311. .unlocked_ioctl = btrfs_ioctl,
  2312. #ifdef CONFIG_COMPAT
  2313. .compat_ioctl = btrfs_ioctl,
  2314. #endif
  2315. };
  2316. void btrfs_auto_defrag_exit(void)
  2317. {
  2318. if (btrfs_inode_defrag_cachep)
  2319. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2320. }
  2321. int btrfs_auto_defrag_init(void)
  2322. {
  2323. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2324. sizeof(struct inode_defrag), 0,
  2325. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2326. NULL);
  2327. if (!btrfs_inode_defrag_cachep)
  2328. return -ENOMEM;
  2329. return 0;
  2330. }