dma.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. // SPDX-License-Identifier: GPL-2.0
  2. // Copyright (C) 2005-2017 Andes Technology Corporation
  3. #include <linux/types.h>
  4. #include <linux/mm.h>
  5. #include <linux/export.h>
  6. #include <linux/string.h>
  7. #include <linux/scatterlist.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/io.h>
  10. #include <linux/cache.h>
  11. #include <linux/highmem.h>
  12. #include <linux/slab.h>
  13. #include <asm/cacheflush.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/dma-mapping.h>
  16. #include <asm/proc-fns.h>
  17. /*
  18. * This is the page table (2MB) covering uncached, DMA consistent allocations
  19. */
  20. static pte_t *consistent_pte;
  21. static DEFINE_RAW_SPINLOCK(consistent_lock);
  22. /*
  23. * VM region handling support.
  24. *
  25. * This should become something generic, handling VM region allocations for
  26. * vmalloc and similar (ioremap, module space, etc).
  27. *
  28. * I envisage vmalloc()'s supporting vm_struct becoming:
  29. *
  30. * struct vm_struct {
  31. * struct vm_region region;
  32. * unsigned long flags;
  33. * struct page **pages;
  34. * unsigned int nr_pages;
  35. * unsigned long phys_addr;
  36. * };
  37. *
  38. * get_vm_area() would then call vm_region_alloc with an appropriate
  39. * struct vm_region head (eg):
  40. *
  41. * struct vm_region vmalloc_head = {
  42. * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
  43. * .vm_start = VMALLOC_START,
  44. * .vm_end = VMALLOC_END,
  45. * };
  46. *
  47. * However, vmalloc_head.vm_start is variable (typically, it is dependent on
  48. * the amount of RAM found at boot time.) I would imagine that get_vm_area()
  49. * would have to initialise this each time prior to calling vm_region_alloc().
  50. */
  51. struct arch_vm_region {
  52. struct list_head vm_list;
  53. unsigned long vm_start;
  54. unsigned long vm_end;
  55. struct page *vm_pages;
  56. };
  57. static struct arch_vm_region consistent_head = {
  58. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  59. .vm_start = CONSISTENT_BASE,
  60. .vm_end = CONSISTENT_END,
  61. };
  62. static struct arch_vm_region *vm_region_alloc(struct arch_vm_region *head,
  63. size_t size, int gfp)
  64. {
  65. unsigned long addr = head->vm_start, end = head->vm_end - size;
  66. unsigned long flags;
  67. struct arch_vm_region *c, *new;
  68. new = kmalloc(sizeof(struct arch_vm_region), gfp);
  69. if (!new)
  70. goto out;
  71. raw_spin_lock_irqsave(&consistent_lock, flags);
  72. list_for_each_entry(c, &head->vm_list, vm_list) {
  73. if ((addr + size) < addr)
  74. goto nospc;
  75. if ((addr + size) <= c->vm_start)
  76. goto found;
  77. addr = c->vm_end;
  78. if (addr > end)
  79. goto nospc;
  80. }
  81. found:
  82. /*
  83. * Insert this entry _before_ the one we found.
  84. */
  85. list_add_tail(&new->vm_list, &c->vm_list);
  86. new->vm_start = addr;
  87. new->vm_end = addr + size;
  88. raw_spin_unlock_irqrestore(&consistent_lock, flags);
  89. return new;
  90. nospc:
  91. raw_spin_unlock_irqrestore(&consistent_lock, flags);
  92. kfree(new);
  93. out:
  94. return NULL;
  95. }
  96. static struct arch_vm_region *vm_region_find(struct arch_vm_region *head,
  97. unsigned long addr)
  98. {
  99. struct arch_vm_region *c;
  100. list_for_each_entry(c, &head->vm_list, vm_list) {
  101. if (c->vm_start == addr)
  102. goto out;
  103. }
  104. c = NULL;
  105. out:
  106. return c;
  107. }
  108. /* FIXME: attrs is not used. */
  109. static void *nds32_dma_alloc_coherent(struct device *dev, size_t size,
  110. dma_addr_t * handle, gfp_t gfp,
  111. unsigned long attrs)
  112. {
  113. struct page *page;
  114. struct arch_vm_region *c;
  115. unsigned long order;
  116. u64 mask = ~0ULL, limit;
  117. pgprot_t prot = pgprot_noncached(PAGE_KERNEL);
  118. if (!consistent_pte) {
  119. pr_err("%s: not initialized\n", __func__);
  120. dump_stack();
  121. return NULL;
  122. }
  123. if (dev) {
  124. mask = dev->coherent_dma_mask;
  125. /*
  126. * Sanity check the DMA mask - it must be non-zero, and
  127. * must be able to be satisfied by a DMA allocation.
  128. */
  129. if (mask == 0) {
  130. dev_warn(dev, "coherent DMA mask is unset\n");
  131. goto no_page;
  132. }
  133. }
  134. /*
  135. * Sanity check the allocation size.
  136. */
  137. size = PAGE_ALIGN(size);
  138. limit = (mask + 1) & ~mask;
  139. if ((limit && size >= limit) ||
  140. size >= (CONSISTENT_END - CONSISTENT_BASE)) {
  141. pr_warn("coherent allocation too big "
  142. "(requested %#x mask %#llx)\n", size, mask);
  143. goto no_page;
  144. }
  145. order = get_order(size);
  146. if (mask != 0xffffffff)
  147. gfp |= GFP_DMA;
  148. page = alloc_pages(gfp, order);
  149. if (!page)
  150. goto no_page;
  151. /*
  152. * Invalidate any data that might be lurking in the
  153. * kernel direct-mapped region for device DMA.
  154. */
  155. {
  156. unsigned long kaddr = (unsigned long)page_address(page);
  157. memset(page_address(page), 0, size);
  158. cpu_dma_wbinval_range(kaddr, kaddr + size);
  159. }
  160. /*
  161. * Allocate a virtual address in the consistent mapping region.
  162. */
  163. c = vm_region_alloc(&consistent_head, size,
  164. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  165. if (c) {
  166. pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
  167. struct page *end = page + (1 << order);
  168. c->vm_pages = page;
  169. /*
  170. * Set the "dma handle"
  171. */
  172. *handle = page_to_phys(page);
  173. do {
  174. BUG_ON(!pte_none(*pte));
  175. /*
  176. * x86 does not mark the pages reserved...
  177. */
  178. SetPageReserved(page);
  179. set_pte(pte, mk_pte(page, prot));
  180. page++;
  181. pte++;
  182. } while (size -= PAGE_SIZE);
  183. /*
  184. * Free the otherwise unused pages.
  185. */
  186. while (page < end) {
  187. __free_page(page);
  188. page++;
  189. }
  190. return (void *)c->vm_start;
  191. }
  192. if (page)
  193. __free_pages(page, order);
  194. no_page:
  195. *handle = ~0;
  196. return NULL;
  197. }
  198. static void nds32_dma_free(struct device *dev, size_t size, void *cpu_addr,
  199. dma_addr_t handle, unsigned long attrs)
  200. {
  201. struct arch_vm_region *c;
  202. unsigned long flags, addr;
  203. pte_t *ptep;
  204. size = PAGE_ALIGN(size);
  205. raw_spin_lock_irqsave(&consistent_lock, flags);
  206. c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
  207. if (!c)
  208. goto no_area;
  209. if ((c->vm_end - c->vm_start) != size) {
  210. pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
  211. __func__, c->vm_end - c->vm_start, size);
  212. dump_stack();
  213. size = c->vm_end - c->vm_start;
  214. }
  215. ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
  216. addr = c->vm_start;
  217. do {
  218. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  219. unsigned long pfn;
  220. ptep++;
  221. addr += PAGE_SIZE;
  222. if (!pte_none(pte) && pte_present(pte)) {
  223. pfn = pte_pfn(pte);
  224. if (pfn_valid(pfn)) {
  225. struct page *page = pfn_to_page(pfn);
  226. /*
  227. * x86 does not mark the pages reserved...
  228. */
  229. ClearPageReserved(page);
  230. __free_page(page);
  231. continue;
  232. }
  233. }
  234. pr_crit("%s: bad page in kernel page table\n", __func__);
  235. } while (size -= PAGE_SIZE);
  236. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  237. list_del(&c->vm_list);
  238. raw_spin_unlock_irqrestore(&consistent_lock, flags);
  239. kfree(c);
  240. return;
  241. no_area:
  242. raw_spin_unlock_irqrestore(&consistent_lock, flags);
  243. pr_err("%s: trying to free invalid coherent area: %p\n",
  244. __func__, cpu_addr);
  245. dump_stack();
  246. }
  247. /*
  248. * Initialise the consistent memory allocation.
  249. */
  250. static int __init consistent_init(void)
  251. {
  252. pgd_t *pgd;
  253. pmd_t *pmd;
  254. pte_t *pte;
  255. int ret = 0;
  256. do {
  257. pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
  258. pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
  259. if (!pmd) {
  260. pr_err("%s: no pmd tables\n", __func__);
  261. ret = -ENOMEM;
  262. break;
  263. }
  264. /* The first level mapping may be created in somewhere.
  265. * It's not necessary to warn here. */
  266. /* WARN_ON(!pmd_none(*pmd)); */
  267. pte = pte_alloc_kernel(pmd, CONSISTENT_BASE);
  268. if (!pte) {
  269. ret = -ENOMEM;
  270. break;
  271. }
  272. consistent_pte = pte;
  273. } while (0);
  274. return ret;
  275. }
  276. core_initcall(consistent_init);
  277. static inline void cache_op(phys_addr_t paddr, size_t size,
  278. void (*fn)(unsigned long start, unsigned long end))
  279. {
  280. struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
  281. unsigned offset = paddr & ~PAGE_MASK;
  282. size_t left = size;
  283. unsigned long start;
  284. do {
  285. size_t len = left;
  286. if (PageHighMem(page)) {
  287. void *addr;
  288. if (offset + len > PAGE_SIZE) {
  289. if (offset >= PAGE_SIZE) {
  290. page += offset >> PAGE_SHIFT;
  291. offset &= ~PAGE_MASK;
  292. }
  293. len = PAGE_SIZE - offset;
  294. }
  295. addr = kmap_atomic(page);
  296. start = (unsigned long)(addr + offset);
  297. fn(start, start + len);
  298. kunmap_atomic(addr);
  299. } else {
  300. start = (unsigned long)phys_to_virt(paddr);
  301. fn(start, start + size);
  302. }
  303. offset = 0;
  304. page++;
  305. left -= len;
  306. } while (left);
  307. }
  308. static void
  309. nds32_dma_sync_single_for_device(struct device *dev, dma_addr_t handle,
  310. size_t size, enum dma_data_direction dir)
  311. {
  312. switch (dir) {
  313. case DMA_FROM_DEVICE:
  314. break;
  315. case DMA_TO_DEVICE:
  316. case DMA_BIDIRECTIONAL:
  317. cache_op(handle, size, cpu_dma_wb_range);
  318. break;
  319. default:
  320. BUG();
  321. }
  322. }
  323. static void
  324. nds32_dma_sync_single_for_cpu(struct device *dev, dma_addr_t handle,
  325. size_t size, enum dma_data_direction dir)
  326. {
  327. switch (dir) {
  328. case DMA_TO_DEVICE:
  329. break;
  330. case DMA_FROM_DEVICE:
  331. case DMA_BIDIRECTIONAL:
  332. cache_op(handle, size, cpu_dma_inval_range);
  333. break;
  334. default:
  335. BUG();
  336. }
  337. }
  338. static dma_addr_t nds32_dma_map_page(struct device *dev, struct page *page,
  339. unsigned long offset, size_t size,
  340. enum dma_data_direction dir,
  341. unsigned long attrs)
  342. {
  343. dma_addr_t dma_addr = page_to_phys(page) + offset;
  344. if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
  345. nds32_dma_sync_single_for_device(dev, handle, size, dir);
  346. return dma_addr;
  347. }
  348. static void nds32_dma_unmap_page(struct device *dev, dma_addr_t handle,
  349. size_t size, enum dma_data_direction dir,
  350. unsigned long attrs)
  351. {
  352. if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
  353. nds32_dma_sync_single_for_cpu(dev, handle, size, dir);
  354. }
  355. static void
  356. nds32_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  357. int nents, enum dma_data_direction dir)
  358. {
  359. int i;
  360. for (i = 0; i < nents; i++, sg++) {
  361. nds32_dma_sync_single_for_device(dev, sg_dma_address(sg),
  362. sg->length, dir);
  363. }
  364. }
  365. static void
  366. nds32_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
  367. enum dma_data_direction dir)
  368. {
  369. int i;
  370. for (i = 0; i < nents; i++, sg++) {
  371. nds32_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
  372. sg->length, dir);
  373. }
  374. }
  375. static int nds32_dma_map_sg(struct device *dev, struct scatterlist *sg,
  376. int nents, enum dma_data_direction dir,
  377. unsigned long attrs)
  378. {
  379. int i;
  380. for (i = 0; i < nents; i++, sg++) {
  381. nds32_dma_sync_single_for_device(dev, sg_dma_address(sg),
  382. sg->length, dir);
  383. }
  384. return nents;
  385. }
  386. static void nds32_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  387. int nhwentries, enum dma_data_direction dir,
  388. unsigned long attrs)
  389. {
  390. }
  391. struct dma_map_ops nds32_dma_ops = {
  392. .alloc = nds32_dma_alloc_coherent,
  393. .free = nds32_dma_free,
  394. .map_page = nds32_dma_map_page,
  395. .unmap_page = nds32_dma_unmap_page,
  396. .map_sg = nds32_dma_map_sg,
  397. .unmap_sg = nds32_dma_unmap_sg,
  398. .sync_single_for_device = nds32_dma_sync_single_for_device,
  399. .sync_single_for_cpu = nds32_dma_sync_single_for_cpu,
  400. .sync_sg_for_cpu = nds32_dma_sync_sg_for_cpu,
  401. .sync_sg_for_device = nds32_dma_sync_sg_for_device,
  402. };
  403. EXPORT_SYMBOL(nds32_dma_ops);