disk-io.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/version.h>
  19. #include <linux/fs.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/swap.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/writeback.h>
  25. #include <linux/buffer_head.h> // for block_sync_page
  26. #include <linux/workqueue.h>
  27. #include <linux/kthread.h>
  28. # include <linux/freezer.h>
  29. #include "crc32c.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "ref-cache.h"
  39. #include "tree-log.h"
  40. #if 0
  41. static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
  42. {
  43. if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
  44. printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
  45. (unsigned long long)extent_buffer_blocknr(buf),
  46. (unsigned long long)btrfs_header_blocknr(buf));
  47. return 1;
  48. }
  49. return 0;
  50. }
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. /*
  55. * end_io_wq structs are used to do processing in task context when an IO is
  56. * complete. This is used during reads to verify checksums, and it is used
  57. * by writes to insert metadata for new file extents after IO is complete.
  58. */
  59. struct end_io_wq {
  60. struct bio *bio;
  61. bio_end_io_t *end_io;
  62. void *private;
  63. struct btrfs_fs_info *info;
  64. int error;
  65. int metadata;
  66. struct list_head list;
  67. struct btrfs_work work;
  68. };
  69. /*
  70. * async submit bios are used to offload expensive checksumming
  71. * onto the worker threads. They checksum file and metadata bios
  72. * just before they are sent down the IO stack.
  73. */
  74. struct async_submit_bio {
  75. struct inode *inode;
  76. struct bio *bio;
  77. struct list_head list;
  78. extent_submit_bio_hook_t *submit_bio_start;
  79. extent_submit_bio_hook_t *submit_bio_done;
  80. int rw;
  81. int mirror_num;
  82. unsigned long bio_flags;
  83. struct btrfs_work work;
  84. };
  85. /*
  86. * extents on the btree inode are pretty simple, there's one extent
  87. * that covers the entire device
  88. */
  89. struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
  90. size_t page_offset, u64 start, u64 len,
  91. int create)
  92. {
  93. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  94. struct extent_map *em;
  95. int ret;
  96. spin_lock(&em_tree->lock);
  97. em = lookup_extent_mapping(em_tree, start, len);
  98. if (em) {
  99. em->bdev =
  100. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  101. spin_unlock(&em_tree->lock);
  102. goto out;
  103. }
  104. spin_unlock(&em_tree->lock);
  105. em = alloc_extent_map(GFP_NOFS);
  106. if (!em) {
  107. em = ERR_PTR(-ENOMEM);
  108. goto out;
  109. }
  110. em->start = 0;
  111. em->len = (u64)-1;
  112. em->block_len = (u64)-1;
  113. em->block_start = 0;
  114. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  115. spin_lock(&em_tree->lock);
  116. ret = add_extent_mapping(em_tree, em);
  117. if (ret == -EEXIST) {
  118. u64 failed_start = em->start;
  119. u64 failed_len = em->len;
  120. printk("failed to insert %Lu %Lu -> %Lu into tree\n",
  121. em->start, em->len, em->block_start);
  122. free_extent_map(em);
  123. em = lookup_extent_mapping(em_tree, start, len);
  124. if (em) {
  125. printk("after failing, found %Lu %Lu %Lu\n",
  126. em->start, em->len, em->block_start);
  127. ret = 0;
  128. } else {
  129. em = lookup_extent_mapping(em_tree, failed_start,
  130. failed_len);
  131. if (em) {
  132. printk("double failure lookup gives us "
  133. "%Lu %Lu -> %Lu\n", em->start,
  134. em->len, em->block_start);
  135. free_extent_map(em);
  136. }
  137. ret = -EIO;
  138. }
  139. } else if (ret) {
  140. free_extent_map(em);
  141. em = NULL;
  142. }
  143. spin_unlock(&em_tree->lock);
  144. if (ret)
  145. em = ERR_PTR(ret);
  146. out:
  147. return em;
  148. }
  149. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  150. {
  151. return btrfs_crc32c(seed, data, len);
  152. }
  153. void btrfs_csum_final(u32 crc, char *result)
  154. {
  155. *(__le32 *)result = ~cpu_to_le32(crc);
  156. }
  157. /*
  158. * compute the csum for a btree block, and either verify it or write it
  159. * into the csum field of the block.
  160. */
  161. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  162. int verify)
  163. {
  164. char result[BTRFS_CRC32_SIZE];
  165. unsigned long len;
  166. unsigned long cur_len;
  167. unsigned long offset = BTRFS_CSUM_SIZE;
  168. char *map_token = NULL;
  169. char *kaddr;
  170. unsigned long map_start;
  171. unsigned long map_len;
  172. int err;
  173. u32 crc = ~(u32)0;
  174. len = buf->len - offset;
  175. while(len > 0) {
  176. err = map_private_extent_buffer(buf, offset, 32,
  177. &map_token, &kaddr,
  178. &map_start, &map_len, KM_USER0);
  179. if (err) {
  180. printk("failed to map extent buffer! %lu\n",
  181. offset);
  182. return 1;
  183. }
  184. cur_len = min(len, map_len - (offset - map_start));
  185. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  186. crc, cur_len);
  187. len -= cur_len;
  188. offset += cur_len;
  189. unmap_extent_buffer(buf, map_token, KM_USER0);
  190. }
  191. btrfs_csum_final(crc, result);
  192. if (verify) {
  193. /* FIXME, this is not good */
  194. if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
  195. u32 val;
  196. u32 found = 0;
  197. memcpy(&found, result, BTRFS_CRC32_SIZE);
  198. read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
  199. printk("btrfs: %s checksum verify failed on %llu "
  200. "wanted %X found %X level %d\n",
  201. root->fs_info->sb->s_id,
  202. buf->start, val, found, btrfs_header_level(buf));
  203. return 1;
  204. }
  205. } else {
  206. write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
  207. }
  208. return 0;
  209. }
  210. /*
  211. * we can't consider a given block up to date unless the transid of the
  212. * block matches the transid in the parent node's pointer. This is how we
  213. * detect blocks that either didn't get written at all or got written
  214. * in the wrong place.
  215. */
  216. static int verify_parent_transid(struct extent_io_tree *io_tree,
  217. struct extent_buffer *eb, u64 parent_transid)
  218. {
  219. int ret;
  220. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  221. return 0;
  222. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  223. if (extent_buffer_uptodate(io_tree, eb) &&
  224. btrfs_header_generation(eb) == parent_transid) {
  225. ret = 0;
  226. goto out;
  227. }
  228. printk("parent transid verify failed on %llu wanted %llu found %llu\n",
  229. (unsigned long long)eb->start,
  230. (unsigned long long)parent_transid,
  231. (unsigned long long)btrfs_header_generation(eb));
  232. ret = 1;
  233. clear_extent_buffer_uptodate(io_tree, eb);
  234. out:
  235. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  236. GFP_NOFS);
  237. return ret;
  238. }
  239. /*
  240. * helper to read a given tree block, doing retries as required when
  241. * the checksums don't match and we have alternate mirrors to try.
  242. */
  243. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  244. struct extent_buffer *eb,
  245. u64 start, u64 parent_transid)
  246. {
  247. struct extent_io_tree *io_tree;
  248. int ret;
  249. int num_copies = 0;
  250. int mirror_num = 0;
  251. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  252. while (1) {
  253. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  254. btree_get_extent, mirror_num);
  255. if (!ret &&
  256. !verify_parent_transid(io_tree, eb, parent_transid))
  257. return ret;
  258. printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
  259. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  260. eb->start, eb->len);
  261. if (num_copies == 1)
  262. return ret;
  263. mirror_num++;
  264. if (mirror_num > num_copies)
  265. return ret;
  266. }
  267. return -EIO;
  268. }
  269. /*
  270. * checksum a dirty tree block before IO. This has extra checks to make
  271. * sure we only fill in the checksum field in the first page of a multi-page block
  272. */
  273. int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  274. {
  275. struct extent_io_tree *tree;
  276. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  277. u64 found_start;
  278. int found_level;
  279. unsigned long len;
  280. struct extent_buffer *eb;
  281. int ret;
  282. tree = &BTRFS_I(page->mapping->host)->io_tree;
  283. if (page->private == EXTENT_PAGE_PRIVATE)
  284. goto out;
  285. if (!page->private)
  286. goto out;
  287. len = page->private >> 2;
  288. if (len == 0) {
  289. WARN_ON(1);
  290. }
  291. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  292. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  293. btrfs_header_generation(eb));
  294. BUG_ON(ret);
  295. found_start = btrfs_header_bytenr(eb);
  296. if (found_start != start) {
  297. printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
  298. start, found_start, len);
  299. WARN_ON(1);
  300. goto err;
  301. }
  302. if (eb->first_page != page) {
  303. printk("bad first page %lu %lu\n", eb->first_page->index,
  304. page->index);
  305. WARN_ON(1);
  306. goto err;
  307. }
  308. if (!PageUptodate(page)) {
  309. printk("csum not up to date page %lu\n", page->index);
  310. WARN_ON(1);
  311. goto err;
  312. }
  313. found_level = btrfs_header_level(eb);
  314. csum_tree_block(root, eb, 0);
  315. err:
  316. free_extent_buffer(eb);
  317. out:
  318. return 0;
  319. }
  320. int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  321. struct extent_state *state)
  322. {
  323. struct extent_io_tree *tree;
  324. u64 found_start;
  325. int found_level;
  326. unsigned long len;
  327. struct extent_buffer *eb;
  328. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  329. int ret = 0;
  330. tree = &BTRFS_I(page->mapping->host)->io_tree;
  331. if (page->private == EXTENT_PAGE_PRIVATE)
  332. goto out;
  333. if (!page->private)
  334. goto out;
  335. len = page->private >> 2;
  336. if (len == 0) {
  337. WARN_ON(1);
  338. }
  339. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  340. found_start = btrfs_header_bytenr(eb);
  341. if (found_start != start) {
  342. printk("bad tree block start %llu %llu\n",
  343. (unsigned long long)found_start,
  344. (unsigned long long)eb->start);
  345. ret = -EIO;
  346. goto err;
  347. }
  348. if (eb->first_page != page) {
  349. printk("bad first page %lu %lu\n", eb->first_page->index,
  350. page->index);
  351. WARN_ON(1);
  352. ret = -EIO;
  353. goto err;
  354. }
  355. if (memcmp_extent_buffer(eb, root->fs_info->fsid,
  356. (unsigned long)btrfs_header_fsid(eb),
  357. BTRFS_FSID_SIZE)) {
  358. printk("bad fsid on block %Lu\n", eb->start);
  359. ret = -EIO;
  360. goto err;
  361. }
  362. found_level = btrfs_header_level(eb);
  363. ret = csum_tree_block(root, eb, 1);
  364. if (ret)
  365. ret = -EIO;
  366. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  367. end = eb->start + end - 1;
  368. err:
  369. free_extent_buffer(eb);
  370. out:
  371. return ret;
  372. }
  373. static void end_workqueue_bio(struct bio *bio, int err)
  374. {
  375. struct end_io_wq *end_io_wq = bio->bi_private;
  376. struct btrfs_fs_info *fs_info;
  377. fs_info = end_io_wq->info;
  378. end_io_wq->error = err;
  379. end_io_wq->work.func = end_workqueue_fn;
  380. end_io_wq->work.flags = 0;
  381. if (bio->bi_rw & (1 << BIO_RW))
  382. btrfs_queue_worker(&fs_info->endio_write_workers,
  383. &end_io_wq->work);
  384. else
  385. btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
  386. }
  387. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  388. int metadata)
  389. {
  390. struct end_io_wq *end_io_wq;
  391. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  392. if (!end_io_wq)
  393. return -ENOMEM;
  394. end_io_wq->private = bio->bi_private;
  395. end_io_wq->end_io = bio->bi_end_io;
  396. end_io_wq->info = info;
  397. end_io_wq->error = 0;
  398. end_io_wq->bio = bio;
  399. end_io_wq->metadata = metadata;
  400. bio->bi_private = end_io_wq;
  401. bio->bi_end_io = end_workqueue_bio;
  402. return 0;
  403. }
  404. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  405. {
  406. unsigned long limit = min_t(unsigned long,
  407. info->workers.max_workers,
  408. info->fs_devices->open_devices);
  409. return 256 * limit;
  410. }
  411. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  412. {
  413. return atomic_read(&info->nr_async_bios) >
  414. btrfs_async_submit_limit(info);
  415. }
  416. static void run_one_async_start(struct btrfs_work *work)
  417. {
  418. struct btrfs_fs_info *fs_info;
  419. struct async_submit_bio *async;
  420. async = container_of(work, struct async_submit_bio, work);
  421. fs_info = BTRFS_I(async->inode)->root->fs_info;
  422. async->submit_bio_start(async->inode, async->rw, async->bio,
  423. async->mirror_num, async->bio_flags);
  424. }
  425. static void run_one_async_done(struct btrfs_work *work)
  426. {
  427. struct btrfs_fs_info *fs_info;
  428. struct async_submit_bio *async;
  429. int limit;
  430. async = container_of(work, struct async_submit_bio, work);
  431. fs_info = BTRFS_I(async->inode)->root->fs_info;
  432. limit = btrfs_async_submit_limit(fs_info);
  433. limit = limit * 2 / 3;
  434. atomic_dec(&fs_info->nr_async_submits);
  435. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  436. waitqueue_active(&fs_info->async_submit_wait))
  437. wake_up(&fs_info->async_submit_wait);
  438. async->submit_bio_done(async->inode, async->rw, async->bio,
  439. async->mirror_num, async->bio_flags);
  440. }
  441. static void run_one_async_free(struct btrfs_work *work)
  442. {
  443. struct async_submit_bio *async;
  444. async = container_of(work, struct async_submit_bio, work);
  445. kfree(async);
  446. }
  447. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  448. int rw, struct bio *bio, int mirror_num,
  449. unsigned long bio_flags,
  450. extent_submit_bio_hook_t *submit_bio_start,
  451. extent_submit_bio_hook_t *submit_bio_done)
  452. {
  453. struct async_submit_bio *async;
  454. int limit = btrfs_async_submit_limit(fs_info);
  455. async = kmalloc(sizeof(*async), GFP_NOFS);
  456. if (!async)
  457. return -ENOMEM;
  458. async->inode = inode;
  459. async->rw = rw;
  460. async->bio = bio;
  461. async->mirror_num = mirror_num;
  462. async->submit_bio_start = submit_bio_start;
  463. async->submit_bio_done = submit_bio_done;
  464. async->work.func = run_one_async_start;
  465. async->work.ordered_func = run_one_async_done;
  466. async->work.ordered_free = run_one_async_free;
  467. async->work.flags = 0;
  468. async->bio_flags = bio_flags;
  469. while(atomic_read(&fs_info->async_submit_draining) &&
  470. atomic_read(&fs_info->nr_async_submits)) {
  471. wait_event(fs_info->async_submit_wait,
  472. (atomic_read(&fs_info->nr_async_submits) == 0));
  473. }
  474. atomic_inc(&fs_info->nr_async_submits);
  475. btrfs_queue_worker(&fs_info->workers, &async->work);
  476. if (atomic_read(&fs_info->nr_async_submits) > limit) {
  477. wait_event_timeout(fs_info->async_submit_wait,
  478. (atomic_read(&fs_info->nr_async_submits) < limit),
  479. HZ/10);
  480. wait_event_timeout(fs_info->async_submit_wait,
  481. (atomic_read(&fs_info->nr_async_bios) < limit),
  482. HZ/10);
  483. }
  484. return 0;
  485. }
  486. static int btree_csum_one_bio(struct bio *bio)
  487. {
  488. struct bio_vec *bvec = bio->bi_io_vec;
  489. int bio_index = 0;
  490. struct btrfs_root *root;
  491. WARN_ON(bio->bi_vcnt <= 0);
  492. while(bio_index < bio->bi_vcnt) {
  493. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  494. csum_dirty_buffer(root, bvec->bv_page);
  495. bio_index++;
  496. bvec++;
  497. }
  498. return 0;
  499. }
  500. static int __btree_submit_bio_start(struct inode *inode, int rw,
  501. struct bio *bio, int mirror_num,
  502. unsigned long bio_flags)
  503. {
  504. /*
  505. * when we're called for a write, we're already in the async
  506. * submission context. Just jump into btrfs_map_bio
  507. */
  508. btree_csum_one_bio(bio);
  509. return 0;
  510. }
  511. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  512. int mirror_num, unsigned long bio_flags)
  513. {
  514. /*
  515. * when we're called for a write, we're already in the async
  516. * submission context. Just jump into btrfs_map_bio
  517. */
  518. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  519. }
  520. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  521. int mirror_num, unsigned long bio_flags)
  522. {
  523. /*
  524. * kthread helpers are used to submit writes so that checksumming
  525. * can happen in parallel across all CPUs
  526. */
  527. if (!(rw & (1 << BIO_RW))) {
  528. int ret;
  529. /*
  530. * called for a read, do the setup so that checksum validation
  531. * can happen in the async kernel threads
  532. */
  533. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  534. bio, 1);
  535. BUG_ON(ret);
  536. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  537. mirror_num, 1);
  538. }
  539. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  540. inode, rw, bio, mirror_num, 0,
  541. __btree_submit_bio_start,
  542. __btree_submit_bio_done);
  543. }
  544. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  545. {
  546. struct extent_io_tree *tree;
  547. tree = &BTRFS_I(page->mapping->host)->io_tree;
  548. if (current->flags & PF_MEMALLOC) {
  549. redirty_page_for_writepage(wbc, page);
  550. unlock_page(page);
  551. return 0;
  552. }
  553. return extent_write_full_page(tree, page, btree_get_extent, wbc);
  554. }
  555. static int btree_writepages(struct address_space *mapping,
  556. struct writeback_control *wbc)
  557. {
  558. struct extent_io_tree *tree;
  559. tree = &BTRFS_I(mapping->host)->io_tree;
  560. if (wbc->sync_mode == WB_SYNC_NONE) {
  561. u64 num_dirty;
  562. u64 start = 0;
  563. unsigned long thresh = 32 * 1024 * 1024;
  564. if (wbc->for_kupdate)
  565. return 0;
  566. num_dirty = count_range_bits(tree, &start, (u64)-1,
  567. thresh, EXTENT_DIRTY);
  568. if (num_dirty < thresh) {
  569. return 0;
  570. }
  571. }
  572. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  573. }
  574. int btree_readpage(struct file *file, struct page *page)
  575. {
  576. struct extent_io_tree *tree;
  577. tree = &BTRFS_I(page->mapping->host)->io_tree;
  578. return extent_read_full_page(tree, page, btree_get_extent);
  579. }
  580. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  581. {
  582. struct extent_io_tree *tree;
  583. struct extent_map_tree *map;
  584. int ret;
  585. if (PageWriteback(page) || PageDirty(page))
  586. return 0;
  587. tree = &BTRFS_I(page->mapping->host)->io_tree;
  588. map = &BTRFS_I(page->mapping->host)->extent_tree;
  589. ret = try_release_extent_state(map, tree, page, gfp_flags);
  590. if (!ret) {
  591. return 0;
  592. }
  593. ret = try_release_extent_buffer(tree, page);
  594. if (ret == 1) {
  595. ClearPagePrivate(page);
  596. set_page_private(page, 0);
  597. page_cache_release(page);
  598. }
  599. return ret;
  600. }
  601. static void btree_invalidatepage(struct page *page, unsigned long offset)
  602. {
  603. struct extent_io_tree *tree;
  604. tree = &BTRFS_I(page->mapping->host)->io_tree;
  605. extent_invalidatepage(tree, page, offset);
  606. btree_releasepage(page, GFP_NOFS);
  607. if (PagePrivate(page)) {
  608. printk("warning page private not zero on page %Lu\n",
  609. page_offset(page));
  610. ClearPagePrivate(page);
  611. set_page_private(page, 0);
  612. page_cache_release(page);
  613. }
  614. }
  615. #if 0
  616. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  617. {
  618. struct buffer_head *bh;
  619. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  620. struct buffer_head *head;
  621. if (!page_has_buffers(page)) {
  622. create_empty_buffers(page, root->fs_info->sb->s_blocksize,
  623. (1 << BH_Dirty)|(1 << BH_Uptodate));
  624. }
  625. head = page_buffers(page);
  626. bh = head;
  627. do {
  628. if (buffer_dirty(bh))
  629. csum_tree_block(root, bh, 0);
  630. bh = bh->b_this_page;
  631. } while (bh != head);
  632. return block_write_full_page(page, btree_get_block, wbc);
  633. }
  634. #endif
  635. static struct address_space_operations btree_aops = {
  636. .readpage = btree_readpage,
  637. .writepage = btree_writepage,
  638. .writepages = btree_writepages,
  639. .releasepage = btree_releasepage,
  640. .invalidatepage = btree_invalidatepage,
  641. .sync_page = block_sync_page,
  642. };
  643. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  644. u64 parent_transid)
  645. {
  646. struct extent_buffer *buf = NULL;
  647. struct inode *btree_inode = root->fs_info->btree_inode;
  648. int ret = 0;
  649. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  650. if (!buf)
  651. return 0;
  652. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  653. buf, 0, 0, btree_get_extent, 0);
  654. free_extent_buffer(buf);
  655. return ret;
  656. }
  657. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  658. u64 bytenr, u32 blocksize)
  659. {
  660. struct inode *btree_inode = root->fs_info->btree_inode;
  661. struct extent_buffer *eb;
  662. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  663. bytenr, blocksize, GFP_NOFS);
  664. return eb;
  665. }
  666. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  667. u64 bytenr, u32 blocksize)
  668. {
  669. struct inode *btree_inode = root->fs_info->btree_inode;
  670. struct extent_buffer *eb;
  671. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  672. bytenr, blocksize, NULL, GFP_NOFS);
  673. return eb;
  674. }
  675. int btrfs_write_tree_block(struct extent_buffer *buf)
  676. {
  677. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  678. buf->start + buf->len - 1, WB_SYNC_ALL);
  679. }
  680. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  681. {
  682. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  683. buf->start, buf->start + buf->len -1);
  684. }
  685. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  686. u32 blocksize, u64 parent_transid)
  687. {
  688. struct extent_buffer *buf = NULL;
  689. struct inode *btree_inode = root->fs_info->btree_inode;
  690. struct extent_io_tree *io_tree;
  691. int ret;
  692. io_tree = &BTRFS_I(btree_inode)->io_tree;
  693. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  694. if (!buf)
  695. return NULL;
  696. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  697. if (ret == 0) {
  698. buf->flags |= EXTENT_UPTODATE;
  699. } else {
  700. WARN_ON(1);
  701. }
  702. return buf;
  703. }
  704. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  705. struct extent_buffer *buf)
  706. {
  707. struct inode *btree_inode = root->fs_info->btree_inode;
  708. if (btrfs_header_generation(buf) ==
  709. root->fs_info->running_transaction->transid) {
  710. WARN_ON(!btrfs_tree_locked(buf));
  711. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  712. buf);
  713. }
  714. return 0;
  715. }
  716. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  717. u32 stripesize, struct btrfs_root *root,
  718. struct btrfs_fs_info *fs_info,
  719. u64 objectid)
  720. {
  721. root->node = NULL;
  722. root->inode = NULL;
  723. root->commit_root = NULL;
  724. root->ref_tree = NULL;
  725. root->sectorsize = sectorsize;
  726. root->nodesize = nodesize;
  727. root->leafsize = leafsize;
  728. root->stripesize = stripesize;
  729. root->ref_cows = 0;
  730. root->track_dirty = 0;
  731. root->fs_info = fs_info;
  732. root->objectid = objectid;
  733. root->last_trans = 0;
  734. root->highest_inode = 0;
  735. root->last_inode_alloc = 0;
  736. root->name = NULL;
  737. root->in_sysfs = 0;
  738. INIT_LIST_HEAD(&root->dirty_list);
  739. INIT_LIST_HEAD(&root->orphan_list);
  740. INIT_LIST_HEAD(&root->dead_list);
  741. spin_lock_init(&root->node_lock);
  742. spin_lock_init(&root->list_lock);
  743. mutex_init(&root->objectid_mutex);
  744. mutex_init(&root->log_mutex);
  745. extent_io_tree_init(&root->dirty_log_pages,
  746. fs_info->btree_inode->i_mapping, GFP_NOFS);
  747. btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
  748. root->ref_tree = &root->ref_tree_struct;
  749. memset(&root->root_key, 0, sizeof(root->root_key));
  750. memset(&root->root_item, 0, sizeof(root->root_item));
  751. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  752. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  753. root->defrag_trans_start = fs_info->generation;
  754. init_completion(&root->kobj_unregister);
  755. root->defrag_running = 0;
  756. root->defrag_level = 0;
  757. root->root_key.objectid = objectid;
  758. return 0;
  759. }
  760. static int find_and_setup_root(struct btrfs_root *tree_root,
  761. struct btrfs_fs_info *fs_info,
  762. u64 objectid,
  763. struct btrfs_root *root)
  764. {
  765. int ret;
  766. u32 blocksize;
  767. u64 generation;
  768. __setup_root(tree_root->nodesize, tree_root->leafsize,
  769. tree_root->sectorsize, tree_root->stripesize,
  770. root, fs_info, objectid);
  771. ret = btrfs_find_last_root(tree_root, objectid,
  772. &root->root_item, &root->root_key);
  773. BUG_ON(ret);
  774. generation = btrfs_root_generation(&root->root_item);
  775. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  776. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  777. blocksize, generation);
  778. BUG_ON(!root->node);
  779. return 0;
  780. }
  781. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  782. struct btrfs_fs_info *fs_info)
  783. {
  784. struct extent_buffer *eb;
  785. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  786. u64 start = 0;
  787. u64 end = 0;
  788. int ret;
  789. if (!log_root_tree)
  790. return 0;
  791. while(1) {
  792. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  793. 0, &start, &end, EXTENT_DIRTY);
  794. if (ret)
  795. break;
  796. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  797. start, end, GFP_NOFS);
  798. }
  799. eb = fs_info->log_root_tree->node;
  800. WARN_ON(btrfs_header_level(eb) != 0);
  801. WARN_ON(btrfs_header_nritems(eb) != 0);
  802. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  803. eb->start, eb->len);
  804. BUG_ON(ret);
  805. free_extent_buffer(eb);
  806. kfree(fs_info->log_root_tree);
  807. fs_info->log_root_tree = NULL;
  808. return 0;
  809. }
  810. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  811. struct btrfs_fs_info *fs_info)
  812. {
  813. struct btrfs_root *root;
  814. struct btrfs_root *tree_root = fs_info->tree_root;
  815. root = kzalloc(sizeof(*root), GFP_NOFS);
  816. if (!root)
  817. return -ENOMEM;
  818. __setup_root(tree_root->nodesize, tree_root->leafsize,
  819. tree_root->sectorsize, tree_root->stripesize,
  820. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  821. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  822. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  823. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  824. root->ref_cows = 0;
  825. root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
  826. 0, BTRFS_TREE_LOG_OBJECTID,
  827. trans->transid, 0, 0, 0);
  828. btrfs_set_header_nritems(root->node, 0);
  829. btrfs_set_header_level(root->node, 0);
  830. btrfs_set_header_bytenr(root->node, root->node->start);
  831. btrfs_set_header_generation(root->node, trans->transid);
  832. btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
  833. write_extent_buffer(root->node, root->fs_info->fsid,
  834. (unsigned long)btrfs_header_fsid(root->node),
  835. BTRFS_FSID_SIZE);
  836. btrfs_mark_buffer_dirty(root->node);
  837. btrfs_tree_unlock(root->node);
  838. fs_info->log_root_tree = root;
  839. return 0;
  840. }
  841. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  842. struct btrfs_key *location)
  843. {
  844. struct btrfs_root *root;
  845. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  846. struct btrfs_path *path;
  847. struct extent_buffer *l;
  848. u64 highest_inode;
  849. u64 generation;
  850. u32 blocksize;
  851. int ret = 0;
  852. root = kzalloc(sizeof(*root), GFP_NOFS);
  853. if (!root)
  854. return ERR_PTR(-ENOMEM);
  855. if (location->offset == (u64)-1) {
  856. ret = find_and_setup_root(tree_root, fs_info,
  857. location->objectid, root);
  858. if (ret) {
  859. kfree(root);
  860. return ERR_PTR(ret);
  861. }
  862. goto insert;
  863. }
  864. __setup_root(tree_root->nodesize, tree_root->leafsize,
  865. tree_root->sectorsize, tree_root->stripesize,
  866. root, fs_info, location->objectid);
  867. path = btrfs_alloc_path();
  868. BUG_ON(!path);
  869. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  870. if (ret != 0) {
  871. if (ret > 0)
  872. ret = -ENOENT;
  873. goto out;
  874. }
  875. l = path->nodes[0];
  876. read_extent_buffer(l, &root->root_item,
  877. btrfs_item_ptr_offset(l, path->slots[0]),
  878. sizeof(root->root_item));
  879. memcpy(&root->root_key, location, sizeof(*location));
  880. ret = 0;
  881. out:
  882. btrfs_release_path(root, path);
  883. btrfs_free_path(path);
  884. if (ret) {
  885. kfree(root);
  886. return ERR_PTR(ret);
  887. }
  888. generation = btrfs_root_generation(&root->root_item);
  889. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  890. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  891. blocksize, generation);
  892. BUG_ON(!root->node);
  893. insert:
  894. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  895. root->ref_cows = 1;
  896. ret = btrfs_find_highest_inode(root, &highest_inode);
  897. if (ret == 0) {
  898. root->highest_inode = highest_inode;
  899. root->last_inode_alloc = highest_inode;
  900. }
  901. }
  902. return root;
  903. }
  904. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  905. u64 root_objectid)
  906. {
  907. struct btrfs_root *root;
  908. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  909. return fs_info->tree_root;
  910. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  911. return fs_info->extent_root;
  912. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  913. (unsigned long)root_objectid);
  914. return root;
  915. }
  916. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  917. struct btrfs_key *location)
  918. {
  919. struct btrfs_root *root;
  920. int ret;
  921. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  922. return fs_info->tree_root;
  923. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  924. return fs_info->extent_root;
  925. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  926. return fs_info->chunk_root;
  927. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  928. return fs_info->dev_root;
  929. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  930. (unsigned long)location->objectid);
  931. if (root)
  932. return root;
  933. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  934. if (IS_ERR(root))
  935. return root;
  936. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  937. (unsigned long)root->root_key.objectid,
  938. root);
  939. if (ret) {
  940. free_extent_buffer(root->node);
  941. kfree(root);
  942. return ERR_PTR(ret);
  943. }
  944. ret = btrfs_find_dead_roots(fs_info->tree_root,
  945. root->root_key.objectid, root);
  946. BUG_ON(ret);
  947. return root;
  948. }
  949. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  950. struct btrfs_key *location,
  951. const char *name, int namelen)
  952. {
  953. struct btrfs_root *root;
  954. int ret;
  955. root = btrfs_read_fs_root_no_name(fs_info, location);
  956. if (!root)
  957. return NULL;
  958. if (root->in_sysfs)
  959. return root;
  960. ret = btrfs_set_root_name(root, name, namelen);
  961. if (ret) {
  962. free_extent_buffer(root->node);
  963. kfree(root);
  964. return ERR_PTR(ret);
  965. }
  966. ret = btrfs_sysfs_add_root(root);
  967. if (ret) {
  968. free_extent_buffer(root->node);
  969. kfree(root->name);
  970. kfree(root);
  971. return ERR_PTR(ret);
  972. }
  973. root->in_sysfs = 1;
  974. return root;
  975. }
  976. #if 0
  977. static int add_hasher(struct btrfs_fs_info *info, char *type) {
  978. struct btrfs_hasher *hasher;
  979. hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
  980. if (!hasher)
  981. return -ENOMEM;
  982. hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
  983. if (!hasher->hash_tfm) {
  984. kfree(hasher);
  985. return -EINVAL;
  986. }
  987. spin_lock(&info->hash_lock);
  988. list_add(&hasher->list, &info->hashers);
  989. spin_unlock(&info->hash_lock);
  990. return 0;
  991. }
  992. #endif
  993. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  994. {
  995. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  996. int ret = 0;
  997. struct list_head *cur;
  998. struct btrfs_device *device;
  999. struct backing_dev_info *bdi;
  1000. if ((bdi_bits & (1 << BDI_write_congested)) &&
  1001. btrfs_congested_async(info, 0))
  1002. return 1;
  1003. list_for_each(cur, &info->fs_devices->devices) {
  1004. device = list_entry(cur, struct btrfs_device, dev_list);
  1005. if (!device->bdev)
  1006. continue;
  1007. bdi = blk_get_backing_dev_info(device->bdev);
  1008. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1009. ret = 1;
  1010. break;
  1011. }
  1012. }
  1013. return ret;
  1014. }
  1015. /*
  1016. * this unplugs every device on the box, and it is only used when page
  1017. * is null
  1018. */
  1019. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1020. {
  1021. struct list_head *cur;
  1022. struct btrfs_device *device;
  1023. struct btrfs_fs_info *info;
  1024. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1025. list_for_each(cur, &info->fs_devices->devices) {
  1026. device = list_entry(cur, struct btrfs_device, dev_list);
  1027. bdi = blk_get_backing_dev_info(device->bdev);
  1028. if (bdi->unplug_io_fn) {
  1029. bdi->unplug_io_fn(bdi, page);
  1030. }
  1031. }
  1032. }
  1033. void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1034. {
  1035. struct inode *inode;
  1036. struct extent_map_tree *em_tree;
  1037. struct extent_map *em;
  1038. struct address_space *mapping;
  1039. u64 offset;
  1040. /* the generic O_DIRECT read code does this */
  1041. if (!page) {
  1042. __unplug_io_fn(bdi, page);
  1043. return;
  1044. }
  1045. /*
  1046. * page->mapping may change at any time. Get a consistent copy
  1047. * and use that for everything below
  1048. */
  1049. smp_mb();
  1050. mapping = page->mapping;
  1051. if (!mapping)
  1052. return;
  1053. inode = mapping->host;
  1054. offset = page_offset(page);
  1055. em_tree = &BTRFS_I(inode)->extent_tree;
  1056. spin_lock(&em_tree->lock);
  1057. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1058. spin_unlock(&em_tree->lock);
  1059. if (!em) {
  1060. __unplug_io_fn(bdi, page);
  1061. return;
  1062. }
  1063. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1064. free_extent_map(em);
  1065. __unplug_io_fn(bdi, page);
  1066. return;
  1067. }
  1068. offset = offset - em->start;
  1069. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1070. em->block_start + offset, page);
  1071. free_extent_map(em);
  1072. }
  1073. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1074. {
  1075. bdi_init(bdi);
  1076. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1077. bdi->state = 0;
  1078. bdi->capabilities = default_backing_dev_info.capabilities;
  1079. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1080. bdi->unplug_io_data = info;
  1081. bdi->congested_fn = btrfs_congested_fn;
  1082. bdi->congested_data = info;
  1083. return 0;
  1084. }
  1085. static int bio_ready_for_csum(struct bio *bio)
  1086. {
  1087. u64 length = 0;
  1088. u64 buf_len = 0;
  1089. u64 start = 0;
  1090. struct page *page;
  1091. struct extent_io_tree *io_tree = NULL;
  1092. struct btrfs_fs_info *info = NULL;
  1093. struct bio_vec *bvec;
  1094. int i;
  1095. int ret;
  1096. bio_for_each_segment(bvec, bio, i) {
  1097. page = bvec->bv_page;
  1098. if (page->private == EXTENT_PAGE_PRIVATE) {
  1099. length += bvec->bv_len;
  1100. continue;
  1101. }
  1102. if (!page->private) {
  1103. length += bvec->bv_len;
  1104. continue;
  1105. }
  1106. length = bvec->bv_len;
  1107. buf_len = page->private >> 2;
  1108. start = page_offset(page) + bvec->bv_offset;
  1109. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1110. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1111. }
  1112. /* are we fully contained in this bio? */
  1113. if (buf_len <= length)
  1114. return 1;
  1115. ret = extent_range_uptodate(io_tree, start + length,
  1116. start + buf_len - 1);
  1117. if (ret == 1)
  1118. return ret;
  1119. return ret;
  1120. }
  1121. /*
  1122. * called by the kthread helper functions to finally call the bio end_io
  1123. * functions. This is where read checksum verification actually happens
  1124. */
  1125. static void end_workqueue_fn(struct btrfs_work *work)
  1126. {
  1127. struct bio *bio;
  1128. struct end_io_wq *end_io_wq;
  1129. struct btrfs_fs_info *fs_info;
  1130. int error;
  1131. end_io_wq = container_of(work, struct end_io_wq, work);
  1132. bio = end_io_wq->bio;
  1133. fs_info = end_io_wq->info;
  1134. /* metadata bios are special because the whole tree block must
  1135. * be checksummed at once. This makes sure the entire block is in
  1136. * ram and up to date before trying to verify things. For
  1137. * blocksize <= pagesize, it is basically a noop
  1138. */
  1139. if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
  1140. btrfs_queue_worker(&fs_info->endio_workers,
  1141. &end_io_wq->work);
  1142. return;
  1143. }
  1144. error = end_io_wq->error;
  1145. bio->bi_private = end_io_wq->private;
  1146. bio->bi_end_io = end_io_wq->end_io;
  1147. kfree(end_io_wq);
  1148. bio_endio(bio, error);
  1149. }
  1150. static int cleaner_kthread(void *arg)
  1151. {
  1152. struct btrfs_root *root = arg;
  1153. do {
  1154. smp_mb();
  1155. if (root->fs_info->closing)
  1156. break;
  1157. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1158. mutex_lock(&root->fs_info->cleaner_mutex);
  1159. btrfs_clean_old_snapshots(root);
  1160. mutex_unlock(&root->fs_info->cleaner_mutex);
  1161. if (freezing(current)) {
  1162. refrigerator();
  1163. } else {
  1164. smp_mb();
  1165. if (root->fs_info->closing)
  1166. break;
  1167. set_current_state(TASK_INTERRUPTIBLE);
  1168. schedule();
  1169. __set_current_state(TASK_RUNNING);
  1170. }
  1171. } while (!kthread_should_stop());
  1172. return 0;
  1173. }
  1174. static int transaction_kthread(void *arg)
  1175. {
  1176. struct btrfs_root *root = arg;
  1177. struct btrfs_trans_handle *trans;
  1178. struct btrfs_transaction *cur;
  1179. unsigned long now;
  1180. unsigned long delay;
  1181. int ret;
  1182. do {
  1183. smp_mb();
  1184. if (root->fs_info->closing)
  1185. break;
  1186. delay = HZ * 30;
  1187. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1188. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1189. if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
  1190. printk("btrfs: total reference cache size %Lu\n",
  1191. root->fs_info->total_ref_cache_size);
  1192. }
  1193. mutex_lock(&root->fs_info->trans_mutex);
  1194. cur = root->fs_info->running_transaction;
  1195. if (!cur) {
  1196. mutex_unlock(&root->fs_info->trans_mutex);
  1197. goto sleep;
  1198. }
  1199. now = get_seconds();
  1200. if (now < cur->start_time || now - cur->start_time < 30) {
  1201. mutex_unlock(&root->fs_info->trans_mutex);
  1202. delay = HZ * 5;
  1203. goto sleep;
  1204. }
  1205. mutex_unlock(&root->fs_info->trans_mutex);
  1206. trans = btrfs_start_transaction(root, 1);
  1207. ret = btrfs_commit_transaction(trans, root);
  1208. sleep:
  1209. wake_up_process(root->fs_info->cleaner_kthread);
  1210. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1211. if (freezing(current)) {
  1212. refrigerator();
  1213. } else {
  1214. if (root->fs_info->closing)
  1215. break;
  1216. set_current_state(TASK_INTERRUPTIBLE);
  1217. schedule_timeout(delay);
  1218. __set_current_state(TASK_RUNNING);
  1219. }
  1220. } while (!kthread_should_stop());
  1221. return 0;
  1222. }
  1223. struct btrfs_root *open_ctree(struct super_block *sb,
  1224. struct btrfs_fs_devices *fs_devices,
  1225. char *options)
  1226. {
  1227. u32 sectorsize;
  1228. u32 nodesize;
  1229. u32 leafsize;
  1230. u32 blocksize;
  1231. u32 stripesize;
  1232. u64 generation;
  1233. struct buffer_head *bh;
  1234. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1235. GFP_NOFS);
  1236. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1237. GFP_NOFS);
  1238. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1239. GFP_NOFS);
  1240. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1241. GFP_NOFS);
  1242. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1243. GFP_NOFS);
  1244. struct btrfs_root *log_tree_root;
  1245. int ret;
  1246. int err = -EINVAL;
  1247. struct btrfs_super_block *disk_super;
  1248. if (!extent_root || !tree_root || !fs_info ||
  1249. !chunk_root || !dev_root) {
  1250. err = -ENOMEM;
  1251. goto fail;
  1252. }
  1253. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1254. INIT_LIST_HEAD(&fs_info->trans_list);
  1255. INIT_LIST_HEAD(&fs_info->dead_roots);
  1256. INIT_LIST_HEAD(&fs_info->hashers);
  1257. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1258. spin_lock_init(&fs_info->hash_lock);
  1259. spin_lock_init(&fs_info->delalloc_lock);
  1260. spin_lock_init(&fs_info->new_trans_lock);
  1261. spin_lock_init(&fs_info->ref_cache_lock);
  1262. init_completion(&fs_info->kobj_unregister);
  1263. fs_info->tree_root = tree_root;
  1264. fs_info->extent_root = extent_root;
  1265. fs_info->chunk_root = chunk_root;
  1266. fs_info->dev_root = dev_root;
  1267. fs_info->fs_devices = fs_devices;
  1268. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1269. INIT_LIST_HEAD(&fs_info->space_info);
  1270. btrfs_mapping_init(&fs_info->mapping_tree);
  1271. atomic_set(&fs_info->nr_async_submits, 0);
  1272. atomic_set(&fs_info->async_submit_draining, 0);
  1273. atomic_set(&fs_info->nr_async_bios, 0);
  1274. atomic_set(&fs_info->throttles, 0);
  1275. atomic_set(&fs_info->throttle_gen, 0);
  1276. fs_info->sb = sb;
  1277. fs_info->max_extent = (u64)-1;
  1278. fs_info->max_inline = 8192 * 1024;
  1279. setup_bdi(fs_info, &fs_info->bdi);
  1280. fs_info->btree_inode = new_inode(sb);
  1281. fs_info->btree_inode->i_ino = 1;
  1282. fs_info->btree_inode->i_nlink = 1;
  1283. fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
  1284. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1285. spin_lock_init(&fs_info->ordered_extent_lock);
  1286. sb->s_blocksize = 4096;
  1287. sb->s_blocksize_bits = blksize_bits(4096);
  1288. /*
  1289. * we set the i_size on the btree inode to the max possible int.
  1290. * the real end of the address space is determined by all of
  1291. * the devices in the system
  1292. */
  1293. fs_info->btree_inode->i_size = OFFSET_MAX;
  1294. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1295. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1296. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1297. fs_info->btree_inode->i_mapping,
  1298. GFP_NOFS);
  1299. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1300. GFP_NOFS);
  1301. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1302. spin_lock_init(&fs_info->block_group_cache_lock);
  1303. fs_info->block_group_cache_tree.rb_node = NULL;
  1304. extent_io_tree_init(&fs_info->pinned_extents,
  1305. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1306. extent_io_tree_init(&fs_info->pending_del,
  1307. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1308. extent_io_tree_init(&fs_info->extent_ins,
  1309. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1310. fs_info->do_barriers = 1;
  1311. INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
  1312. btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
  1313. btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
  1314. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1315. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1316. sizeof(struct btrfs_key));
  1317. insert_inode_hash(fs_info->btree_inode);
  1318. mutex_init(&fs_info->trans_mutex);
  1319. mutex_init(&fs_info->tree_log_mutex);
  1320. mutex_init(&fs_info->drop_mutex);
  1321. mutex_init(&fs_info->extent_ins_mutex);
  1322. mutex_init(&fs_info->pinned_mutex);
  1323. mutex_init(&fs_info->chunk_mutex);
  1324. mutex_init(&fs_info->transaction_kthread_mutex);
  1325. mutex_init(&fs_info->cleaner_mutex);
  1326. mutex_init(&fs_info->volume_mutex);
  1327. mutex_init(&fs_info->tree_reloc_mutex);
  1328. init_waitqueue_head(&fs_info->transaction_throttle);
  1329. init_waitqueue_head(&fs_info->transaction_wait);
  1330. init_waitqueue_head(&fs_info->async_submit_wait);
  1331. init_waitqueue_head(&fs_info->tree_log_wait);
  1332. atomic_set(&fs_info->tree_log_commit, 0);
  1333. atomic_set(&fs_info->tree_log_writers, 0);
  1334. fs_info->tree_log_transid = 0;
  1335. #if 0
  1336. ret = add_hasher(fs_info, "crc32c");
  1337. if (ret) {
  1338. printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
  1339. err = -ENOMEM;
  1340. goto fail_iput;
  1341. }
  1342. #endif
  1343. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1344. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1345. bh = __bread(fs_devices->latest_bdev,
  1346. BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
  1347. if (!bh)
  1348. goto fail_iput;
  1349. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1350. brelse(bh);
  1351. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1352. disk_super = &fs_info->super_copy;
  1353. if (!btrfs_super_root(disk_super))
  1354. goto fail_sb_buffer;
  1355. err = btrfs_parse_options(tree_root, options);
  1356. if (err)
  1357. goto fail_sb_buffer;
  1358. /*
  1359. * we need to start all the end_io workers up front because the
  1360. * queue work function gets called at interrupt time, and so it
  1361. * cannot dynamically grow.
  1362. */
  1363. btrfs_init_workers(&fs_info->workers, "worker",
  1364. fs_info->thread_pool_size);
  1365. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1366. min_t(u64, fs_devices->num_devices,
  1367. fs_info->thread_pool_size));
  1368. /* a higher idle thresh on the submit workers makes it much more
  1369. * likely that bios will be send down in a sane order to the
  1370. * devices
  1371. */
  1372. fs_info->submit_workers.idle_thresh = 64;
  1373. /* fs_info->workers is responsible for checksumming file data
  1374. * blocks and metadata. Using a larger idle thresh allows each
  1375. * worker thread to operate on things in roughly the order they
  1376. * were sent by the writeback daemons, improving overall locality
  1377. * of the IO going down the pipe.
  1378. */
  1379. fs_info->workers.idle_thresh = 8;
  1380. fs_info->workers.ordered = 1;
  1381. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1382. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1383. fs_info->thread_pool_size);
  1384. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1385. fs_info->thread_pool_size);
  1386. /*
  1387. * endios are largely parallel and should have a very
  1388. * low idle thresh
  1389. */
  1390. fs_info->endio_workers.idle_thresh = 4;
  1391. fs_info->endio_write_workers.idle_thresh = 64;
  1392. btrfs_start_workers(&fs_info->workers, 1);
  1393. btrfs_start_workers(&fs_info->submit_workers, 1);
  1394. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1395. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1396. btrfs_start_workers(&fs_info->endio_write_workers,
  1397. fs_info->thread_pool_size);
  1398. err = -EINVAL;
  1399. if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
  1400. printk("Btrfs: wanted %llu devices, but found %llu\n",
  1401. (unsigned long long)btrfs_super_num_devices(disk_super),
  1402. (unsigned long long)fs_devices->open_devices);
  1403. if (btrfs_test_opt(tree_root, DEGRADED))
  1404. printk("continuing in degraded mode\n");
  1405. else {
  1406. goto fail_sb_buffer;
  1407. }
  1408. }
  1409. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1410. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1411. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1412. nodesize = btrfs_super_nodesize(disk_super);
  1413. leafsize = btrfs_super_leafsize(disk_super);
  1414. sectorsize = btrfs_super_sectorsize(disk_super);
  1415. stripesize = btrfs_super_stripesize(disk_super);
  1416. tree_root->nodesize = nodesize;
  1417. tree_root->leafsize = leafsize;
  1418. tree_root->sectorsize = sectorsize;
  1419. tree_root->stripesize = stripesize;
  1420. sb->s_blocksize = sectorsize;
  1421. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1422. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1423. sizeof(disk_super->magic))) {
  1424. printk("btrfs: valid FS not found on %s\n", sb->s_id);
  1425. goto fail_sb_buffer;
  1426. }
  1427. mutex_lock(&fs_info->chunk_mutex);
  1428. ret = btrfs_read_sys_array(tree_root);
  1429. mutex_unlock(&fs_info->chunk_mutex);
  1430. if (ret) {
  1431. printk("btrfs: failed to read the system array on %s\n",
  1432. sb->s_id);
  1433. goto fail_sys_array;
  1434. }
  1435. blocksize = btrfs_level_size(tree_root,
  1436. btrfs_super_chunk_root_level(disk_super));
  1437. generation = btrfs_super_chunk_root_generation(disk_super);
  1438. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1439. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1440. chunk_root->node = read_tree_block(chunk_root,
  1441. btrfs_super_chunk_root(disk_super),
  1442. blocksize, generation);
  1443. BUG_ON(!chunk_root->node);
  1444. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1445. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1446. BTRFS_UUID_SIZE);
  1447. mutex_lock(&fs_info->chunk_mutex);
  1448. ret = btrfs_read_chunk_tree(chunk_root);
  1449. mutex_unlock(&fs_info->chunk_mutex);
  1450. BUG_ON(ret);
  1451. btrfs_close_extra_devices(fs_devices);
  1452. blocksize = btrfs_level_size(tree_root,
  1453. btrfs_super_root_level(disk_super));
  1454. generation = btrfs_super_generation(disk_super);
  1455. tree_root->node = read_tree_block(tree_root,
  1456. btrfs_super_root(disk_super),
  1457. blocksize, generation);
  1458. if (!tree_root->node)
  1459. goto fail_sb_buffer;
  1460. ret = find_and_setup_root(tree_root, fs_info,
  1461. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1462. if (ret)
  1463. goto fail_tree_root;
  1464. extent_root->track_dirty = 1;
  1465. ret = find_and_setup_root(tree_root, fs_info,
  1466. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1467. dev_root->track_dirty = 1;
  1468. if (ret)
  1469. goto fail_extent_root;
  1470. btrfs_read_block_groups(extent_root);
  1471. fs_info->generation = btrfs_super_generation(disk_super) + 1;
  1472. fs_info->data_alloc_profile = (u64)-1;
  1473. fs_info->metadata_alloc_profile = (u64)-1;
  1474. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1475. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1476. "btrfs-cleaner");
  1477. if (!fs_info->cleaner_kthread)
  1478. goto fail_extent_root;
  1479. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1480. tree_root,
  1481. "btrfs-transaction");
  1482. if (!fs_info->transaction_kthread)
  1483. goto fail_cleaner;
  1484. if (btrfs_super_log_root(disk_super) != 0) {
  1485. u32 blocksize;
  1486. u64 bytenr = btrfs_super_log_root(disk_super);
  1487. blocksize =
  1488. btrfs_level_size(tree_root,
  1489. btrfs_super_log_root_level(disk_super));
  1490. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1491. GFP_NOFS);
  1492. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1493. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1494. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1495. blocksize,
  1496. generation + 1);
  1497. ret = btrfs_recover_log_trees(log_tree_root);
  1498. BUG_ON(ret);
  1499. }
  1500. fs_info->last_trans_committed = btrfs_super_generation(disk_super);
  1501. ret = btrfs_cleanup_reloc_trees(tree_root);
  1502. BUG_ON(ret);
  1503. return tree_root;
  1504. fail_cleaner:
  1505. kthread_stop(fs_info->cleaner_kthread);
  1506. fail_extent_root:
  1507. free_extent_buffer(extent_root->node);
  1508. fail_tree_root:
  1509. free_extent_buffer(tree_root->node);
  1510. fail_sys_array:
  1511. fail_sb_buffer:
  1512. btrfs_stop_workers(&fs_info->fixup_workers);
  1513. btrfs_stop_workers(&fs_info->workers);
  1514. btrfs_stop_workers(&fs_info->endio_workers);
  1515. btrfs_stop_workers(&fs_info->endio_write_workers);
  1516. btrfs_stop_workers(&fs_info->submit_workers);
  1517. fail_iput:
  1518. iput(fs_info->btree_inode);
  1519. fail:
  1520. btrfs_close_devices(fs_info->fs_devices);
  1521. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1522. kfree(extent_root);
  1523. kfree(tree_root);
  1524. bdi_destroy(&fs_info->bdi);
  1525. kfree(fs_info);
  1526. kfree(chunk_root);
  1527. kfree(dev_root);
  1528. return ERR_PTR(err);
  1529. }
  1530. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1531. {
  1532. char b[BDEVNAME_SIZE];
  1533. if (uptodate) {
  1534. set_buffer_uptodate(bh);
  1535. } else {
  1536. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1537. printk(KERN_WARNING "lost page write due to "
  1538. "I/O error on %s\n",
  1539. bdevname(bh->b_bdev, b));
  1540. }
  1541. /* note, we dont' set_buffer_write_io_error because we have
  1542. * our own ways of dealing with the IO errors
  1543. */
  1544. clear_buffer_uptodate(bh);
  1545. }
  1546. unlock_buffer(bh);
  1547. put_bh(bh);
  1548. }
  1549. int write_all_supers(struct btrfs_root *root)
  1550. {
  1551. struct list_head *cur;
  1552. struct list_head *head = &root->fs_info->fs_devices->devices;
  1553. struct btrfs_device *dev;
  1554. struct btrfs_super_block *sb;
  1555. struct btrfs_dev_item *dev_item;
  1556. struct buffer_head *bh;
  1557. int ret;
  1558. int do_barriers;
  1559. int max_errors;
  1560. int total_errors = 0;
  1561. u32 crc;
  1562. u64 flags;
  1563. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1564. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1565. sb = &root->fs_info->super_for_commit;
  1566. dev_item = &sb->dev_item;
  1567. list_for_each(cur, head) {
  1568. dev = list_entry(cur, struct btrfs_device, dev_list);
  1569. if (!dev->bdev) {
  1570. total_errors++;
  1571. continue;
  1572. }
  1573. if (!dev->in_fs_metadata)
  1574. continue;
  1575. btrfs_set_stack_device_type(dev_item, dev->type);
  1576. btrfs_set_stack_device_id(dev_item, dev->devid);
  1577. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1578. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1579. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1580. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1581. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1582. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1583. flags = btrfs_super_flags(sb);
  1584. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1585. crc = ~(u32)0;
  1586. crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
  1587. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  1588. btrfs_csum_final(crc, sb->csum);
  1589. bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
  1590. BTRFS_SUPER_INFO_SIZE);
  1591. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1592. dev->pending_io = bh;
  1593. get_bh(bh);
  1594. set_buffer_uptodate(bh);
  1595. lock_buffer(bh);
  1596. bh->b_end_io = btrfs_end_buffer_write_sync;
  1597. if (do_barriers && dev->barriers) {
  1598. ret = submit_bh(WRITE_BARRIER, bh);
  1599. if (ret == -EOPNOTSUPP) {
  1600. printk("btrfs: disabling barriers on dev %s\n",
  1601. dev->name);
  1602. set_buffer_uptodate(bh);
  1603. dev->barriers = 0;
  1604. get_bh(bh);
  1605. lock_buffer(bh);
  1606. ret = submit_bh(WRITE, bh);
  1607. }
  1608. } else {
  1609. ret = submit_bh(WRITE, bh);
  1610. }
  1611. if (ret)
  1612. total_errors++;
  1613. }
  1614. if (total_errors > max_errors) {
  1615. printk("btrfs: %d errors while writing supers\n", total_errors);
  1616. BUG();
  1617. }
  1618. total_errors = 0;
  1619. list_for_each(cur, head) {
  1620. dev = list_entry(cur, struct btrfs_device, dev_list);
  1621. if (!dev->bdev)
  1622. continue;
  1623. if (!dev->in_fs_metadata)
  1624. continue;
  1625. BUG_ON(!dev->pending_io);
  1626. bh = dev->pending_io;
  1627. wait_on_buffer(bh);
  1628. if (!buffer_uptodate(dev->pending_io)) {
  1629. if (do_barriers && dev->barriers) {
  1630. printk("btrfs: disabling barriers on dev %s\n",
  1631. dev->name);
  1632. set_buffer_uptodate(bh);
  1633. get_bh(bh);
  1634. lock_buffer(bh);
  1635. dev->barriers = 0;
  1636. ret = submit_bh(WRITE, bh);
  1637. BUG_ON(ret);
  1638. wait_on_buffer(bh);
  1639. if (!buffer_uptodate(bh))
  1640. total_errors++;
  1641. } else {
  1642. total_errors++;
  1643. }
  1644. }
  1645. dev->pending_io = NULL;
  1646. brelse(bh);
  1647. }
  1648. if (total_errors > max_errors) {
  1649. printk("btrfs: %d errors while writing supers\n", total_errors);
  1650. BUG();
  1651. }
  1652. return 0;
  1653. }
  1654. int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
  1655. *root)
  1656. {
  1657. int ret;
  1658. ret = write_all_supers(root);
  1659. return ret;
  1660. }
  1661. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1662. {
  1663. radix_tree_delete(&fs_info->fs_roots_radix,
  1664. (unsigned long)root->root_key.objectid);
  1665. if (root->in_sysfs)
  1666. btrfs_sysfs_del_root(root);
  1667. if (root->inode)
  1668. iput(root->inode);
  1669. if (root->node)
  1670. free_extent_buffer(root->node);
  1671. if (root->commit_root)
  1672. free_extent_buffer(root->commit_root);
  1673. if (root->name)
  1674. kfree(root->name);
  1675. kfree(root);
  1676. return 0;
  1677. }
  1678. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1679. {
  1680. int ret;
  1681. struct btrfs_root *gang[8];
  1682. int i;
  1683. while(1) {
  1684. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1685. (void **)gang, 0,
  1686. ARRAY_SIZE(gang));
  1687. if (!ret)
  1688. break;
  1689. for (i = 0; i < ret; i++)
  1690. btrfs_free_fs_root(fs_info, gang[i]);
  1691. }
  1692. return 0;
  1693. }
  1694. int close_ctree(struct btrfs_root *root)
  1695. {
  1696. int ret;
  1697. struct btrfs_trans_handle *trans;
  1698. struct btrfs_fs_info *fs_info = root->fs_info;
  1699. fs_info->closing = 1;
  1700. smp_mb();
  1701. kthread_stop(root->fs_info->transaction_kthread);
  1702. kthread_stop(root->fs_info->cleaner_kthread);
  1703. btrfs_clean_old_snapshots(root);
  1704. trans = btrfs_start_transaction(root, 1);
  1705. ret = btrfs_commit_transaction(trans, root);
  1706. /* run commit again to drop the original snapshot */
  1707. trans = btrfs_start_transaction(root, 1);
  1708. btrfs_commit_transaction(trans, root);
  1709. ret = btrfs_write_and_wait_transaction(NULL, root);
  1710. BUG_ON(ret);
  1711. write_ctree_super(NULL, root);
  1712. if (fs_info->delalloc_bytes) {
  1713. printk("btrfs: at unmount delalloc count %Lu\n",
  1714. fs_info->delalloc_bytes);
  1715. }
  1716. if (fs_info->total_ref_cache_size) {
  1717. printk("btrfs: at umount reference cache size %Lu\n",
  1718. fs_info->total_ref_cache_size);
  1719. }
  1720. if (fs_info->extent_root->node)
  1721. free_extent_buffer(fs_info->extent_root->node);
  1722. if (fs_info->tree_root->node)
  1723. free_extent_buffer(fs_info->tree_root->node);
  1724. if (root->fs_info->chunk_root->node);
  1725. free_extent_buffer(root->fs_info->chunk_root->node);
  1726. if (root->fs_info->dev_root->node);
  1727. free_extent_buffer(root->fs_info->dev_root->node);
  1728. btrfs_free_block_groups(root->fs_info);
  1729. fs_info->closing = 2;
  1730. del_fs_roots(fs_info);
  1731. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1732. truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
  1733. btrfs_stop_workers(&fs_info->fixup_workers);
  1734. btrfs_stop_workers(&fs_info->workers);
  1735. btrfs_stop_workers(&fs_info->endio_workers);
  1736. btrfs_stop_workers(&fs_info->endio_write_workers);
  1737. btrfs_stop_workers(&fs_info->submit_workers);
  1738. iput(fs_info->btree_inode);
  1739. #if 0
  1740. while(!list_empty(&fs_info->hashers)) {
  1741. struct btrfs_hasher *hasher;
  1742. hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
  1743. hashers);
  1744. list_del(&hasher->hashers);
  1745. crypto_free_hash(&fs_info->hash_tfm);
  1746. kfree(hasher);
  1747. }
  1748. #endif
  1749. btrfs_close_devices(fs_info->fs_devices);
  1750. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1751. bdi_destroy(&fs_info->bdi);
  1752. kfree(fs_info->extent_root);
  1753. kfree(fs_info->tree_root);
  1754. kfree(fs_info->chunk_root);
  1755. kfree(fs_info->dev_root);
  1756. return 0;
  1757. }
  1758. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  1759. {
  1760. int ret;
  1761. struct inode *btree_inode = buf->first_page->mapping->host;
  1762. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  1763. if (!ret)
  1764. return ret;
  1765. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  1766. parent_transid);
  1767. return !ret;
  1768. }
  1769. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  1770. {
  1771. struct inode *btree_inode = buf->first_page->mapping->host;
  1772. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  1773. buf);
  1774. }
  1775. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  1776. {
  1777. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1778. u64 transid = btrfs_header_generation(buf);
  1779. struct inode *btree_inode = root->fs_info->btree_inode;
  1780. WARN_ON(!btrfs_tree_locked(buf));
  1781. if (transid != root->fs_info->generation) {
  1782. printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
  1783. (unsigned long long)buf->start,
  1784. transid, root->fs_info->generation);
  1785. WARN_ON(1);
  1786. }
  1787. set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
  1788. }
  1789. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  1790. {
  1791. /*
  1792. * looks as though older kernels can get into trouble with
  1793. * this code, they end up stuck in balance_dirty_pages forever
  1794. */
  1795. struct extent_io_tree *tree;
  1796. u64 num_dirty;
  1797. u64 start = 0;
  1798. unsigned long thresh = 96 * 1024 * 1024;
  1799. tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  1800. if (current_is_pdflush() || current->flags & PF_MEMALLOC)
  1801. return;
  1802. num_dirty = count_range_bits(tree, &start, (u64)-1,
  1803. thresh, EXTENT_DIRTY);
  1804. if (num_dirty > thresh) {
  1805. balance_dirty_pages_ratelimited_nr(
  1806. root->fs_info->btree_inode->i_mapping, 1);
  1807. }
  1808. return;
  1809. }
  1810. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  1811. {
  1812. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  1813. int ret;
  1814. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1815. if (ret == 0) {
  1816. buf->flags |= EXTENT_UPTODATE;
  1817. }
  1818. return ret;
  1819. }
  1820. int btree_lock_page_hook(struct page *page)
  1821. {
  1822. struct inode *inode = page->mapping->host;
  1823. struct btrfs_root *root = BTRFS_I(inode)->root;
  1824. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  1825. struct extent_buffer *eb;
  1826. unsigned long len;
  1827. u64 bytenr = page_offset(page);
  1828. if (page->private == EXTENT_PAGE_PRIVATE)
  1829. goto out;
  1830. len = page->private >> 2;
  1831. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  1832. if (!eb)
  1833. goto out;
  1834. btrfs_tree_lock(eb);
  1835. spin_lock(&root->fs_info->hash_lock);
  1836. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  1837. spin_unlock(&root->fs_info->hash_lock);
  1838. btrfs_tree_unlock(eb);
  1839. free_extent_buffer(eb);
  1840. out:
  1841. lock_page(page);
  1842. return 0;
  1843. }
  1844. static struct extent_io_ops btree_extent_io_ops = {
  1845. .write_cache_pages_lock_hook = btree_lock_page_hook,
  1846. .readpage_end_io_hook = btree_readpage_end_io_hook,
  1847. .submit_bio_hook = btree_submit_bio_hook,
  1848. /* note we're sharing with inode.c for the merge bio hook */
  1849. .merge_bio_hook = btrfs_merge_bio_hook,
  1850. };