memory.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/init.h>
  46. #include <asm/pgalloc.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/tlb.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/pgtable.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #ifndef CONFIG_NEED_MULTIPLE_NODES
  54. /* use the per-pgdat data instead for discontigmem - mbligh */
  55. unsigned long max_mapnr;
  56. struct page *mem_map;
  57. EXPORT_SYMBOL(max_mapnr);
  58. EXPORT_SYMBOL(mem_map);
  59. #endif
  60. unsigned long num_physpages;
  61. /*
  62. * A number of key systems in x86 including ioremap() rely on the assumption
  63. * that high_memory defines the upper bound on direct map memory, then end
  64. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  65. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  66. * and ZONE_HIGHMEM.
  67. */
  68. void * high_memory;
  69. unsigned long vmalloc_earlyreserve;
  70. EXPORT_SYMBOL(num_physpages);
  71. EXPORT_SYMBOL(high_memory);
  72. EXPORT_SYMBOL(vmalloc_earlyreserve);
  73. /*
  74. * If a p?d_bad entry is found while walking page tables, report
  75. * the error, before resetting entry to p?d_none. Usually (but
  76. * very seldom) called out from the p?d_none_or_clear_bad macros.
  77. */
  78. void pgd_clear_bad(pgd_t *pgd)
  79. {
  80. pgd_ERROR(*pgd);
  81. pgd_clear(pgd);
  82. }
  83. void pud_clear_bad(pud_t *pud)
  84. {
  85. pud_ERROR(*pud);
  86. pud_clear(pud);
  87. }
  88. void pmd_clear_bad(pmd_t *pmd)
  89. {
  90. pmd_ERROR(*pmd);
  91. pmd_clear(pmd);
  92. }
  93. /*
  94. * Note: this doesn't free the actual pages themselves. That
  95. * has been handled earlier when unmapping all the memory regions.
  96. */
  97. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  98. {
  99. struct page *page = pmd_page(*pmd);
  100. pmd_clear(pmd);
  101. pte_free_tlb(tlb, page);
  102. dec_page_state(nr_page_table_pages);
  103. tlb->mm->nr_ptes--;
  104. }
  105. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  106. unsigned long addr, unsigned long end,
  107. unsigned long floor, unsigned long ceiling)
  108. {
  109. pmd_t *pmd;
  110. unsigned long next;
  111. unsigned long start;
  112. start = addr;
  113. pmd = pmd_offset(pud, addr);
  114. do {
  115. next = pmd_addr_end(addr, end);
  116. if (pmd_none_or_clear_bad(pmd))
  117. continue;
  118. free_pte_range(tlb, pmd);
  119. } while (pmd++, addr = next, addr != end);
  120. start &= PUD_MASK;
  121. if (start < floor)
  122. return;
  123. if (ceiling) {
  124. ceiling &= PUD_MASK;
  125. if (!ceiling)
  126. return;
  127. }
  128. if (end - 1 > ceiling - 1)
  129. return;
  130. pmd = pmd_offset(pud, start);
  131. pud_clear(pud);
  132. pmd_free_tlb(tlb, pmd);
  133. }
  134. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  135. unsigned long addr, unsigned long end,
  136. unsigned long floor, unsigned long ceiling)
  137. {
  138. pud_t *pud;
  139. unsigned long next;
  140. unsigned long start;
  141. start = addr;
  142. pud = pud_offset(pgd, addr);
  143. do {
  144. next = pud_addr_end(addr, end);
  145. if (pud_none_or_clear_bad(pud))
  146. continue;
  147. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  148. } while (pud++, addr = next, addr != end);
  149. start &= PGDIR_MASK;
  150. if (start < floor)
  151. return;
  152. if (ceiling) {
  153. ceiling &= PGDIR_MASK;
  154. if (!ceiling)
  155. return;
  156. }
  157. if (end - 1 > ceiling - 1)
  158. return;
  159. pud = pud_offset(pgd, start);
  160. pgd_clear(pgd);
  161. pud_free_tlb(tlb, pud);
  162. }
  163. /*
  164. * This function frees user-level page tables of a process.
  165. *
  166. * Must be called with pagetable lock held.
  167. */
  168. void free_pgd_range(struct mmu_gather **tlb,
  169. unsigned long addr, unsigned long end,
  170. unsigned long floor, unsigned long ceiling)
  171. {
  172. pgd_t *pgd;
  173. unsigned long next;
  174. unsigned long start;
  175. /*
  176. * The next few lines have given us lots of grief...
  177. *
  178. * Why are we testing PMD* at this top level? Because often
  179. * there will be no work to do at all, and we'd prefer not to
  180. * go all the way down to the bottom just to discover that.
  181. *
  182. * Why all these "- 1"s? Because 0 represents both the bottom
  183. * of the address space and the top of it (using -1 for the
  184. * top wouldn't help much: the masks would do the wrong thing).
  185. * The rule is that addr 0 and floor 0 refer to the bottom of
  186. * the address space, but end 0 and ceiling 0 refer to the top
  187. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  188. * that end 0 case should be mythical).
  189. *
  190. * Wherever addr is brought up or ceiling brought down, we must
  191. * be careful to reject "the opposite 0" before it confuses the
  192. * subsequent tests. But what about where end is brought down
  193. * by PMD_SIZE below? no, end can't go down to 0 there.
  194. *
  195. * Whereas we round start (addr) and ceiling down, by different
  196. * masks at different levels, in order to test whether a table
  197. * now has no other vmas using it, so can be freed, we don't
  198. * bother to round floor or end up - the tests don't need that.
  199. */
  200. addr &= PMD_MASK;
  201. if (addr < floor) {
  202. addr += PMD_SIZE;
  203. if (!addr)
  204. return;
  205. }
  206. if (ceiling) {
  207. ceiling &= PMD_MASK;
  208. if (!ceiling)
  209. return;
  210. }
  211. if (end - 1 > ceiling - 1)
  212. end -= PMD_SIZE;
  213. if (addr > end - 1)
  214. return;
  215. start = addr;
  216. pgd = pgd_offset((*tlb)->mm, addr);
  217. do {
  218. next = pgd_addr_end(addr, end);
  219. if (pgd_none_or_clear_bad(pgd))
  220. continue;
  221. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  222. } while (pgd++, addr = next, addr != end);
  223. if (!tlb_is_full_mm(*tlb))
  224. flush_tlb_pgtables((*tlb)->mm, start, end);
  225. }
  226. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  227. unsigned long floor, unsigned long ceiling)
  228. {
  229. while (vma) {
  230. struct vm_area_struct *next = vma->vm_next;
  231. unsigned long addr = vma->vm_start;
  232. if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
  233. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  234. floor, next? next->vm_start: ceiling);
  235. } else {
  236. /*
  237. * Optimization: gather nearby vmas into one call down
  238. */
  239. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  240. && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
  241. HPAGE_SIZE)) {
  242. vma = next;
  243. next = vma->vm_next;
  244. }
  245. free_pgd_range(tlb, addr, vma->vm_end,
  246. floor, next? next->vm_start: ceiling);
  247. }
  248. vma = next;
  249. }
  250. }
  251. pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
  252. unsigned long address)
  253. {
  254. if (!pmd_present(*pmd)) {
  255. struct page *new;
  256. spin_unlock(&mm->page_table_lock);
  257. new = pte_alloc_one(mm, address);
  258. spin_lock(&mm->page_table_lock);
  259. if (!new)
  260. return NULL;
  261. /*
  262. * Because we dropped the lock, we should re-check the
  263. * entry, as somebody else could have populated it..
  264. */
  265. if (pmd_present(*pmd)) {
  266. pte_free(new);
  267. goto out;
  268. }
  269. mm->nr_ptes++;
  270. inc_page_state(nr_page_table_pages);
  271. pmd_populate(mm, pmd, new);
  272. }
  273. out:
  274. return pte_offset_map(pmd, address);
  275. }
  276. pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. if (!pmd_present(*pmd)) {
  279. pte_t *new;
  280. spin_unlock(&mm->page_table_lock);
  281. new = pte_alloc_one_kernel(mm, address);
  282. spin_lock(&mm->page_table_lock);
  283. if (!new)
  284. return NULL;
  285. /*
  286. * Because we dropped the lock, we should re-check the
  287. * entry, as somebody else could have populated it..
  288. */
  289. if (pmd_present(*pmd)) {
  290. pte_free_kernel(new);
  291. goto out;
  292. }
  293. pmd_populate_kernel(mm, pmd, new);
  294. }
  295. out:
  296. return pte_offset_kernel(pmd, address);
  297. }
  298. /*
  299. * copy one vm_area from one task to the other. Assumes the page tables
  300. * already present in the new task to be cleared in the whole range
  301. * covered by this vma.
  302. *
  303. * dst->page_table_lock is held on entry and exit,
  304. * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
  305. */
  306. static inline void
  307. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  308. pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
  309. unsigned long addr)
  310. {
  311. pte_t pte = *src_pte;
  312. struct page *page;
  313. unsigned long pfn;
  314. /* pte contains position in swap or file, so copy. */
  315. if (unlikely(!pte_present(pte))) {
  316. if (!pte_file(pte)) {
  317. swap_duplicate(pte_to_swp_entry(pte));
  318. /* make sure dst_mm is on swapoff's mmlist. */
  319. if (unlikely(list_empty(&dst_mm->mmlist))) {
  320. spin_lock(&mmlist_lock);
  321. list_add(&dst_mm->mmlist, &src_mm->mmlist);
  322. spin_unlock(&mmlist_lock);
  323. }
  324. }
  325. set_pte_at(dst_mm, addr, dst_pte, pte);
  326. return;
  327. }
  328. pfn = pte_pfn(pte);
  329. /* the pte points outside of valid memory, the
  330. * mapping is assumed to be good, meaningful
  331. * and not mapped via rmap - duplicate the
  332. * mapping as is.
  333. */
  334. page = NULL;
  335. if (pfn_valid(pfn))
  336. page = pfn_to_page(pfn);
  337. if (!page || PageReserved(page)) {
  338. set_pte_at(dst_mm, addr, dst_pte, pte);
  339. return;
  340. }
  341. /*
  342. * If it's a COW mapping, write protect it both
  343. * in the parent and the child
  344. */
  345. if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
  346. ptep_set_wrprotect(src_mm, addr, src_pte);
  347. pte = *src_pte;
  348. }
  349. /*
  350. * If it's a shared mapping, mark it clean in
  351. * the child
  352. */
  353. if (vm_flags & VM_SHARED)
  354. pte = pte_mkclean(pte);
  355. pte = pte_mkold(pte);
  356. get_page(page);
  357. inc_mm_counter(dst_mm, rss);
  358. if (PageAnon(page))
  359. inc_mm_counter(dst_mm, anon_rss);
  360. set_pte_at(dst_mm, addr, dst_pte, pte);
  361. page_dup_rmap(page);
  362. }
  363. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  364. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  365. unsigned long addr, unsigned long end)
  366. {
  367. pte_t *src_pte, *dst_pte;
  368. unsigned long vm_flags = vma->vm_flags;
  369. int progress;
  370. again:
  371. dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
  372. if (!dst_pte)
  373. return -ENOMEM;
  374. src_pte = pte_offset_map_nested(src_pmd, addr);
  375. progress = 0;
  376. spin_lock(&src_mm->page_table_lock);
  377. do {
  378. /*
  379. * We are holding two locks at this point - either of them
  380. * could generate latencies in another task on another CPU.
  381. */
  382. if (progress >= 32 && (need_resched() ||
  383. need_lockbreak(&src_mm->page_table_lock) ||
  384. need_lockbreak(&dst_mm->page_table_lock)))
  385. break;
  386. if (pte_none(*src_pte)) {
  387. progress++;
  388. continue;
  389. }
  390. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
  391. progress += 8;
  392. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  393. spin_unlock(&src_mm->page_table_lock);
  394. pte_unmap_nested(src_pte - 1);
  395. pte_unmap(dst_pte - 1);
  396. cond_resched_lock(&dst_mm->page_table_lock);
  397. if (addr != end)
  398. goto again;
  399. return 0;
  400. }
  401. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  402. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  403. unsigned long addr, unsigned long end)
  404. {
  405. pmd_t *src_pmd, *dst_pmd;
  406. unsigned long next;
  407. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  408. if (!dst_pmd)
  409. return -ENOMEM;
  410. src_pmd = pmd_offset(src_pud, addr);
  411. do {
  412. next = pmd_addr_end(addr, end);
  413. if (pmd_none_or_clear_bad(src_pmd))
  414. continue;
  415. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  416. vma, addr, next))
  417. return -ENOMEM;
  418. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  419. return 0;
  420. }
  421. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  422. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  423. unsigned long addr, unsigned long end)
  424. {
  425. pud_t *src_pud, *dst_pud;
  426. unsigned long next;
  427. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  428. if (!dst_pud)
  429. return -ENOMEM;
  430. src_pud = pud_offset(src_pgd, addr);
  431. do {
  432. next = pud_addr_end(addr, end);
  433. if (pud_none_or_clear_bad(src_pud))
  434. continue;
  435. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  436. vma, addr, next))
  437. return -ENOMEM;
  438. } while (dst_pud++, src_pud++, addr = next, addr != end);
  439. return 0;
  440. }
  441. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  442. struct vm_area_struct *vma)
  443. {
  444. pgd_t *src_pgd, *dst_pgd;
  445. unsigned long next;
  446. unsigned long addr = vma->vm_start;
  447. unsigned long end = vma->vm_end;
  448. if (is_vm_hugetlb_page(vma))
  449. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  450. dst_pgd = pgd_offset(dst_mm, addr);
  451. src_pgd = pgd_offset(src_mm, addr);
  452. do {
  453. next = pgd_addr_end(addr, end);
  454. if (pgd_none_or_clear_bad(src_pgd))
  455. continue;
  456. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  457. vma, addr, next))
  458. return -ENOMEM;
  459. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  460. return 0;
  461. }
  462. static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  463. unsigned long addr, unsigned long end,
  464. struct zap_details *details)
  465. {
  466. pte_t *pte;
  467. pte = pte_offset_map(pmd, addr);
  468. do {
  469. pte_t ptent = *pte;
  470. if (pte_none(ptent))
  471. continue;
  472. if (pte_present(ptent)) {
  473. struct page *page = NULL;
  474. unsigned long pfn = pte_pfn(ptent);
  475. if (pfn_valid(pfn)) {
  476. page = pfn_to_page(pfn);
  477. if (PageReserved(page))
  478. page = NULL;
  479. }
  480. if (unlikely(details) && page) {
  481. /*
  482. * unmap_shared_mapping_pages() wants to
  483. * invalidate cache without truncating:
  484. * unmap shared but keep private pages.
  485. */
  486. if (details->check_mapping &&
  487. details->check_mapping != page->mapping)
  488. continue;
  489. /*
  490. * Each page->index must be checked when
  491. * invalidating or truncating nonlinear.
  492. */
  493. if (details->nonlinear_vma &&
  494. (page->index < details->first_index ||
  495. page->index > details->last_index))
  496. continue;
  497. }
  498. ptent = ptep_get_and_clear(tlb->mm, addr, pte);
  499. tlb_remove_tlb_entry(tlb, pte, addr);
  500. if (unlikely(!page))
  501. continue;
  502. if (unlikely(details) && details->nonlinear_vma
  503. && linear_page_index(details->nonlinear_vma,
  504. addr) != page->index)
  505. set_pte_at(tlb->mm, addr, pte,
  506. pgoff_to_pte(page->index));
  507. if (pte_dirty(ptent))
  508. set_page_dirty(page);
  509. if (PageAnon(page))
  510. dec_mm_counter(tlb->mm, anon_rss);
  511. else if (pte_young(ptent))
  512. mark_page_accessed(page);
  513. tlb->freed++;
  514. page_remove_rmap(page);
  515. tlb_remove_page(tlb, page);
  516. continue;
  517. }
  518. /*
  519. * If details->check_mapping, we leave swap entries;
  520. * if details->nonlinear_vma, we leave file entries.
  521. */
  522. if (unlikely(details))
  523. continue;
  524. if (!pte_file(ptent))
  525. free_swap_and_cache(pte_to_swp_entry(ptent));
  526. pte_clear(tlb->mm, addr, pte);
  527. } while (pte++, addr += PAGE_SIZE, addr != end);
  528. pte_unmap(pte - 1);
  529. }
  530. static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  531. unsigned long addr, unsigned long end,
  532. struct zap_details *details)
  533. {
  534. pmd_t *pmd;
  535. unsigned long next;
  536. pmd = pmd_offset(pud, addr);
  537. do {
  538. next = pmd_addr_end(addr, end);
  539. if (pmd_none_or_clear_bad(pmd))
  540. continue;
  541. zap_pte_range(tlb, pmd, addr, next, details);
  542. } while (pmd++, addr = next, addr != end);
  543. }
  544. static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  545. unsigned long addr, unsigned long end,
  546. struct zap_details *details)
  547. {
  548. pud_t *pud;
  549. unsigned long next;
  550. pud = pud_offset(pgd, addr);
  551. do {
  552. next = pud_addr_end(addr, end);
  553. if (pud_none_or_clear_bad(pud))
  554. continue;
  555. zap_pmd_range(tlb, pud, addr, next, details);
  556. } while (pud++, addr = next, addr != end);
  557. }
  558. static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  559. unsigned long addr, unsigned long end,
  560. struct zap_details *details)
  561. {
  562. pgd_t *pgd;
  563. unsigned long next;
  564. if (details && !details->check_mapping && !details->nonlinear_vma)
  565. details = NULL;
  566. BUG_ON(addr >= end);
  567. tlb_start_vma(tlb, vma);
  568. pgd = pgd_offset(vma->vm_mm, addr);
  569. do {
  570. next = pgd_addr_end(addr, end);
  571. if (pgd_none_or_clear_bad(pgd))
  572. continue;
  573. zap_pud_range(tlb, pgd, addr, next, details);
  574. } while (pgd++, addr = next, addr != end);
  575. tlb_end_vma(tlb, vma);
  576. }
  577. #ifdef CONFIG_PREEMPT
  578. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  579. #else
  580. /* No preempt: go for improved straight-line efficiency */
  581. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  582. #endif
  583. /**
  584. * unmap_vmas - unmap a range of memory covered by a list of vma's
  585. * @tlbp: address of the caller's struct mmu_gather
  586. * @mm: the controlling mm_struct
  587. * @vma: the starting vma
  588. * @start_addr: virtual address at which to start unmapping
  589. * @end_addr: virtual address at which to end unmapping
  590. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  591. * @details: details of nonlinear truncation or shared cache invalidation
  592. *
  593. * Returns the end address of the unmapping (restart addr if interrupted).
  594. *
  595. * Unmap all pages in the vma list. Called under page_table_lock.
  596. *
  597. * We aim to not hold page_table_lock for too long (for scheduling latency
  598. * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  599. * return the ending mmu_gather to the caller.
  600. *
  601. * Only addresses between `start' and `end' will be unmapped.
  602. *
  603. * The VMA list must be sorted in ascending virtual address order.
  604. *
  605. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  606. * range after unmap_vmas() returns. So the only responsibility here is to
  607. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  608. * drops the lock and schedules.
  609. */
  610. unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
  611. struct vm_area_struct *vma, unsigned long start_addr,
  612. unsigned long end_addr, unsigned long *nr_accounted,
  613. struct zap_details *details)
  614. {
  615. unsigned long zap_bytes = ZAP_BLOCK_SIZE;
  616. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  617. int tlb_start_valid = 0;
  618. unsigned long start = start_addr;
  619. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  620. int fullmm = tlb_is_full_mm(*tlbp);
  621. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  622. unsigned long end;
  623. start = max(vma->vm_start, start_addr);
  624. if (start >= vma->vm_end)
  625. continue;
  626. end = min(vma->vm_end, end_addr);
  627. if (end <= vma->vm_start)
  628. continue;
  629. if (vma->vm_flags & VM_ACCOUNT)
  630. *nr_accounted += (end - start) >> PAGE_SHIFT;
  631. while (start != end) {
  632. unsigned long block;
  633. if (!tlb_start_valid) {
  634. tlb_start = start;
  635. tlb_start_valid = 1;
  636. }
  637. if (is_vm_hugetlb_page(vma)) {
  638. block = end - start;
  639. unmap_hugepage_range(vma, start, end);
  640. } else {
  641. block = min(zap_bytes, end - start);
  642. unmap_page_range(*tlbp, vma, start,
  643. start + block, details);
  644. }
  645. start += block;
  646. zap_bytes -= block;
  647. if ((long)zap_bytes > 0)
  648. continue;
  649. tlb_finish_mmu(*tlbp, tlb_start, start);
  650. if (need_resched() ||
  651. need_lockbreak(&mm->page_table_lock) ||
  652. (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
  653. if (i_mmap_lock) {
  654. /* must reset count of rss freed */
  655. *tlbp = tlb_gather_mmu(mm, fullmm);
  656. goto out;
  657. }
  658. spin_unlock(&mm->page_table_lock);
  659. cond_resched();
  660. spin_lock(&mm->page_table_lock);
  661. }
  662. *tlbp = tlb_gather_mmu(mm, fullmm);
  663. tlb_start_valid = 0;
  664. zap_bytes = ZAP_BLOCK_SIZE;
  665. }
  666. }
  667. out:
  668. return start; /* which is now the end (or restart) address */
  669. }
  670. /**
  671. * zap_page_range - remove user pages in a given range
  672. * @vma: vm_area_struct holding the applicable pages
  673. * @address: starting address of pages to zap
  674. * @size: number of bytes to zap
  675. * @details: details of nonlinear truncation or shared cache invalidation
  676. */
  677. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  678. unsigned long size, struct zap_details *details)
  679. {
  680. struct mm_struct *mm = vma->vm_mm;
  681. struct mmu_gather *tlb;
  682. unsigned long end = address + size;
  683. unsigned long nr_accounted = 0;
  684. if (is_vm_hugetlb_page(vma)) {
  685. zap_hugepage_range(vma, address, size);
  686. return end;
  687. }
  688. lru_add_drain();
  689. spin_lock(&mm->page_table_lock);
  690. tlb = tlb_gather_mmu(mm, 0);
  691. end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
  692. tlb_finish_mmu(tlb, address, end);
  693. spin_unlock(&mm->page_table_lock);
  694. return end;
  695. }
  696. /*
  697. * Do a quick page-table lookup for a single page.
  698. * mm->page_table_lock must be held.
  699. */
  700. static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
  701. int read, int write, int accessed)
  702. {
  703. pgd_t *pgd;
  704. pud_t *pud;
  705. pmd_t *pmd;
  706. pte_t *ptep, pte;
  707. unsigned long pfn;
  708. struct page *page;
  709. page = follow_huge_addr(mm, address, write);
  710. if (! IS_ERR(page))
  711. return page;
  712. pgd = pgd_offset(mm, address);
  713. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  714. goto out;
  715. pud = pud_offset(pgd, address);
  716. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  717. goto out;
  718. pmd = pmd_offset(pud, address);
  719. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  720. goto out;
  721. if (pmd_huge(*pmd))
  722. return follow_huge_pmd(mm, address, pmd, write);
  723. ptep = pte_offset_map(pmd, address);
  724. if (!ptep)
  725. goto out;
  726. pte = *ptep;
  727. pte_unmap(ptep);
  728. if (pte_present(pte)) {
  729. if (write && !pte_dirty(pte))
  730. goto out;
  731. if (read && !pte_read(pte))
  732. goto out;
  733. pfn = pte_pfn(pte);
  734. if (pfn_valid(pfn)) {
  735. page = pfn_to_page(pfn);
  736. if (accessed)
  737. mark_page_accessed(page);
  738. return page;
  739. }
  740. }
  741. out:
  742. return NULL;
  743. }
  744. inline struct page *
  745. follow_page(struct mm_struct *mm, unsigned long address, int write)
  746. {
  747. return __follow_page(mm, address, 0, write, 1);
  748. }
  749. /*
  750. * check_user_page_readable() can be called frm niterrupt context by oprofile,
  751. * so we need to avoid taking any non-irq-safe locks
  752. */
  753. int check_user_page_readable(struct mm_struct *mm, unsigned long address)
  754. {
  755. return __follow_page(mm, address, 1, 0, 0) != NULL;
  756. }
  757. EXPORT_SYMBOL(check_user_page_readable);
  758. static inline int
  759. untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
  760. unsigned long address)
  761. {
  762. pgd_t *pgd;
  763. pud_t *pud;
  764. pmd_t *pmd;
  765. /* Check if the vma is for an anonymous mapping. */
  766. if (vma->vm_ops && vma->vm_ops->nopage)
  767. return 0;
  768. /* Check if page directory entry exists. */
  769. pgd = pgd_offset(mm, address);
  770. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  771. return 1;
  772. pud = pud_offset(pgd, address);
  773. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  774. return 1;
  775. /* Check if page middle directory entry exists. */
  776. pmd = pmd_offset(pud, address);
  777. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  778. return 1;
  779. /* There is a pte slot for 'address' in 'mm'. */
  780. return 0;
  781. }
  782. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  783. unsigned long start, int len, int write, int force,
  784. struct page **pages, struct vm_area_struct **vmas)
  785. {
  786. int i;
  787. unsigned int flags;
  788. /*
  789. * Require read or write permissions.
  790. * If 'force' is set, we only require the "MAY" flags.
  791. */
  792. flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  793. flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  794. i = 0;
  795. do {
  796. struct vm_area_struct * vma;
  797. vma = find_extend_vma(mm, start);
  798. if (!vma && in_gate_area(tsk, start)) {
  799. unsigned long pg = start & PAGE_MASK;
  800. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  801. pgd_t *pgd;
  802. pud_t *pud;
  803. pmd_t *pmd;
  804. pte_t *pte;
  805. if (write) /* user gate pages are read-only */
  806. return i ? : -EFAULT;
  807. if (pg > TASK_SIZE)
  808. pgd = pgd_offset_k(pg);
  809. else
  810. pgd = pgd_offset_gate(mm, pg);
  811. BUG_ON(pgd_none(*pgd));
  812. pud = pud_offset(pgd, pg);
  813. BUG_ON(pud_none(*pud));
  814. pmd = pmd_offset(pud, pg);
  815. BUG_ON(pmd_none(*pmd));
  816. pte = pte_offset_map(pmd, pg);
  817. BUG_ON(pte_none(*pte));
  818. if (pages) {
  819. pages[i] = pte_page(*pte);
  820. get_page(pages[i]);
  821. }
  822. pte_unmap(pte);
  823. if (vmas)
  824. vmas[i] = gate_vma;
  825. i++;
  826. start += PAGE_SIZE;
  827. len--;
  828. continue;
  829. }
  830. if (!vma || (vma->vm_flags & VM_IO)
  831. || !(flags & vma->vm_flags))
  832. return i ? : -EFAULT;
  833. if (is_vm_hugetlb_page(vma)) {
  834. i = follow_hugetlb_page(mm, vma, pages, vmas,
  835. &start, &len, i);
  836. continue;
  837. }
  838. spin_lock(&mm->page_table_lock);
  839. do {
  840. struct page *page;
  841. cond_resched_lock(&mm->page_table_lock);
  842. while (!(page = follow_page(mm, start, write))) {
  843. /*
  844. * Shortcut for anonymous pages. We don't want
  845. * to force the creation of pages tables for
  846. * insanely big anonymously mapped areas that
  847. * nobody touched so far. This is important
  848. * for doing a core dump for these mappings.
  849. */
  850. if (!write && untouched_anonymous_page(mm,vma,start)) {
  851. page = ZERO_PAGE(start);
  852. break;
  853. }
  854. spin_unlock(&mm->page_table_lock);
  855. switch (handle_mm_fault(mm,vma,start,write)) {
  856. case VM_FAULT_MINOR:
  857. tsk->min_flt++;
  858. break;
  859. case VM_FAULT_MAJOR:
  860. tsk->maj_flt++;
  861. break;
  862. case VM_FAULT_SIGBUS:
  863. return i ? i : -EFAULT;
  864. case VM_FAULT_OOM:
  865. return i ? i : -ENOMEM;
  866. default:
  867. BUG();
  868. }
  869. spin_lock(&mm->page_table_lock);
  870. }
  871. if (pages) {
  872. pages[i] = page;
  873. flush_dcache_page(page);
  874. if (!PageReserved(page))
  875. page_cache_get(page);
  876. }
  877. if (vmas)
  878. vmas[i] = vma;
  879. i++;
  880. start += PAGE_SIZE;
  881. len--;
  882. } while (len && start < vma->vm_end);
  883. spin_unlock(&mm->page_table_lock);
  884. } while (len);
  885. return i;
  886. }
  887. EXPORT_SYMBOL(get_user_pages);
  888. static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  889. unsigned long addr, unsigned long end, pgprot_t prot)
  890. {
  891. pte_t *pte;
  892. pte = pte_alloc_map(mm, pmd, addr);
  893. if (!pte)
  894. return -ENOMEM;
  895. do {
  896. pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
  897. BUG_ON(!pte_none(*pte));
  898. set_pte_at(mm, addr, pte, zero_pte);
  899. } while (pte++, addr += PAGE_SIZE, addr != end);
  900. pte_unmap(pte - 1);
  901. return 0;
  902. }
  903. static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
  904. unsigned long addr, unsigned long end, pgprot_t prot)
  905. {
  906. pmd_t *pmd;
  907. unsigned long next;
  908. pmd = pmd_alloc(mm, pud, addr);
  909. if (!pmd)
  910. return -ENOMEM;
  911. do {
  912. next = pmd_addr_end(addr, end);
  913. if (zeromap_pte_range(mm, pmd, addr, next, prot))
  914. return -ENOMEM;
  915. } while (pmd++, addr = next, addr != end);
  916. return 0;
  917. }
  918. static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  919. unsigned long addr, unsigned long end, pgprot_t prot)
  920. {
  921. pud_t *pud;
  922. unsigned long next;
  923. pud = pud_alloc(mm, pgd, addr);
  924. if (!pud)
  925. return -ENOMEM;
  926. do {
  927. next = pud_addr_end(addr, end);
  928. if (zeromap_pmd_range(mm, pud, addr, next, prot))
  929. return -ENOMEM;
  930. } while (pud++, addr = next, addr != end);
  931. return 0;
  932. }
  933. int zeromap_page_range(struct vm_area_struct *vma,
  934. unsigned long addr, unsigned long size, pgprot_t prot)
  935. {
  936. pgd_t *pgd;
  937. unsigned long next;
  938. unsigned long end = addr + size;
  939. struct mm_struct *mm = vma->vm_mm;
  940. int err;
  941. BUG_ON(addr >= end);
  942. pgd = pgd_offset(mm, addr);
  943. flush_cache_range(vma, addr, end);
  944. spin_lock(&mm->page_table_lock);
  945. do {
  946. next = pgd_addr_end(addr, end);
  947. err = zeromap_pud_range(mm, pgd, addr, next, prot);
  948. if (err)
  949. break;
  950. } while (pgd++, addr = next, addr != end);
  951. spin_unlock(&mm->page_table_lock);
  952. return err;
  953. }
  954. /*
  955. * maps a range of physical memory into the requested pages. the old
  956. * mappings are removed. any references to nonexistent pages results
  957. * in null mappings (currently treated as "copy-on-access")
  958. */
  959. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  960. unsigned long addr, unsigned long end,
  961. unsigned long pfn, pgprot_t prot)
  962. {
  963. pte_t *pte;
  964. pte = pte_alloc_map(mm, pmd, addr);
  965. if (!pte)
  966. return -ENOMEM;
  967. do {
  968. BUG_ON(!pte_none(*pte));
  969. if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
  970. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  971. pfn++;
  972. } while (pte++, addr += PAGE_SIZE, addr != end);
  973. pte_unmap(pte - 1);
  974. return 0;
  975. }
  976. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  977. unsigned long addr, unsigned long end,
  978. unsigned long pfn, pgprot_t prot)
  979. {
  980. pmd_t *pmd;
  981. unsigned long next;
  982. pfn -= addr >> PAGE_SHIFT;
  983. pmd = pmd_alloc(mm, pud, addr);
  984. if (!pmd)
  985. return -ENOMEM;
  986. do {
  987. next = pmd_addr_end(addr, end);
  988. if (remap_pte_range(mm, pmd, addr, next,
  989. pfn + (addr >> PAGE_SHIFT), prot))
  990. return -ENOMEM;
  991. } while (pmd++, addr = next, addr != end);
  992. return 0;
  993. }
  994. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  995. unsigned long addr, unsigned long end,
  996. unsigned long pfn, pgprot_t prot)
  997. {
  998. pud_t *pud;
  999. unsigned long next;
  1000. pfn -= addr >> PAGE_SHIFT;
  1001. pud = pud_alloc(mm, pgd, addr);
  1002. if (!pud)
  1003. return -ENOMEM;
  1004. do {
  1005. next = pud_addr_end(addr, end);
  1006. if (remap_pmd_range(mm, pud, addr, next,
  1007. pfn + (addr >> PAGE_SHIFT), prot))
  1008. return -ENOMEM;
  1009. } while (pud++, addr = next, addr != end);
  1010. return 0;
  1011. }
  1012. /* Note: this is only safe if the mm semaphore is held when called. */
  1013. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1014. unsigned long pfn, unsigned long size, pgprot_t prot)
  1015. {
  1016. pgd_t *pgd;
  1017. unsigned long next;
  1018. unsigned long end = addr + PAGE_ALIGN(size);
  1019. struct mm_struct *mm = vma->vm_mm;
  1020. int err;
  1021. /*
  1022. * Physically remapped pages are special. Tell the
  1023. * rest of the world about it:
  1024. * VM_IO tells people not to look at these pages
  1025. * (accesses can have side effects).
  1026. * VM_RESERVED tells swapout not to try to touch
  1027. * this region.
  1028. */
  1029. vma->vm_flags |= VM_IO | VM_RESERVED;
  1030. BUG_ON(addr >= end);
  1031. pfn -= addr >> PAGE_SHIFT;
  1032. pgd = pgd_offset(mm, addr);
  1033. flush_cache_range(vma, addr, end);
  1034. spin_lock(&mm->page_table_lock);
  1035. do {
  1036. next = pgd_addr_end(addr, end);
  1037. err = remap_pud_range(mm, pgd, addr, next,
  1038. pfn + (addr >> PAGE_SHIFT), prot);
  1039. if (err)
  1040. break;
  1041. } while (pgd++, addr = next, addr != end);
  1042. spin_unlock(&mm->page_table_lock);
  1043. return err;
  1044. }
  1045. EXPORT_SYMBOL(remap_pfn_range);
  1046. /*
  1047. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1048. * servicing faults for write access. In the normal case, do always want
  1049. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1050. * that do not have writing enabled, when used by access_process_vm.
  1051. */
  1052. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1053. {
  1054. if (likely(vma->vm_flags & VM_WRITE))
  1055. pte = pte_mkwrite(pte);
  1056. return pte;
  1057. }
  1058. /*
  1059. * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
  1060. */
  1061. static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
  1062. pte_t *page_table)
  1063. {
  1064. pte_t entry;
  1065. entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
  1066. vma);
  1067. ptep_establish(vma, address, page_table, entry);
  1068. update_mmu_cache(vma, address, entry);
  1069. lazy_mmu_prot_update(entry);
  1070. }
  1071. /*
  1072. * This routine handles present pages, when users try to write
  1073. * to a shared page. It is done by copying the page to a new address
  1074. * and decrementing the shared-page counter for the old page.
  1075. *
  1076. * Goto-purists beware: the only reason for goto's here is that it results
  1077. * in better assembly code.. The "default" path will see no jumps at all.
  1078. *
  1079. * Note that this routine assumes that the protection checks have been
  1080. * done by the caller (the low-level page fault routine in most cases).
  1081. * Thus we can safely just mark it writable once we've done any necessary
  1082. * COW.
  1083. *
  1084. * We also mark the page dirty at this point even though the page will
  1085. * change only once the write actually happens. This avoids a few races,
  1086. * and potentially makes it more efficient.
  1087. *
  1088. * We hold the mm semaphore and the page_table_lock on entry and exit
  1089. * with the page_table_lock released.
  1090. */
  1091. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
  1092. unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
  1093. {
  1094. struct page *old_page, *new_page;
  1095. unsigned long pfn = pte_pfn(pte);
  1096. pte_t entry;
  1097. if (unlikely(!pfn_valid(pfn))) {
  1098. /*
  1099. * This should really halt the system so it can be debugged or
  1100. * at least the kernel stops what it's doing before it corrupts
  1101. * data, but for the moment just pretend this is OOM.
  1102. */
  1103. pte_unmap(page_table);
  1104. printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
  1105. address);
  1106. spin_unlock(&mm->page_table_lock);
  1107. return VM_FAULT_OOM;
  1108. }
  1109. old_page = pfn_to_page(pfn);
  1110. if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
  1111. int reuse = can_share_swap_page(old_page);
  1112. unlock_page(old_page);
  1113. if (reuse) {
  1114. flush_cache_page(vma, address, pfn);
  1115. entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
  1116. vma);
  1117. ptep_set_access_flags(vma, address, page_table, entry, 1);
  1118. update_mmu_cache(vma, address, entry);
  1119. lazy_mmu_prot_update(entry);
  1120. pte_unmap(page_table);
  1121. spin_unlock(&mm->page_table_lock);
  1122. return VM_FAULT_MINOR;
  1123. }
  1124. }
  1125. pte_unmap(page_table);
  1126. /*
  1127. * Ok, we need to copy. Oh, well..
  1128. */
  1129. if (!PageReserved(old_page))
  1130. page_cache_get(old_page);
  1131. spin_unlock(&mm->page_table_lock);
  1132. if (unlikely(anon_vma_prepare(vma)))
  1133. goto no_new_page;
  1134. if (old_page == ZERO_PAGE(address)) {
  1135. new_page = alloc_zeroed_user_highpage(vma, address);
  1136. if (!new_page)
  1137. goto no_new_page;
  1138. } else {
  1139. new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1140. if (!new_page)
  1141. goto no_new_page;
  1142. copy_user_highpage(new_page, old_page, address);
  1143. }
  1144. /*
  1145. * Re-check the pte - we dropped the lock
  1146. */
  1147. spin_lock(&mm->page_table_lock);
  1148. page_table = pte_offset_map(pmd, address);
  1149. if (likely(pte_same(*page_table, pte))) {
  1150. if (PageAnon(old_page))
  1151. dec_mm_counter(mm, anon_rss);
  1152. if (PageReserved(old_page))
  1153. inc_mm_counter(mm, rss);
  1154. else
  1155. page_remove_rmap(old_page);
  1156. flush_cache_page(vma, address, pfn);
  1157. break_cow(vma, new_page, address, page_table);
  1158. lru_cache_add_active(new_page);
  1159. page_add_anon_rmap(new_page, vma, address);
  1160. /* Free the old page.. */
  1161. new_page = old_page;
  1162. }
  1163. pte_unmap(page_table);
  1164. page_cache_release(new_page);
  1165. page_cache_release(old_page);
  1166. spin_unlock(&mm->page_table_lock);
  1167. return VM_FAULT_MINOR;
  1168. no_new_page:
  1169. page_cache_release(old_page);
  1170. return VM_FAULT_OOM;
  1171. }
  1172. /*
  1173. * Helper functions for unmap_mapping_range().
  1174. *
  1175. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1176. *
  1177. * We have to restart searching the prio_tree whenever we drop the lock,
  1178. * since the iterator is only valid while the lock is held, and anyway
  1179. * a later vma might be split and reinserted earlier while lock dropped.
  1180. *
  1181. * The list of nonlinear vmas could be handled more efficiently, using
  1182. * a placeholder, but handle it in the same way until a need is shown.
  1183. * It is important to search the prio_tree before nonlinear list: a vma
  1184. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1185. * while the lock is dropped; but never shifted from list to prio_tree.
  1186. *
  1187. * In order to make forward progress despite restarting the search,
  1188. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1189. * quickly skip it next time around. Since the prio_tree search only
  1190. * shows us those vmas affected by unmapping the range in question, we
  1191. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1192. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1193. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1194. * i_mmap_lock.
  1195. *
  1196. * In order to make forward progress despite repeatedly restarting some
  1197. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1198. * and restart from that address when we reach that vma again. It might
  1199. * have been split or merged, shrunk or extended, but never shifted: so
  1200. * restart_addr remains valid so long as it remains in the vma's range.
  1201. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1202. * values so we can save vma's restart_addr in its truncate_count field.
  1203. */
  1204. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1205. static void reset_vma_truncate_counts(struct address_space *mapping)
  1206. {
  1207. struct vm_area_struct *vma;
  1208. struct prio_tree_iter iter;
  1209. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1210. vma->vm_truncate_count = 0;
  1211. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1212. vma->vm_truncate_count = 0;
  1213. }
  1214. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1215. unsigned long start_addr, unsigned long end_addr,
  1216. struct zap_details *details)
  1217. {
  1218. unsigned long restart_addr;
  1219. int need_break;
  1220. again:
  1221. restart_addr = vma->vm_truncate_count;
  1222. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1223. start_addr = restart_addr;
  1224. if (start_addr >= end_addr) {
  1225. /* Top of vma has been split off since last time */
  1226. vma->vm_truncate_count = details->truncate_count;
  1227. return 0;
  1228. }
  1229. }
  1230. restart_addr = zap_page_range(vma, start_addr,
  1231. end_addr - start_addr, details);
  1232. /*
  1233. * We cannot rely on the break test in unmap_vmas:
  1234. * on the one hand, we don't want to restart our loop
  1235. * just because that broke out for the page_table_lock;
  1236. * on the other hand, it does no test when vma is small.
  1237. */
  1238. need_break = need_resched() ||
  1239. need_lockbreak(details->i_mmap_lock);
  1240. if (restart_addr >= end_addr) {
  1241. /* We have now completed this vma: mark it so */
  1242. vma->vm_truncate_count = details->truncate_count;
  1243. if (!need_break)
  1244. return 0;
  1245. } else {
  1246. /* Note restart_addr in vma's truncate_count field */
  1247. vma->vm_truncate_count = restart_addr;
  1248. if (!need_break)
  1249. goto again;
  1250. }
  1251. spin_unlock(details->i_mmap_lock);
  1252. cond_resched();
  1253. spin_lock(details->i_mmap_lock);
  1254. return -EINTR;
  1255. }
  1256. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1257. struct zap_details *details)
  1258. {
  1259. struct vm_area_struct *vma;
  1260. struct prio_tree_iter iter;
  1261. pgoff_t vba, vea, zba, zea;
  1262. restart:
  1263. vma_prio_tree_foreach(vma, &iter, root,
  1264. details->first_index, details->last_index) {
  1265. /* Skip quickly over those we have already dealt with */
  1266. if (vma->vm_truncate_count == details->truncate_count)
  1267. continue;
  1268. vba = vma->vm_pgoff;
  1269. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1270. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1271. zba = details->first_index;
  1272. if (zba < vba)
  1273. zba = vba;
  1274. zea = details->last_index;
  1275. if (zea > vea)
  1276. zea = vea;
  1277. if (unmap_mapping_range_vma(vma,
  1278. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1279. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1280. details) < 0)
  1281. goto restart;
  1282. }
  1283. }
  1284. static inline void unmap_mapping_range_list(struct list_head *head,
  1285. struct zap_details *details)
  1286. {
  1287. struct vm_area_struct *vma;
  1288. /*
  1289. * In nonlinear VMAs there is no correspondence between virtual address
  1290. * offset and file offset. So we must perform an exhaustive search
  1291. * across *all* the pages in each nonlinear VMA, not just the pages
  1292. * whose virtual address lies outside the file truncation point.
  1293. */
  1294. restart:
  1295. list_for_each_entry(vma, head, shared.vm_set.list) {
  1296. /* Skip quickly over those we have already dealt with */
  1297. if (vma->vm_truncate_count == details->truncate_count)
  1298. continue;
  1299. details->nonlinear_vma = vma;
  1300. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1301. vma->vm_end, details) < 0)
  1302. goto restart;
  1303. }
  1304. }
  1305. /**
  1306. * unmap_mapping_range - unmap the portion of all mmaps
  1307. * in the specified address_space corresponding to the specified
  1308. * page range in the underlying file.
  1309. * @mapping: the address space containing mmaps to be unmapped.
  1310. * @holebegin: byte in first page to unmap, relative to the start of
  1311. * the underlying file. This will be rounded down to a PAGE_SIZE
  1312. * boundary. Note that this is different from vmtruncate(), which
  1313. * must keep the partial page. In contrast, we must get rid of
  1314. * partial pages.
  1315. * @holelen: size of prospective hole in bytes. This will be rounded
  1316. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1317. * end of the file.
  1318. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1319. * but 0 when invalidating pagecache, don't throw away private data.
  1320. */
  1321. void unmap_mapping_range(struct address_space *mapping,
  1322. loff_t const holebegin, loff_t const holelen, int even_cows)
  1323. {
  1324. struct zap_details details;
  1325. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1326. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1327. /* Check for overflow. */
  1328. if (sizeof(holelen) > sizeof(hlen)) {
  1329. long long holeend =
  1330. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1331. if (holeend & ~(long long)ULONG_MAX)
  1332. hlen = ULONG_MAX - hba + 1;
  1333. }
  1334. details.check_mapping = even_cows? NULL: mapping;
  1335. details.nonlinear_vma = NULL;
  1336. details.first_index = hba;
  1337. details.last_index = hba + hlen - 1;
  1338. if (details.last_index < details.first_index)
  1339. details.last_index = ULONG_MAX;
  1340. details.i_mmap_lock = &mapping->i_mmap_lock;
  1341. spin_lock(&mapping->i_mmap_lock);
  1342. /* serialize i_size write against truncate_count write */
  1343. smp_wmb();
  1344. /* Protect against page faults, and endless unmapping loops */
  1345. mapping->truncate_count++;
  1346. /*
  1347. * For archs where spin_lock has inclusive semantics like ia64
  1348. * this smp_mb() will prevent to read pagetable contents
  1349. * before the truncate_count increment is visible to
  1350. * other cpus.
  1351. */
  1352. smp_mb();
  1353. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1354. if (mapping->truncate_count == 0)
  1355. reset_vma_truncate_counts(mapping);
  1356. mapping->truncate_count++;
  1357. }
  1358. details.truncate_count = mapping->truncate_count;
  1359. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1360. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1361. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1362. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1363. spin_unlock(&mapping->i_mmap_lock);
  1364. }
  1365. EXPORT_SYMBOL(unmap_mapping_range);
  1366. /*
  1367. * Handle all mappings that got truncated by a "truncate()"
  1368. * system call.
  1369. *
  1370. * NOTE! We have to be ready to update the memory sharing
  1371. * between the file and the memory map for a potential last
  1372. * incomplete page. Ugly, but necessary.
  1373. */
  1374. int vmtruncate(struct inode * inode, loff_t offset)
  1375. {
  1376. struct address_space *mapping = inode->i_mapping;
  1377. unsigned long limit;
  1378. if (inode->i_size < offset)
  1379. goto do_expand;
  1380. /*
  1381. * truncation of in-use swapfiles is disallowed - it would cause
  1382. * subsequent swapout to scribble on the now-freed blocks.
  1383. */
  1384. if (IS_SWAPFILE(inode))
  1385. goto out_busy;
  1386. i_size_write(inode, offset);
  1387. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1388. truncate_inode_pages(mapping, offset);
  1389. goto out_truncate;
  1390. do_expand:
  1391. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1392. if (limit != RLIM_INFINITY && offset > limit)
  1393. goto out_sig;
  1394. if (offset > inode->i_sb->s_maxbytes)
  1395. goto out_big;
  1396. i_size_write(inode, offset);
  1397. out_truncate:
  1398. if (inode->i_op && inode->i_op->truncate)
  1399. inode->i_op->truncate(inode);
  1400. return 0;
  1401. out_sig:
  1402. send_sig(SIGXFSZ, current, 0);
  1403. out_big:
  1404. return -EFBIG;
  1405. out_busy:
  1406. return -ETXTBSY;
  1407. }
  1408. EXPORT_SYMBOL(vmtruncate);
  1409. /*
  1410. * Primitive swap readahead code. We simply read an aligned block of
  1411. * (1 << page_cluster) entries in the swap area. This method is chosen
  1412. * because it doesn't cost us any seek time. We also make sure to queue
  1413. * the 'original' request together with the readahead ones...
  1414. *
  1415. * This has been extended to use the NUMA policies from the mm triggering
  1416. * the readahead.
  1417. *
  1418. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  1419. */
  1420. void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
  1421. {
  1422. #ifdef CONFIG_NUMA
  1423. struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
  1424. #endif
  1425. int i, num;
  1426. struct page *new_page;
  1427. unsigned long offset;
  1428. /*
  1429. * Get the number of handles we should do readahead io to.
  1430. */
  1431. num = valid_swaphandles(entry, &offset);
  1432. for (i = 0; i < num; offset++, i++) {
  1433. /* Ok, do the async read-ahead now */
  1434. new_page = read_swap_cache_async(swp_entry(swp_type(entry),
  1435. offset), vma, addr);
  1436. if (!new_page)
  1437. break;
  1438. page_cache_release(new_page);
  1439. #ifdef CONFIG_NUMA
  1440. /*
  1441. * Find the next applicable VMA for the NUMA policy.
  1442. */
  1443. addr += PAGE_SIZE;
  1444. if (addr == 0)
  1445. vma = NULL;
  1446. if (vma) {
  1447. if (addr >= vma->vm_end) {
  1448. vma = next_vma;
  1449. next_vma = vma ? vma->vm_next : NULL;
  1450. }
  1451. if (vma && addr < vma->vm_start)
  1452. vma = NULL;
  1453. } else {
  1454. if (next_vma && addr >= next_vma->vm_start) {
  1455. vma = next_vma;
  1456. next_vma = vma->vm_next;
  1457. }
  1458. }
  1459. #endif
  1460. }
  1461. lru_add_drain(); /* Push any new pages onto the LRU now */
  1462. }
  1463. /*
  1464. * We hold the mm semaphore and the page_table_lock on entry and
  1465. * should release the pagetable lock on exit..
  1466. */
  1467. static int do_swap_page(struct mm_struct * mm,
  1468. struct vm_area_struct * vma, unsigned long address,
  1469. pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
  1470. {
  1471. struct page *page;
  1472. swp_entry_t entry = pte_to_swp_entry(orig_pte);
  1473. pte_t pte;
  1474. int ret = VM_FAULT_MINOR;
  1475. pte_unmap(page_table);
  1476. spin_unlock(&mm->page_table_lock);
  1477. page = lookup_swap_cache(entry);
  1478. if (!page) {
  1479. swapin_readahead(entry, address, vma);
  1480. page = read_swap_cache_async(entry, vma, address);
  1481. if (!page) {
  1482. /*
  1483. * Back out if somebody else faulted in this pte while
  1484. * we released the page table lock.
  1485. */
  1486. spin_lock(&mm->page_table_lock);
  1487. page_table = pte_offset_map(pmd, address);
  1488. if (likely(pte_same(*page_table, orig_pte)))
  1489. ret = VM_FAULT_OOM;
  1490. else
  1491. ret = VM_FAULT_MINOR;
  1492. pte_unmap(page_table);
  1493. spin_unlock(&mm->page_table_lock);
  1494. goto out;
  1495. }
  1496. /* Had to read the page from swap area: Major fault */
  1497. ret = VM_FAULT_MAJOR;
  1498. inc_page_state(pgmajfault);
  1499. grab_swap_token();
  1500. }
  1501. mark_page_accessed(page);
  1502. lock_page(page);
  1503. /*
  1504. * Back out if somebody else faulted in this pte while we
  1505. * released the page table lock.
  1506. */
  1507. spin_lock(&mm->page_table_lock);
  1508. page_table = pte_offset_map(pmd, address);
  1509. if (unlikely(!pte_same(*page_table, orig_pte))) {
  1510. ret = VM_FAULT_MINOR;
  1511. goto out_nomap;
  1512. }
  1513. if (unlikely(!PageUptodate(page))) {
  1514. ret = VM_FAULT_SIGBUS;
  1515. goto out_nomap;
  1516. }
  1517. /* The page isn't present yet, go ahead with the fault. */
  1518. inc_mm_counter(mm, rss);
  1519. pte = mk_pte(page, vma->vm_page_prot);
  1520. if (write_access && can_share_swap_page(page)) {
  1521. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1522. write_access = 0;
  1523. }
  1524. flush_icache_page(vma, page);
  1525. set_pte_at(mm, address, page_table, pte);
  1526. page_add_anon_rmap(page, vma, address);
  1527. swap_free(entry);
  1528. if (vm_swap_full())
  1529. remove_exclusive_swap_page(page);
  1530. unlock_page(page);
  1531. if (write_access) {
  1532. if (do_wp_page(mm, vma, address,
  1533. page_table, pmd, pte) == VM_FAULT_OOM)
  1534. ret = VM_FAULT_OOM;
  1535. goto out;
  1536. }
  1537. /* No need to invalidate - it was non-present before */
  1538. update_mmu_cache(vma, address, pte);
  1539. lazy_mmu_prot_update(pte);
  1540. pte_unmap(page_table);
  1541. spin_unlock(&mm->page_table_lock);
  1542. out:
  1543. return ret;
  1544. out_nomap:
  1545. pte_unmap(page_table);
  1546. spin_unlock(&mm->page_table_lock);
  1547. unlock_page(page);
  1548. page_cache_release(page);
  1549. goto out;
  1550. }
  1551. /*
  1552. * We are called with the MM semaphore and page_table_lock
  1553. * spinlock held to protect against concurrent faults in
  1554. * multithreaded programs.
  1555. */
  1556. static int
  1557. do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1558. pte_t *page_table, pmd_t *pmd, int write_access,
  1559. unsigned long addr)
  1560. {
  1561. pte_t entry;
  1562. struct page * page = ZERO_PAGE(addr);
  1563. /* Read-only mapping of ZERO_PAGE. */
  1564. entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
  1565. /* ..except if it's a write access */
  1566. if (write_access) {
  1567. /* Allocate our own private page. */
  1568. pte_unmap(page_table);
  1569. spin_unlock(&mm->page_table_lock);
  1570. if (unlikely(anon_vma_prepare(vma)))
  1571. goto no_mem;
  1572. page = alloc_zeroed_user_highpage(vma, addr);
  1573. if (!page)
  1574. goto no_mem;
  1575. spin_lock(&mm->page_table_lock);
  1576. page_table = pte_offset_map(pmd, addr);
  1577. if (!pte_none(*page_table)) {
  1578. pte_unmap(page_table);
  1579. page_cache_release(page);
  1580. spin_unlock(&mm->page_table_lock);
  1581. goto out;
  1582. }
  1583. inc_mm_counter(mm, rss);
  1584. entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
  1585. vma->vm_page_prot)),
  1586. vma);
  1587. lru_cache_add_active(page);
  1588. SetPageReferenced(page);
  1589. page_add_anon_rmap(page, vma, addr);
  1590. }
  1591. set_pte_at(mm, addr, page_table, entry);
  1592. pte_unmap(page_table);
  1593. /* No need to invalidate - it was non-present before */
  1594. update_mmu_cache(vma, addr, entry);
  1595. lazy_mmu_prot_update(entry);
  1596. spin_unlock(&mm->page_table_lock);
  1597. out:
  1598. return VM_FAULT_MINOR;
  1599. no_mem:
  1600. return VM_FAULT_OOM;
  1601. }
  1602. /*
  1603. * do_no_page() tries to create a new page mapping. It aggressively
  1604. * tries to share with existing pages, but makes a separate copy if
  1605. * the "write_access" parameter is true in order to avoid the next
  1606. * page fault.
  1607. *
  1608. * As this is called only for pages that do not currently exist, we
  1609. * do not need to flush old virtual caches or the TLB.
  1610. *
  1611. * This is called with the MM semaphore held and the page table
  1612. * spinlock held. Exit with the spinlock released.
  1613. */
  1614. static int
  1615. do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1616. unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
  1617. {
  1618. struct page * new_page;
  1619. struct address_space *mapping = NULL;
  1620. pte_t entry;
  1621. unsigned int sequence = 0;
  1622. int ret = VM_FAULT_MINOR;
  1623. int anon = 0;
  1624. if (!vma->vm_ops || !vma->vm_ops->nopage)
  1625. return do_anonymous_page(mm, vma, page_table,
  1626. pmd, write_access, address);
  1627. pte_unmap(page_table);
  1628. spin_unlock(&mm->page_table_lock);
  1629. if (vma->vm_file) {
  1630. mapping = vma->vm_file->f_mapping;
  1631. sequence = mapping->truncate_count;
  1632. smp_rmb(); /* serializes i_size against truncate_count */
  1633. }
  1634. retry:
  1635. cond_resched();
  1636. new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1637. /*
  1638. * No smp_rmb is needed here as long as there's a full
  1639. * spin_lock/unlock sequence inside the ->nopage callback
  1640. * (for the pagecache lookup) that acts as an implicit
  1641. * smp_mb() and prevents the i_size read to happen
  1642. * after the next truncate_count read.
  1643. */
  1644. /* no page was available -- either SIGBUS or OOM */
  1645. if (new_page == NOPAGE_SIGBUS)
  1646. return VM_FAULT_SIGBUS;
  1647. if (new_page == NOPAGE_OOM)
  1648. return VM_FAULT_OOM;
  1649. /*
  1650. * Should we do an early C-O-W break?
  1651. */
  1652. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  1653. struct page *page;
  1654. if (unlikely(anon_vma_prepare(vma)))
  1655. goto oom;
  1656. page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1657. if (!page)
  1658. goto oom;
  1659. copy_user_highpage(page, new_page, address);
  1660. page_cache_release(new_page);
  1661. new_page = page;
  1662. anon = 1;
  1663. }
  1664. spin_lock(&mm->page_table_lock);
  1665. /*
  1666. * For a file-backed vma, someone could have truncated or otherwise
  1667. * invalidated this page. If unmap_mapping_range got called,
  1668. * retry getting the page.
  1669. */
  1670. if (mapping && unlikely(sequence != mapping->truncate_count)) {
  1671. sequence = mapping->truncate_count;
  1672. spin_unlock(&mm->page_table_lock);
  1673. page_cache_release(new_page);
  1674. goto retry;
  1675. }
  1676. page_table = pte_offset_map(pmd, address);
  1677. /*
  1678. * This silly early PAGE_DIRTY setting removes a race
  1679. * due to the bad i386 page protection. But it's valid
  1680. * for other architectures too.
  1681. *
  1682. * Note that if write_access is true, we either now have
  1683. * an exclusive copy of the page, or this is a shared mapping,
  1684. * so we can make it writable and dirty to avoid having to
  1685. * handle that later.
  1686. */
  1687. /* Only go through if we didn't race with anybody else... */
  1688. if (pte_none(*page_table)) {
  1689. if (!PageReserved(new_page))
  1690. inc_mm_counter(mm, rss);
  1691. flush_icache_page(vma, new_page);
  1692. entry = mk_pte(new_page, vma->vm_page_prot);
  1693. if (write_access)
  1694. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1695. set_pte_at(mm, address, page_table, entry);
  1696. if (anon) {
  1697. lru_cache_add_active(new_page);
  1698. page_add_anon_rmap(new_page, vma, address);
  1699. } else
  1700. page_add_file_rmap(new_page);
  1701. pte_unmap(page_table);
  1702. } else {
  1703. /* One of our sibling threads was faster, back out. */
  1704. pte_unmap(page_table);
  1705. page_cache_release(new_page);
  1706. spin_unlock(&mm->page_table_lock);
  1707. goto out;
  1708. }
  1709. /* no need to invalidate: a not-present page shouldn't be cached */
  1710. update_mmu_cache(vma, address, entry);
  1711. lazy_mmu_prot_update(entry);
  1712. spin_unlock(&mm->page_table_lock);
  1713. out:
  1714. return ret;
  1715. oom:
  1716. page_cache_release(new_page);
  1717. ret = VM_FAULT_OOM;
  1718. goto out;
  1719. }
  1720. /*
  1721. * Fault of a previously existing named mapping. Repopulate the pte
  1722. * from the encoded file_pte if possible. This enables swappable
  1723. * nonlinear vmas.
  1724. */
  1725. static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
  1726. unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
  1727. {
  1728. unsigned long pgoff;
  1729. int err;
  1730. BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
  1731. /*
  1732. * Fall back to the linear mapping if the fs does not support
  1733. * ->populate:
  1734. */
  1735. if (!vma->vm_ops || !vma->vm_ops->populate ||
  1736. (write_access && !(vma->vm_flags & VM_SHARED))) {
  1737. pte_clear(mm, address, pte);
  1738. return do_no_page(mm, vma, address, write_access, pte, pmd);
  1739. }
  1740. pgoff = pte_to_pgoff(*pte);
  1741. pte_unmap(pte);
  1742. spin_unlock(&mm->page_table_lock);
  1743. err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
  1744. if (err == -ENOMEM)
  1745. return VM_FAULT_OOM;
  1746. if (err)
  1747. return VM_FAULT_SIGBUS;
  1748. return VM_FAULT_MAJOR;
  1749. }
  1750. /*
  1751. * These routines also need to handle stuff like marking pages dirty
  1752. * and/or accessed for architectures that don't do it in hardware (most
  1753. * RISC architectures). The early dirtying is also good on the i386.
  1754. *
  1755. * There is also a hook called "update_mmu_cache()" that architectures
  1756. * with external mmu caches can use to update those (ie the Sparc or
  1757. * PowerPC hashed page tables that act as extended TLBs).
  1758. *
  1759. * Note the "page_table_lock". It is to protect against kswapd removing
  1760. * pages from under us. Note that kswapd only ever _removes_ pages, never
  1761. * adds them. As such, once we have noticed that the page is not present,
  1762. * we can drop the lock early.
  1763. *
  1764. * The adding of pages is protected by the MM semaphore (which we hold),
  1765. * so we don't need to worry about a page being suddenly been added into
  1766. * our VM.
  1767. *
  1768. * We enter with the pagetable spinlock held, we are supposed to
  1769. * release it when done.
  1770. */
  1771. static inline int handle_pte_fault(struct mm_struct *mm,
  1772. struct vm_area_struct * vma, unsigned long address,
  1773. int write_access, pte_t *pte, pmd_t *pmd)
  1774. {
  1775. pte_t entry;
  1776. entry = *pte;
  1777. if (!pte_present(entry)) {
  1778. /*
  1779. * If it truly wasn't present, we know that kswapd
  1780. * and the PTE updates will not touch it later. So
  1781. * drop the lock.
  1782. */
  1783. if (pte_none(entry))
  1784. return do_no_page(mm, vma, address, write_access, pte, pmd);
  1785. if (pte_file(entry))
  1786. return do_file_page(mm, vma, address, write_access, pte, pmd);
  1787. return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
  1788. }
  1789. if (write_access) {
  1790. if (!pte_write(entry))
  1791. return do_wp_page(mm, vma, address, pte, pmd, entry);
  1792. entry = pte_mkdirty(entry);
  1793. }
  1794. entry = pte_mkyoung(entry);
  1795. ptep_set_access_flags(vma, address, pte, entry, write_access);
  1796. update_mmu_cache(vma, address, entry);
  1797. lazy_mmu_prot_update(entry);
  1798. pte_unmap(pte);
  1799. spin_unlock(&mm->page_table_lock);
  1800. return VM_FAULT_MINOR;
  1801. }
  1802. /*
  1803. * By the time we get here, we already hold the mm semaphore
  1804. */
  1805. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
  1806. unsigned long address, int write_access)
  1807. {
  1808. pgd_t *pgd;
  1809. pud_t *pud;
  1810. pmd_t *pmd;
  1811. pte_t *pte;
  1812. __set_current_state(TASK_RUNNING);
  1813. inc_page_state(pgfault);
  1814. if (is_vm_hugetlb_page(vma))
  1815. return VM_FAULT_SIGBUS; /* mapping truncation does this. */
  1816. /*
  1817. * We need the page table lock to synchronize with kswapd
  1818. * and the SMP-safe atomic PTE updates.
  1819. */
  1820. pgd = pgd_offset(mm, address);
  1821. spin_lock(&mm->page_table_lock);
  1822. pud = pud_alloc(mm, pgd, address);
  1823. if (!pud)
  1824. goto oom;
  1825. pmd = pmd_alloc(mm, pud, address);
  1826. if (!pmd)
  1827. goto oom;
  1828. pte = pte_alloc_map(mm, pmd, address);
  1829. if (!pte)
  1830. goto oom;
  1831. return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
  1832. oom:
  1833. spin_unlock(&mm->page_table_lock);
  1834. return VM_FAULT_OOM;
  1835. }
  1836. #ifndef __PAGETABLE_PUD_FOLDED
  1837. /*
  1838. * Allocate page upper directory.
  1839. *
  1840. * We've already handled the fast-path in-line, and we own the
  1841. * page table lock.
  1842. */
  1843. pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1844. {
  1845. pud_t *new;
  1846. spin_unlock(&mm->page_table_lock);
  1847. new = pud_alloc_one(mm, address);
  1848. spin_lock(&mm->page_table_lock);
  1849. if (!new)
  1850. return NULL;
  1851. /*
  1852. * Because we dropped the lock, we should re-check the
  1853. * entry, as somebody else could have populated it..
  1854. */
  1855. if (pgd_present(*pgd)) {
  1856. pud_free(new);
  1857. goto out;
  1858. }
  1859. pgd_populate(mm, pgd, new);
  1860. out:
  1861. return pud_offset(pgd, address);
  1862. }
  1863. #endif /* __PAGETABLE_PUD_FOLDED */
  1864. #ifndef __PAGETABLE_PMD_FOLDED
  1865. /*
  1866. * Allocate page middle directory.
  1867. *
  1868. * We've already handled the fast-path in-line, and we own the
  1869. * page table lock.
  1870. */
  1871. pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1872. {
  1873. pmd_t *new;
  1874. spin_unlock(&mm->page_table_lock);
  1875. new = pmd_alloc_one(mm, address);
  1876. spin_lock(&mm->page_table_lock);
  1877. if (!new)
  1878. return NULL;
  1879. /*
  1880. * Because we dropped the lock, we should re-check the
  1881. * entry, as somebody else could have populated it..
  1882. */
  1883. #ifndef __ARCH_HAS_4LEVEL_HACK
  1884. if (pud_present(*pud)) {
  1885. pmd_free(new);
  1886. goto out;
  1887. }
  1888. pud_populate(mm, pud, new);
  1889. #else
  1890. if (pgd_present(*pud)) {
  1891. pmd_free(new);
  1892. goto out;
  1893. }
  1894. pgd_populate(mm, pud, new);
  1895. #endif /* __ARCH_HAS_4LEVEL_HACK */
  1896. out:
  1897. return pmd_offset(pud, address);
  1898. }
  1899. #endif /* __PAGETABLE_PMD_FOLDED */
  1900. int make_pages_present(unsigned long addr, unsigned long end)
  1901. {
  1902. int ret, len, write;
  1903. struct vm_area_struct * vma;
  1904. vma = find_vma(current->mm, addr);
  1905. if (!vma)
  1906. return -1;
  1907. write = (vma->vm_flags & VM_WRITE) != 0;
  1908. if (addr >= end)
  1909. BUG();
  1910. if (end > vma->vm_end)
  1911. BUG();
  1912. len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
  1913. ret = get_user_pages(current, current->mm, addr,
  1914. len, write, 0, NULL, NULL);
  1915. if (ret < 0)
  1916. return ret;
  1917. return ret == len ? 0 : -1;
  1918. }
  1919. /*
  1920. * Map a vmalloc()-space virtual address to the physical page.
  1921. */
  1922. struct page * vmalloc_to_page(void * vmalloc_addr)
  1923. {
  1924. unsigned long addr = (unsigned long) vmalloc_addr;
  1925. struct page *page = NULL;
  1926. pgd_t *pgd = pgd_offset_k(addr);
  1927. pud_t *pud;
  1928. pmd_t *pmd;
  1929. pte_t *ptep, pte;
  1930. if (!pgd_none(*pgd)) {
  1931. pud = pud_offset(pgd, addr);
  1932. if (!pud_none(*pud)) {
  1933. pmd = pmd_offset(pud, addr);
  1934. if (!pmd_none(*pmd)) {
  1935. ptep = pte_offset_map(pmd, addr);
  1936. pte = *ptep;
  1937. if (pte_present(pte))
  1938. page = pte_page(pte);
  1939. pte_unmap(ptep);
  1940. }
  1941. }
  1942. }
  1943. return page;
  1944. }
  1945. EXPORT_SYMBOL(vmalloc_to_page);
  1946. /*
  1947. * Map a vmalloc()-space virtual address to the physical page frame number.
  1948. */
  1949. unsigned long vmalloc_to_pfn(void * vmalloc_addr)
  1950. {
  1951. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  1952. }
  1953. EXPORT_SYMBOL(vmalloc_to_pfn);
  1954. /*
  1955. * update_mem_hiwater
  1956. * - update per process rss and vm high water data
  1957. */
  1958. void update_mem_hiwater(struct task_struct *tsk)
  1959. {
  1960. if (tsk->mm) {
  1961. unsigned long rss = get_mm_counter(tsk->mm, rss);
  1962. if (tsk->mm->hiwater_rss < rss)
  1963. tsk->mm->hiwater_rss = rss;
  1964. if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
  1965. tsk->mm->hiwater_vm = tsk->mm->total_vm;
  1966. }
  1967. }
  1968. #if !defined(__HAVE_ARCH_GATE_AREA)
  1969. #if defined(AT_SYSINFO_EHDR)
  1970. struct vm_area_struct gate_vma;
  1971. static int __init gate_vma_init(void)
  1972. {
  1973. gate_vma.vm_mm = NULL;
  1974. gate_vma.vm_start = FIXADDR_USER_START;
  1975. gate_vma.vm_end = FIXADDR_USER_END;
  1976. gate_vma.vm_page_prot = PAGE_READONLY;
  1977. gate_vma.vm_flags = 0;
  1978. return 0;
  1979. }
  1980. __initcall(gate_vma_init);
  1981. #endif
  1982. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  1983. {
  1984. #ifdef AT_SYSINFO_EHDR
  1985. return &gate_vma;
  1986. #else
  1987. return NULL;
  1988. #endif
  1989. }
  1990. int in_gate_area_no_task(unsigned long addr)
  1991. {
  1992. #ifdef AT_SYSINFO_EHDR
  1993. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  1994. return 1;
  1995. #endif
  1996. return 0;
  1997. }
  1998. #endif /* __HAVE_ARCH_GATE_AREA */