spi-rspi.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/clk.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/of_device.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/sh_dma.h>
  32. #include <linux/spi/spi.h>
  33. #include <linux/spi/rspi.h>
  34. #define RSPI_SPCR 0x00 /* Control Register */
  35. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  36. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  37. #define RSPI_SPSR 0x03 /* Status Register */
  38. #define RSPI_SPDR 0x04 /* Data Register */
  39. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  40. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  41. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  42. #define RSPI_SPDCR 0x0b /* Data Control Register */
  43. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  44. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  45. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  46. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  47. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  48. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  49. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  50. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  51. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  52. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  53. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  54. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  55. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  56. #define RSPI_NUM_SPCMD 8
  57. #define RSPI_RZ_NUM_SPCMD 4
  58. #define QSPI_NUM_SPCMD 4
  59. /* RSPI on RZ only */
  60. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  61. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  62. /* QSPI only */
  63. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  64. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  65. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  66. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  67. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  68. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  69. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  70. /* SPCR - Control Register */
  71. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  72. #define SPCR_SPE 0x40 /* Function Enable */
  73. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  74. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  75. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  76. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  77. /* RSPI on SH only */
  78. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  79. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  80. /* QSPI on R-Car Gen2 only */
  81. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  82. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  83. /* SSLP - Slave Select Polarity Register */
  84. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  85. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  86. /* SPPCR - Pin Control Register */
  87. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  88. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  89. #define SPPCR_SPOM 0x04
  90. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  91. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  92. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94. /* SPSR - Status Register */
  95. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  96. #define SPSR_TEND 0x40 /* Transmit End */
  97. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  98. #define SPSR_PERF 0x08 /* Parity Error Flag */
  99. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  100. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  101. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  102. /* SPSCR - Sequence Control Register */
  103. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  104. /* SPSSR - Sequence Status Register */
  105. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  106. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  107. /* SPDCR - Data Control Register */
  108. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  109. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  110. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  111. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  112. #define SPDCR_SPLWORD SPDCR_SPLW1
  113. #define SPDCR_SPLBYTE SPDCR_SPLW0
  114. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  115. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  116. #define SPDCR_SLSEL1 0x08
  117. #define SPDCR_SLSEL0 0x04
  118. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  119. #define SPDCR_SPFC1 0x02
  120. #define SPDCR_SPFC0 0x01
  121. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  122. /* SPCKD - Clock Delay Register */
  123. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  124. /* SSLND - Slave Select Negation Delay Register */
  125. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  126. /* SPND - Next-Access Delay Register */
  127. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  128. /* SPCR2 - Control Register 2 */
  129. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  130. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  131. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  132. #define SPCR2_SPPE 0x01 /* Parity Enable */
  133. /* SPCMDn - Command Registers */
  134. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  135. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  136. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  137. #define SPCMD_LSBF 0x1000 /* LSB First */
  138. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  139. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  140. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  141. #define SPCMD_SPB_16BIT 0x0100
  142. #define SPCMD_SPB_20BIT 0x0000
  143. #define SPCMD_SPB_24BIT 0x0100
  144. #define SPCMD_SPB_32BIT 0x0200
  145. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  146. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  147. #define SPCMD_SPIMOD1 0x0040
  148. #define SPCMD_SPIMOD0 0x0020
  149. #define SPCMD_SPIMOD_SINGLE 0
  150. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  151. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  152. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  153. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  154. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  155. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  156. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  157. /* SPBFCR - Buffer Control Register */
  158. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  159. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  160. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  161. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  162. /* QSPI on R-Car Gen2 */
  163. #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
  164. #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
  165. #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
  166. #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
  167. #define QSPI_BUFFER_SIZE 32u
  168. struct rspi_data {
  169. void __iomem *addr;
  170. u32 max_speed_hz;
  171. struct spi_master *master;
  172. wait_queue_head_t wait;
  173. struct clk *clk;
  174. u16 spcmd;
  175. u8 spsr;
  176. u8 sppcr;
  177. int rx_irq, tx_irq;
  178. const struct spi_ops *ops;
  179. unsigned dma_callbacked:1;
  180. unsigned byte_access:1;
  181. };
  182. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  183. {
  184. iowrite8(data, rspi->addr + offset);
  185. }
  186. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  187. {
  188. iowrite16(data, rspi->addr + offset);
  189. }
  190. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  191. {
  192. iowrite32(data, rspi->addr + offset);
  193. }
  194. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  195. {
  196. return ioread8(rspi->addr + offset);
  197. }
  198. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  199. {
  200. return ioread16(rspi->addr + offset);
  201. }
  202. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  203. {
  204. if (rspi->byte_access)
  205. rspi_write8(rspi, data, RSPI_SPDR);
  206. else /* 16 bit */
  207. rspi_write16(rspi, data, RSPI_SPDR);
  208. }
  209. static u16 rspi_read_data(const struct rspi_data *rspi)
  210. {
  211. if (rspi->byte_access)
  212. return rspi_read8(rspi, RSPI_SPDR);
  213. else /* 16 bit */
  214. return rspi_read16(rspi, RSPI_SPDR);
  215. }
  216. /* optional functions */
  217. struct spi_ops {
  218. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  219. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  220. struct spi_transfer *xfer);
  221. u16 mode_bits;
  222. u16 flags;
  223. u16 fifo_size;
  224. };
  225. /*
  226. * functions for RSPI on legacy SH
  227. */
  228. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  229. {
  230. int spbr;
  231. /* Sets output mode, MOSI signal, and (optionally) loopback */
  232. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  233. /* Sets transfer bit rate */
  234. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  235. 2 * rspi->max_speed_hz) - 1;
  236. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  237. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  238. rspi_write8(rspi, 0, RSPI_SPDCR);
  239. rspi->byte_access = 0;
  240. /* Sets RSPCK, SSL, next-access delay value */
  241. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  242. rspi_write8(rspi, 0x00, RSPI_SSLND);
  243. rspi_write8(rspi, 0x00, RSPI_SPND);
  244. /* Sets parity, interrupt mask */
  245. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  246. /* Sets SPCMD */
  247. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  248. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  249. /* Sets RSPI mode */
  250. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  251. return 0;
  252. }
  253. /*
  254. * functions for RSPI on RZ
  255. */
  256. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  257. {
  258. int spbr;
  259. /* Sets output mode, MOSI signal, and (optionally) loopback */
  260. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  261. /* Sets transfer bit rate */
  262. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  263. 2 * rspi->max_speed_hz) - 1;
  264. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  265. /* Disable dummy transmission, set byte access */
  266. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  267. rspi->byte_access = 1;
  268. /* Sets RSPCK, SSL, next-access delay value */
  269. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  270. rspi_write8(rspi, 0x00, RSPI_SSLND);
  271. rspi_write8(rspi, 0x00, RSPI_SPND);
  272. /* Sets SPCMD */
  273. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  274. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  275. /* Sets RSPI mode */
  276. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  277. return 0;
  278. }
  279. /*
  280. * functions for QSPI
  281. */
  282. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  283. {
  284. int spbr;
  285. /* Sets output mode, MOSI signal, and (optionally) loopback */
  286. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  287. /* Sets transfer bit rate */
  288. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
  289. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  290. /* Disable dummy transmission, set byte access */
  291. rspi_write8(rspi, 0, RSPI_SPDCR);
  292. rspi->byte_access = 1;
  293. /* Sets RSPCK, SSL, next-access delay value */
  294. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  295. rspi_write8(rspi, 0x00, RSPI_SSLND);
  296. rspi_write8(rspi, 0x00, RSPI_SPND);
  297. /* Data Length Setting */
  298. if (access_size == 8)
  299. rspi->spcmd |= SPCMD_SPB_8BIT;
  300. else if (access_size == 16)
  301. rspi->spcmd |= SPCMD_SPB_16BIT;
  302. else
  303. rspi->spcmd |= SPCMD_SPB_32BIT;
  304. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  305. /* Resets transfer data length */
  306. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  307. /* Resets transmit and receive buffer */
  308. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  309. /* Sets buffer to allow normal operation */
  310. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  311. /* Sets SPCMD */
  312. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  313. /* Enables SPI function in master mode */
  314. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  315. return 0;
  316. }
  317. static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
  318. {
  319. u8 data;
  320. data = rspi_read8(rspi, reg);
  321. data &= ~mask;
  322. data |= (val & mask);
  323. rspi_write8(rspi, data, reg);
  324. }
  325. static int qspi_set_send_trigger(struct rspi_data *rspi, unsigned int len)
  326. {
  327. unsigned int n;
  328. n = min(len, QSPI_BUFFER_SIZE);
  329. if (len >= QSPI_BUFFER_SIZE) {
  330. /* sets triggering number to 32 bytes */
  331. qspi_update(rspi, SPBFCR_TXTRG_MASK,
  332. SPBFCR_TXTRG_32B, QSPI_SPBFCR);
  333. } else {
  334. /* sets triggering number to 1 byte */
  335. qspi_update(rspi, SPBFCR_TXTRG_MASK,
  336. SPBFCR_TXTRG_1B, QSPI_SPBFCR);
  337. }
  338. return n;
  339. }
  340. static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
  341. {
  342. unsigned int n;
  343. n = min(len, QSPI_BUFFER_SIZE);
  344. if (len >= QSPI_BUFFER_SIZE) {
  345. /* sets triggering number to 32 bytes */
  346. qspi_update(rspi, SPBFCR_RXTRG_MASK,
  347. SPBFCR_RXTRG_32B, QSPI_SPBFCR);
  348. } else {
  349. /* sets triggering number to 1 byte */
  350. qspi_update(rspi, SPBFCR_RXTRG_MASK,
  351. SPBFCR_RXTRG_1B, QSPI_SPBFCR);
  352. }
  353. }
  354. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  355. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  356. {
  357. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  358. }
  359. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  360. {
  361. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  362. }
  363. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  364. u8 enable_bit)
  365. {
  366. int ret;
  367. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  368. if (rspi->spsr & wait_mask)
  369. return 0;
  370. rspi_enable_irq(rspi, enable_bit);
  371. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  372. if (ret == 0 && !(rspi->spsr & wait_mask))
  373. return -ETIMEDOUT;
  374. return 0;
  375. }
  376. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  377. {
  378. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  379. }
  380. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  381. {
  382. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  383. }
  384. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  385. {
  386. int error = rspi_wait_for_tx_empty(rspi);
  387. if (error < 0) {
  388. dev_err(&rspi->master->dev, "transmit timeout\n");
  389. return error;
  390. }
  391. rspi_write_data(rspi, data);
  392. return 0;
  393. }
  394. static int rspi_data_in(struct rspi_data *rspi)
  395. {
  396. int error;
  397. u8 data;
  398. error = rspi_wait_for_rx_full(rspi);
  399. if (error < 0) {
  400. dev_err(&rspi->master->dev, "receive timeout\n");
  401. return error;
  402. }
  403. data = rspi_read_data(rspi);
  404. return data;
  405. }
  406. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  407. unsigned int n)
  408. {
  409. while (n-- > 0) {
  410. if (tx) {
  411. int ret = rspi_data_out(rspi, *tx++);
  412. if (ret < 0)
  413. return ret;
  414. }
  415. if (rx) {
  416. int ret = rspi_data_in(rspi);
  417. if (ret < 0)
  418. return ret;
  419. *rx++ = ret;
  420. }
  421. }
  422. return 0;
  423. }
  424. static void rspi_dma_complete(void *arg)
  425. {
  426. struct rspi_data *rspi = arg;
  427. rspi->dma_callbacked = 1;
  428. wake_up_interruptible(&rspi->wait);
  429. }
  430. static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
  431. struct sg_table *rx)
  432. {
  433. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  434. u8 irq_mask = 0;
  435. unsigned int other_irq = 0;
  436. dma_cookie_t cookie;
  437. int ret;
  438. /* First prepare and submit the DMA request(s), as this may fail */
  439. if (rx) {
  440. desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
  441. rx->sgl, rx->nents, DMA_FROM_DEVICE,
  442. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  443. if (!desc_rx) {
  444. ret = -EAGAIN;
  445. goto no_dma_rx;
  446. }
  447. desc_rx->callback = rspi_dma_complete;
  448. desc_rx->callback_param = rspi;
  449. cookie = dmaengine_submit(desc_rx);
  450. if (dma_submit_error(cookie)) {
  451. ret = cookie;
  452. goto no_dma_rx;
  453. }
  454. irq_mask |= SPCR_SPRIE;
  455. }
  456. if (tx) {
  457. desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
  458. tx->sgl, tx->nents, DMA_TO_DEVICE,
  459. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  460. if (!desc_tx) {
  461. ret = -EAGAIN;
  462. goto no_dma_tx;
  463. }
  464. if (rx) {
  465. /* No callback */
  466. desc_tx->callback = NULL;
  467. } else {
  468. desc_tx->callback = rspi_dma_complete;
  469. desc_tx->callback_param = rspi;
  470. }
  471. cookie = dmaengine_submit(desc_tx);
  472. if (dma_submit_error(cookie)) {
  473. ret = cookie;
  474. goto no_dma_tx;
  475. }
  476. irq_mask |= SPCR_SPTIE;
  477. }
  478. /*
  479. * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
  480. * called. So, this driver disables the IRQ while DMA transfer.
  481. */
  482. if (tx)
  483. disable_irq(other_irq = rspi->tx_irq);
  484. if (rx && rspi->rx_irq != other_irq)
  485. disable_irq(rspi->rx_irq);
  486. rspi_enable_irq(rspi, irq_mask);
  487. rspi->dma_callbacked = 0;
  488. /* Now start DMA */
  489. if (rx)
  490. dma_async_issue_pending(rspi->master->dma_rx);
  491. if (tx)
  492. dma_async_issue_pending(rspi->master->dma_tx);
  493. ret = wait_event_interruptible_timeout(rspi->wait,
  494. rspi->dma_callbacked, HZ);
  495. if (ret > 0 && rspi->dma_callbacked)
  496. ret = 0;
  497. else if (!ret) {
  498. dev_err(&rspi->master->dev, "DMA timeout\n");
  499. ret = -ETIMEDOUT;
  500. if (tx)
  501. dmaengine_terminate_all(rspi->master->dma_tx);
  502. if (rx)
  503. dmaengine_terminate_all(rspi->master->dma_rx);
  504. }
  505. rspi_disable_irq(rspi, irq_mask);
  506. if (tx)
  507. enable_irq(rspi->tx_irq);
  508. if (rx && rspi->rx_irq != other_irq)
  509. enable_irq(rspi->rx_irq);
  510. return ret;
  511. no_dma_tx:
  512. if (rx)
  513. dmaengine_terminate_all(rspi->master->dma_rx);
  514. no_dma_rx:
  515. if (ret == -EAGAIN) {
  516. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  517. dev_driver_string(&rspi->master->dev),
  518. dev_name(&rspi->master->dev));
  519. }
  520. return ret;
  521. }
  522. static void rspi_receive_init(const struct rspi_data *rspi)
  523. {
  524. u8 spsr;
  525. spsr = rspi_read8(rspi, RSPI_SPSR);
  526. if (spsr & SPSR_SPRF)
  527. rspi_read_data(rspi); /* dummy read */
  528. if (spsr & SPSR_OVRF)
  529. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  530. RSPI_SPSR);
  531. }
  532. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  533. {
  534. rspi_receive_init(rspi);
  535. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  536. rspi_write8(rspi, 0, RSPI_SPBFCR);
  537. }
  538. static void qspi_receive_init(const struct rspi_data *rspi)
  539. {
  540. u8 spsr;
  541. spsr = rspi_read8(rspi, RSPI_SPSR);
  542. if (spsr & SPSR_SPRF)
  543. rspi_read_data(rspi); /* dummy read */
  544. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  545. rspi_write8(rspi, 0, QSPI_SPBFCR);
  546. }
  547. static bool __rspi_can_dma(const struct rspi_data *rspi,
  548. const struct spi_transfer *xfer)
  549. {
  550. return xfer->len > rspi->ops->fifo_size;
  551. }
  552. static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
  553. struct spi_transfer *xfer)
  554. {
  555. struct rspi_data *rspi = spi_master_get_devdata(master);
  556. return __rspi_can_dma(rspi, xfer);
  557. }
  558. static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
  559. struct spi_transfer *xfer)
  560. {
  561. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  562. /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
  563. int ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
  564. xfer->rx_buf ? &xfer->rx_sg : NULL);
  565. if (ret != -EAGAIN)
  566. return 0;
  567. }
  568. return -EAGAIN;
  569. }
  570. static int rspi_common_transfer(struct rspi_data *rspi,
  571. struct spi_transfer *xfer)
  572. {
  573. int ret;
  574. ret = rspi_dma_check_then_transfer(rspi, xfer);
  575. if (ret != -EAGAIN)
  576. return ret;
  577. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  578. if (ret < 0)
  579. return ret;
  580. /* Wait for the last transmission */
  581. rspi_wait_for_tx_empty(rspi);
  582. return 0;
  583. }
  584. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  585. struct spi_transfer *xfer)
  586. {
  587. struct rspi_data *rspi = spi_master_get_devdata(master);
  588. u8 spcr;
  589. spcr = rspi_read8(rspi, RSPI_SPCR);
  590. if (xfer->rx_buf) {
  591. rspi_receive_init(rspi);
  592. spcr &= ~SPCR_TXMD;
  593. } else {
  594. spcr |= SPCR_TXMD;
  595. }
  596. rspi_write8(rspi, spcr, RSPI_SPCR);
  597. return rspi_common_transfer(rspi, xfer);
  598. }
  599. static int rspi_rz_transfer_one(struct spi_master *master,
  600. struct spi_device *spi,
  601. struct spi_transfer *xfer)
  602. {
  603. struct rspi_data *rspi = spi_master_get_devdata(master);
  604. rspi_rz_receive_init(rspi);
  605. return rspi_common_transfer(rspi, xfer);
  606. }
  607. static int qspi_trigger_transfer_out_int(struct rspi_data *rspi, const u8 *tx,
  608. u8 *rx, unsigned int len)
  609. {
  610. unsigned int i, n, ret;
  611. int error;
  612. while (len > 0) {
  613. n = qspi_set_send_trigger(rspi, len);
  614. qspi_set_receive_trigger(rspi, len);
  615. if (n == QSPI_BUFFER_SIZE) {
  616. error = rspi_wait_for_tx_empty(rspi);
  617. if (error < 0) {
  618. dev_err(&rspi->master->dev, "transmit timeout\n");
  619. return error;
  620. }
  621. for (i = 0; i < n; i++)
  622. rspi_write_data(rspi, *tx++);
  623. error = rspi_wait_for_rx_full(rspi);
  624. if (error < 0) {
  625. dev_err(&rspi->master->dev, "receive timeout\n");
  626. return error;
  627. }
  628. for (i = 0; i < n; i++)
  629. *rx++ = rspi_read_data(rspi);
  630. } else {
  631. ret = rspi_pio_transfer(rspi, tx, rx, n);
  632. if (ret < 0)
  633. return ret;
  634. }
  635. len -= n;
  636. }
  637. return 0;
  638. }
  639. static int qspi_transfer_out_in(struct rspi_data *rspi,
  640. struct spi_transfer *xfer)
  641. {
  642. int ret;
  643. qspi_receive_init(rspi);
  644. ret = rspi_dma_check_then_transfer(rspi, xfer);
  645. if (ret != -EAGAIN)
  646. return ret;
  647. ret = qspi_trigger_transfer_out_int(rspi, xfer->tx_buf,
  648. xfer->rx_buf, xfer->len);
  649. if (ret < 0)
  650. return ret;
  651. return 0;
  652. }
  653. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  654. {
  655. int ret;
  656. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  657. ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
  658. if (ret != -EAGAIN)
  659. return ret;
  660. }
  661. ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
  662. if (ret < 0)
  663. return ret;
  664. /* Wait for the last transmission */
  665. rspi_wait_for_tx_empty(rspi);
  666. return 0;
  667. }
  668. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  669. {
  670. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  671. int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
  672. if (ret != -EAGAIN)
  673. return ret;
  674. }
  675. return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
  676. }
  677. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  678. struct spi_transfer *xfer)
  679. {
  680. struct rspi_data *rspi = spi_master_get_devdata(master);
  681. if (spi->mode & SPI_LOOP) {
  682. return qspi_transfer_out_in(rspi, xfer);
  683. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  684. /* Quad or Dual SPI Write */
  685. return qspi_transfer_out(rspi, xfer);
  686. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  687. /* Quad or Dual SPI Read */
  688. return qspi_transfer_in(rspi, xfer);
  689. } else {
  690. /* Single SPI Transfer */
  691. return qspi_transfer_out_in(rspi, xfer);
  692. }
  693. }
  694. static int rspi_setup(struct spi_device *spi)
  695. {
  696. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  697. rspi->max_speed_hz = spi->max_speed_hz;
  698. rspi->spcmd = SPCMD_SSLKP;
  699. if (spi->mode & SPI_CPOL)
  700. rspi->spcmd |= SPCMD_CPOL;
  701. if (spi->mode & SPI_CPHA)
  702. rspi->spcmd |= SPCMD_CPHA;
  703. /* CMOS output mode and MOSI signal from previous transfer */
  704. rspi->sppcr = 0;
  705. if (spi->mode & SPI_LOOP)
  706. rspi->sppcr |= SPPCR_SPLP;
  707. set_config_register(rspi, 8);
  708. return 0;
  709. }
  710. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  711. {
  712. if (xfer->tx_buf)
  713. switch (xfer->tx_nbits) {
  714. case SPI_NBITS_QUAD:
  715. return SPCMD_SPIMOD_QUAD;
  716. case SPI_NBITS_DUAL:
  717. return SPCMD_SPIMOD_DUAL;
  718. default:
  719. return 0;
  720. }
  721. if (xfer->rx_buf)
  722. switch (xfer->rx_nbits) {
  723. case SPI_NBITS_QUAD:
  724. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  725. case SPI_NBITS_DUAL:
  726. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  727. default:
  728. return 0;
  729. }
  730. return 0;
  731. }
  732. static int qspi_setup_sequencer(struct rspi_data *rspi,
  733. const struct spi_message *msg)
  734. {
  735. const struct spi_transfer *xfer;
  736. unsigned int i = 0, len = 0;
  737. u16 current_mode = 0xffff, mode;
  738. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  739. mode = qspi_transfer_mode(xfer);
  740. if (mode == current_mode) {
  741. len += xfer->len;
  742. continue;
  743. }
  744. /* Transfer mode change */
  745. if (i) {
  746. /* Set transfer data length of previous transfer */
  747. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  748. }
  749. if (i >= QSPI_NUM_SPCMD) {
  750. dev_err(&msg->spi->dev,
  751. "Too many different transfer modes");
  752. return -EINVAL;
  753. }
  754. /* Program transfer mode for this transfer */
  755. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  756. current_mode = mode;
  757. len = xfer->len;
  758. i++;
  759. }
  760. if (i) {
  761. /* Set final transfer data length and sequence length */
  762. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  763. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  764. }
  765. return 0;
  766. }
  767. static int rspi_prepare_message(struct spi_master *master,
  768. struct spi_message *msg)
  769. {
  770. struct rspi_data *rspi = spi_master_get_devdata(master);
  771. int ret;
  772. if (msg->spi->mode &
  773. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  774. /* Setup sequencer for messages with multiple transfer modes */
  775. ret = qspi_setup_sequencer(rspi, msg);
  776. if (ret < 0)
  777. return ret;
  778. }
  779. /* Enable SPI function in master mode */
  780. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  781. return 0;
  782. }
  783. static int rspi_unprepare_message(struct spi_master *master,
  784. struct spi_message *msg)
  785. {
  786. struct rspi_data *rspi = spi_master_get_devdata(master);
  787. /* Disable SPI function */
  788. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  789. /* Reset sequencer for Single SPI Transfers */
  790. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  791. rspi_write8(rspi, 0, RSPI_SPSCR);
  792. return 0;
  793. }
  794. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  795. {
  796. struct rspi_data *rspi = _sr;
  797. u8 spsr;
  798. irqreturn_t ret = IRQ_NONE;
  799. u8 disable_irq = 0;
  800. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  801. if (spsr & SPSR_SPRF)
  802. disable_irq |= SPCR_SPRIE;
  803. if (spsr & SPSR_SPTEF)
  804. disable_irq |= SPCR_SPTIE;
  805. if (disable_irq) {
  806. ret = IRQ_HANDLED;
  807. rspi_disable_irq(rspi, disable_irq);
  808. wake_up(&rspi->wait);
  809. }
  810. return ret;
  811. }
  812. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  813. {
  814. struct rspi_data *rspi = _sr;
  815. u8 spsr;
  816. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  817. if (spsr & SPSR_SPRF) {
  818. rspi_disable_irq(rspi, SPCR_SPRIE);
  819. wake_up(&rspi->wait);
  820. return IRQ_HANDLED;
  821. }
  822. return 0;
  823. }
  824. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  825. {
  826. struct rspi_data *rspi = _sr;
  827. u8 spsr;
  828. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  829. if (spsr & SPSR_SPTEF) {
  830. rspi_disable_irq(rspi, SPCR_SPTIE);
  831. wake_up(&rspi->wait);
  832. return IRQ_HANDLED;
  833. }
  834. return 0;
  835. }
  836. static struct dma_chan *rspi_request_dma_chan(struct device *dev,
  837. enum dma_transfer_direction dir,
  838. unsigned int id,
  839. dma_addr_t port_addr)
  840. {
  841. dma_cap_mask_t mask;
  842. struct dma_chan *chan;
  843. struct dma_slave_config cfg;
  844. int ret;
  845. dma_cap_zero(mask);
  846. dma_cap_set(DMA_SLAVE, mask);
  847. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  848. (void *)(unsigned long)id, dev,
  849. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  850. if (!chan) {
  851. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  852. return NULL;
  853. }
  854. memset(&cfg, 0, sizeof(cfg));
  855. cfg.slave_id = id;
  856. cfg.direction = dir;
  857. if (dir == DMA_MEM_TO_DEV) {
  858. cfg.dst_addr = port_addr;
  859. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  860. } else {
  861. cfg.src_addr = port_addr;
  862. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  863. }
  864. ret = dmaengine_slave_config(chan, &cfg);
  865. if (ret) {
  866. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  867. dma_release_channel(chan);
  868. return NULL;
  869. }
  870. return chan;
  871. }
  872. static int rspi_request_dma(struct device *dev, struct spi_master *master,
  873. const struct resource *res)
  874. {
  875. const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
  876. unsigned int dma_tx_id, dma_rx_id;
  877. if (dev->of_node) {
  878. /* In the OF case we will get the slave IDs from the DT */
  879. dma_tx_id = 0;
  880. dma_rx_id = 0;
  881. } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
  882. dma_tx_id = rspi_pd->dma_tx_id;
  883. dma_rx_id = rspi_pd->dma_rx_id;
  884. } else {
  885. /* The driver assumes no error. */
  886. return 0;
  887. }
  888. master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
  889. res->start + RSPI_SPDR);
  890. if (!master->dma_tx)
  891. return -ENODEV;
  892. master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
  893. res->start + RSPI_SPDR);
  894. if (!master->dma_rx) {
  895. dma_release_channel(master->dma_tx);
  896. master->dma_tx = NULL;
  897. return -ENODEV;
  898. }
  899. master->can_dma = rspi_can_dma;
  900. dev_info(dev, "DMA available");
  901. return 0;
  902. }
  903. static void rspi_release_dma(struct spi_master *master)
  904. {
  905. if (master->dma_tx)
  906. dma_release_channel(master->dma_tx);
  907. if (master->dma_rx)
  908. dma_release_channel(master->dma_rx);
  909. }
  910. static int rspi_remove(struct platform_device *pdev)
  911. {
  912. struct rspi_data *rspi = platform_get_drvdata(pdev);
  913. rspi_release_dma(rspi->master);
  914. pm_runtime_disable(&pdev->dev);
  915. return 0;
  916. }
  917. static const struct spi_ops rspi_ops = {
  918. .set_config_register = rspi_set_config_register,
  919. .transfer_one = rspi_transfer_one,
  920. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  921. .flags = SPI_MASTER_MUST_TX,
  922. .fifo_size = 8,
  923. };
  924. static const struct spi_ops rspi_rz_ops = {
  925. .set_config_register = rspi_rz_set_config_register,
  926. .transfer_one = rspi_rz_transfer_one,
  927. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  928. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  929. .fifo_size = 8, /* 8 for TX, 32 for RX */
  930. };
  931. static const struct spi_ops qspi_ops = {
  932. .set_config_register = qspi_set_config_register,
  933. .transfer_one = qspi_transfer_one,
  934. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  935. SPI_TX_DUAL | SPI_TX_QUAD |
  936. SPI_RX_DUAL | SPI_RX_QUAD,
  937. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  938. .fifo_size = 32,
  939. };
  940. #ifdef CONFIG_OF
  941. static const struct of_device_id rspi_of_match[] = {
  942. /* RSPI on legacy SH */
  943. { .compatible = "renesas,rspi", .data = &rspi_ops },
  944. /* RSPI on RZ/A1H */
  945. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  946. /* QSPI on R-Car Gen2 */
  947. { .compatible = "renesas,qspi", .data = &qspi_ops },
  948. { /* sentinel */ }
  949. };
  950. MODULE_DEVICE_TABLE(of, rspi_of_match);
  951. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  952. {
  953. u32 num_cs;
  954. int error;
  955. /* Parse DT properties */
  956. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  957. if (error) {
  958. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  959. return error;
  960. }
  961. master->num_chipselect = num_cs;
  962. return 0;
  963. }
  964. #else
  965. #define rspi_of_match NULL
  966. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  967. {
  968. return -EINVAL;
  969. }
  970. #endif /* CONFIG_OF */
  971. static int rspi_request_irq(struct device *dev, unsigned int irq,
  972. irq_handler_t handler, const char *suffix,
  973. void *dev_id)
  974. {
  975. const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
  976. dev_name(dev), suffix);
  977. if (!name)
  978. return -ENOMEM;
  979. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  980. }
  981. static int rspi_probe(struct platform_device *pdev)
  982. {
  983. struct resource *res;
  984. struct spi_master *master;
  985. struct rspi_data *rspi;
  986. int ret;
  987. const struct of_device_id *of_id;
  988. const struct rspi_plat_data *rspi_pd;
  989. const struct spi_ops *ops;
  990. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  991. if (master == NULL) {
  992. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  993. return -ENOMEM;
  994. }
  995. of_id = of_match_device(rspi_of_match, &pdev->dev);
  996. if (of_id) {
  997. ops = of_id->data;
  998. ret = rspi_parse_dt(&pdev->dev, master);
  999. if (ret)
  1000. goto error1;
  1001. } else {
  1002. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  1003. rspi_pd = dev_get_platdata(&pdev->dev);
  1004. if (rspi_pd && rspi_pd->num_chipselect)
  1005. master->num_chipselect = rspi_pd->num_chipselect;
  1006. else
  1007. master->num_chipselect = 2; /* default */
  1008. }
  1009. /* ops parameter check */
  1010. if (!ops->set_config_register) {
  1011. dev_err(&pdev->dev, "there is no set_config_register\n");
  1012. ret = -ENODEV;
  1013. goto error1;
  1014. }
  1015. rspi = spi_master_get_devdata(master);
  1016. platform_set_drvdata(pdev, rspi);
  1017. rspi->ops = ops;
  1018. rspi->master = master;
  1019. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1020. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  1021. if (IS_ERR(rspi->addr)) {
  1022. ret = PTR_ERR(rspi->addr);
  1023. goto error1;
  1024. }
  1025. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  1026. if (IS_ERR(rspi->clk)) {
  1027. dev_err(&pdev->dev, "cannot get clock\n");
  1028. ret = PTR_ERR(rspi->clk);
  1029. goto error1;
  1030. }
  1031. pm_runtime_enable(&pdev->dev);
  1032. init_waitqueue_head(&rspi->wait);
  1033. master->bus_num = pdev->id;
  1034. master->setup = rspi_setup;
  1035. master->auto_runtime_pm = true;
  1036. master->transfer_one = ops->transfer_one;
  1037. master->prepare_message = rspi_prepare_message;
  1038. master->unprepare_message = rspi_unprepare_message;
  1039. master->mode_bits = ops->mode_bits;
  1040. master->flags = ops->flags;
  1041. master->dev.of_node = pdev->dev.of_node;
  1042. ret = platform_get_irq_byname(pdev, "rx");
  1043. if (ret < 0) {
  1044. ret = platform_get_irq_byname(pdev, "mux");
  1045. if (ret < 0)
  1046. ret = platform_get_irq(pdev, 0);
  1047. if (ret >= 0)
  1048. rspi->rx_irq = rspi->tx_irq = ret;
  1049. } else {
  1050. rspi->rx_irq = ret;
  1051. ret = platform_get_irq_byname(pdev, "tx");
  1052. if (ret >= 0)
  1053. rspi->tx_irq = ret;
  1054. }
  1055. if (ret < 0) {
  1056. dev_err(&pdev->dev, "platform_get_irq error\n");
  1057. goto error2;
  1058. }
  1059. if (rspi->rx_irq == rspi->tx_irq) {
  1060. /* Single multiplexed interrupt */
  1061. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  1062. "mux", rspi);
  1063. } else {
  1064. /* Multi-interrupt mode, only SPRI and SPTI are used */
  1065. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  1066. "rx", rspi);
  1067. if (!ret)
  1068. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  1069. rspi_irq_tx, "tx", rspi);
  1070. }
  1071. if (ret < 0) {
  1072. dev_err(&pdev->dev, "request_irq error\n");
  1073. goto error2;
  1074. }
  1075. ret = rspi_request_dma(&pdev->dev, master, res);
  1076. if (ret < 0)
  1077. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1078. ret = devm_spi_register_master(&pdev->dev, master);
  1079. if (ret < 0) {
  1080. dev_err(&pdev->dev, "spi_register_master error.\n");
  1081. goto error3;
  1082. }
  1083. dev_info(&pdev->dev, "probed\n");
  1084. return 0;
  1085. error3:
  1086. rspi_release_dma(master);
  1087. error2:
  1088. pm_runtime_disable(&pdev->dev);
  1089. error1:
  1090. spi_master_put(master);
  1091. return ret;
  1092. }
  1093. static struct platform_device_id spi_driver_ids[] = {
  1094. { "rspi", (kernel_ulong_t)&rspi_ops },
  1095. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  1096. { "qspi", (kernel_ulong_t)&qspi_ops },
  1097. {},
  1098. };
  1099. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1100. static struct platform_driver rspi_driver = {
  1101. .probe = rspi_probe,
  1102. .remove = rspi_remove,
  1103. .id_table = spi_driver_ids,
  1104. .driver = {
  1105. .name = "renesas_spi",
  1106. .of_match_table = of_match_ptr(rspi_of_match),
  1107. },
  1108. };
  1109. module_platform_driver(rspi_driver);
  1110. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  1111. MODULE_LICENSE("GPL v2");
  1112. MODULE_AUTHOR("Yoshihiro Shimoda");
  1113. MODULE_ALIAS("platform:rspi");