memblock.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/poison.h>
  16. #include <linux/memblock.h>
  17. struct memblock memblock;
  18. static int memblock_debug;
  19. static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
  20. static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
  21. #define MEMBLOCK_ERROR (~(phys_addr_t)0)
  22. static int __init early_memblock(char *p)
  23. {
  24. if (p && strstr(p, "debug"))
  25. memblock_debug = 1;
  26. return 0;
  27. }
  28. early_param("memblock", early_memblock);
  29. static void memblock_dump(struct memblock_type *region, char *name)
  30. {
  31. unsigned long long base, size;
  32. int i;
  33. pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
  34. for (i = 0; i < region->cnt; i++) {
  35. base = region->regions[i].base;
  36. size = region->regions[i].size;
  37. pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
  38. name, i, base, base + size - 1, size);
  39. }
  40. }
  41. void memblock_dump_all(void)
  42. {
  43. if (!memblock_debug)
  44. return;
  45. pr_info("MEMBLOCK configuration:\n");
  46. pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
  47. memblock_dump(&memblock.memory, "memory");
  48. memblock_dump(&memblock.reserved, "reserved");
  49. }
  50. static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  51. phys_addr_t base2, phys_addr_t size2)
  52. {
  53. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  54. }
  55. static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
  56. phys_addr_t base2, phys_addr_t size2)
  57. {
  58. if (base2 == base1 + size1)
  59. return 1;
  60. else if (base1 == base2 + size2)
  61. return -1;
  62. return 0;
  63. }
  64. static long memblock_regions_adjacent(struct memblock_type *type,
  65. unsigned long r1, unsigned long r2)
  66. {
  67. phys_addr_t base1 = type->regions[r1].base;
  68. phys_addr_t size1 = type->regions[r1].size;
  69. phys_addr_t base2 = type->regions[r2].base;
  70. phys_addr_t size2 = type->regions[r2].size;
  71. return memblock_addrs_adjacent(base1, size1, base2, size2);
  72. }
  73. static void memblock_remove_region(struct memblock_type *type, unsigned long r)
  74. {
  75. unsigned long i;
  76. for (i = r; i < type->cnt - 1; i++) {
  77. type->regions[i].base = type->regions[i + 1].base;
  78. type->regions[i].size = type->regions[i + 1].size;
  79. }
  80. type->cnt--;
  81. }
  82. /* Assumption: base addr of region 1 < base addr of region 2 */
  83. static void memblock_coalesce_regions(struct memblock_type *type,
  84. unsigned long r1, unsigned long r2)
  85. {
  86. type->regions[r1].size += type->regions[r2].size;
  87. memblock_remove_region(type, r2);
  88. }
  89. void __init memblock_init(void)
  90. {
  91. /* Hookup the initial arrays */
  92. memblock.memory.regions = memblock_memory_init_regions;
  93. memblock.memory.max = INIT_MEMBLOCK_REGIONS;
  94. memblock.reserved.regions = memblock_reserved_init_regions;
  95. memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
  96. /* Write a marker in the unused last array entry */
  97. memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
  98. memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
  99. /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
  100. * This simplifies the memblock_add() code below...
  101. */
  102. memblock.memory.regions[0].base = 0;
  103. memblock.memory.regions[0].size = 0;
  104. memblock.memory.cnt = 1;
  105. /* Ditto. */
  106. memblock.reserved.regions[0].base = 0;
  107. memblock.reserved.regions[0].size = 0;
  108. memblock.reserved.cnt = 1;
  109. memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
  110. }
  111. void __init memblock_analyze(void)
  112. {
  113. int i;
  114. /* Check marker in the unused last array entry */
  115. WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
  116. != (phys_addr_t)RED_INACTIVE);
  117. WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
  118. != (phys_addr_t)RED_INACTIVE);
  119. memblock.memory_size = 0;
  120. for (i = 0; i < memblock.memory.cnt; i++)
  121. memblock.memory_size += memblock.memory.regions[i].size;
  122. }
  123. static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  124. {
  125. unsigned long coalesced = 0;
  126. long adjacent, i;
  127. if ((type->cnt == 1) && (type->regions[0].size == 0)) {
  128. type->regions[0].base = base;
  129. type->regions[0].size = size;
  130. return 0;
  131. }
  132. /* First try and coalesce this MEMBLOCK with another. */
  133. for (i = 0; i < type->cnt; i++) {
  134. phys_addr_t rgnbase = type->regions[i].base;
  135. phys_addr_t rgnsize = type->regions[i].size;
  136. if ((rgnbase == base) && (rgnsize == size))
  137. /* Already have this region, so we're done */
  138. return 0;
  139. adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
  140. if (adjacent > 0) {
  141. type->regions[i].base -= size;
  142. type->regions[i].size += size;
  143. coalesced++;
  144. break;
  145. } else if (adjacent < 0) {
  146. type->regions[i].size += size;
  147. coalesced++;
  148. break;
  149. }
  150. }
  151. if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
  152. memblock_coalesce_regions(type, i, i+1);
  153. coalesced++;
  154. }
  155. if (coalesced)
  156. return coalesced;
  157. if (type->cnt >= type->max)
  158. return -1;
  159. /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
  160. for (i = type->cnt - 1; i >= 0; i--) {
  161. if (base < type->regions[i].base) {
  162. type->regions[i+1].base = type->regions[i].base;
  163. type->regions[i+1].size = type->regions[i].size;
  164. } else {
  165. type->regions[i+1].base = base;
  166. type->regions[i+1].size = size;
  167. break;
  168. }
  169. }
  170. if (base < type->regions[0].base) {
  171. type->regions[0].base = base;
  172. type->regions[0].size = size;
  173. }
  174. type->cnt++;
  175. return 0;
  176. }
  177. long memblock_add(phys_addr_t base, phys_addr_t size)
  178. {
  179. return memblock_add_region(&memblock.memory, base, size);
  180. }
  181. static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  182. {
  183. phys_addr_t rgnbegin, rgnend;
  184. phys_addr_t end = base + size;
  185. int i;
  186. rgnbegin = rgnend = 0; /* supress gcc warnings */
  187. /* Find the region where (base, size) belongs to */
  188. for (i=0; i < type->cnt; i++) {
  189. rgnbegin = type->regions[i].base;
  190. rgnend = rgnbegin + type->regions[i].size;
  191. if ((rgnbegin <= base) && (end <= rgnend))
  192. break;
  193. }
  194. /* Didn't find the region */
  195. if (i == type->cnt)
  196. return -1;
  197. /* Check to see if we are removing entire region */
  198. if ((rgnbegin == base) && (rgnend == end)) {
  199. memblock_remove_region(type, i);
  200. return 0;
  201. }
  202. /* Check to see if region is matching at the front */
  203. if (rgnbegin == base) {
  204. type->regions[i].base = end;
  205. type->regions[i].size -= size;
  206. return 0;
  207. }
  208. /* Check to see if the region is matching at the end */
  209. if (rgnend == end) {
  210. type->regions[i].size -= size;
  211. return 0;
  212. }
  213. /*
  214. * We need to split the entry - adjust the current one to the
  215. * beginging of the hole and add the region after hole.
  216. */
  217. type->regions[i].size = base - type->regions[i].base;
  218. return memblock_add_region(type, end, rgnend - end);
  219. }
  220. long memblock_remove(phys_addr_t base, phys_addr_t size)
  221. {
  222. return __memblock_remove(&memblock.memory, base, size);
  223. }
  224. long __init memblock_free(phys_addr_t base, phys_addr_t size)
  225. {
  226. return __memblock_remove(&memblock.reserved, base, size);
  227. }
  228. long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
  229. {
  230. struct memblock_type *_rgn = &memblock.reserved;
  231. BUG_ON(0 == size);
  232. return memblock_add_region(_rgn, base, size);
  233. }
  234. long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  235. {
  236. unsigned long i;
  237. for (i = 0; i < type->cnt; i++) {
  238. phys_addr_t rgnbase = type->regions[i].base;
  239. phys_addr_t rgnsize = type->regions[i].size;
  240. if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  241. break;
  242. }
  243. return (i < type->cnt) ? i : -1;
  244. }
  245. static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
  246. {
  247. return addr & ~(size - 1);
  248. }
  249. static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
  250. {
  251. return (addr + (size - 1)) & ~(size - 1);
  252. }
  253. static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end,
  254. phys_addr_t size, phys_addr_t align)
  255. {
  256. phys_addr_t base, res_base;
  257. long j;
  258. base = memblock_align_down((end - size), align);
  259. while (start <= base) {
  260. j = memblock_overlaps_region(&memblock.reserved, base, size);
  261. if (j < 0)
  262. return base;
  263. res_base = memblock.reserved.regions[j].base;
  264. if (res_base < size)
  265. break;
  266. base = memblock_align_down(res_base - size, align);
  267. }
  268. return MEMBLOCK_ERROR;
  269. }
  270. phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
  271. {
  272. *nid = 0;
  273. return end;
  274. }
  275. static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
  276. phys_addr_t size,
  277. phys_addr_t align, int nid)
  278. {
  279. phys_addr_t start, end;
  280. start = mp->base;
  281. end = start + mp->size;
  282. start = memblock_align_up(start, align);
  283. while (start < end) {
  284. phys_addr_t this_end;
  285. int this_nid;
  286. this_end = memblock_nid_range(start, end, &this_nid);
  287. if (this_nid == nid) {
  288. phys_addr_t ret = memblock_find_region(start, this_end, size, align);
  289. if (ret != MEMBLOCK_ERROR &&
  290. memblock_add_region(&memblock.reserved, ret, size) >= 0)
  291. return ret;
  292. }
  293. start = this_end;
  294. }
  295. return MEMBLOCK_ERROR;
  296. }
  297. phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
  298. {
  299. struct memblock_type *mem = &memblock.memory;
  300. int i;
  301. BUG_ON(0 == size);
  302. /* We do a bottom-up search for a region with the right
  303. * nid since that's easier considering how memblock_nid_range()
  304. * works
  305. */
  306. size = memblock_align_up(size, align);
  307. for (i = 0; i < mem->cnt; i++) {
  308. phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
  309. size, align, nid);
  310. if (ret != MEMBLOCK_ERROR)
  311. return ret;
  312. }
  313. return memblock_alloc(size, align);
  314. }
  315. phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
  316. {
  317. return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
  318. }
  319. phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  320. {
  321. phys_addr_t alloc;
  322. alloc = __memblock_alloc_base(size, align, max_addr);
  323. if (alloc == 0)
  324. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  325. (unsigned long long) size, (unsigned long long) max_addr);
  326. return alloc;
  327. }
  328. phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  329. {
  330. long i;
  331. phys_addr_t base = 0;
  332. phys_addr_t res_base;
  333. BUG_ON(0 == size);
  334. size = memblock_align_up(size, align);
  335. /* Pump up max_addr */
  336. if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
  337. max_addr = memblock.current_limit;
  338. /* We do a top-down search, this tends to limit memory
  339. * fragmentation by keeping early boot allocs near the
  340. * top of memory
  341. */
  342. for (i = memblock.memory.cnt - 1; i >= 0; i--) {
  343. phys_addr_t memblockbase = memblock.memory.regions[i].base;
  344. phys_addr_t memblocksize = memblock.memory.regions[i].size;
  345. if (memblocksize < size)
  346. continue;
  347. base = min(memblockbase + memblocksize, max_addr);
  348. res_base = memblock_find_region(memblockbase, base, size, align);
  349. if (res_base != MEMBLOCK_ERROR &&
  350. memblock_add_region(&memblock.reserved, res_base, size) >= 0)
  351. return res_base;
  352. }
  353. return 0;
  354. }
  355. /* You must call memblock_analyze() before this. */
  356. phys_addr_t __init memblock_phys_mem_size(void)
  357. {
  358. return memblock.memory_size;
  359. }
  360. phys_addr_t memblock_end_of_DRAM(void)
  361. {
  362. int idx = memblock.memory.cnt - 1;
  363. return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
  364. }
  365. /* You must call memblock_analyze() after this. */
  366. void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
  367. {
  368. unsigned long i;
  369. phys_addr_t limit;
  370. struct memblock_region *p;
  371. if (!memory_limit)
  372. return;
  373. /* Truncate the memblock regions to satisfy the memory limit. */
  374. limit = memory_limit;
  375. for (i = 0; i < memblock.memory.cnt; i++) {
  376. if (limit > memblock.memory.regions[i].size) {
  377. limit -= memblock.memory.regions[i].size;
  378. continue;
  379. }
  380. memblock.memory.regions[i].size = limit;
  381. memblock.memory.cnt = i + 1;
  382. break;
  383. }
  384. memory_limit = memblock_end_of_DRAM();
  385. /* And truncate any reserves above the limit also. */
  386. for (i = 0; i < memblock.reserved.cnt; i++) {
  387. p = &memblock.reserved.regions[i];
  388. if (p->base > memory_limit)
  389. p->size = 0;
  390. else if ((p->base + p->size) > memory_limit)
  391. p->size = memory_limit - p->base;
  392. if (p->size == 0) {
  393. memblock_remove_region(&memblock.reserved, i);
  394. i--;
  395. }
  396. }
  397. }
  398. static int memblock_search(struct memblock_type *type, phys_addr_t addr)
  399. {
  400. unsigned int left = 0, right = type->cnt;
  401. do {
  402. unsigned int mid = (right + left) / 2;
  403. if (addr < type->regions[mid].base)
  404. right = mid;
  405. else if (addr >= (type->regions[mid].base +
  406. type->regions[mid].size))
  407. left = mid + 1;
  408. else
  409. return mid;
  410. } while (left < right);
  411. return -1;
  412. }
  413. int __init memblock_is_reserved(phys_addr_t addr)
  414. {
  415. return memblock_search(&memblock.reserved, addr) != -1;
  416. }
  417. int memblock_is_memory(phys_addr_t addr)
  418. {
  419. return memblock_search(&memblock.memory, addr) != -1;
  420. }
  421. int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
  422. {
  423. int idx = memblock_search(&memblock.reserved, base);
  424. if (idx == -1)
  425. return 0;
  426. return memblock.reserved.regions[idx].base <= base &&
  427. (memblock.reserved.regions[idx].base +
  428. memblock.reserved.regions[idx].size) >= (base + size);
  429. }
  430. int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
  431. {
  432. return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
  433. }
  434. void __init memblock_set_current_limit(phys_addr_t limit)
  435. {
  436. memblock.current_limit = limit;
  437. }