setup.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_iommu.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/init.h>
  24. #include <linux/kexec.h>
  25. #include <linux/of_fdt.h>
  26. #include <linux/cpu.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/smp.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/memblock.h>
  31. #include <linux/bug.h>
  32. #include <linux/compiler.h>
  33. #include <linux/sort.h>
  34. #include <asm/unified.h>
  35. #include <asm/cp15.h>
  36. #include <asm/cpu.h>
  37. #include <asm/cputype.h>
  38. #include <asm/elf.h>
  39. #include <asm/procinfo.h>
  40. #include <asm/psci.h>
  41. #include <asm/sections.h>
  42. #include <asm/setup.h>
  43. #include <asm/smp_plat.h>
  44. #include <asm/mach-types.h>
  45. #include <asm/cacheflush.h>
  46. #include <asm/cachetype.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/prom.h>
  49. #include <asm/mach/arch.h>
  50. #include <asm/mach/irq.h>
  51. #include <asm/mach/time.h>
  52. #include <asm/system_info.h>
  53. #include <asm/system_misc.h>
  54. #include <asm/traps.h>
  55. #include <asm/unwind.h>
  56. #include <asm/memblock.h>
  57. #include <asm/virt.h>
  58. #include "atags.h"
  59. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  60. char fpe_type[8];
  61. static int __init fpe_setup(char *line)
  62. {
  63. memcpy(fpe_type, line, 8);
  64. return 1;
  65. }
  66. __setup("fpe=", fpe_setup);
  67. #endif
  68. extern void init_default_cache_policy(unsigned long);
  69. extern void paging_init(const struct machine_desc *desc);
  70. extern void early_paging_init(const struct machine_desc *,
  71. struct proc_info_list *);
  72. extern void sanity_check_meminfo(void);
  73. extern enum reboot_mode reboot_mode;
  74. extern void setup_dma_zone(const struct machine_desc *desc);
  75. unsigned int processor_id;
  76. EXPORT_SYMBOL(processor_id);
  77. unsigned int __machine_arch_type __read_mostly;
  78. EXPORT_SYMBOL(__machine_arch_type);
  79. unsigned int cacheid __read_mostly;
  80. EXPORT_SYMBOL(cacheid);
  81. unsigned int __atags_pointer __initdata;
  82. unsigned int system_rev;
  83. EXPORT_SYMBOL(system_rev);
  84. unsigned int system_serial_low;
  85. EXPORT_SYMBOL(system_serial_low);
  86. unsigned int system_serial_high;
  87. EXPORT_SYMBOL(system_serial_high);
  88. unsigned int elf_hwcap __read_mostly;
  89. EXPORT_SYMBOL(elf_hwcap);
  90. unsigned int elf_hwcap2 __read_mostly;
  91. EXPORT_SYMBOL(elf_hwcap2);
  92. #ifdef MULTI_CPU
  93. struct processor processor __read_mostly;
  94. #endif
  95. #ifdef MULTI_TLB
  96. struct cpu_tlb_fns cpu_tlb __read_mostly;
  97. #endif
  98. #ifdef MULTI_USER
  99. struct cpu_user_fns cpu_user __read_mostly;
  100. #endif
  101. #ifdef MULTI_CACHE
  102. struct cpu_cache_fns cpu_cache __read_mostly;
  103. #endif
  104. #ifdef CONFIG_OUTER_CACHE
  105. struct outer_cache_fns outer_cache __read_mostly;
  106. EXPORT_SYMBOL(outer_cache);
  107. #endif
  108. /*
  109. * Cached cpu_architecture() result for use by assembler code.
  110. * C code should use the cpu_architecture() function instead of accessing this
  111. * variable directly.
  112. */
  113. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  114. struct stack {
  115. u32 irq[3];
  116. u32 abt[3];
  117. u32 und[3];
  118. u32 fiq[3];
  119. } ____cacheline_aligned;
  120. #ifndef CONFIG_CPU_V7M
  121. static struct stack stacks[NR_CPUS];
  122. #endif
  123. char elf_platform[ELF_PLATFORM_SIZE];
  124. EXPORT_SYMBOL(elf_platform);
  125. static const char *cpu_name;
  126. static const char *machine_name;
  127. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  128. const struct machine_desc *machine_desc __initdata;
  129. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  130. #define ENDIANNESS ((char)endian_test.l)
  131. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  132. /*
  133. * Standard memory resources
  134. */
  135. static struct resource mem_res[] = {
  136. {
  137. .name = "Video RAM",
  138. .start = 0,
  139. .end = 0,
  140. .flags = IORESOURCE_MEM
  141. },
  142. {
  143. .name = "Kernel code",
  144. .start = 0,
  145. .end = 0,
  146. .flags = IORESOURCE_MEM
  147. },
  148. {
  149. .name = "Kernel data",
  150. .start = 0,
  151. .end = 0,
  152. .flags = IORESOURCE_MEM
  153. }
  154. };
  155. #define video_ram mem_res[0]
  156. #define kernel_code mem_res[1]
  157. #define kernel_data mem_res[2]
  158. static struct resource io_res[] = {
  159. {
  160. .name = "reserved",
  161. .start = 0x3bc,
  162. .end = 0x3be,
  163. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  164. },
  165. {
  166. .name = "reserved",
  167. .start = 0x378,
  168. .end = 0x37f,
  169. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  170. },
  171. {
  172. .name = "reserved",
  173. .start = 0x278,
  174. .end = 0x27f,
  175. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  176. }
  177. };
  178. #define lp0 io_res[0]
  179. #define lp1 io_res[1]
  180. #define lp2 io_res[2]
  181. static const char *proc_arch[] = {
  182. "undefined/unknown",
  183. "3",
  184. "4",
  185. "4T",
  186. "5",
  187. "5T",
  188. "5TE",
  189. "5TEJ",
  190. "6TEJ",
  191. "7",
  192. "7M",
  193. "?(12)",
  194. "?(13)",
  195. "?(14)",
  196. "?(15)",
  197. "?(16)",
  198. "?(17)",
  199. };
  200. #ifdef CONFIG_CPU_V7M
  201. static int __get_cpu_architecture(void)
  202. {
  203. return CPU_ARCH_ARMv7M;
  204. }
  205. #else
  206. static int __get_cpu_architecture(void)
  207. {
  208. int cpu_arch;
  209. if ((read_cpuid_id() & 0x0008f000) == 0) {
  210. cpu_arch = CPU_ARCH_UNKNOWN;
  211. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  212. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  213. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  214. cpu_arch = (read_cpuid_id() >> 16) & 7;
  215. if (cpu_arch)
  216. cpu_arch += CPU_ARCH_ARMv3;
  217. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  218. unsigned int mmfr0;
  219. /* Revised CPUID format. Read the Memory Model Feature
  220. * Register 0 and check for VMSAv7 or PMSAv7 */
  221. asm("mrc p15, 0, %0, c0, c1, 4"
  222. : "=r" (mmfr0));
  223. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  224. (mmfr0 & 0x000000f0) >= 0x00000030)
  225. cpu_arch = CPU_ARCH_ARMv7;
  226. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  227. (mmfr0 & 0x000000f0) == 0x00000020)
  228. cpu_arch = CPU_ARCH_ARMv6;
  229. else
  230. cpu_arch = CPU_ARCH_UNKNOWN;
  231. } else
  232. cpu_arch = CPU_ARCH_UNKNOWN;
  233. return cpu_arch;
  234. }
  235. #endif
  236. int __pure cpu_architecture(void)
  237. {
  238. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  239. return __cpu_architecture;
  240. }
  241. static int cpu_has_aliasing_icache(unsigned int arch)
  242. {
  243. int aliasing_icache;
  244. unsigned int id_reg, num_sets, line_size;
  245. /* PIPT caches never alias. */
  246. if (icache_is_pipt())
  247. return 0;
  248. /* arch specifies the register format */
  249. switch (arch) {
  250. case CPU_ARCH_ARMv7:
  251. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  252. : /* No output operands */
  253. : "r" (1));
  254. isb();
  255. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  256. : "=r" (id_reg));
  257. line_size = 4 << ((id_reg & 0x7) + 2);
  258. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  259. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  260. break;
  261. case CPU_ARCH_ARMv6:
  262. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  263. break;
  264. default:
  265. /* I-cache aliases will be handled by D-cache aliasing code */
  266. aliasing_icache = 0;
  267. }
  268. return aliasing_icache;
  269. }
  270. static void __init cacheid_init(void)
  271. {
  272. unsigned int arch = cpu_architecture();
  273. if (arch == CPU_ARCH_ARMv7M) {
  274. cacheid = 0;
  275. } else if (arch >= CPU_ARCH_ARMv6) {
  276. unsigned int cachetype = read_cpuid_cachetype();
  277. if ((cachetype & (7 << 29)) == 4 << 29) {
  278. /* ARMv7 register format */
  279. arch = CPU_ARCH_ARMv7;
  280. cacheid = CACHEID_VIPT_NONALIASING;
  281. switch (cachetype & (3 << 14)) {
  282. case (1 << 14):
  283. cacheid |= CACHEID_ASID_TAGGED;
  284. break;
  285. case (3 << 14):
  286. cacheid |= CACHEID_PIPT;
  287. break;
  288. }
  289. } else {
  290. arch = CPU_ARCH_ARMv6;
  291. if (cachetype & (1 << 23))
  292. cacheid = CACHEID_VIPT_ALIASING;
  293. else
  294. cacheid = CACHEID_VIPT_NONALIASING;
  295. }
  296. if (cpu_has_aliasing_icache(arch))
  297. cacheid |= CACHEID_VIPT_I_ALIASING;
  298. } else {
  299. cacheid = CACHEID_VIVT;
  300. }
  301. pr_info("CPU: %s data cache, %s instruction cache\n",
  302. cache_is_vivt() ? "VIVT" :
  303. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  304. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  305. cache_is_vivt() ? "VIVT" :
  306. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  307. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  308. icache_is_pipt() ? "PIPT" :
  309. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  310. }
  311. /*
  312. * These functions re-use the assembly code in head.S, which
  313. * already provide the required functionality.
  314. */
  315. extern struct proc_info_list *lookup_processor_type(unsigned int);
  316. void __init early_print(const char *str, ...)
  317. {
  318. extern void printascii(const char *);
  319. char buf[256];
  320. va_list ap;
  321. va_start(ap, str);
  322. vsnprintf(buf, sizeof(buf), str, ap);
  323. va_end(ap);
  324. #ifdef CONFIG_DEBUG_LL
  325. printascii(buf);
  326. #endif
  327. printk("%s", buf);
  328. }
  329. static void __init cpuid_init_hwcaps(void)
  330. {
  331. unsigned int divide_instrs, vmsa;
  332. if (cpu_architecture() < CPU_ARCH_ARMv7)
  333. return;
  334. divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
  335. switch (divide_instrs) {
  336. case 2:
  337. elf_hwcap |= HWCAP_IDIVA;
  338. case 1:
  339. elf_hwcap |= HWCAP_IDIVT;
  340. }
  341. /* LPAE implies atomic ldrd/strd instructions */
  342. vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
  343. if (vmsa >= 5)
  344. elf_hwcap |= HWCAP_LPAE;
  345. }
  346. static void __init elf_hwcap_fixup(void)
  347. {
  348. unsigned id = read_cpuid_id();
  349. unsigned sync_prim;
  350. /*
  351. * HWCAP_TLS is available only on 1136 r1p0 and later,
  352. * see also kuser_get_tls_init.
  353. */
  354. if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
  355. ((id >> 20) & 3) == 0) {
  356. elf_hwcap &= ~HWCAP_TLS;
  357. return;
  358. }
  359. /* Verify if CPUID scheme is implemented */
  360. if ((id & 0x000f0000) != 0x000f0000)
  361. return;
  362. /*
  363. * If the CPU supports LDREX/STREX and LDREXB/STREXB,
  364. * avoid advertising SWP; it may not be atomic with
  365. * multiprocessing cores.
  366. */
  367. sync_prim = ((read_cpuid_ext(CPUID_EXT_ISAR3) >> 8) & 0xf0) |
  368. ((read_cpuid_ext(CPUID_EXT_ISAR4) >> 20) & 0x0f);
  369. if (sync_prim >= 0x13)
  370. elf_hwcap &= ~HWCAP_SWP;
  371. }
  372. /*
  373. * cpu_init - initialise one CPU.
  374. *
  375. * cpu_init sets up the per-CPU stacks.
  376. */
  377. void notrace cpu_init(void)
  378. {
  379. #ifndef CONFIG_CPU_V7M
  380. unsigned int cpu = smp_processor_id();
  381. struct stack *stk = &stacks[cpu];
  382. if (cpu >= NR_CPUS) {
  383. pr_crit("CPU%u: bad primary CPU number\n", cpu);
  384. BUG();
  385. }
  386. /*
  387. * This only works on resume and secondary cores. For booting on the
  388. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  389. */
  390. set_my_cpu_offset(per_cpu_offset(cpu));
  391. cpu_proc_init();
  392. /*
  393. * Define the placement constraint for the inline asm directive below.
  394. * In Thumb-2, msr with an immediate value is not allowed.
  395. */
  396. #ifdef CONFIG_THUMB2_KERNEL
  397. #define PLC "r"
  398. #else
  399. #define PLC "I"
  400. #endif
  401. /*
  402. * setup stacks for re-entrant exception handlers
  403. */
  404. __asm__ (
  405. "msr cpsr_c, %1\n\t"
  406. "add r14, %0, %2\n\t"
  407. "mov sp, r14\n\t"
  408. "msr cpsr_c, %3\n\t"
  409. "add r14, %0, %4\n\t"
  410. "mov sp, r14\n\t"
  411. "msr cpsr_c, %5\n\t"
  412. "add r14, %0, %6\n\t"
  413. "mov sp, r14\n\t"
  414. "msr cpsr_c, %7\n\t"
  415. "add r14, %0, %8\n\t"
  416. "mov sp, r14\n\t"
  417. "msr cpsr_c, %9"
  418. :
  419. : "r" (stk),
  420. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  421. "I" (offsetof(struct stack, irq[0])),
  422. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  423. "I" (offsetof(struct stack, abt[0])),
  424. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  425. "I" (offsetof(struct stack, und[0])),
  426. PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
  427. "I" (offsetof(struct stack, fiq[0])),
  428. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  429. : "r14");
  430. #endif
  431. }
  432. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  433. void __init smp_setup_processor_id(void)
  434. {
  435. int i;
  436. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  437. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  438. cpu_logical_map(0) = cpu;
  439. for (i = 1; i < nr_cpu_ids; ++i)
  440. cpu_logical_map(i) = i == cpu ? 0 : i;
  441. /*
  442. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  443. * using percpu variable early, for example, lockdep will
  444. * access percpu variable inside lock_release
  445. */
  446. set_my_cpu_offset(0);
  447. pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
  448. }
  449. struct mpidr_hash mpidr_hash;
  450. #ifdef CONFIG_SMP
  451. /**
  452. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  453. * level in order to build a linear index from an
  454. * MPIDR value. Resulting algorithm is a collision
  455. * free hash carried out through shifting and ORing
  456. */
  457. static void __init smp_build_mpidr_hash(void)
  458. {
  459. u32 i, affinity;
  460. u32 fs[3], bits[3], ls, mask = 0;
  461. /*
  462. * Pre-scan the list of MPIDRS and filter out bits that do
  463. * not contribute to affinity levels, ie they never toggle.
  464. */
  465. for_each_possible_cpu(i)
  466. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  467. pr_debug("mask of set bits 0x%x\n", mask);
  468. /*
  469. * Find and stash the last and first bit set at all affinity levels to
  470. * check how many bits are required to represent them.
  471. */
  472. for (i = 0; i < 3; i++) {
  473. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  474. /*
  475. * Find the MSB bit and LSB bits position
  476. * to determine how many bits are required
  477. * to express the affinity level.
  478. */
  479. ls = fls(affinity);
  480. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  481. bits[i] = ls - fs[i];
  482. }
  483. /*
  484. * An index can be created from the MPIDR by isolating the
  485. * significant bits at each affinity level and by shifting
  486. * them in order to compress the 24 bits values space to a
  487. * compressed set of values. This is equivalent to hashing
  488. * the MPIDR through shifting and ORing. It is a collision free
  489. * hash though not minimal since some levels might contain a number
  490. * of CPUs that is not an exact power of 2 and their bit
  491. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  492. */
  493. mpidr_hash.shift_aff[0] = fs[0];
  494. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  495. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  496. (bits[1] + bits[0]);
  497. mpidr_hash.mask = mask;
  498. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  499. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  500. mpidr_hash.shift_aff[0],
  501. mpidr_hash.shift_aff[1],
  502. mpidr_hash.shift_aff[2],
  503. mpidr_hash.mask,
  504. mpidr_hash.bits);
  505. /*
  506. * 4x is an arbitrary value used to warn on a hash table much bigger
  507. * than expected on most systems.
  508. */
  509. if (mpidr_hash_size() > 4 * num_possible_cpus())
  510. pr_warn("Large number of MPIDR hash buckets detected\n");
  511. sync_cache_w(&mpidr_hash);
  512. }
  513. #endif
  514. static void __init setup_processor(void)
  515. {
  516. struct proc_info_list *list;
  517. /*
  518. * locate processor in the list of supported processor
  519. * types. The linker builds this table for us from the
  520. * entries in arch/arm/mm/proc-*.S
  521. */
  522. list = lookup_processor_type(read_cpuid_id());
  523. if (!list) {
  524. pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
  525. read_cpuid_id());
  526. while (1);
  527. }
  528. cpu_name = list->cpu_name;
  529. __cpu_architecture = __get_cpu_architecture();
  530. #ifdef MULTI_CPU
  531. processor = *list->proc;
  532. #endif
  533. #ifdef MULTI_TLB
  534. cpu_tlb = *list->tlb;
  535. #endif
  536. #ifdef MULTI_USER
  537. cpu_user = *list->user;
  538. #endif
  539. #ifdef MULTI_CACHE
  540. cpu_cache = *list->cache;
  541. #endif
  542. pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  543. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  544. proc_arch[cpu_architecture()], get_cr());
  545. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  546. list->arch_name, ENDIANNESS);
  547. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  548. list->elf_name, ENDIANNESS);
  549. elf_hwcap = list->elf_hwcap;
  550. cpuid_init_hwcaps();
  551. #ifndef CONFIG_ARM_THUMB
  552. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  553. #endif
  554. #ifdef CONFIG_MMU
  555. init_default_cache_policy(list->__cpu_mm_mmu_flags);
  556. #endif
  557. erratum_a15_798181_init();
  558. elf_hwcap_fixup();
  559. cacheid_init();
  560. cpu_init();
  561. }
  562. void __init dump_machine_table(void)
  563. {
  564. const struct machine_desc *p;
  565. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  566. for_each_machine_desc(p)
  567. early_print("%08x\t%s\n", p->nr, p->name);
  568. early_print("\nPlease check your kernel config and/or bootloader.\n");
  569. while (true)
  570. /* can't use cpu_relax() here as it may require MMU setup */;
  571. }
  572. int __init arm_add_memory(u64 start, u64 size)
  573. {
  574. u64 aligned_start;
  575. /*
  576. * Ensure that start/size are aligned to a page boundary.
  577. * Size is rounded down, start is rounded up.
  578. */
  579. aligned_start = PAGE_ALIGN(start);
  580. if (aligned_start > start + size)
  581. size = 0;
  582. else
  583. size -= aligned_start - start;
  584. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  585. if (aligned_start > ULONG_MAX) {
  586. pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
  587. (long long)start);
  588. return -EINVAL;
  589. }
  590. if (aligned_start + size > ULONG_MAX) {
  591. pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
  592. (long long)start);
  593. /*
  594. * To ensure bank->start + bank->size is representable in
  595. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  596. * This means we lose a page after masking.
  597. */
  598. size = ULONG_MAX - aligned_start;
  599. }
  600. #endif
  601. if (aligned_start < PHYS_OFFSET) {
  602. if (aligned_start + size <= PHYS_OFFSET) {
  603. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  604. aligned_start, aligned_start + size);
  605. return -EINVAL;
  606. }
  607. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  608. aligned_start, (u64)PHYS_OFFSET);
  609. size -= PHYS_OFFSET - aligned_start;
  610. aligned_start = PHYS_OFFSET;
  611. }
  612. start = aligned_start;
  613. size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  614. /*
  615. * Check whether this memory region has non-zero size or
  616. * invalid node number.
  617. */
  618. if (size == 0)
  619. return -EINVAL;
  620. memblock_add(start, size);
  621. return 0;
  622. }
  623. /*
  624. * Pick out the memory size. We look for mem=size@start,
  625. * where start and size are "size[KkMm]"
  626. */
  627. static int __init early_mem(char *p)
  628. {
  629. static int usermem __initdata = 0;
  630. u64 size;
  631. u64 start;
  632. char *endp;
  633. /*
  634. * If the user specifies memory size, we
  635. * blow away any automatically generated
  636. * size.
  637. */
  638. if (usermem == 0) {
  639. usermem = 1;
  640. memblock_remove(memblock_start_of_DRAM(),
  641. memblock_end_of_DRAM() - memblock_start_of_DRAM());
  642. }
  643. start = PHYS_OFFSET;
  644. size = memparse(p, &endp);
  645. if (*endp == '@')
  646. start = memparse(endp + 1, NULL);
  647. arm_add_memory(start, size);
  648. return 0;
  649. }
  650. early_param("mem", early_mem);
  651. static void __init request_standard_resources(const struct machine_desc *mdesc)
  652. {
  653. struct memblock_region *region;
  654. struct resource *res;
  655. kernel_code.start = virt_to_phys(_text);
  656. kernel_code.end = virt_to_phys(_etext - 1);
  657. kernel_data.start = virt_to_phys(_sdata);
  658. kernel_data.end = virt_to_phys(_end - 1);
  659. for_each_memblock(memory, region) {
  660. res = memblock_virt_alloc(sizeof(*res), 0);
  661. res->name = "System RAM";
  662. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  663. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  664. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  665. request_resource(&iomem_resource, res);
  666. if (kernel_code.start >= res->start &&
  667. kernel_code.end <= res->end)
  668. request_resource(res, &kernel_code);
  669. if (kernel_data.start >= res->start &&
  670. kernel_data.end <= res->end)
  671. request_resource(res, &kernel_data);
  672. }
  673. if (mdesc->video_start) {
  674. video_ram.start = mdesc->video_start;
  675. video_ram.end = mdesc->video_end;
  676. request_resource(&iomem_resource, &video_ram);
  677. }
  678. /*
  679. * Some machines don't have the possibility of ever
  680. * possessing lp0, lp1 or lp2
  681. */
  682. if (mdesc->reserve_lp0)
  683. request_resource(&ioport_resource, &lp0);
  684. if (mdesc->reserve_lp1)
  685. request_resource(&ioport_resource, &lp1);
  686. if (mdesc->reserve_lp2)
  687. request_resource(&ioport_resource, &lp2);
  688. }
  689. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  690. struct screen_info screen_info = {
  691. .orig_video_lines = 30,
  692. .orig_video_cols = 80,
  693. .orig_video_mode = 0,
  694. .orig_video_ega_bx = 0,
  695. .orig_video_isVGA = 1,
  696. .orig_video_points = 8
  697. };
  698. #endif
  699. static int __init customize_machine(void)
  700. {
  701. /*
  702. * customizes platform devices, or adds new ones
  703. * On DT based machines, we fall back to populating the
  704. * machine from the device tree, if no callback is provided,
  705. * otherwise we would always need an init_machine callback.
  706. */
  707. of_iommu_init();
  708. if (machine_desc->init_machine)
  709. machine_desc->init_machine();
  710. #ifdef CONFIG_OF
  711. else
  712. of_platform_populate(NULL, of_default_bus_match_table,
  713. NULL, NULL);
  714. #endif
  715. return 0;
  716. }
  717. arch_initcall(customize_machine);
  718. static int __init init_machine_late(void)
  719. {
  720. if (machine_desc->init_late)
  721. machine_desc->init_late();
  722. return 0;
  723. }
  724. late_initcall(init_machine_late);
  725. #ifdef CONFIG_KEXEC
  726. static inline unsigned long long get_total_mem(void)
  727. {
  728. unsigned long total;
  729. total = max_low_pfn - min_low_pfn;
  730. return total << PAGE_SHIFT;
  731. }
  732. /**
  733. * reserve_crashkernel() - reserves memory are for crash kernel
  734. *
  735. * This function reserves memory area given in "crashkernel=" kernel command
  736. * line parameter. The memory reserved is used by a dump capture kernel when
  737. * primary kernel is crashing.
  738. */
  739. static void __init reserve_crashkernel(void)
  740. {
  741. unsigned long long crash_size, crash_base;
  742. unsigned long long total_mem;
  743. int ret;
  744. total_mem = get_total_mem();
  745. ret = parse_crashkernel(boot_command_line, total_mem,
  746. &crash_size, &crash_base);
  747. if (ret)
  748. return;
  749. ret = memblock_reserve(crash_base, crash_size);
  750. if (ret < 0) {
  751. pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
  752. (unsigned long)crash_base);
  753. return;
  754. }
  755. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
  756. (unsigned long)(crash_size >> 20),
  757. (unsigned long)(crash_base >> 20),
  758. (unsigned long)(total_mem >> 20));
  759. crashk_res.start = crash_base;
  760. crashk_res.end = crash_base + crash_size - 1;
  761. insert_resource(&iomem_resource, &crashk_res);
  762. }
  763. #else
  764. static inline void reserve_crashkernel(void) {}
  765. #endif /* CONFIG_KEXEC */
  766. void __init hyp_mode_check(void)
  767. {
  768. #ifdef CONFIG_ARM_VIRT_EXT
  769. sync_boot_mode();
  770. if (is_hyp_mode_available()) {
  771. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  772. pr_info("CPU: Virtualization extensions available.\n");
  773. } else if (is_hyp_mode_mismatched()) {
  774. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  775. __boot_cpu_mode & MODE_MASK);
  776. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  777. } else
  778. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  779. #endif
  780. }
  781. void __init setup_arch(char **cmdline_p)
  782. {
  783. const struct machine_desc *mdesc;
  784. setup_processor();
  785. mdesc = setup_machine_fdt(__atags_pointer);
  786. if (!mdesc)
  787. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  788. machine_desc = mdesc;
  789. machine_name = mdesc->name;
  790. dump_stack_set_arch_desc("%s", mdesc->name);
  791. if (mdesc->reboot_mode != REBOOT_HARD)
  792. reboot_mode = mdesc->reboot_mode;
  793. init_mm.start_code = (unsigned long) _text;
  794. init_mm.end_code = (unsigned long) _etext;
  795. init_mm.end_data = (unsigned long) _edata;
  796. init_mm.brk = (unsigned long) _end;
  797. /* populate cmd_line too for later use, preserving boot_command_line */
  798. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  799. *cmdline_p = cmd_line;
  800. parse_early_param();
  801. early_paging_init(mdesc, lookup_processor_type(read_cpuid_id()));
  802. setup_dma_zone(mdesc);
  803. sanity_check_meminfo();
  804. arm_memblock_init(mdesc);
  805. paging_init(mdesc);
  806. request_standard_resources(mdesc);
  807. if (mdesc->restart)
  808. arm_pm_restart = mdesc->restart;
  809. unflatten_device_tree();
  810. arm_dt_init_cpu_maps();
  811. psci_init();
  812. #ifdef CONFIG_SMP
  813. if (is_smp()) {
  814. if (!mdesc->smp_init || !mdesc->smp_init()) {
  815. if (psci_smp_available())
  816. smp_set_ops(&psci_smp_ops);
  817. else if (mdesc->smp)
  818. smp_set_ops(mdesc->smp);
  819. }
  820. smp_init_cpus();
  821. smp_build_mpidr_hash();
  822. }
  823. #endif
  824. if (!is_smp())
  825. hyp_mode_check();
  826. reserve_crashkernel();
  827. #ifdef CONFIG_MULTI_IRQ_HANDLER
  828. handle_arch_irq = mdesc->handle_irq;
  829. #endif
  830. #ifdef CONFIG_VT
  831. #if defined(CONFIG_VGA_CONSOLE)
  832. conswitchp = &vga_con;
  833. #elif defined(CONFIG_DUMMY_CONSOLE)
  834. conswitchp = &dummy_con;
  835. #endif
  836. #endif
  837. if (mdesc->init_early)
  838. mdesc->init_early();
  839. }
  840. static int __init topology_init(void)
  841. {
  842. int cpu;
  843. for_each_possible_cpu(cpu) {
  844. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  845. cpuinfo->cpu.hotpluggable = 1;
  846. register_cpu(&cpuinfo->cpu, cpu);
  847. }
  848. return 0;
  849. }
  850. subsys_initcall(topology_init);
  851. #ifdef CONFIG_HAVE_PROC_CPU
  852. static int __init proc_cpu_init(void)
  853. {
  854. struct proc_dir_entry *res;
  855. res = proc_mkdir("cpu", NULL);
  856. if (!res)
  857. return -ENOMEM;
  858. return 0;
  859. }
  860. fs_initcall(proc_cpu_init);
  861. #endif
  862. static const char *hwcap_str[] = {
  863. "swp",
  864. "half",
  865. "thumb",
  866. "26bit",
  867. "fastmult",
  868. "fpa",
  869. "vfp",
  870. "edsp",
  871. "java",
  872. "iwmmxt",
  873. "crunch",
  874. "thumbee",
  875. "neon",
  876. "vfpv3",
  877. "vfpv3d16",
  878. "tls",
  879. "vfpv4",
  880. "idiva",
  881. "idivt",
  882. "vfpd32",
  883. "lpae",
  884. "evtstrm",
  885. NULL
  886. };
  887. static const char *hwcap2_str[] = {
  888. "aes",
  889. "pmull",
  890. "sha1",
  891. "sha2",
  892. "crc32",
  893. NULL
  894. };
  895. static int c_show(struct seq_file *m, void *v)
  896. {
  897. int i, j;
  898. u32 cpuid;
  899. for_each_online_cpu(i) {
  900. /*
  901. * glibc reads /proc/cpuinfo to determine the number of
  902. * online processors, looking for lines beginning with
  903. * "processor". Give glibc what it expects.
  904. */
  905. seq_printf(m, "processor\t: %d\n", i);
  906. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  907. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  908. cpu_name, cpuid & 15, elf_platform);
  909. #if defined(CONFIG_SMP)
  910. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  911. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  912. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  913. #else
  914. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  915. loops_per_jiffy / (500000/HZ),
  916. (loops_per_jiffy / (5000/HZ)) % 100);
  917. #endif
  918. /* dump out the processor features */
  919. seq_puts(m, "Features\t: ");
  920. for (j = 0; hwcap_str[j]; j++)
  921. if (elf_hwcap & (1 << j))
  922. seq_printf(m, "%s ", hwcap_str[j]);
  923. for (j = 0; hwcap2_str[j]; j++)
  924. if (elf_hwcap2 & (1 << j))
  925. seq_printf(m, "%s ", hwcap2_str[j]);
  926. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  927. seq_printf(m, "CPU architecture: %s\n",
  928. proc_arch[cpu_architecture()]);
  929. if ((cpuid & 0x0008f000) == 0x00000000) {
  930. /* pre-ARM7 */
  931. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  932. } else {
  933. if ((cpuid & 0x0008f000) == 0x00007000) {
  934. /* ARM7 */
  935. seq_printf(m, "CPU variant\t: 0x%02x\n",
  936. (cpuid >> 16) & 127);
  937. } else {
  938. /* post-ARM7 */
  939. seq_printf(m, "CPU variant\t: 0x%x\n",
  940. (cpuid >> 20) & 15);
  941. }
  942. seq_printf(m, "CPU part\t: 0x%03x\n",
  943. (cpuid >> 4) & 0xfff);
  944. }
  945. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  946. }
  947. seq_printf(m, "Hardware\t: %s\n", machine_name);
  948. seq_printf(m, "Revision\t: %04x\n", system_rev);
  949. seq_printf(m, "Serial\t\t: %08x%08x\n",
  950. system_serial_high, system_serial_low);
  951. return 0;
  952. }
  953. static void *c_start(struct seq_file *m, loff_t *pos)
  954. {
  955. return *pos < 1 ? (void *)1 : NULL;
  956. }
  957. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  958. {
  959. ++*pos;
  960. return NULL;
  961. }
  962. static void c_stop(struct seq_file *m, void *v)
  963. {
  964. }
  965. const struct seq_operations cpuinfo_op = {
  966. .start = c_start,
  967. .next = c_next,
  968. .stop = c_stop,
  969. .show = c_show
  970. };