i915_debugfs.c 135 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/list_sort.h>
  30. #include "intel_drv.h"
  31. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  32. {
  33. return to_i915(node->minor->dev);
  34. }
  35. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  36. * allocated we need to hook into the minor for release. */
  37. static int
  38. drm_add_fake_info_node(struct drm_minor *minor,
  39. struct dentry *ent,
  40. const void *key)
  41. {
  42. struct drm_info_node *node;
  43. node = kmalloc(sizeof(*node), GFP_KERNEL);
  44. if (node == NULL) {
  45. debugfs_remove(ent);
  46. return -ENOMEM;
  47. }
  48. node->minor = minor;
  49. node->dent = ent;
  50. node->info_ent = (void *)key;
  51. mutex_lock(&minor->debugfs_lock);
  52. list_add(&node->list, &minor->debugfs_list);
  53. mutex_unlock(&minor->debugfs_lock);
  54. return 0;
  55. }
  56. static __always_inline void seq_print_param(struct seq_file *m,
  57. const char *name,
  58. const char *type,
  59. const void *x)
  60. {
  61. if (!__builtin_strcmp(type, "bool"))
  62. seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
  63. else if (!__builtin_strcmp(type, "int"))
  64. seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
  65. else if (!__builtin_strcmp(type, "unsigned int"))
  66. seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
  67. else
  68. BUILD_BUG();
  69. }
  70. static int i915_capabilities(struct seq_file *m, void *data)
  71. {
  72. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  73. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  74. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  75. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  76. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  77. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  78. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  79. #undef PRINT_FLAG
  80. kernel_param_lock(THIS_MODULE);
  81. #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
  82. I915_PARAMS_FOR_EACH(PRINT_PARAM);
  83. #undef PRINT_PARAM
  84. kernel_param_unlock(THIS_MODULE);
  85. return 0;
  86. }
  87. static char get_active_flag(struct drm_i915_gem_object *obj)
  88. {
  89. return i915_gem_object_is_active(obj) ? '*' : ' ';
  90. }
  91. static char get_pin_flag(struct drm_i915_gem_object *obj)
  92. {
  93. return obj->pin_display ? 'p' : ' ';
  94. }
  95. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  96. {
  97. switch (i915_gem_object_get_tiling(obj)) {
  98. default:
  99. case I915_TILING_NONE: return ' ';
  100. case I915_TILING_X: return 'X';
  101. case I915_TILING_Y: return 'Y';
  102. }
  103. }
  104. static char get_global_flag(struct drm_i915_gem_object *obj)
  105. {
  106. return !list_empty(&obj->userfault_link) ? 'g' : ' ';
  107. }
  108. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->mm.mapping ? 'M' : ' ';
  111. }
  112. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  113. {
  114. u64 size = 0;
  115. struct i915_vma *vma;
  116. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  117. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  118. size += vma->node.size;
  119. }
  120. return size;
  121. }
  122. static void
  123. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  124. {
  125. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  126. struct intel_engine_cs *engine;
  127. struct i915_vma *vma;
  128. unsigned int frontbuffer_bits;
  129. int pin_count = 0;
  130. lockdep_assert_held(&obj->base.dev->struct_mutex);
  131. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  132. &obj->base,
  133. get_active_flag(obj),
  134. get_pin_flag(obj),
  135. get_tiling_flag(obj),
  136. get_global_flag(obj),
  137. get_pin_mapped_flag(obj),
  138. obj->base.size / 1024,
  139. obj->base.read_domains,
  140. obj->base.write_domain,
  141. i915_cache_level_str(dev_priv, obj->cache_level),
  142. obj->mm.dirty ? " dirty" : "",
  143. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  144. if (obj->base.name)
  145. seq_printf(m, " (name: %d)", obj->base.name);
  146. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  147. if (i915_vma_is_pinned(vma))
  148. pin_count++;
  149. }
  150. seq_printf(m, " (pinned x %d)", pin_count);
  151. if (obj->pin_display)
  152. seq_printf(m, " (display)");
  153. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  154. if (!drm_mm_node_allocated(&vma->node))
  155. continue;
  156. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  157. i915_vma_is_ggtt(vma) ? "g" : "pp",
  158. vma->node.start, vma->node.size);
  159. if (i915_vma_is_ggtt(vma)) {
  160. switch (vma->ggtt_view.type) {
  161. case I915_GGTT_VIEW_NORMAL:
  162. seq_puts(m, ", normal");
  163. break;
  164. case I915_GGTT_VIEW_PARTIAL:
  165. seq_printf(m, ", partial [%08llx+%x]",
  166. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  167. vma->ggtt_view.partial.size << PAGE_SHIFT);
  168. break;
  169. case I915_GGTT_VIEW_ROTATED:
  170. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  171. vma->ggtt_view.rotated.plane[0].width,
  172. vma->ggtt_view.rotated.plane[0].height,
  173. vma->ggtt_view.rotated.plane[0].stride,
  174. vma->ggtt_view.rotated.plane[0].offset,
  175. vma->ggtt_view.rotated.plane[1].width,
  176. vma->ggtt_view.rotated.plane[1].height,
  177. vma->ggtt_view.rotated.plane[1].stride,
  178. vma->ggtt_view.rotated.plane[1].offset);
  179. break;
  180. default:
  181. MISSING_CASE(vma->ggtt_view.type);
  182. break;
  183. }
  184. }
  185. if (vma->fence)
  186. seq_printf(m, " , fence: %d%s",
  187. vma->fence->id,
  188. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  189. seq_puts(m, ")");
  190. }
  191. if (obj->stolen)
  192. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  193. engine = i915_gem_object_last_write_engine(obj);
  194. if (engine)
  195. seq_printf(m, " (%s)", engine->name);
  196. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  197. if (frontbuffer_bits)
  198. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  199. }
  200. static int obj_rank_by_stolen(void *priv,
  201. struct list_head *A, struct list_head *B)
  202. {
  203. struct drm_i915_gem_object *a =
  204. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  205. struct drm_i915_gem_object *b =
  206. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  207. if (a->stolen->start < b->stolen->start)
  208. return -1;
  209. if (a->stolen->start > b->stolen->start)
  210. return 1;
  211. return 0;
  212. }
  213. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  214. {
  215. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  216. struct drm_device *dev = &dev_priv->drm;
  217. struct drm_i915_gem_object *obj;
  218. u64 total_obj_size, total_gtt_size;
  219. LIST_HEAD(stolen);
  220. int count, ret;
  221. ret = mutex_lock_interruptible(&dev->struct_mutex);
  222. if (ret)
  223. return ret;
  224. total_obj_size = total_gtt_size = count = 0;
  225. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  226. if (obj->stolen == NULL)
  227. continue;
  228. list_add(&obj->obj_exec_link, &stolen);
  229. total_obj_size += obj->base.size;
  230. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  231. count++;
  232. }
  233. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  234. if (obj->stolen == NULL)
  235. continue;
  236. list_add(&obj->obj_exec_link, &stolen);
  237. total_obj_size += obj->base.size;
  238. count++;
  239. }
  240. list_sort(NULL, &stolen, obj_rank_by_stolen);
  241. seq_puts(m, "Stolen:\n");
  242. while (!list_empty(&stolen)) {
  243. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  244. seq_puts(m, " ");
  245. describe_obj(m, obj);
  246. seq_putc(m, '\n');
  247. list_del_init(&obj->obj_exec_link);
  248. }
  249. mutex_unlock(&dev->struct_mutex);
  250. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  251. count, total_obj_size, total_gtt_size);
  252. return 0;
  253. }
  254. struct file_stats {
  255. struct drm_i915_file_private *file_priv;
  256. unsigned long count;
  257. u64 total, unbound;
  258. u64 global, shared;
  259. u64 active, inactive;
  260. };
  261. static int per_file_stats(int id, void *ptr, void *data)
  262. {
  263. struct drm_i915_gem_object *obj = ptr;
  264. struct file_stats *stats = data;
  265. struct i915_vma *vma;
  266. stats->count++;
  267. stats->total += obj->base.size;
  268. if (!obj->bind_count)
  269. stats->unbound += obj->base.size;
  270. if (obj->base.name || obj->base.dma_buf)
  271. stats->shared += obj->base.size;
  272. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  273. if (!drm_mm_node_allocated(&vma->node))
  274. continue;
  275. if (i915_vma_is_ggtt(vma)) {
  276. stats->global += vma->node.size;
  277. } else {
  278. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  279. if (ppgtt->base.file != stats->file_priv)
  280. continue;
  281. }
  282. if (i915_vma_is_active(vma))
  283. stats->active += vma->node.size;
  284. else
  285. stats->inactive += vma->node.size;
  286. }
  287. return 0;
  288. }
  289. #define print_file_stats(m, name, stats) do { \
  290. if (stats.count) \
  291. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  292. name, \
  293. stats.count, \
  294. stats.total, \
  295. stats.active, \
  296. stats.inactive, \
  297. stats.global, \
  298. stats.shared, \
  299. stats.unbound); \
  300. } while (0)
  301. static void print_batch_pool_stats(struct seq_file *m,
  302. struct drm_i915_private *dev_priv)
  303. {
  304. struct drm_i915_gem_object *obj;
  305. struct file_stats stats;
  306. struct intel_engine_cs *engine;
  307. enum intel_engine_id id;
  308. int j;
  309. memset(&stats, 0, sizeof(stats));
  310. for_each_engine(engine, dev_priv, id) {
  311. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  312. list_for_each_entry(obj,
  313. &engine->batch_pool.cache_list[j],
  314. batch_pool_link)
  315. per_file_stats(0, obj, &stats);
  316. }
  317. }
  318. print_file_stats(m, "[k]batch pool", stats);
  319. }
  320. static int per_file_ctx_stats(int id, void *ptr, void *data)
  321. {
  322. struct i915_gem_context *ctx = ptr;
  323. int n;
  324. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  325. if (ctx->engine[n].state)
  326. per_file_stats(0, ctx->engine[n].state->obj, data);
  327. if (ctx->engine[n].ring)
  328. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  329. }
  330. return 0;
  331. }
  332. static void print_context_stats(struct seq_file *m,
  333. struct drm_i915_private *dev_priv)
  334. {
  335. struct drm_device *dev = &dev_priv->drm;
  336. struct file_stats stats;
  337. struct drm_file *file;
  338. memset(&stats, 0, sizeof(stats));
  339. mutex_lock(&dev->struct_mutex);
  340. if (dev_priv->kernel_context)
  341. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  342. list_for_each_entry(file, &dev->filelist, lhead) {
  343. struct drm_i915_file_private *fpriv = file->driver_priv;
  344. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  345. }
  346. mutex_unlock(&dev->struct_mutex);
  347. print_file_stats(m, "[k]contexts", stats);
  348. }
  349. static int i915_gem_object_info(struct seq_file *m, void *data)
  350. {
  351. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  352. struct drm_device *dev = &dev_priv->drm;
  353. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  354. u32 count, mapped_count, purgeable_count, dpy_count;
  355. u64 size, mapped_size, purgeable_size, dpy_size;
  356. struct drm_i915_gem_object *obj;
  357. struct drm_file *file;
  358. int ret;
  359. ret = mutex_lock_interruptible(&dev->struct_mutex);
  360. if (ret)
  361. return ret;
  362. seq_printf(m, "%u objects, %llu bytes\n",
  363. dev_priv->mm.object_count,
  364. dev_priv->mm.object_memory);
  365. size = count = 0;
  366. mapped_size = mapped_count = 0;
  367. purgeable_size = purgeable_count = 0;
  368. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
  369. size += obj->base.size;
  370. ++count;
  371. if (obj->mm.madv == I915_MADV_DONTNEED) {
  372. purgeable_size += obj->base.size;
  373. ++purgeable_count;
  374. }
  375. if (obj->mm.mapping) {
  376. mapped_count++;
  377. mapped_size += obj->base.size;
  378. }
  379. }
  380. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  381. size = count = dpy_size = dpy_count = 0;
  382. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  383. size += obj->base.size;
  384. ++count;
  385. if (obj->pin_display) {
  386. dpy_size += obj->base.size;
  387. ++dpy_count;
  388. }
  389. if (obj->mm.madv == I915_MADV_DONTNEED) {
  390. purgeable_size += obj->base.size;
  391. ++purgeable_count;
  392. }
  393. if (obj->mm.mapping) {
  394. mapped_count++;
  395. mapped_size += obj->base.size;
  396. }
  397. }
  398. seq_printf(m, "%u bound objects, %llu bytes\n",
  399. count, size);
  400. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  401. purgeable_count, purgeable_size);
  402. seq_printf(m, "%u mapped objects, %llu bytes\n",
  403. mapped_count, mapped_size);
  404. seq_printf(m, "%u display objects (pinned), %llu bytes\n",
  405. dpy_count, dpy_size);
  406. seq_printf(m, "%llu [%llu] gtt total\n",
  407. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  408. seq_putc(m, '\n');
  409. print_batch_pool_stats(m, dev_priv);
  410. mutex_unlock(&dev->struct_mutex);
  411. mutex_lock(&dev->filelist_mutex);
  412. print_context_stats(m, dev_priv);
  413. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  414. struct file_stats stats;
  415. struct drm_i915_file_private *file_priv = file->driver_priv;
  416. struct drm_i915_gem_request *request;
  417. struct task_struct *task;
  418. memset(&stats, 0, sizeof(stats));
  419. stats.file_priv = file->driver_priv;
  420. spin_lock(&file->table_lock);
  421. idr_for_each(&file->object_idr, per_file_stats, &stats);
  422. spin_unlock(&file->table_lock);
  423. /*
  424. * Although we have a valid reference on file->pid, that does
  425. * not guarantee that the task_struct who called get_pid() is
  426. * still alive (e.g. get_pid(current) => fork() => exit()).
  427. * Therefore, we need to protect this ->comm access using RCU.
  428. */
  429. mutex_lock(&dev->struct_mutex);
  430. request = list_first_entry_or_null(&file_priv->mm.request_list,
  431. struct drm_i915_gem_request,
  432. client_list);
  433. rcu_read_lock();
  434. task = pid_task(request && request->ctx->pid ?
  435. request->ctx->pid : file->pid,
  436. PIDTYPE_PID);
  437. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  438. rcu_read_unlock();
  439. mutex_unlock(&dev->struct_mutex);
  440. }
  441. mutex_unlock(&dev->filelist_mutex);
  442. return 0;
  443. }
  444. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  445. {
  446. struct drm_info_node *node = m->private;
  447. struct drm_i915_private *dev_priv = node_to_i915(node);
  448. struct drm_device *dev = &dev_priv->drm;
  449. bool show_pin_display_only = !!node->info_ent->data;
  450. struct drm_i915_gem_object *obj;
  451. u64 total_obj_size, total_gtt_size;
  452. int count, ret;
  453. ret = mutex_lock_interruptible(&dev->struct_mutex);
  454. if (ret)
  455. return ret;
  456. total_obj_size = total_gtt_size = count = 0;
  457. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
  458. if (show_pin_display_only && !obj->pin_display)
  459. continue;
  460. seq_puts(m, " ");
  461. describe_obj(m, obj);
  462. seq_putc(m, '\n');
  463. total_obj_size += obj->base.size;
  464. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  465. count++;
  466. }
  467. mutex_unlock(&dev->struct_mutex);
  468. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  469. count, total_obj_size, total_gtt_size);
  470. return 0;
  471. }
  472. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  473. {
  474. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  475. struct drm_device *dev = &dev_priv->drm;
  476. struct intel_crtc *crtc;
  477. int ret;
  478. ret = mutex_lock_interruptible(&dev->struct_mutex);
  479. if (ret)
  480. return ret;
  481. for_each_intel_crtc(dev, crtc) {
  482. const char pipe = pipe_name(crtc->pipe);
  483. const char plane = plane_name(crtc->plane);
  484. struct intel_flip_work *work;
  485. spin_lock_irq(&dev->event_lock);
  486. work = crtc->flip_work;
  487. if (work == NULL) {
  488. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  489. pipe, plane);
  490. } else {
  491. u32 pending;
  492. u32 addr;
  493. pending = atomic_read(&work->pending);
  494. if (pending) {
  495. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  496. pipe, plane);
  497. } else {
  498. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  499. pipe, plane);
  500. }
  501. if (work->flip_queued_req) {
  502. struct intel_engine_cs *engine = work->flip_queued_req->engine;
  503. seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
  504. engine->name,
  505. work->flip_queued_req->global_seqno,
  506. intel_engine_last_submit(engine),
  507. intel_engine_get_seqno(engine),
  508. i915_gem_request_completed(work->flip_queued_req));
  509. } else
  510. seq_printf(m, "Flip not associated with any ring\n");
  511. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  512. work->flip_queued_vblank,
  513. work->flip_ready_vblank,
  514. intel_crtc_get_vblank_counter(crtc));
  515. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  516. if (INTEL_GEN(dev_priv) >= 4)
  517. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  518. else
  519. addr = I915_READ(DSPADDR(crtc->plane));
  520. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  521. if (work->pending_flip_obj) {
  522. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  523. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  524. }
  525. }
  526. spin_unlock_irq(&dev->event_lock);
  527. }
  528. mutex_unlock(&dev->struct_mutex);
  529. return 0;
  530. }
  531. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  532. {
  533. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  534. struct drm_device *dev = &dev_priv->drm;
  535. struct drm_i915_gem_object *obj;
  536. struct intel_engine_cs *engine;
  537. enum intel_engine_id id;
  538. int total = 0;
  539. int ret, j;
  540. ret = mutex_lock_interruptible(&dev->struct_mutex);
  541. if (ret)
  542. return ret;
  543. for_each_engine(engine, dev_priv, id) {
  544. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  545. int count;
  546. count = 0;
  547. list_for_each_entry(obj,
  548. &engine->batch_pool.cache_list[j],
  549. batch_pool_link)
  550. count++;
  551. seq_printf(m, "%s cache[%d]: %d objects\n",
  552. engine->name, j, count);
  553. list_for_each_entry(obj,
  554. &engine->batch_pool.cache_list[j],
  555. batch_pool_link) {
  556. seq_puts(m, " ");
  557. describe_obj(m, obj);
  558. seq_putc(m, '\n');
  559. }
  560. total += count;
  561. }
  562. }
  563. seq_printf(m, "total: %d\n", total);
  564. mutex_unlock(&dev->struct_mutex);
  565. return 0;
  566. }
  567. static void print_request(struct seq_file *m,
  568. struct drm_i915_gem_request *rq,
  569. const char *prefix)
  570. {
  571. seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
  572. rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
  573. rq->priotree.priority,
  574. jiffies_to_msecs(jiffies - rq->emitted_jiffies),
  575. rq->timeline->common->name);
  576. }
  577. static int i915_gem_request_info(struct seq_file *m, void *data)
  578. {
  579. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  580. struct drm_device *dev = &dev_priv->drm;
  581. struct drm_i915_gem_request *req;
  582. struct intel_engine_cs *engine;
  583. enum intel_engine_id id;
  584. int ret, any;
  585. ret = mutex_lock_interruptible(&dev->struct_mutex);
  586. if (ret)
  587. return ret;
  588. any = 0;
  589. for_each_engine(engine, dev_priv, id) {
  590. int count;
  591. count = 0;
  592. list_for_each_entry(req, &engine->timeline->requests, link)
  593. count++;
  594. if (count == 0)
  595. continue;
  596. seq_printf(m, "%s requests: %d\n", engine->name, count);
  597. list_for_each_entry(req, &engine->timeline->requests, link)
  598. print_request(m, req, " ");
  599. any++;
  600. }
  601. mutex_unlock(&dev->struct_mutex);
  602. if (any == 0)
  603. seq_puts(m, "No requests\n");
  604. return 0;
  605. }
  606. static void i915_ring_seqno_info(struct seq_file *m,
  607. struct intel_engine_cs *engine)
  608. {
  609. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  610. struct rb_node *rb;
  611. seq_printf(m, "Current sequence (%s): %x\n",
  612. engine->name, intel_engine_get_seqno(engine));
  613. spin_lock_irq(&b->lock);
  614. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  615. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  616. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  617. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  618. }
  619. spin_unlock_irq(&b->lock);
  620. }
  621. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  622. {
  623. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  624. struct intel_engine_cs *engine;
  625. enum intel_engine_id id;
  626. for_each_engine(engine, dev_priv, id)
  627. i915_ring_seqno_info(m, engine);
  628. return 0;
  629. }
  630. static int i915_interrupt_info(struct seq_file *m, void *data)
  631. {
  632. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  633. struct intel_engine_cs *engine;
  634. enum intel_engine_id id;
  635. int i, pipe;
  636. intel_runtime_pm_get(dev_priv);
  637. if (IS_CHERRYVIEW(dev_priv)) {
  638. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  639. I915_READ(GEN8_MASTER_IRQ));
  640. seq_printf(m, "Display IER:\t%08x\n",
  641. I915_READ(VLV_IER));
  642. seq_printf(m, "Display IIR:\t%08x\n",
  643. I915_READ(VLV_IIR));
  644. seq_printf(m, "Display IIR_RW:\t%08x\n",
  645. I915_READ(VLV_IIR_RW));
  646. seq_printf(m, "Display IMR:\t%08x\n",
  647. I915_READ(VLV_IMR));
  648. for_each_pipe(dev_priv, pipe) {
  649. enum intel_display_power_domain power_domain;
  650. power_domain = POWER_DOMAIN_PIPE(pipe);
  651. if (!intel_display_power_get_if_enabled(dev_priv,
  652. power_domain)) {
  653. seq_printf(m, "Pipe %c power disabled\n",
  654. pipe_name(pipe));
  655. continue;
  656. }
  657. seq_printf(m, "Pipe %c stat:\t%08x\n",
  658. pipe_name(pipe),
  659. I915_READ(PIPESTAT(pipe)));
  660. intel_display_power_put(dev_priv, power_domain);
  661. }
  662. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  663. seq_printf(m, "Port hotplug:\t%08x\n",
  664. I915_READ(PORT_HOTPLUG_EN));
  665. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  666. I915_READ(VLV_DPFLIPSTAT));
  667. seq_printf(m, "DPINVGTT:\t%08x\n",
  668. I915_READ(DPINVGTT));
  669. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  670. for (i = 0; i < 4; i++) {
  671. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  672. i, I915_READ(GEN8_GT_IMR(i)));
  673. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  674. i, I915_READ(GEN8_GT_IIR(i)));
  675. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  676. i, I915_READ(GEN8_GT_IER(i)));
  677. }
  678. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  679. I915_READ(GEN8_PCU_IMR));
  680. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  681. I915_READ(GEN8_PCU_IIR));
  682. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  683. I915_READ(GEN8_PCU_IER));
  684. } else if (INTEL_GEN(dev_priv) >= 8) {
  685. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  686. I915_READ(GEN8_MASTER_IRQ));
  687. for (i = 0; i < 4; i++) {
  688. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  689. i, I915_READ(GEN8_GT_IMR(i)));
  690. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  691. i, I915_READ(GEN8_GT_IIR(i)));
  692. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  693. i, I915_READ(GEN8_GT_IER(i)));
  694. }
  695. for_each_pipe(dev_priv, pipe) {
  696. enum intel_display_power_domain power_domain;
  697. power_domain = POWER_DOMAIN_PIPE(pipe);
  698. if (!intel_display_power_get_if_enabled(dev_priv,
  699. power_domain)) {
  700. seq_printf(m, "Pipe %c power disabled\n",
  701. pipe_name(pipe));
  702. continue;
  703. }
  704. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  705. pipe_name(pipe),
  706. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  707. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  708. pipe_name(pipe),
  709. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  710. seq_printf(m, "Pipe %c IER:\t%08x\n",
  711. pipe_name(pipe),
  712. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  713. intel_display_power_put(dev_priv, power_domain);
  714. }
  715. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  716. I915_READ(GEN8_DE_PORT_IMR));
  717. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  718. I915_READ(GEN8_DE_PORT_IIR));
  719. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  720. I915_READ(GEN8_DE_PORT_IER));
  721. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  722. I915_READ(GEN8_DE_MISC_IMR));
  723. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  724. I915_READ(GEN8_DE_MISC_IIR));
  725. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  726. I915_READ(GEN8_DE_MISC_IER));
  727. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  728. I915_READ(GEN8_PCU_IMR));
  729. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  730. I915_READ(GEN8_PCU_IIR));
  731. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  732. I915_READ(GEN8_PCU_IER));
  733. } else if (IS_VALLEYVIEW(dev_priv)) {
  734. seq_printf(m, "Display IER:\t%08x\n",
  735. I915_READ(VLV_IER));
  736. seq_printf(m, "Display IIR:\t%08x\n",
  737. I915_READ(VLV_IIR));
  738. seq_printf(m, "Display IIR_RW:\t%08x\n",
  739. I915_READ(VLV_IIR_RW));
  740. seq_printf(m, "Display IMR:\t%08x\n",
  741. I915_READ(VLV_IMR));
  742. for_each_pipe(dev_priv, pipe)
  743. seq_printf(m, "Pipe %c stat:\t%08x\n",
  744. pipe_name(pipe),
  745. I915_READ(PIPESTAT(pipe)));
  746. seq_printf(m, "Master IER:\t%08x\n",
  747. I915_READ(VLV_MASTER_IER));
  748. seq_printf(m, "Render IER:\t%08x\n",
  749. I915_READ(GTIER));
  750. seq_printf(m, "Render IIR:\t%08x\n",
  751. I915_READ(GTIIR));
  752. seq_printf(m, "Render IMR:\t%08x\n",
  753. I915_READ(GTIMR));
  754. seq_printf(m, "PM IER:\t\t%08x\n",
  755. I915_READ(GEN6_PMIER));
  756. seq_printf(m, "PM IIR:\t\t%08x\n",
  757. I915_READ(GEN6_PMIIR));
  758. seq_printf(m, "PM IMR:\t\t%08x\n",
  759. I915_READ(GEN6_PMIMR));
  760. seq_printf(m, "Port hotplug:\t%08x\n",
  761. I915_READ(PORT_HOTPLUG_EN));
  762. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  763. I915_READ(VLV_DPFLIPSTAT));
  764. seq_printf(m, "DPINVGTT:\t%08x\n",
  765. I915_READ(DPINVGTT));
  766. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  767. seq_printf(m, "Interrupt enable: %08x\n",
  768. I915_READ(IER));
  769. seq_printf(m, "Interrupt identity: %08x\n",
  770. I915_READ(IIR));
  771. seq_printf(m, "Interrupt mask: %08x\n",
  772. I915_READ(IMR));
  773. for_each_pipe(dev_priv, pipe)
  774. seq_printf(m, "Pipe %c stat: %08x\n",
  775. pipe_name(pipe),
  776. I915_READ(PIPESTAT(pipe)));
  777. } else {
  778. seq_printf(m, "North Display Interrupt enable: %08x\n",
  779. I915_READ(DEIER));
  780. seq_printf(m, "North Display Interrupt identity: %08x\n",
  781. I915_READ(DEIIR));
  782. seq_printf(m, "North Display Interrupt mask: %08x\n",
  783. I915_READ(DEIMR));
  784. seq_printf(m, "South Display Interrupt enable: %08x\n",
  785. I915_READ(SDEIER));
  786. seq_printf(m, "South Display Interrupt identity: %08x\n",
  787. I915_READ(SDEIIR));
  788. seq_printf(m, "South Display Interrupt mask: %08x\n",
  789. I915_READ(SDEIMR));
  790. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  791. I915_READ(GTIER));
  792. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  793. I915_READ(GTIIR));
  794. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  795. I915_READ(GTIMR));
  796. }
  797. for_each_engine(engine, dev_priv, id) {
  798. if (INTEL_GEN(dev_priv) >= 6) {
  799. seq_printf(m,
  800. "Graphics Interrupt mask (%s): %08x\n",
  801. engine->name, I915_READ_IMR(engine));
  802. }
  803. i915_ring_seqno_info(m, engine);
  804. }
  805. intel_runtime_pm_put(dev_priv);
  806. return 0;
  807. }
  808. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  809. {
  810. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  811. struct drm_device *dev = &dev_priv->drm;
  812. int i, ret;
  813. ret = mutex_lock_interruptible(&dev->struct_mutex);
  814. if (ret)
  815. return ret;
  816. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  817. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  818. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  819. seq_printf(m, "Fence %d, pin count = %d, object = ",
  820. i, dev_priv->fence_regs[i].pin_count);
  821. if (!vma)
  822. seq_puts(m, "unused");
  823. else
  824. describe_obj(m, vma->obj);
  825. seq_putc(m, '\n');
  826. }
  827. mutex_unlock(&dev->struct_mutex);
  828. return 0;
  829. }
  830. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  831. static ssize_t
  832. i915_error_state_write(struct file *filp,
  833. const char __user *ubuf,
  834. size_t cnt,
  835. loff_t *ppos)
  836. {
  837. struct i915_error_state_file_priv *error_priv = filp->private_data;
  838. DRM_DEBUG_DRIVER("Resetting error state\n");
  839. i915_destroy_error_state(error_priv->i915);
  840. return cnt;
  841. }
  842. static int i915_error_state_open(struct inode *inode, struct file *file)
  843. {
  844. struct drm_i915_private *dev_priv = inode->i_private;
  845. struct i915_error_state_file_priv *error_priv;
  846. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  847. if (!error_priv)
  848. return -ENOMEM;
  849. error_priv->i915 = dev_priv;
  850. i915_error_state_get(&dev_priv->drm, error_priv);
  851. file->private_data = error_priv;
  852. return 0;
  853. }
  854. static int i915_error_state_release(struct inode *inode, struct file *file)
  855. {
  856. struct i915_error_state_file_priv *error_priv = file->private_data;
  857. i915_error_state_put(error_priv);
  858. kfree(error_priv);
  859. return 0;
  860. }
  861. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  862. size_t count, loff_t *pos)
  863. {
  864. struct i915_error_state_file_priv *error_priv = file->private_data;
  865. struct drm_i915_error_state_buf error_str;
  866. loff_t tmp_pos = 0;
  867. ssize_t ret_count = 0;
  868. int ret;
  869. ret = i915_error_state_buf_init(&error_str, error_priv->i915,
  870. count, *pos);
  871. if (ret)
  872. return ret;
  873. ret = i915_error_state_to_str(&error_str, error_priv);
  874. if (ret)
  875. goto out;
  876. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  877. error_str.buf,
  878. error_str.bytes);
  879. if (ret_count < 0)
  880. ret = ret_count;
  881. else
  882. *pos = error_str.start + ret_count;
  883. out:
  884. i915_error_state_buf_release(&error_str);
  885. return ret ?: ret_count;
  886. }
  887. static const struct file_operations i915_error_state_fops = {
  888. .owner = THIS_MODULE,
  889. .open = i915_error_state_open,
  890. .read = i915_error_state_read,
  891. .write = i915_error_state_write,
  892. .llseek = default_llseek,
  893. .release = i915_error_state_release,
  894. };
  895. #endif
  896. static int
  897. i915_next_seqno_get(void *data, u64 *val)
  898. {
  899. struct drm_i915_private *dev_priv = data;
  900. *val = 1 + atomic_read(&dev_priv->gt.global_timeline.seqno);
  901. return 0;
  902. }
  903. static int
  904. i915_next_seqno_set(void *data, u64 val)
  905. {
  906. struct drm_i915_private *dev_priv = data;
  907. struct drm_device *dev = &dev_priv->drm;
  908. int ret;
  909. ret = mutex_lock_interruptible(&dev->struct_mutex);
  910. if (ret)
  911. return ret;
  912. ret = i915_gem_set_global_seqno(dev, val);
  913. mutex_unlock(&dev->struct_mutex);
  914. return ret;
  915. }
  916. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  917. i915_next_seqno_get, i915_next_seqno_set,
  918. "0x%llx\n");
  919. static int i915_frequency_info(struct seq_file *m, void *unused)
  920. {
  921. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  922. struct drm_device *dev = &dev_priv->drm;
  923. int ret = 0;
  924. intel_runtime_pm_get(dev_priv);
  925. if (IS_GEN5(dev_priv)) {
  926. u16 rgvswctl = I915_READ16(MEMSWCTL);
  927. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  928. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  929. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  930. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  931. MEMSTAT_VID_SHIFT);
  932. seq_printf(m, "Current P-state: %d\n",
  933. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  934. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  935. u32 freq_sts;
  936. mutex_lock(&dev_priv->rps.hw_lock);
  937. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  938. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  939. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  940. seq_printf(m, "actual GPU freq: %d MHz\n",
  941. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  942. seq_printf(m, "current GPU freq: %d MHz\n",
  943. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  944. seq_printf(m, "max GPU freq: %d MHz\n",
  945. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  946. seq_printf(m, "min GPU freq: %d MHz\n",
  947. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  948. seq_printf(m, "idle GPU freq: %d MHz\n",
  949. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  950. seq_printf(m,
  951. "efficient (RPe) frequency: %d MHz\n",
  952. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  953. mutex_unlock(&dev_priv->rps.hw_lock);
  954. } else if (INTEL_GEN(dev_priv) >= 6) {
  955. u32 rp_state_limits;
  956. u32 gt_perf_status;
  957. u32 rp_state_cap;
  958. u32 rpmodectl, rpinclimit, rpdeclimit;
  959. u32 rpstat, cagf, reqf;
  960. u32 rpupei, rpcurup, rpprevup;
  961. u32 rpdownei, rpcurdown, rpprevdown;
  962. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  963. int max_freq;
  964. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  965. if (IS_GEN9_LP(dev_priv)) {
  966. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  967. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  968. } else {
  969. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  970. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  971. }
  972. /* RPSTAT1 is in the GT power well */
  973. ret = mutex_lock_interruptible(&dev->struct_mutex);
  974. if (ret)
  975. goto out;
  976. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  977. reqf = I915_READ(GEN6_RPNSWREQ);
  978. if (IS_GEN9(dev_priv))
  979. reqf >>= 23;
  980. else {
  981. reqf &= ~GEN6_TURBO_DISABLE;
  982. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  983. reqf >>= 24;
  984. else
  985. reqf >>= 25;
  986. }
  987. reqf = intel_gpu_freq(dev_priv, reqf);
  988. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  989. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  990. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  991. rpstat = I915_READ(GEN6_RPSTAT1);
  992. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  993. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  994. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  995. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  996. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  997. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  998. if (IS_GEN9(dev_priv))
  999. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1000. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  1001. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1002. else
  1003. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1004. cagf = intel_gpu_freq(dev_priv, cagf);
  1005. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1006. mutex_unlock(&dev->struct_mutex);
  1007. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  1008. pm_ier = I915_READ(GEN6_PMIER);
  1009. pm_imr = I915_READ(GEN6_PMIMR);
  1010. pm_isr = I915_READ(GEN6_PMISR);
  1011. pm_iir = I915_READ(GEN6_PMIIR);
  1012. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1013. } else {
  1014. pm_ier = I915_READ(GEN8_GT_IER(2));
  1015. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1016. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1017. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1018. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1019. }
  1020. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1021. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1022. seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
  1023. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1024. seq_printf(m, "Render p-state ratio: %d\n",
  1025. (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
  1026. seq_printf(m, "Render p-state VID: %d\n",
  1027. gt_perf_status & 0xff);
  1028. seq_printf(m, "Render p-state limit: %d\n",
  1029. rp_state_limits & 0xff);
  1030. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1031. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1032. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1033. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1034. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1035. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1036. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1037. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1038. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1039. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1040. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1041. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1042. seq_printf(m, "Up threshold: %d%%\n",
  1043. dev_priv->rps.up_threshold);
  1044. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1045. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1046. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1047. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1048. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1049. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1050. seq_printf(m, "Down threshold: %d%%\n",
  1051. dev_priv->rps.down_threshold);
  1052. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  1053. rp_state_cap >> 16) & 0xff;
  1054. max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1055. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1056. intel_gpu_freq(dev_priv, max_freq));
  1057. max_freq = (rp_state_cap & 0xff00) >> 8;
  1058. max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1059. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1060. intel_gpu_freq(dev_priv, max_freq));
  1061. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1062. rp_state_cap >> 0) & 0xff;
  1063. max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1064. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1065. intel_gpu_freq(dev_priv, max_freq));
  1066. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1067. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1068. seq_printf(m, "Current freq: %d MHz\n",
  1069. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1070. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1071. seq_printf(m, "Idle freq: %d MHz\n",
  1072. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1073. seq_printf(m, "Min freq: %d MHz\n",
  1074. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1075. seq_printf(m, "Boost freq: %d MHz\n",
  1076. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1077. seq_printf(m, "Max freq: %d MHz\n",
  1078. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1079. seq_printf(m,
  1080. "efficient (RPe) frequency: %d MHz\n",
  1081. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1082. } else {
  1083. seq_puts(m, "no P-state info available\n");
  1084. }
  1085. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1086. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1087. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1088. out:
  1089. intel_runtime_pm_put(dev_priv);
  1090. return ret;
  1091. }
  1092. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1093. struct seq_file *m,
  1094. struct intel_instdone *instdone)
  1095. {
  1096. int slice;
  1097. int subslice;
  1098. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1099. instdone->instdone);
  1100. if (INTEL_GEN(dev_priv) <= 3)
  1101. return;
  1102. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1103. instdone->slice_common);
  1104. if (INTEL_GEN(dev_priv) <= 6)
  1105. return;
  1106. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1107. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1108. slice, subslice, instdone->sampler[slice][subslice]);
  1109. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1110. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1111. slice, subslice, instdone->row[slice][subslice]);
  1112. }
  1113. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1114. {
  1115. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1116. struct intel_engine_cs *engine;
  1117. u64 acthd[I915_NUM_ENGINES];
  1118. u32 seqno[I915_NUM_ENGINES];
  1119. struct intel_instdone instdone;
  1120. enum intel_engine_id id;
  1121. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1122. seq_printf(m, "Wedged\n");
  1123. if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
  1124. seq_printf(m, "Reset in progress\n");
  1125. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1126. seq_printf(m, "Waiter holding struct mutex\n");
  1127. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1128. seq_printf(m, "struct_mutex blocked for reset\n");
  1129. if (!i915.enable_hangcheck) {
  1130. seq_printf(m, "Hangcheck disabled\n");
  1131. return 0;
  1132. }
  1133. intel_runtime_pm_get(dev_priv);
  1134. for_each_engine(engine, dev_priv, id) {
  1135. acthd[id] = intel_engine_get_active_head(engine);
  1136. seqno[id] = intel_engine_get_seqno(engine);
  1137. }
  1138. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1139. intel_runtime_pm_put(dev_priv);
  1140. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1141. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1142. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1143. jiffies));
  1144. } else
  1145. seq_printf(m, "Hangcheck inactive\n");
  1146. for_each_engine(engine, dev_priv, id) {
  1147. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1148. struct rb_node *rb;
  1149. seq_printf(m, "%s:\n", engine->name);
  1150. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1151. engine->hangcheck.seqno, seqno[id],
  1152. intel_engine_last_submit(engine));
  1153. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1154. yesno(intel_engine_has_waiter(engine)),
  1155. yesno(test_bit(engine->id,
  1156. &dev_priv->gpu_error.missed_irq_rings)),
  1157. yesno(engine->hangcheck.stalled));
  1158. spin_lock_irq(&b->lock);
  1159. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1160. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1161. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1162. w->tsk->comm, w->tsk->pid, w->seqno);
  1163. }
  1164. spin_unlock_irq(&b->lock);
  1165. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1166. (long long)engine->hangcheck.acthd,
  1167. (long long)acthd[id]);
  1168. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1169. hangcheck_action_to_str(engine->hangcheck.action),
  1170. engine->hangcheck.action,
  1171. jiffies_to_msecs(jiffies -
  1172. engine->hangcheck.action_timestamp));
  1173. if (engine->id == RCS) {
  1174. seq_puts(m, "\tinstdone read =\n");
  1175. i915_instdone_info(dev_priv, m, &instdone);
  1176. seq_puts(m, "\tinstdone accu =\n");
  1177. i915_instdone_info(dev_priv, m,
  1178. &engine->hangcheck.instdone);
  1179. }
  1180. }
  1181. return 0;
  1182. }
  1183. static int ironlake_drpc_info(struct seq_file *m)
  1184. {
  1185. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1186. u32 rgvmodectl, rstdbyctl;
  1187. u16 crstandvid;
  1188. intel_runtime_pm_get(dev_priv);
  1189. rgvmodectl = I915_READ(MEMMODECTL);
  1190. rstdbyctl = I915_READ(RSTDBYCTL);
  1191. crstandvid = I915_READ16(CRSTANDVID);
  1192. intel_runtime_pm_put(dev_priv);
  1193. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1194. seq_printf(m, "Boost freq: %d\n",
  1195. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1196. MEMMODE_BOOST_FREQ_SHIFT);
  1197. seq_printf(m, "HW control enabled: %s\n",
  1198. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1199. seq_printf(m, "SW control enabled: %s\n",
  1200. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1201. seq_printf(m, "Gated voltage change: %s\n",
  1202. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1203. seq_printf(m, "Starting frequency: P%d\n",
  1204. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1205. seq_printf(m, "Max P-state: P%d\n",
  1206. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1207. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1208. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1209. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1210. seq_printf(m, "Render standby enabled: %s\n",
  1211. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1212. seq_puts(m, "Current RS state: ");
  1213. switch (rstdbyctl & RSX_STATUS_MASK) {
  1214. case RSX_STATUS_ON:
  1215. seq_puts(m, "on\n");
  1216. break;
  1217. case RSX_STATUS_RC1:
  1218. seq_puts(m, "RC1\n");
  1219. break;
  1220. case RSX_STATUS_RC1E:
  1221. seq_puts(m, "RC1E\n");
  1222. break;
  1223. case RSX_STATUS_RS1:
  1224. seq_puts(m, "RS1\n");
  1225. break;
  1226. case RSX_STATUS_RS2:
  1227. seq_puts(m, "RS2 (RC6)\n");
  1228. break;
  1229. case RSX_STATUS_RS3:
  1230. seq_puts(m, "RC3 (RC6+)\n");
  1231. break;
  1232. default:
  1233. seq_puts(m, "unknown\n");
  1234. break;
  1235. }
  1236. return 0;
  1237. }
  1238. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1239. {
  1240. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1241. struct intel_uncore_forcewake_domain *fw_domain;
  1242. spin_lock_irq(&dev_priv->uncore.lock);
  1243. for_each_fw_domain(fw_domain, dev_priv) {
  1244. seq_printf(m, "%s.wake_count = %u\n",
  1245. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1246. fw_domain->wake_count);
  1247. }
  1248. spin_unlock_irq(&dev_priv->uncore.lock);
  1249. return 0;
  1250. }
  1251. static int vlv_drpc_info(struct seq_file *m)
  1252. {
  1253. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1254. u32 rpmodectl1, rcctl1, pw_status;
  1255. intel_runtime_pm_get(dev_priv);
  1256. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1257. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1258. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1259. intel_runtime_pm_put(dev_priv);
  1260. seq_printf(m, "Video Turbo Mode: %s\n",
  1261. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1262. seq_printf(m, "Turbo enabled: %s\n",
  1263. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1264. seq_printf(m, "HW control enabled: %s\n",
  1265. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1266. seq_printf(m, "SW control enabled: %s\n",
  1267. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1268. GEN6_RP_MEDIA_SW_MODE));
  1269. seq_printf(m, "RC6 Enabled: %s\n",
  1270. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1271. GEN6_RC_CTL_EI_MODE(1))));
  1272. seq_printf(m, "Render Power Well: %s\n",
  1273. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1274. seq_printf(m, "Media Power Well: %s\n",
  1275. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1276. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1277. I915_READ(VLV_GT_RENDER_RC6));
  1278. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1279. I915_READ(VLV_GT_MEDIA_RC6));
  1280. return i915_forcewake_domains(m, NULL);
  1281. }
  1282. static int gen6_drpc_info(struct seq_file *m)
  1283. {
  1284. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1285. struct drm_device *dev = &dev_priv->drm;
  1286. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1287. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1288. unsigned forcewake_count;
  1289. int count = 0, ret;
  1290. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1291. if (ret)
  1292. return ret;
  1293. intel_runtime_pm_get(dev_priv);
  1294. spin_lock_irq(&dev_priv->uncore.lock);
  1295. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1296. spin_unlock_irq(&dev_priv->uncore.lock);
  1297. if (forcewake_count) {
  1298. seq_puts(m, "RC information inaccurate because somebody "
  1299. "holds a forcewake reference \n");
  1300. } else {
  1301. /* NB: we cannot use forcewake, else we read the wrong values */
  1302. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1303. udelay(10);
  1304. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1305. }
  1306. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1307. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1308. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1309. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1310. if (INTEL_GEN(dev_priv) >= 9) {
  1311. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1312. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1313. }
  1314. mutex_unlock(&dev->struct_mutex);
  1315. mutex_lock(&dev_priv->rps.hw_lock);
  1316. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1317. mutex_unlock(&dev_priv->rps.hw_lock);
  1318. intel_runtime_pm_put(dev_priv);
  1319. seq_printf(m, "Video Turbo Mode: %s\n",
  1320. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1321. seq_printf(m, "HW control enabled: %s\n",
  1322. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1323. seq_printf(m, "SW control enabled: %s\n",
  1324. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1325. GEN6_RP_MEDIA_SW_MODE));
  1326. seq_printf(m, "RC1e Enabled: %s\n",
  1327. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1328. seq_printf(m, "RC6 Enabled: %s\n",
  1329. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1330. if (INTEL_GEN(dev_priv) >= 9) {
  1331. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1332. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1333. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1334. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1335. }
  1336. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1337. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1338. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1339. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1340. seq_puts(m, "Current RC state: ");
  1341. switch (gt_core_status & GEN6_RCn_MASK) {
  1342. case GEN6_RC0:
  1343. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1344. seq_puts(m, "Core Power Down\n");
  1345. else
  1346. seq_puts(m, "on\n");
  1347. break;
  1348. case GEN6_RC3:
  1349. seq_puts(m, "RC3\n");
  1350. break;
  1351. case GEN6_RC6:
  1352. seq_puts(m, "RC6\n");
  1353. break;
  1354. case GEN6_RC7:
  1355. seq_puts(m, "RC7\n");
  1356. break;
  1357. default:
  1358. seq_puts(m, "Unknown\n");
  1359. break;
  1360. }
  1361. seq_printf(m, "Core Power Down: %s\n",
  1362. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1363. if (INTEL_GEN(dev_priv) >= 9) {
  1364. seq_printf(m, "Render Power Well: %s\n",
  1365. (gen9_powergate_status &
  1366. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1367. seq_printf(m, "Media Power Well: %s\n",
  1368. (gen9_powergate_status &
  1369. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1370. }
  1371. /* Not exactly sure what this is */
  1372. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1373. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1374. seq_printf(m, "RC6 residency since boot: %u\n",
  1375. I915_READ(GEN6_GT_GFX_RC6));
  1376. seq_printf(m, "RC6+ residency since boot: %u\n",
  1377. I915_READ(GEN6_GT_GFX_RC6p));
  1378. seq_printf(m, "RC6++ residency since boot: %u\n",
  1379. I915_READ(GEN6_GT_GFX_RC6pp));
  1380. seq_printf(m, "RC6 voltage: %dmV\n",
  1381. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1382. seq_printf(m, "RC6+ voltage: %dmV\n",
  1383. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1384. seq_printf(m, "RC6++ voltage: %dmV\n",
  1385. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1386. return i915_forcewake_domains(m, NULL);
  1387. }
  1388. static int i915_drpc_info(struct seq_file *m, void *unused)
  1389. {
  1390. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1391. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1392. return vlv_drpc_info(m);
  1393. else if (INTEL_GEN(dev_priv) >= 6)
  1394. return gen6_drpc_info(m);
  1395. else
  1396. return ironlake_drpc_info(m);
  1397. }
  1398. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1399. {
  1400. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1401. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1402. dev_priv->fb_tracking.busy_bits);
  1403. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1404. dev_priv->fb_tracking.flip_bits);
  1405. return 0;
  1406. }
  1407. static int i915_fbc_status(struct seq_file *m, void *unused)
  1408. {
  1409. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1410. if (!HAS_FBC(dev_priv)) {
  1411. seq_puts(m, "FBC unsupported on this chipset\n");
  1412. return 0;
  1413. }
  1414. intel_runtime_pm_get(dev_priv);
  1415. mutex_lock(&dev_priv->fbc.lock);
  1416. if (intel_fbc_is_active(dev_priv))
  1417. seq_puts(m, "FBC enabled\n");
  1418. else
  1419. seq_printf(m, "FBC disabled: %s\n",
  1420. dev_priv->fbc.no_fbc_reason);
  1421. if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
  1422. uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
  1423. BDW_FBC_COMPRESSION_MASK :
  1424. IVB_FBC_COMPRESSION_MASK;
  1425. seq_printf(m, "Compressing: %s\n",
  1426. yesno(I915_READ(FBC_STATUS2) & mask));
  1427. }
  1428. mutex_unlock(&dev_priv->fbc.lock);
  1429. intel_runtime_pm_put(dev_priv);
  1430. return 0;
  1431. }
  1432. static int i915_fbc_fc_get(void *data, u64 *val)
  1433. {
  1434. struct drm_i915_private *dev_priv = data;
  1435. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1436. return -ENODEV;
  1437. *val = dev_priv->fbc.false_color;
  1438. return 0;
  1439. }
  1440. static int i915_fbc_fc_set(void *data, u64 val)
  1441. {
  1442. struct drm_i915_private *dev_priv = data;
  1443. u32 reg;
  1444. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1445. return -ENODEV;
  1446. mutex_lock(&dev_priv->fbc.lock);
  1447. reg = I915_READ(ILK_DPFC_CONTROL);
  1448. dev_priv->fbc.false_color = val;
  1449. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1450. (reg | FBC_CTL_FALSE_COLOR) :
  1451. (reg & ~FBC_CTL_FALSE_COLOR));
  1452. mutex_unlock(&dev_priv->fbc.lock);
  1453. return 0;
  1454. }
  1455. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1456. i915_fbc_fc_get, i915_fbc_fc_set,
  1457. "%llu\n");
  1458. static int i915_ips_status(struct seq_file *m, void *unused)
  1459. {
  1460. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1461. if (!HAS_IPS(dev_priv)) {
  1462. seq_puts(m, "not supported\n");
  1463. return 0;
  1464. }
  1465. intel_runtime_pm_get(dev_priv);
  1466. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1467. yesno(i915.enable_ips));
  1468. if (INTEL_GEN(dev_priv) >= 8) {
  1469. seq_puts(m, "Currently: unknown\n");
  1470. } else {
  1471. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1472. seq_puts(m, "Currently: enabled\n");
  1473. else
  1474. seq_puts(m, "Currently: disabled\n");
  1475. }
  1476. intel_runtime_pm_put(dev_priv);
  1477. return 0;
  1478. }
  1479. static int i915_sr_status(struct seq_file *m, void *unused)
  1480. {
  1481. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1482. bool sr_enabled = false;
  1483. intel_runtime_pm_get(dev_priv);
  1484. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1485. if (HAS_PCH_SPLIT(dev_priv))
  1486. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1487. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1488. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1489. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1490. else if (IS_I915GM(dev_priv))
  1491. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1492. else if (IS_PINEVIEW(dev_priv))
  1493. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1494. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1495. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1496. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1497. intel_runtime_pm_put(dev_priv);
  1498. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1499. return 0;
  1500. }
  1501. static int i915_emon_status(struct seq_file *m, void *unused)
  1502. {
  1503. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1504. struct drm_device *dev = &dev_priv->drm;
  1505. unsigned long temp, chipset, gfx;
  1506. int ret;
  1507. if (!IS_GEN5(dev_priv))
  1508. return -ENODEV;
  1509. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1510. if (ret)
  1511. return ret;
  1512. temp = i915_mch_val(dev_priv);
  1513. chipset = i915_chipset_val(dev_priv);
  1514. gfx = i915_gfx_val(dev_priv);
  1515. mutex_unlock(&dev->struct_mutex);
  1516. seq_printf(m, "GMCH temp: %ld\n", temp);
  1517. seq_printf(m, "Chipset power: %ld\n", chipset);
  1518. seq_printf(m, "GFX power: %ld\n", gfx);
  1519. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1520. return 0;
  1521. }
  1522. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1523. {
  1524. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1525. int ret = 0;
  1526. int gpu_freq, ia_freq;
  1527. unsigned int max_gpu_freq, min_gpu_freq;
  1528. if (!HAS_LLC(dev_priv)) {
  1529. seq_puts(m, "unsupported on this chipset\n");
  1530. return 0;
  1531. }
  1532. intel_runtime_pm_get(dev_priv);
  1533. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1534. if (ret)
  1535. goto out;
  1536. if (IS_GEN9_BC(dev_priv)) {
  1537. /* Convert GT frequency to 50 HZ units */
  1538. min_gpu_freq =
  1539. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1540. max_gpu_freq =
  1541. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1542. } else {
  1543. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1544. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1545. }
  1546. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1547. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1548. ia_freq = gpu_freq;
  1549. sandybridge_pcode_read(dev_priv,
  1550. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1551. &ia_freq);
  1552. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1553. intel_gpu_freq(dev_priv, (gpu_freq *
  1554. (IS_GEN9_BC(dev_priv) ?
  1555. GEN9_FREQ_SCALER : 1))),
  1556. ((ia_freq >> 0) & 0xff) * 100,
  1557. ((ia_freq >> 8) & 0xff) * 100);
  1558. }
  1559. mutex_unlock(&dev_priv->rps.hw_lock);
  1560. out:
  1561. intel_runtime_pm_put(dev_priv);
  1562. return ret;
  1563. }
  1564. static int i915_opregion(struct seq_file *m, void *unused)
  1565. {
  1566. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1567. struct drm_device *dev = &dev_priv->drm;
  1568. struct intel_opregion *opregion = &dev_priv->opregion;
  1569. int ret;
  1570. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1571. if (ret)
  1572. goto out;
  1573. if (opregion->header)
  1574. seq_write(m, opregion->header, OPREGION_SIZE);
  1575. mutex_unlock(&dev->struct_mutex);
  1576. out:
  1577. return 0;
  1578. }
  1579. static int i915_vbt(struct seq_file *m, void *unused)
  1580. {
  1581. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1582. if (opregion->vbt)
  1583. seq_write(m, opregion->vbt, opregion->vbt_size);
  1584. return 0;
  1585. }
  1586. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1587. {
  1588. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1589. struct drm_device *dev = &dev_priv->drm;
  1590. struct intel_framebuffer *fbdev_fb = NULL;
  1591. struct drm_framebuffer *drm_fb;
  1592. int ret;
  1593. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1594. if (ret)
  1595. return ret;
  1596. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1597. if (dev_priv->fbdev) {
  1598. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1599. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1600. fbdev_fb->base.width,
  1601. fbdev_fb->base.height,
  1602. fbdev_fb->base.format->depth,
  1603. fbdev_fb->base.format->cpp[0] * 8,
  1604. fbdev_fb->base.modifier,
  1605. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1606. describe_obj(m, fbdev_fb->obj);
  1607. seq_putc(m, '\n');
  1608. }
  1609. #endif
  1610. mutex_lock(&dev->mode_config.fb_lock);
  1611. drm_for_each_fb(drm_fb, dev) {
  1612. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1613. if (fb == fbdev_fb)
  1614. continue;
  1615. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1616. fb->base.width,
  1617. fb->base.height,
  1618. fb->base.format->depth,
  1619. fb->base.format->cpp[0] * 8,
  1620. fb->base.modifier,
  1621. drm_framebuffer_read_refcount(&fb->base));
  1622. describe_obj(m, fb->obj);
  1623. seq_putc(m, '\n');
  1624. }
  1625. mutex_unlock(&dev->mode_config.fb_lock);
  1626. mutex_unlock(&dev->struct_mutex);
  1627. return 0;
  1628. }
  1629. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1630. {
  1631. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1632. ring->space, ring->head, ring->tail,
  1633. ring->last_retired_head);
  1634. }
  1635. static int i915_context_status(struct seq_file *m, void *unused)
  1636. {
  1637. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1638. struct drm_device *dev = &dev_priv->drm;
  1639. struct intel_engine_cs *engine;
  1640. struct i915_gem_context *ctx;
  1641. enum intel_engine_id id;
  1642. int ret;
  1643. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1644. if (ret)
  1645. return ret;
  1646. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1647. seq_printf(m, "HW context %u ", ctx->hw_id);
  1648. if (ctx->pid) {
  1649. struct task_struct *task;
  1650. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1651. if (task) {
  1652. seq_printf(m, "(%s [%d]) ",
  1653. task->comm, task->pid);
  1654. put_task_struct(task);
  1655. }
  1656. } else if (IS_ERR(ctx->file_priv)) {
  1657. seq_puts(m, "(deleted) ");
  1658. } else {
  1659. seq_puts(m, "(kernel) ");
  1660. }
  1661. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1662. seq_putc(m, '\n');
  1663. for_each_engine(engine, dev_priv, id) {
  1664. struct intel_context *ce = &ctx->engine[engine->id];
  1665. seq_printf(m, "%s: ", engine->name);
  1666. seq_putc(m, ce->initialised ? 'I' : 'i');
  1667. if (ce->state)
  1668. describe_obj(m, ce->state->obj);
  1669. if (ce->ring)
  1670. describe_ctx_ring(m, ce->ring);
  1671. seq_putc(m, '\n');
  1672. }
  1673. seq_putc(m, '\n');
  1674. }
  1675. mutex_unlock(&dev->struct_mutex);
  1676. return 0;
  1677. }
  1678. static void i915_dump_lrc_obj(struct seq_file *m,
  1679. struct i915_gem_context *ctx,
  1680. struct intel_engine_cs *engine)
  1681. {
  1682. struct i915_vma *vma = ctx->engine[engine->id].state;
  1683. struct page *page;
  1684. int j;
  1685. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1686. if (!vma) {
  1687. seq_puts(m, "\tFake context\n");
  1688. return;
  1689. }
  1690. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1691. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1692. i915_ggtt_offset(vma));
  1693. if (i915_gem_object_pin_pages(vma->obj)) {
  1694. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1695. return;
  1696. }
  1697. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1698. if (page) {
  1699. u32 *reg_state = kmap_atomic(page);
  1700. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1701. seq_printf(m,
  1702. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1703. j * 4,
  1704. reg_state[j], reg_state[j + 1],
  1705. reg_state[j + 2], reg_state[j + 3]);
  1706. }
  1707. kunmap_atomic(reg_state);
  1708. }
  1709. i915_gem_object_unpin_pages(vma->obj);
  1710. seq_putc(m, '\n');
  1711. }
  1712. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1713. {
  1714. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1715. struct drm_device *dev = &dev_priv->drm;
  1716. struct intel_engine_cs *engine;
  1717. struct i915_gem_context *ctx;
  1718. enum intel_engine_id id;
  1719. int ret;
  1720. if (!i915.enable_execlists) {
  1721. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1722. return 0;
  1723. }
  1724. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1725. if (ret)
  1726. return ret;
  1727. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1728. for_each_engine(engine, dev_priv, id)
  1729. i915_dump_lrc_obj(m, ctx, engine);
  1730. mutex_unlock(&dev->struct_mutex);
  1731. return 0;
  1732. }
  1733. static const char *swizzle_string(unsigned swizzle)
  1734. {
  1735. switch (swizzle) {
  1736. case I915_BIT_6_SWIZZLE_NONE:
  1737. return "none";
  1738. case I915_BIT_6_SWIZZLE_9:
  1739. return "bit9";
  1740. case I915_BIT_6_SWIZZLE_9_10:
  1741. return "bit9/bit10";
  1742. case I915_BIT_6_SWIZZLE_9_11:
  1743. return "bit9/bit11";
  1744. case I915_BIT_6_SWIZZLE_9_10_11:
  1745. return "bit9/bit10/bit11";
  1746. case I915_BIT_6_SWIZZLE_9_17:
  1747. return "bit9/bit17";
  1748. case I915_BIT_6_SWIZZLE_9_10_17:
  1749. return "bit9/bit10/bit17";
  1750. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1751. return "unknown";
  1752. }
  1753. return "bug";
  1754. }
  1755. static int i915_swizzle_info(struct seq_file *m, void *data)
  1756. {
  1757. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1758. intel_runtime_pm_get(dev_priv);
  1759. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1760. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1761. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1762. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1763. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1764. seq_printf(m, "DDC = 0x%08x\n",
  1765. I915_READ(DCC));
  1766. seq_printf(m, "DDC2 = 0x%08x\n",
  1767. I915_READ(DCC2));
  1768. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1769. I915_READ16(C0DRB3));
  1770. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1771. I915_READ16(C1DRB3));
  1772. } else if (INTEL_GEN(dev_priv) >= 6) {
  1773. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1774. I915_READ(MAD_DIMM_C0));
  1775. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1776. I915_READ(MAD_DIMM_C1));
  1777. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1778. I915_READ(MAD_DIMM_C2));
  1779. seq_printf(m, "TILECTL = 0x%08x\n",
  1780. I915_READ(TILECTL));
  1781. if (INTEL_GEN(dev_priv) >= 8)
  1782. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1783. I915_READ(GAMTARBMODE));
  1784. else
  1785. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1786. I915_READ(ARB_MODE));
  1787. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1788. I915_READ(DISP_ARB_CTL));
  1789. }
  1790. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1791. seq_puts(m, "L-shaped memory detected\n");
  1792. intel_runtime_pm_put(dev_priv);
  1793. return 0;
  1794. }
  1795. static int per_file_ctx(int id, void *ptr, void *data)
  1796. {
  1797. struct i915_gem_context *ctx = ptr;
  1798. struct seq_file *m = data;
  1799. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1800. if (!ppgtt) {
  1801. seq_printf(m, " no ppgtt for context %d\n",
  1802. ctx->user_handle);
  1803. return 0;
  1804. }
  1805. if (i915_gem_context_is_default(ctx))
  1806. seq_puts(m, " default context:\n");
  1807. else
  1808. seq_printf(m, " context %d:\n", ctx->user_handle);
  1809. ppgtt->debug_dump(ppgtt, m);
  1810. return 0;
  1811. }
  1812. static void gen8_ppgtt_info(struct seq_file *m,
  1813. struct drm_i915_private *dev_priv)
  1814. {
  1815. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1816. struct intel_engine_cs *engine;
  1817. enum intel_engine_id id;
  1818. int i;
  1819. if (!ppgtt)
  1820. return;
  1821. for_each_engine(engine, dev_priv, id) {
  1822. seq_printf(m, "%s\n", engine->name);
  1823. for (i = 0; i < 4; i++) {
  1824. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1825. pdp <<= 32;
  1826. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1827. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1828. }
  1829. }
  1830. }
  1831. static void gen6_ppgtt_info(struct seq_file *m,
  1832. struct drm_i915_private *dev_priv)
  1833. {
  1834. struct intel_engine_cs *engine;
  1835. enum intel_engine_id id;
  1836. if (IS_GEN6(dev_priv))
  1837. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1838. for_each_engine(engine, dev_priv, id) {
  1839. seq_printf(m, "%s\n", engine->name);
  1840. if (IS_GEN7(dev_priv))
  1841. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1842. I915_READ(RING_MODE_GEN7(engine)));
  1843. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1844. I915_READ(RING_PP_DIR_BASE(engine)));
  1845. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1846. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1847. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1848. I915_READ(RING_PP_DIR_DCLV(engine)));
  1849. }
  1850. if (dev_priv->mm.aliasing_ppgtt) {
  1851. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1852. seq_puts(m, "aliasing PPGTT:\n");
  1853. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1854. ppgtt->debug_dump(ppgtt, m);
  1855. }
  1856. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1857. }
  1858. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1859. {
  1860. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1861. struct drm_device *dev = &dev_priv->drm;
  1862. struct drm_file *file;
  1863. int ret;
  1864. mutex_lock(&dev->filelist_mutex);
  1865. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1866. if (ret)
  1867. goto out_unlock;
  1868. intel_runtime_pm_get(dev_priv);
  1869. if (INTEL_GEN(dev_priv) >= 8)
  1870. gen8_ppgtt_info(m, dev_priv);
  1871. else if (INTEL_GEN(dev_priv) >= 6)
  1872. gen6_ppgtt_info(m, dev_priv);
  1873. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1874. struct drm_i915_file_private *file_priv = file->driver_priv;
  1875. struct task_struct *task;
  1876. task = get_pid_task(file->pid, PIDTYPE_PID);
  1877. if (!task) {
  1878. ret = -ESRCH;
  1879. goto out_rpm;
  1880. }
  1881. seq_printf(m, "\nproc: %s\n", task->comm);
  1882. put_task_struct(task);
  1883. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1884. (void *)(unsigned long)m);
  1885. }
  1886. out_rpm:
  1887. intel_runtime_pm_put(dev_priv);
  1888. mutex_unlock(&dev->struct_mutex);
  1889. out_unlock:
  1890. mutex_unlock(&dev->filelist_mutex);
  1891. return ret;
  1892. }
  1893. static int count_irq_waiters(struct drm_i915_private *i915)
  1894. {
  1895. struct intel_engine_cs *engine;
  1896. enum intel_engine_id id;
  1897. int count = 0;
  1898. for_each_engine(engine, i915, id)
  1899. count += intel_engine_has_waiter(engine);
  1900. return count;
  1901. }
  1902. static const char *rps_power_to_str(unsigned int power)
  1903. {
  1904. static const char * const strings[] = {
  1905. [LOW_POWER] = "low power",
  1906. [BETWEEN] = "mixed",
  1907. [HIGH_POWER] = "high power",
  1908. };
  1909. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1910. return "unknown";
  1911. return strings[power];
  1912. }
  1913. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1914. {
  1915. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1916. struct drm_device *dev = &dev_priv->drm;
  1917. struct drm_file *file;
  1918. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1919. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1920. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1921. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1922. seq_printf(m, "Frequency requested %d\n",
  1923. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1924. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1925. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1926. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1927. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1928. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1929. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1930. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  1931. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  1932. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1933. mutex_lock(&dev->filelist_mutex);
  1934. spin_lock(&dev_priv->rps.client_lock);
  1935. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1936. struct drm_i915_file_private *file_priv = file->driver_priv;
  1937. struct task_struct *task;
  1938. rcu_read_lock();
  1939. task = pid_task(file->pid, PIDTYPE_PID);
  1940. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1941. task ? task->comm : "<unknown>",
  1942. task ? task->pid : -1,
  1943. file_priv->rps.boosts,
  1944. list_empty(&file_priv->rps.link) ? "" : ", active");
  1945. rcu_read_unlock();
  1946. }
  1947. seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
  1948. spin_unlock(&dev_priv->rps.client_lock);
  1949. mutex_unlock(&dev->filelist_mutex);
  1950. if (INTEL_GEN(dev_priv) >= 6 &&
  1951. dev_priv->rps.enabled &&
  1952. dev_priv->gt.active_requests) {
  1953. u32 rpup, rpupei;
  1954. u32 rpdown, rpdownei;
  1955. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1956. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1957. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1958. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1959. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1960. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1961. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1962. rps_power_to_str(dev_priv->rps.power));
  1963. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1964. 100 * rpup / rpupei,
  1965. dev_priv->rps.up_threshold);
  1966. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1967. 100 * rpdown / rpdownei,
  1968. dev_priv->rps.down_threshold);
  1969. } else {
  1970. seq_puts(m, "\nRPS Autotuning inactive\n");
  1971. }
  1972. return 0;
  1973. }
  1974. static int i915_llc(struct seq_file *m, void *data)
  1975. {
  1976. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1977. const bool edram = INTEL_GEN(dev_priv) > 8;
  1978. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1979. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1980. intel_uncore_edram_size(dev_priv)/1024/1024);
  1981. return 0;
  1982. }
  1983. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1984. {
  1985. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1986. struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
  1987. if (!HAS_HUC_UCODE(dev_priv))
  1988. return 0;
  1989. seq_puts(m, "HuC firmware status:\n");
  1990. seq_printf(m, "\tpath: %s\n", huc_fw->path);
  1991. seq_printf(m, "\tfetch: %s\n",
  1992. intel_uc_fw_status_repr(huc_fw->fetch_status));
  1993. seq_printf(m, "\tload: %s\n",
  1994. intel_uc_fw_status_repr(huc_fw->load_status));
  1995. seq_printf(m, "\tversion wanted: %d.%d\n",
  1996. huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
  1997. seq_printf(m, "\tversion found: %d.%d\n",
  1998. huc_fw->major_ver_found, huc_fw->minor_ver_found);
  1999. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2000. huc_fw->header_offset, huc_fw->header_size);
  2001. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2002. huc_fw->ucode_offset, huc_fw->ucode_size);
  2003. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2004. huc_fw->rsa_offset, huc_fw->rsa_size);
  2005. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  2006. return 0;
  2007. }
  2008. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2009. {
  2010. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2011. struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
  2012. u32 tmp, i;
  2013. if (!HAS_GUC_UCODE(dev_priv))
  2014. return 0;
  2015. seq_printf(m, "GuC firmware status:\n");
  2016. seq_printf(m, "\tpath: %s\n",
  2017. guc_fw->path);
  2018. seq_printf(m, "\tfetch: %s\n",
  2019. intel_uc_fw_status_repr(guc_fw->fetch_status));
  2020. seq_printf(m, "\tload: %s\n",
  2021. intel_uc_fw_status_repr(guc_fw->load_status));
  2022. seq_printf(m, "\tversion wanted: %d.%d\n",
  2023. guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
  2024. seq_printf(m, "\tversion found: %d.%d\n",
  2025. guc_fw->major_ver_found, guc_fw->minor_ver_found);
  2026. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2027. guc_fw->header_offset, guc_fw->header_size);
  2028. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2029. guc_fw->ucode_offset, guc_fw->ucode_size);
  2030. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2031. guc_fw->rsa_offset, guc_fw->rsa_size);
  2032. tmp = I915_READ(GUC_STATUS);
  2033. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2034. seq_printf(m, "\tBootrom status = 0x%x\n",
  2035. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2036. seq_printf(m, "\tuKernel status = 0x%x\n",
  2037. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2038. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2039. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2040. seq_puts(m, "\nScratch registers:\n");
  2041. for (i = 0; i < 16; i++)
  2042. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2043. return 0;
  2044. }
  2045. static void i915_guc_log_info(struct seq_file *m,
  2046. struct drm_i915_private *dev_priv)
  2047. {
  2048. struct intel_guc *guc = &dev_priv->guc;
  2049. seq_puts(m, "\nGuC logging stats:\n");
  2050. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  2051. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  2052. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  2053. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  2054. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  2055. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  2056. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  2057. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  2058. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  2059. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  2060. guc->log.flush_interrupt_count);
  2061. seq_printf(m, "\tCapture miss count: %u\n",
  2062. guc->log.capture_miss_count);
  2063. }
  2064. static void i915_guc_client_info(struct seq_file *m,
  2065. struct drm_i915_private *dev_priv,
  2066. struct i915_guc_client *client)
  2067. {
  2068. struct intel_engine_cs *engine;
  2069. enum intel_engine_id id;
  2070. uint64_t tot = 0;
  2071. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2072. client->priority, client->ctx_index, client->proc_desc_offset);
  2073. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2074. client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
  2075. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2076. client->wq_size, client->wq_offset, client->wq_tail);
  2077. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2078. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2079. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2080. for_each_engine(engine, dev_priv, id) {
  2081. u64 submissions = client->submissions[id];
  2082. tot += submissions;
  2083. seq_printf(m, "\tSubmissions: %llu %s\n",
  2084. submissions, engine->name);
  2085. }
  2086. seq_printf(m, "\tTotal: %llu\n", tot);
  2087. }
  2088. static int i915_guc_info(struct seq_file *m, void *data)
  2089. {
  2090. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2091. const struct intel_guc *guc = &dev_priv->guc;
  2092. struct intel_engine_cs *engine;
  2093. enum intel_engine_id id;
  2094. u64 total;
  2095. if (!guc->execbuf_client) {
  2096. seq_printf(m, "GuC submission %s\n",
  2097. HAS_GUC_SCHED(dev_priv) ?
  2098. "disabled" :
  2099. "not supported");
  2100. return 0;
  2101. }
  2102. seq_printf(m, "Doorbell map:\n");
  2103. seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc->doorbell_bitmap);
  2104. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  2105. seq_printf(m, "GuC total action count: %llu\n", guc->action_count);
  2106. seq_printf(m, "GuC action failure count: %u\n", guc->action_fail);
  2107. seq_printf(m, "GuC last action command: 0x%x\n", guc->action_cmd);
  2108. seq_printf(m, "GuC last action status: 0x%x\n", guc->action_status);
  2109. seq_printf(m, "GuC last action error code: %d\n", guc->action_err);
  2110. total = 0;
  2111. seq_printf(m, "\nGuC submissions:\n");
  2112. for_each_engine(engine, dev_priv, id) {
  2113. u64 submissions = guc->submissions[id];
  2114. total += submissions;
  2115. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2116. engine->name, submissions, guc->last_seqno[id]);
  2117. }
  2118. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2119. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  2120. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  2121. i915_guc_log_info(m, dev_priv);
  2122. /* Add more as required ... */
  2123. return 0;
  2124. }
  2125. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2126. {
  2127. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2128. struct drm_i915_gem_object *obj;
  2129. int i = 0, pg;
  2130. if (!dev_priv->guc.log.vma)
  2131. return 0;
  2132. obj = dev_priv->guc.log.vma->obj;
  2133. for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
  2134. u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
  2135. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2136. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2137. *(log + i), *(log + i + 1),
  2138. *(log + i + 2), *(log + i + 3));
  2139. kunmap_atomic(log);
  2140. }
  2141. seq_putc(m, '\n');
  2142. return 0;
  2143. }
  2144. static int i915_guc_log_control_get(void *data, u64 *val)
  2145. {
  2146. struct drm_device *dev = data;
  2147. struct drm_i915_private *dev_priv = to_i915(dev);
  2148. if (!dev_priv->guc.log.vma)
  2149. return -EINVAL;
  2150. *val = i915.guc_log_level;
  2151. return 0;
  2152. }
  2153. static int i915_guc_log_control_set(void *data, u64 val)
  2154. {
  2155. struct drm_device *dev = data;
  2156. struct drm_i915_private *dev_priv = to_i915(dev);
  2157. int ret;
  2158. if (!dev_priv->guc.log.vma)
  2159. return -EINVAL;
  2160. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2161. if (ret)
  2162. return ret;
  2163. intel_runtime_pm_get(dev_priv);
  2164. ret = i915_guc_log_control(dev_priv, val);
  2165. intel_runtime_pm_put(dev_priv);
  2166. mutex_unlock(&dev->struct_mutex);
  2167. return ret;
  2168. }
  2169. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2170. i915_guc_log_control_get, i915_guc_log_control_set,
  2171. "%lld\n");
  2172. static const char *psr2_live_status(u32 val)
  2173. {
  2174. static const char * const live_status[] = {
  2175. "IDLE",
  2176. "CAPTURE",
  2177. "CAPTURE_FS",
  2178. "SLEEP",
  2179. "BUFON_FW",
  2180. "ML_UP",
  2181. "SU_STANDBY",
  2182. "FAST_SLEEP",
  2183. "DEEP_SLEEP",
  2184. "BUF_ON",
  2185. "TG_ON"
  2186. };
  2187. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2188. if (val < ARRAY_SIZE(live_status))
  2189. return live_status[val];
  2190. return "unknown";
  2191. }
  2192. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2193. {
  2194. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2195. u32 psrperf = 0;
  2196. u32 stat[3];
  2197. enum pipe pipe;
  2198. bool enabled = false;
  2199. if (!HAS_PSR(dev_priv)) {
  2200. seq_puts(m, "PSR not supported\n");
  2201. return 0;
  2202. }
  2203. intel_runtime_pm_get(dev_priv);
  2204. mutex_lock(&dev_priv->psr.lock);
  2205. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2206. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2207. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2208. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2209. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2210. dev_priv->psr.busy_frontbuffer_bits);
  2211. seq_printf(m, "Re-enable work scheduled: %s\n",
  2212. yesno(work_busy(&dev_priv->psr.work.work)));
  2213. if (HAS_DDI(dev_priv)) {
  2214. if (dev_priv->psr.psr2_support)
  2215. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2216. else
  2217. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2218. } else {
  2219. for_each_pipe(dev_priv, pipe) {
  2220. enum transcoder cpu_transcoder =
  2221. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2222. enum intel_display_power_domain power_domain;
  2223. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2224. if (!intel_display_power_get_if_enabled(dev_priv,
  2225. power_domain))
  2226. continue;
  2227. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2228. VLV_EDP_PSR_CURR_STATE_MASK;
  2229. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2230. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2231. enabled = true;
  2232. intel_display_power_put(dev_priv, power_domain);
  2233. }
  2234. }
  2235. seq_printf(m, "Main link in standby mode: %s\n",
  2236. yesno(dev_priv->psr.link_standby));
  2237. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2238. if (!HAS_DDI(dev_priv))
  2239. for_each_pipe(dev_priv, pipe) {
  2240. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2241. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2242. seq_printf(m, " pipe %c", pipe_name(pipe));
  2243. }
  2244. seq_puts(m, "\n");
  2245. /*
  2246. * VLV/CHV PSR has no kind of performance counter
  2247. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2248. */
  2249. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2250. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2251. EDP_PSR_PERF_CNT_MASK;
  2252. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2253. }
  2254. if (dev_priv->psr.psr2_support) {
  2255. u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
  2256. seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
  2257. psr2, psr2_live_status(psr2));
  2258. }
  2259. mutex_unlock(&dev_priv->psr.lock);
  2260. intel_runtime_pm_put(dev_priv);
  2261. return 0;
  2262. }
  2263. static int i915_sink_crc(struct seq_file *m, void *data)
  2264. {
  2265. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2266. struct drm_device *dev = &dev_priv->drm;
  2267. struct intel_connector *connector;
  2268. struct intel_dp *intel_dp = NULL;
  2269. int ret;
  2270. u8 crc[6];
  2271. drm_modeset_lock_all(dev);
  2272. for_each_intel_connector(dev, connector) {
  2273. struct drm_crtc *crtc;
  2274. if (!connector->base.state->best_encoder)
  2275. continue;
  2276. crtc = connector->base.state->crtc;
  2277. if (!crtc->state->active)
  2278. continue;
  2279. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2280. continue;
  2281. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2282. ret = intel_dp_sink_crc(intel_dp, crc);
  2283. if (ret)
  2284. goto out;
  2285. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2286. crc[0], crc[1], crc[2],
  2287. crc[3], crc[4], crc[5]);
  2288. goto out;
  2289. }
  2290. ret = -ENODEV;
  2291. out:
  2292. drm_modeset_unlock_all(dev);
  2293. return ret;
  2294. }
  2295. static int i915_energy_uJ(struct seq_file *m, void *data)
  2296. {
  2297. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2298. u64 power;
  2299. u32 units;
  2300. if (INTEL_GEN(dev_priv) < 6)
  2301. return -ENODEV;
  2302. intel_runtime_pm_get(dev_priv);
  2303. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2304. power = (power & 0x1f00) >> 8;
  2305. units = 1000000 / (1 << power); /* convert to uJ */
  2306. power = I915_READ(MCH_SECP_NRG_STTS);
  2307. power *= units;
  2308. intel_runtime_pm_put(dev_priv);
  2309. seq_printf(m, "%llu", (long long unsigned)power);
  2310. return 0;
  2311. }
  2312. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2313. {
  2314. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2315. struct pci_dev *pdev = dev_priv->drm.pdev;
  2316. if (!HAS_RUNTIME_PM(dev_priv))
  2317. seq_puts(m, "Runtime power management not supported\n");
  2318. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2319. seq_printf(m, "IRQs disabled: %s\n",
  2320. yesno(!intel_irqs_enabled(dev_priv)));
  2321. #ifdef CONFIG_PM
  2322. seq_printf(m, "Usage count: %d\n",
  2323. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2324. #else
  2325. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2326. #endif
  2327. seq_printf(m, "PCI device power state: %s [%d]\n",
  2328. pci_power_name(pdev->current_state),
  2329. pdev->current_state);
  2330. return 0;
  2331. }
  2332. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2333. {
  2334. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2335. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2336. int i;
  2337. mutex_lock(&power_domains->lock);
  2338. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2339. for (i = 0; i < power_domains->power_well_count; i++) {
  2340. struct i915_power_well *power_well;
  2341. enum intel_display_power_domain power_domain;
  2342. power_well = &power_domains->power_wells[i];
  2343. seq_printf(m, "%-25s %d\n", power_well->name,
  2344. power_well->count);
  2345. for_each_power_domain(power_domain, power_well->domains)
  2346. seq_printf(m, " %-23s %d\n",
  2347. intel_display_power_domain_str(power_domain),
  2348. power_domains->domain_use_count[power_domain]);
  2349. }
  2350. mutex_unlock(&power_domains->lock);
  2351. return 0;
  2352. }
  2353. static int i915_dmc_info(struct seq_file *m, void *unused)
  2354. {
  2355. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2356. struct intel_csr *csr;
  2357. if (!HAS_CSR(dev_priv)) {
  2358. seq_puts(m, "not supported\n");
  2359. return 0;
  2360. }
  2361. csr = &dev_priv->csr;
  2362. intel_runtime_pm_get(dev_priv);
  2363. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2364. seq_printf(m, "path: %s\n", csr->fw_path);
  2365. if (!csr->dmc_payload)
  2366. goto out;
  2367. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2368. CSR_VERSION_MINOR(csr->version));
  2369. if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
  2370. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2371. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2372. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2373. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2374. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2375. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2376. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2377. }
  2378. out:
  2379. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2380. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2381. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2382. intel_runtime_pm_put(dev_priv);
  2383. return 0;
  2384. }
  2385. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2386. struct drm_display_mode *mode)
  2387. {
  2388. int i;
  2389. for (i = 0; i < tabs; i++)
  2390. seq_putc(m, '\t');
  2391. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2392. mode->base.id, mode->name,
  2393. mode->vrefresh, mode->clock,
  2394. mode->hdisplay, mode->hsync_start,
  2395. mode->hsync_end, mode->htotal,
  2396. mode->vdisplay, mode->vsync_start,
  2397. mode->vsync_end, mode->vtotal,
  2398. mode->type, mode->flags);
  2399. }
  2400. static void intel_encoder_info(struct seq_file *m,
  2401. struct intel_crtc *intel_crtc,
  2402. struct intel_encoder *intel_encoder)
  2403. {
  2404. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2405. struct drm_device *dev = &dev_priv->drm;
  2406. struct drm_crtc *crtc = &intel_crtc->base;
  2407. struct intel_connector *intel_connector;
  2408. struct drm_encoder *encoder;
  2409. encoder = &intel_encoder->base;
  2410. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2411. encoder->base.id, encoder->name);
  2412. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2413. struct drm_connector *connector = &intel_connector->base;
  2414. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2415. connector->base.id,
  2416. connector->name,
  2417. drm_get_connector_status_name(connector->status));
  2418. if (connector->status == connector_status_connected) {
  2419. struct drm_display_mode *mode = &crtc->mode;
  2420. seq_printf(m, ", mode:\n");
  2421. intel_seq_print_mode(m, 2, mode);
  2422. } else {
  2423. seq_putc(m, '\n');
  2424. }
  2425. }
  2426. }
  2427. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2428. {
  2429. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2430. struct drm_device *dev = &dev_priv->drm;
  2431. struct drm_crtc *crtc = &intel_crtc->base;
  2432. struct intel_encoder *intel_encoder;
  2433. struct drm_plane_state *plane_state = crtc->primary->state;
  2434. struct drm_framebuffer *fb = plane_state->fb;
  2435. if (fb)
  2436. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2437. fb->base.id, plane_state->src_x >> 16,
  2438. plane_state->src_y >> 16, fb->width, fb->height);
  2439. else
  2440. seq_puts(m, "\tprimary plane disabled\n");
  2441. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2442. intel_encoder_info(m, intel_crtc, intel_encoder);
  2443. }
  2444. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2445. {
  2446. struct drm_display_mode *mode = panel->fixed_mode;
  2447. seq_printf(m, "\tfixed mode:\n");
  2448. intel_seq_print_mode(m, 2, mode);
  2449. }
  2450. static void intel_dp_info(struct seq_file *m,
  2451. struct intel_connector *intel_connector)
  2452. {
  2453. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2454. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2455. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2456. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2457. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2458. intel_panel_info(m, &intel_connector->panel);
  2459. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2460. &intel_dp->aux);
  2461. }
  2462. static void intel_dp_mst_info(struct seq_file *m,
  2463. struct intel_connector *intel_connector)
  2464. {
  2465. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2466. struct intel_dp_mst_encoder *intel_mst =
  2467. enc_to_mst(&intel_encoder->base);
  2468. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2469. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2470. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2471. intel_connector->port);
  2472. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2473. }
  2474. static void intel_hdmi_info(struct seq_file *m,
  2475. struct intel_connector *intel_connector)
  2476. {
  2477. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2478. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2479. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2480. }
  2481. static void intel_lvds_info(struct seq_file *m,
  2482. struct intel_connector *intel_connector)
  2483. {
  2484. intel_panel_info(m, &intel_connector->panel);
  2485. }
  2486. static void intel_connector_info(struct seq_file *m,
  2487. struct drm_connector *connector)
  2488. {
  2489. struct intel_connector *intel_connector = to_intel_connector(connector);
  2490. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2491. struct drm_display_mode *mode;
  2492. seq_printf(m, "connector %d: type %s, status: %s\n",
  2493. connector->base.id, connector->name,
  2494. drm_get_connector_status_name(connector->status));
  2495. if (connector->status == connector_status_connected) {
  2496. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2497. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2498. connector->display_info.width_mm,
  2499. connector->display_info.height_mm);
  2500. seq_printf(m, "\tsubpixel order: %s\n",
  2501. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2502. seq_printf(m, "\tCEA rev: %d\n",
  2503. connector->display_info.cea_rev);
  2504. }
  2505. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2506. return;
  2507. switch (connector->connector_type) {
  2508. case DRM_MODE_CONNECTOR_DisplayPort:
  2509. case DRM_MODE_CONNECTOR_eDP:
  2510. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2511. intel_dp_mst_info(m, intel_connector);
  2512. else
  2513. intel_dp_info(m, intel_connector);
  2514. break;
  2515. case DRM_MODE_CONNECTOR_LVDS:
  2516. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2517. intel_lvds_info(m, intel_connector);
  2518. break;
  2519. case DRM_MODE_CONNECTOR_HDMIA:
  2520. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2521. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2522. intel_hdmi_info(m, intel_connector);
  2523. break;
  2524. default:
  2525. break;
  2526. }
  2527. seq_printf(m, "\tmodes:\n");
  2528. list_for_each_entry(mode, &connector->modes, head)
  2529. intel_seq_print_mode(m, 2, mode);
  2530. }
  2531. static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
  2532. {
  2533. u32 state;
  2534. if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
  2535. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2536. else
  2537. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2538. return state;
  2539. }
  2540. static bool cursor_position(struct drm_i915_private *dev_priv,
  2541. int pipe, int *x, int *y)
  2542. {
  2543. u32 pos;
  2544. pos = I915_READ(CURPOS(pipe));
  2545. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2546. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2547. *x = -*x;
  2548. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2549. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2550. *y = -*y;
  2551. return cursor_active(dev_priv, pipe);
  2552. }
  2553. static const char *plane_type(enum drm_plane_type type)
  2554. {
  2555. switch (type) {
  2556. case DRM_PLANE_TYPE_OVERLAY:
  2557. return "OVL";
  2558. case DRM_PLANE_TYPE_PRIMARY:
  2559. return "PRI";
  2560. case DRM_PLANE_TYPE_CURSOR:
  2561. return "CUR";
  2562. /*
  2563. * Deliberately omitting default: to generate compiler warnings
  2564. * when a new drm_plane_type gets added.
  2565. */
  2566. }
  2567. return "unknown";
  2568. }
  2569. static const char *plane_rotation(unsigned int rotation)
  2570. {
  2571. static char buf[48];
  2572. /*
  2573. * According to doc only one DRM_ROTATE_ is allowed but this
  2574. * will print them all to visualize if the values are misused
  2575. */
  2576. snprintf(buf, sizeof(buf),
  2577. "%s%s%s%s%s%s(0x%08x)",
  2578. (rotation & DRM_ROTATE_0) ? "0 " : "",
  2579. (rotation & DRM_ROTATE_90) ? "90 " : "",
  2580. (rotation & DRM_ROTATE_180) ? "180 " : "",
  2581. (rotation & DRM_ROTATE_270) ? "270 " : "",
  2582. (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
  2583. (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
  2584. rotation);
  2585. return buf;
  2586. }
  2587. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2588. {
  2589. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2590. struct drm_device *dev = &dev_priv->drm;
  2591. struct intel_plane *intel_plane;
  2592. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2593. struct drm_plane_state *state;
  2594. struct drm_plane *plane = &intel_plane->base;
  2595. struct drm_format_name_buf format_name;
  2596. if (!plane->state) {
  2597. seq_puts(m, "plane->state is NULL!\n");
  2598. continue;
  2599. }
  2600. state = plane->state;
  2601. if (state->fb) {
  2602. drm_get_format_name(state->fb->format->format,
  2603. &format_name);
  2604. } else {
  2605. sprintf(format_name.str, "N/A");
  2606. }
  2607. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2608. plane->base.id,
  2609. plane_type(intel_plane->base.type),
  2610. state->crtc_x, state->crtc_y,
  2611. state->crtc_w, state->crtc_h,
  2612. (state->src_x >> 16),
  2613. ((state->src_x & 0xffff) * 15625) >> 10,
  2614. (state->src_y >> 16),
  2615. ((state->src_y & 0xffff) * 15625) >> 10,
  2616. (state->src_w >> 16),
  2617. ((state->src_w & 0xffff) * 15625) >> 10,
  2618. (state->src_h >> 16),
  2619. ((state->src_h & 0xffff) * 15625) >> 10,
  2620. format_name.str,
  2621. plane_rotation(state->rotation));
  2622. }
  2623. }
  2624. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2625. {
  2626. struct intel_crtc_state *pipe_config;
  2627. int num_scalers = intel_crtc->num_scalers;
  2628. int i;
  2629. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2630. /* Not all platformas have a scaler */
  2631. if (num_scalers) {
  2632. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2633. num_scalers,
  2634. pipe_config->scaler_state.scaler_users,
  2635. pipe_config->scaler_state.scaler_id);
  2636. for (i = 0; i < num_scalers; i++) {
  2637. struct intel_scaler *sc =
  2638. &pipe_config->scaler_state.scalers[i];
  2639. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2640. i, yesno(sc->in_use), sc->mode);
  2641. }
  2642. seq_puts(m, "\n");
  2643. } else {
  2644. seq_puts(m, "\tNo scalers available on this platform\n");
  2645. }
  2646. }
  2647. static int i915_display_info(struct seq_file *m, void *unused)
  2648. {
  2649. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2650. struct drm_device *dev = &dev_priv->drm;
  2651. struct intel_crtc *crtc;
  2652. struct drm_connector *connector;
  2653. intel_runtime_pm_get(dev_priv);
  2654. drm_modeset_lock_all(dev);
  2655. seq_printf(m, "CRTC info\n");
  2656. seq_printf(m, "---------\n");
  2657. for_each_intel_crtc(dev, crtc) {
  2658. bool active;
  2659. struct intel_crtc_state *pipe_config;
  2660. int x, y;
  2661. pipe_config = to_intel_crtc_state(crtc->base.state);
  2662. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2663. crtc->base.base.id, pipe_name(crtc->pipe),
  2664. yesno(pipe_config->base.active),
  2665. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2666. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2667. if (pipe_config->base.active) {
  2668. intel_crtc_info(m, crtc);
  2669. active = cursor_position(dev_priv, crtc->pipe, &x, &y);
  2670. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2671. yesno(crtc->cursor_base),
  2672. x, y, crtc->base.cursor->state->crtc_w,
  2673. crtc->base.cursor->state->crtc_h,
  2674. crtc->cursor_addr, yesno(active));
  2675. intel_scaler_info(m, crtc);
  2676. intel_plane_info(m, crtc);
  2677. }
  2678. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2679. yesno(!crtc->cpu_fifo_underrun_disabled),
  2680. yesno(!crtc->pch_fifo_underrun_disabled));
  2681. }
  2682. seq_printf(m, "\n");
  2683. seq_printf(m, "Connector info\n");
  2684. seq_printf(m, "--------------\n");
  2685. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2686. intel_connector_info(m, connector);
  2687. }
  2688. drm_modeset_unlock_all(dev);
  2689. intel_runtime_pm_put(dev_priv);
  2690. return 0;
  2691. }
  2692. static int i915_engine_info(struct seq_file *m, void *unused)
  2693. {
  2694. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2695. struct intel_engine_cs *engine;
  2696. enum intel_engine_id id;
  2697. intel_runtime_pm_get(dev_priv);
  2698. for_each_engine(engine, dev_priv, id) {
  2699. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  2700. struct drm_i915_gem_request *rq;
  2701. struct rb_node *rb;
  2702. u64 addr;
  2703. seq_printf(m, "%s\n", engine->name);
  2704. seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
  2705. intel_engine_get_seqno(engine),
  2706. intel_engine_last_submit(engine),
  2707. engine->hangcheck.seqno,
  2708. jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
  2709. rcu_read_lock();
  2710. seq_printf(m, "\tRequests:\n");
  2711. rq = list_first_entry(&engine->timeline->requests,
  2712. struct drm_i915_gem_request, link);
  2713. if (&rq->link != &engine->timeline->requests)
  2714. print_request(m, rq, "\t\tfirst ");
  2715. rq = list_last_entry(&engine->timeline->requests,
  2716. struct drm_i915_gem_request, link);
  2717. if (&rq->link != &engine->timeline->requests)
  2718. print_request(m, rq, "\t\tlast ");
  2719. rq = i915_gem_find_active_request(engine);
  2720. if (rq) {
  2721. print_request(m, rq, "\t\tactive ");
  2722. seq_printf(m,
  2723. "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
  2724. rq->head, rq->postfix, rq->tail,
  2725. rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
  2726. rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
  2727. }
  2728. seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
  2729. I915_READ(RING_START(engine->mmio_base)),
  2730. rq ? i915_ggtt_offset(rq->ring->vma) : 0);
  2731. seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
  2732. I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
  2733. rq ? rq->ring->head : 0);
  2734. seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
  2735. I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
  2736. rq ? rq->ring->tail : 0);
  2737. seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
  2738. I915_READ(RING_CTL(engine->mmio_base)),
  2739. I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
  2740. rcu_read_unlock();
  2741. addr = intel_engine_get_active_head(engine);
  2742. seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
  2743. upper_32_bits(addr), lower_32_bits(addr));
  2744. addr = intel_engine_get_last_batch_head(engine);
  2745. seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
  2746. upper_32_bits(addr), lower_32_bits(addr));
  2747. if (i915.enable_execlists) {
  2748. u32 ptr, read, write;
  2749. struct rb_node *rb;
  2750. seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
  2751. I915_READ(RING_EXECLIST_STATUS_LO(engine)),
  2752. I915_READ(RING_EXECLIST_STATUS_HI(engine)));
  2753. ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  2754. read = GEN8_CSB_READ_PTR(ptr);
  2755. write = GEN8_CSB_WRITE_PTR(ptr);
  2756. seq_printf(m, "\tExeclist CSB read %d, write %d\n",
  2757. read, write);
  2758. if (read >= GEN8_CSB_ENTRIES)
  2759. read = 0;
  2760. if (write >= GEN8_CSB_ENTRIES)
  2761. write = 0;
  2762. if (read > write)
  2763. write += GEN8_CSB_ENTRIES;
  2764. while (read < write) {
  2765. unsigned int idx = ++read % GEN8_CSB_ENTRIES;
  2766. seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
  2767. idx,
  2768. I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
  2769. I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
  2770. }
  2771. rcu_read_lock();
  2772. rq = READ_ONCE(engine->execlist_port[0].request);
  2773. if (rq) {
  2774. seq_printf(m, "\t\tELSP[0] count=%d, ",
  2775. engine->execlist_port[0].count);
  2776. print_request(m, rq, "rq: ");
  2777. } else {
  2778. seq_printf(m, "\t\tELSP[0] idle\n");
  2779. }
  2780. rq = READ_ONCE(engine->execlist_port[1].request);
  2781. if (rq) {
  2782. seq_printf(m, "\t\tELSP[1] count=%d, ",
  2783. engine->execlist_port[1].count);
  2784. print_request(m, rq, "rq: ");
  2785. } else {
  2786. seq_printf(m, "\t\tELSP[1] idle\n");
  2787. }
  2788. rcu_read_unlock();
  2789. spin_lock_irq(&engine->timeline->lock);
  2790. for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
  2791. rq = rb_entry(rb, typeof(*rq), priotree.node);
  2792. print_request(m, rq, "\t\tQ ");
  2793. }
  2794. spin_unlock_irq(&engine->timeline->lock);
  2795. } else if (INTEL_GEN(dev_priv) > 6) {
  2796. seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
  2797. I915_READ(RING_PP_DIR_BASE(engine)));
  2798. seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
  2799. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  2800. seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
  2801. I915_READ(RING_PP_DIR_DCLV(engine)));
  2802. }
  2803. spin_lock_irq(&b->lock);
  2804. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  2805. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  2806. seq_printf(m, "\t%s [%d] waiting for %x\n",
  2807. w->tsk->comm, w->tsk->pid, w->seqno);
  2808. }
  2809. spin_unlock_irq(&b->lock);
  2810. seq_puts(m, "\n");
  2811. }
  2812. intel_runtime_pm_put(dev_priv);
  2813. return 0;
  2814. }
  2815. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2816. {
  2817. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2818. struct drm_device *dev = &dev_priv->drm;
  2819. struct intel_engine_cs *engine;
  2820. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2821. enum intel_engine_id id;
  2822. int j, ret;
  2823. if (!i915.semaphores) {
  2824. seq_puts(m, "Semaphores are disabled\n");
  2825. return 0;
  2826. }
  2827. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2828. if (ret)
  2829. return ret;
  2830. intel_runtime_pm_get(dev_priv);
  2831. if (IS_BROADWELL(dev_priv)) {
  2832. struct page *page;
  2833. uint64_t *seqno;
  2834. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2835. seqno = (uint64_t *)kmap_atomic(page);
  2836. for_each_engine(engine, dev_priv, id) {
  2837. uint64_t offset;
  2838. seq_printf(m, "%s\n", engine->name);
  2839. seq_puts(m, " Last signal:");
  2840. for (j = 0; j < num_rings; j++) {
  2841. offset = id * I915_NUM_ENGINES + j;
  2842. seq_printf(m, "0x%08llx (0x%02llx) ",
  2843. seqno[offset], offset * 8);
  2844. }
  2845. seq_putc(m, '\n');
  2846. seq_puts(m, " Last wait: ");
  2847. for (j = 0; j < num_rings; j++) {
  2848. offset = id + (j * I915_NUM_ENGINES);
  2849. seq_printf(m, "0x%08llx (0x%02llx) ",
  2850. seqno[offset], offset * 8);
  2851. }
  2852. seq_putc(m, '\n');
  2853. }
  2854. kunmap_atomic(seqno);
  2855. } else {
  2856. seq_puts(m, " Last signal:");
  2857. for_each_engine(engine, dev_priv, id)
  2858. for (j = 0; j < num_rings; j++)
  2859. seq_printf(m, "0x%08x\n",
  2860. I915_READ(engine->semaphore.mbox.signal[j]));
  2861. seq_putc(m, '\n');
  2862. }
  2863. intel_runtime_pm_put(dev_priv);
  2864. mutex_unlock(&dev->struct_mutex);
  2865. return 0;
  2866. }
  2867. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2868. {
  2869. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2870. struct drm_device *dev = &dev_priv->drm;
  2871. int i;
  2872. drm_modeset_lock_all(dev);
  2873. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2874. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2875. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2876. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2877. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2878. seq_printf(m, " tracked hardware state:\n");
  2879. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2880. seq_printf(m, " dpll_md: 0x%08x\n",
  2881. pll->state.hw_state.dpll_md);
  2882. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2883. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2884. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2885. }
  2886. drm_modeset_unlock_all(dev);
  2887. return 0;
  2888. }
  2889. static int i915_wa_registers(struct seq_file *m, void *unused)
  2890. {
  2891. int i;
  2892. int ret;
  2893. struct intel_engine_cs *engine;
  2894. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2895. struct drm_device *dev = &dev_priv->drm;
  2896. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2897. enum intel_engine_id id;
  2898. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2899. if (ret)
  2900. return ret;
  2901. intel_runtime_pm_get(dev_priv);
  2902. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2903. for_each_engine(engine, dev_priv, id)
  2904. seq_printf(m, "HW whitelist count for %s: %d\n",
  2905. engine->name, workarounds->hw_whitelist_count[id]);
  2906. for (i = 0; i < workarounds->count; ++i) {
  2907. i915_reg_t addr;
  2908. u32 mask, value, read;
  2909. bool ok;
  2910. addr = workarounds->reg[i].addr;
  2911. mask = workarounds->reg[i].mask;
  2912. value = workarounds->reg[i].value;
  2913. read = I915_READ(addr);
  2914. ok = (value & mask) == (read & mask);
  2915. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2916. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2917. }
  2918. intel_runtime_pm_put(dev_priv);
  2919. mutex_unlock(&dev->struct_mutex);
  2920. return 0;
  2921. }
  2922. static int i915_ddb_info(struct seq_file *m, void *unused)
  2923. {
  2924. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2925. struct drm_device *dev = &dev_priv->drm;
  2926. struct skl_ddb_allocation *ddb;
  2927. struct skl_ddb_entry *entry;
  2928. enum pipe pipe;
  2929. int plane;
  2930. if (INTEL_GEN(dev_priv) < 9)
  2931. return 0;
  2932. drm_modeset_lock_all(dev);
  2933. ddb = &dev_priv->wm.skl_hw.ddb;
  2934. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2935. for_each_pipe(dev_priv, pipe) {
  2936. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2937. for_each_universal_plane(dev_priv, pipe, plane) {
  2938. entry = &ddb->plane[pipe][plane];
  2939. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2940. entry->start, entry->end,
  2941. skl_ddb_entry_size(entry));
  2942. }
  2943. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2944. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2945. entry->end, skl_ddb_entry_size(entry));
  2946. }
  2947. drm_modeset_unlock_all(dev);
  2948. return 0;
  2949. }
  2950. static void drrs_status_per_crtc(struct seq_file *m,
  2951. struct drm_device *dev,
  2952. struct intel_crtc *intel_crtc)
  2953. {
  2954. struct drm_i915_private *dev_priv = to_i915(dev);
  2955. struct i915_drrs *drrs = &dev_priv->drrs;
  2956. int vrefresh = 0;
  2957. struct drm_connector *connector;
  2958. drm_for_each_connector(connector, dev) {
  2959. if (connector->state->crtc != &intel_crtc->base)
  2960. continue;
  2961. seq_printf(m, "%s:\n", connector->name);
  2962. }
  2963. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2964. seq_puts(m, "\tVBT: DRRS_type: Static");
  2965. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2966. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2967. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2968. seq_puts(m, "\tVBT: DRRS_type: None");
  2969. else
  2970. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2971. seq_puts(m, "\n\n");
  2972. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2973. struct intel_panel *panel;
  2974. mutex_lock(&drrs->mutex);
  2975. /* DRRS Supported */
  2976. seq_puts(m, "\tDRRS Supported: Yes\n");
  2977. /* disable_drrs() will make drrs->dp NULL */
  2978. if (!drrs->dp) {
  2979. seq_puts(m, "Idleness DRRS: Disabled");
  2980. mutex_unlock(&drrs->mutex);
  2981. return;
  2982. }
  2983. panel = &drrs->dp->attached_connector->panel;
  2984. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2985. drrs->busy_frontbuffer_bits);
  2986. seq_puts(m, "\n\t\t");
  2987. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2988. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2989. vrefresh = panel->fixed_mode->vrefresh;
  2990. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2991. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2992. vrefresh = panel->downclock_mode->vrefresh;
  2993. } else {
  2994. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2995. drrs->refresh_rate_type);
  2996. mutex_unlock(&drrs->mutex);
  2997. return;
  2998. }
  2999. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  3000. seq_puts(m, "\n\t\t");
  3001. mutex_unlock(&drrs->mutex);
  3002. } else {
  3003. /* DRRS not supported. Print the VBT parameter*/
  3004. seq_puts(m, "\tDRRS Supported : No");
  3005. }
  3006. seq_puts(m, "\n");
  3007. }
  3008. static int i915_drrs_status(struct seq_file *m, void *unused)
  3009. {
  3010. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3011. struct drm_device *dev = &dev_priv->drm;
  3012. struct intel_crtc *intel_crtc;
  3013. int active_crtc_cnt = 0;
  3014. drm_modeset_lock_all(dev);
  3015. for_each_intel_crtc(dev, intel_crtc) {
  3016. if (intel_crtc->base.state->active) {
  3017. active_crtc_cnt++;
  3018. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  3019. drrs_status_per_crtc(m, dev, intel_crtc);
  3020. }
  3021. }
  3022. drm_modeset_unlock_all(dev);
  3023. if (!active_crtc_cnt)
  3024. seq_puts(m, "No active crtc found\n");
  3025. return 0;
  3026. }
  3027. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  3028. {
  3029. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3030. struct drm_device *dev = &dev_priv->drm;
  3031. struct intel_encoder *intel_encoder;
  3032. struct intel_digital_port *intel_dig_port;
  3033. struct drm_connector *connector;
  3034. drm_modeset_lock_all(dev);
  3035. drm_for_each_connector(connector, dev) {
  3036. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  3037. continue;
  3038. intel_encoder = intel_attached_encoder(connector);
  3039. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  3040. continue;
  3041. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  3042. if (!intel_dig_port->dp.can_mst)
  3043. continue;
  3044. seq_printf(m, "MST Source Port %c\n",
  3045. port_name(intel_dig_port->port));
  3046. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  3047. }
  3048. drm_modeset_unlock_all(dev);
  3049. return 0;
  3050. }
  3051. static ssize_t i915_displayport_test_active_write(struct file *file,
  3052. const char __user *ubuf,
  3053. size_t len, loff_t *offp)
  3054. {
  3055. char *input_buffer;
  3056. int status = 0;
  3057. struct drm_device *dev;
  3058. struct drm_connector *connector;
  3059. struct list_head *connector_list;
  3060. struct intel_dp *intel_dp;
  3061. int val = 0;
  3062. dev = ((struct seq_file *)file->private_data)->private;
  3063. connector_list = &dev->mode_config.connector_list;
  3064. if (len == 0)
  3065. return 0;
  3066. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3067. if (!input_buffer)
  3068. return -ENOMEM;
  3069. if (copy_from_user(input_buffer, ubuf, len)) {
  3070. status = -EFAULT;
  3071. goto out;
  3072. }
  3073. input_buffer[len] = '\0';
  3074. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3075. list_for_each_entry(connector, connector_list, head) {
  3076. if (connector->connector_type !=
  3077. DRM_MODE_CONNECTOR_DisplayPort)
  3078. continue;
  3079. if (connector->status == connector_status_connected &&
  3080. connector->encoder != NULL) {
  3081. intel_dp = enc_to_intel_dp(connector->encoder);
  3082. status = kstrtoint(input_buffer, 10, &val);
  3083. if (status < 0)
  3084. goto out;
  3085. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3086. /* To prevent erroneous activation of the compliance
  3087. * testing code, only accept an actual value of 1 here
  3088. */
  3089. if (val == 1)
  3090. intel_dp->compliance.test_active = 1;
  3091. else
  3092. intel_dp->compliance.test_active = 0;
  3093. }
  3094. }
  3095. out:
  3096. kfree(input_buffer);
  3097. if (status < 0)
  3098. return status;
  3099. *offp += len;
  3100. return len;
  3101. }
  3102. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3103. {
  3104. struct drm_device *dev = m->private;
  3105. struct drm_connector *connector;
  3106. struct list_head *connector_list = &dev->mode_config.connector_list;
  3107. struct intel_dp *intel_dp;
  3108. list_for_each_entry(connector, connector_list, head) {
  3109. if (connector->connector_type !=
  3110. DRM_MODE_CONNECTOR_DisplayPort)
  3111. continue;
  3112. if (connector->status == connector_status_connected &&
  3113. connector->encoder != NULL) {
  3114. intel_dp = enc_to_intel_dp(connector->encoder);
  3115. if (intel_dp->compliance.test_active)
  3116. seq_puts(m, "1");
  3117. else
  3118. seq_puts(m, "0");
  3119. } else
  3120. seq_puts(m, "0");
  3121. }
  3122. return 0;
  3123. }
  3124. static int i915_displayport_test_active_open(struct inode *inode,
  3125. struct file *file)
  3126. {
  3127. struct drm_i915_private *dev_priv = inode->i_private;
  3128. return single_open(file, i915_displayport_test_active_show,
  3129. &dev_priv->drm);
  3130. }
  3131. static const struct file_operations i915_displayport_test_active_fops = {
  3132. .owner = THIS_MODULE,
  3133. .open = i915_displayport_test_active_open,
  3134. .read = seq_read,
  3135. .llseek = seq_lseek,
  3136. .release = single_release,
  3137. .write = i915_displayport_test_active_write
  3138. };
  3139. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3140. {
  3141. struct drm_device *dev = m->private;
  3142. struct drm_connector *connector;
  3143. struct list_head *connector_list = &dev->mode_config.connector_list;
  3144. struct intel_dp *intel_dp;
  3145. list_for_each_entry(connector, connector_list, head) {
  3146. if (connector->connector_type !=
  3147. DRM_MODE_CONNECTOR_DisplayPort)
  3148. continue;
  3149. if (connector->status == connector_status_connected &&
  3150. connector->encoder != NULL) {
  3151. intel_dp = enc_to_intel_dp(connector->encoder);
  3152. if (intel_dp->compliance.test_type ==
  3153. DP_TEST_LINK_EDID_READ)
  3154. seq_printf(m, "%lx",
  3155. intel_dp->compliance.test_data.edid);
  3156. else if (intel_dp->compliance.test_type ==
  3157. DP_TEST_LINK_VIDEO_PATTERN) {
  3158. seq_printf(m, "hdisplay: %d\n",
  3159. intel_dp->compliance.test_data.hdisplay);
  3160. seq_printf(m, "vdisplay: %d\n",
  3161. intel_dp->compliance.test_data.vdisplay);
  3162. seq_printf(m, "bpc: %u\n",
  3163. intel_dp->compliance.test_data.bpc);
  3164. }
  3165. } else
  3166. seq_puts(m, "0");
  3167. }
  3168. return 0;
  3169. }
  3170. static int i915_displayport_test_data_open(struct inode *inode,
  3171. struct file *file)
  3172. {
  3173. struct drm_i915_private *dev_priv = inode->i_private;
  3174. return single_open(file, i915_displayport_test_data_show,
  3175. &dev_priv->drm);
  3176. }
  3177. static const struct file_operations i915_displayport_test_data_fops = {
  3178. .owner = THIS_MODULE,
  3179. .open = i915_displayport_test_data_open,
  3180. .read = seq_read,
  3181. .llseek = seq_lseek,
  3182. .release = single_release
  3183. };
  3184. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3185. {
  3186. struct drm_device *dev = m->private;
  3187. struct drm_connector *connector;
  3188. struct list_head *connector_list = &dev->mode_config.connector_list;
  3189. struct intel_dp *intel_dp;
  3190. list_for_each_entry(connector, connector_list, head) {
  3191. if (connector->connector_type !=
  3192. DRM_MODE_CONNECTOR_DisplayPort)
  3193. continue;
  3194. if (connector->status == connector_status_connected &&
  3195. connector->encoder != NULL) {
  3196. intel_dp = enc_to_intel_dp(connector->encoder);
  3197. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3198. } else
  3199. seq_puts(m, "0");
  3200. }
  3201. return 0;
  3202. }
  3203. static int i915_displayport_test_type_open(struct inode *inode,
  3204. struct file *file)
  3205. {
  3206. struct drm_i915_private *dev_priv = inode->i_private;
  3207. return single_open(file, i915_displayport_test_type_show,
  3208. &dev_priv->drm);
  3209. }
  3210. static const struct file_operations i915_displayport_test_type_fops = {
  3211. .owner = THIS_MODULE,
  3212. .open = i915_displayport_test_type_open,
  3213. .read = seq_read,
  3214. .llseek = seq_lseek,
  3215. .release = single_release
  3216. };
  3217. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3218. {
  3219. struct drm_i915_private *dev_priv = m->private;
  3220. struct drm_device *dev = &dev_priv->drm;
  3221. int level;
  3222. int num_levels;
  3223. if (IS_CHERRYVIEW(dev_priv))
  3224. num_levels = 3;
  3225. else if (IS_VALLEYVIEW(dev_priv))
  3226. num_levels = 1;
  3227. else
  3228. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3229. drm_modeset_lock_all(dev);
  3230. for (level = 0; level < num_levels; level++) {
  3231. unsigned int latency = wm[level];
  3232. /*
  3233. * - WM1+ latency values in 0.5us units
  3234. * - latencies are in us on gen9/vlv/chv
  3235. */
  3236. if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
  3237. IS_CHERRYVIEW(dev_priv))
  3238. latency *= 10;
  3239. else if (level > 0)
  3240. latency *= 5;
  3241. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3242. level, wm[level], latency / 10, latency % 10);
  3243. }
  3244. drm_modeset_unlock_all(dev);
  3245. }
  3246. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3247. {
  3248. struct drm_i915_private *dev_priv = m->private;
  3249. const uint16_t *latencies;
  3250. if (INTEL_GEN(dev_priv) >= 9)
  3251. latencies = dev_priv->wm.skl_latency;
  3252. else
  3253. latencies = dev_priv->wm.pri_latency;
  3254. wm_latency_show(m, latencies);
  3255. return 0;
  3256. }
  3257. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3258. {
  3259. struct drm_i915_private *dev_priv = m->private;
  3260. const uint16_t *latencies;
  3261. if (INTEL_GEN(dev_priv) >= 9)
  3262. latencies = dev_priv->wm.skl_latency;
  3263. else
  3264. latencies = dev_priv->wm.spr_latency;
  3265. wm_latency_show(m, latencies);
  3266. return 0;
  3267. }
  3268. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3269. {
  3270. struct drm_i915_private *dev_priv = m->private;
  3271. const uint16_t *latencies;
  3272. if (INTEL_GEN(dev_priv) >= 9)
  3273. latencies = dev_priv->wm.skl_latency;
  3274. else
  3275. latencies = dev_priv->wm.cur_latency;
  3276. wm_latency_show(m, latencies);
  3277. return 0;
  3278. }
  3279. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3280. {
  3281. struct drm_i915_private *dev_priv = inode->i_private;
  3282. if (INTEL_GEN(dev_priv) < 5)
  3283. return -ENODEV;
  3284. return single_open(file, pri_wm_latency_show, dev_priv);
  3285. }
  3286. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3287. {
  3288. struct drm_i915_private *dev_priv = inode->i_private;
  3289. if (HAS_GMCH_DISPLAY(dev_priv))
  3290. return -ENODEV;
  3291. return single_open(file, spr_wm_latency_show, dev_priv);
  3292. }
  3293. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3294. {
  3295. struct drm_i915_private *dev_priv = inode->i_private;
  3296. if (HAS_GMCH_DISPLAY(dev_priv))
  3297. return -ENODEV;
  3298. return single_open(file, cur_wm_latency_show, dev_priv);
  3299. }
  3300. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3301. size_t len, loff_t *offp, uint16_t wm[8])
  3302. {
  3303. struct seq_file *m = file->private_data;
  3304. struct drm_i915_private *dev_priv = m->private;
  3305. struct drm_device *dev = &dev_priv->drm;
  3306. uint16_t new[8] = { 0 };
  3307. int num_levels;
  3308. int level;
  3309. int ret;
  3310. char tmp[32];
  3311. if (IS_CHERRYVIEW(dev_priv))
  3312. num_levels = 3;
  3313. else if (IS_VALLEYVIEW(dev_priv))
  3314. num_levels = 1;
  3315. else
  3316. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3317. if (len >= sizeof(tmp))
  3318. return -EINVAL;
  3319. if (copy_from_user(tmp, ubuf, len))
  3320. return -EFAULT;
  3321. tmp[len] = '\0';
  3322. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3323. &new[0], &new[1], &new[2], &new[3],
  3324. &new[4], &new[5], &new[6], &new[7]);
  3325. if (ret != num_levels)
  3326. return -EINVAL;
  3327. drm_modeset_lock_all(dev);
  3328. for (level = 0; level < num_levels; level++)
  3329. wm[level] = new[level];
  3330. drm_modeset_unlock_all(dev);
  3331. return len;
  3332. }
  3333. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3334. size_t len, loff_t *offp)
  3335. {
  3336. struct seq_file *m = file->private_data;
  3337. struct drm_i915_private *dev_priv = m->private;
  3338. uint16_t *latencies;
  3339. if (INTEL_GEN(dev_priv) >= 9)
  3340. latencies = dev_priv->wm.skl_latency;
  3341. else
  3342. latencies = dev_priv->wm.pri_latency;
  3343. return wm_latency_write(file, ubuf, len, offp, latencies);
  3344. }
  3345. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3346. size_t len, loff_t *offp)
  3347. {
  3348. struct seq_file *m = file->private_data;
  3349. struct drm_i915_private *dev_priv = m->private;
  3350. uint16_t *latencies;
  3351. if (INTEL_GEN(dev_priv) >= 9)
  3352. latencies = dev_priv->wm.skl_latency;
  3353. else
  3354. latencies = dev_priv->wm.spr_latency;
  3355. return wm_latency_write(file, ubuf, len, offp, latencies);
  3356. }
  3357. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3358. size_t len, loff_t *offp)
  3359. {
  3360. struct seq_file *m = file->private_data;
  3361. struct drm_i915_private *dev_priv = m->private;
  3362. uint16_t *latencies;
  3363. if (INTEL_GEN(dev_priv) >= 9)
  3364. latencies = dev_priv->wm.skl_latency;
  3365. else
  3366. latencies = dev_priv->wm.cur_latency;
  3367. return wm_latency_write(file, ubuf, len, offp, latencies);
  3368. }
  3369. static const struct file_operations i915_pri_wm_latency_fops = {
  3370. .owner = THIS_MODULE,
  3371. .open = pri_wm_latency_open,
  3372. .read = seq_read,
  3373. .llseek = seq_lseek,
  3374. .release = single_release,
  3375. .write = pri_wm_latency_write
  3376. };
  3377. static const struct file_operations i915_spr_wm_latency_fops = {
  3378. .owner = THIS_MODULE,
  3379. .open = spr_wm_latency_open,
  3380. .read = seq_read,
  3381. .llseek = seq_lseek,
  3382. .release = single_release,
  3383. .write = spr_wm_latency_write
  3384. };
  3385. static const struct file_operations i915_cur_wm_latency_fops = {
  3386. .owner = THIS_MODULE,
  3387. .open = cur_wm_latency_open,
  3388. .read = seq_read,
  3389. .llseek = seq_lseek,
  3390. .release = single_release,
  3391. .write = cur_wm_latency_write
  3392. };
  3393. static int
  3394. i915_wedged_get(void *data, u64 *val)
  3395. {
  3396. struct drm_i915_private *dev_priv = data;
  3397. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3398. return 0;
  3399. }
  3400. static int
  3401. i915_wedged_set(void *data, u64 val)
  3402. {
  3403. struct drm_i915_private *dev_priv = data;
  3404. /*
  3405. * There is no safeguard against this debugfs entry colliding
  3406. * with the hangcheck calling same i915_handle_error() in
  3407. * parallel, causing an explosion. For now we assume that the
  3408. * test harness is responsible enough not to inject gpu hangs
  3409. * while it is writing to 'i915_wedged'
  3410. */
  3411. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3412. return -EAGAIN;
  3413. i915_handle_error(dev_priv, val,
  3414. "Manually setting wedged to %llu", val);
  3415. return 0;
  3416. }
  3417. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3418. i915_wedged_get, i915_wedged_set,
  3419. "%llu\n");
  3420. static int
  3421. i915_ring_missed_irq_get(void *data, u64 *val)
  3422. {
  3423. struct drm_i915_private *dev_priv = data;
  3424. *val = dev_priv->gpu_error.missed_irq_rings;
  3425. return 0;
  3426. }
  3427. static int
  3428. i915_ring_missed_irq_set(void *data, u64 val)
  3429. {
  3430. struct drm_i915_private *dev_priv = data;
  3431. struct drm_device *dev = &dev_priv->drm;
  3432. int ret;
  3433. /* Lock against concurrent debugfs callers */
  3434. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3435. if (ret)
  3436. return ret;
  3437. dev_priv->gpu_error.missed_irq_rings = val;
  3438. mutex_unlock(&dev->struct_mutex);
  3439. return 0;
  3440. }
  3441. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3442. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3443. "0x%08llx\n");
  3444. static int
  3445. i915_ring_test_irq_get(void *data, u64 *val)
  3446. {
  3447. struct drm_i915_private *dev_priv = data;
  3448. *val = dev_priv->gpu_error.test_irq_rings;
  3449. return 0;
  3450. }
  3451. static int
  3452. i915_ring_test_irq_set(void *data, u64 val)
  3453. {
  3454. struct drm_i915_private *dev_priv = data;
  3455. val &= INTEL_INFO(dev_priv)->ring_mask;
  3456. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3457. dev_priv->gpu_error.test_irq_rings = val;
  3458. return 0;
  3459. }
  3460. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3461. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3462. "0x%08llx\n");
  3463. #define DROP_UNBOUND 0x1
  3464. #define DROP_BOUND 0x2
  3465. #define DROP_RETIRE 0x4
  3466. #define DROP_ACTIVE 0x8
  3467. #define DROP_FREED 0x10
  3468. #define DROP_ALL (DROP_UNBOUND | \
  3469. DROP_BOUND | \
  3470. DROP_RETIRE | \
  3471. DROP_ACTIVE | \
  3472. DROP_FREED)
  3473. static int
  3474. i915_drop_caches_get(void *data, u64 *val)
  3475. {
  3476. *val = DROP_ALL;
  3477. return 0;
  3478. }
  3479. static int
  3480. i915_drop_caches_set(void *data, u64 val)
  3481. {
  3482. struct drm_i915_private *dev_priv = data;
  3483. struct drm_device *dev = &dev_priv->drm;
  3484. int ret;
  3485. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3486. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3487. * on ioctls on -EAGAIN. */
  3488. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3489. if (ret)
  3490. return ret;
  3491. if (val & DROP_ACTIVE) {
  3492. ret = i915_gem_wait_for_idle(dev_priv,
  3493. I915_WAIT_INTERRUPTIBLE |
  3494. I915_WAIT_LOCKED);
  3495. if (ret)
  3496. goto unlock;
  3497. }
  3498. if (val & (DROP_RETIRE | DROP_ACTIVE))
  3499. i915_gem_retire_requests(dev_priv);
  3500. if (val & DROP_BOUND)
  3501. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3502. if (val & DROP_UNBOUND)
  3503. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3504. unlock:
  3505. mutex_unlock(&dev->struct_mutex);
  3506. if (val & DROP_FREED) {
  3507. synchronize_rcu();
  3508. i915_gem_drain_freed_objects(dev_priv);
  3509. }
  3510. return ret;
  3511. }
  3512. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3513. i915_drop_caches_get, i915_drop_caches_set,
  3514. "0x%08llx\n");
  3515. static int
  3516. i915_max_freq_get(void *data, u64 *val)
  3517. {
  3518. struct drm_i915_private *dev_priv = data;
  3519. if (INTEL_GEN(dev_priv) < 6)
  3520. return -ENODEV;
  3521. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3522. return 0;
  3523. }
  3524. static int
  3525. i915_max_freq_set(void *data, u64 val)
  3526. {
  3527. struct drm_i915_private *dev_priv = data;
  3528. u32 hw_max, hw_min;
  3529. int ret;
  3530. if (INTEL_GEN(dev_priv) < 6)
  3531. return -ENODEV;
  3532. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3533. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3534. if (ret)
  3535. return ret;
  3536. /*
  3537. * Turbo will still be enabled, but won't go above the set value.
  3538. */
  3539. val = intel_freq_opcode(dev_priv, val);
  3540. hw_max = dev_priv->rps.max_freq;
  3541. hw_min = dev_priv->rps.min_freq;
  3542. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3543. mutex_unlock(&dev_priv->rps.hw_lock);
  3544. return -EINVAL;
  3545. }
  3546. dev_priv->rps.max_freq_softlimit = val;
  3547. if (intel_set_rps(dev_priv, val))
  3548. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3549. mutex_unlock(&dev_priv->rps.hw_lock);
  3550. return 0;
  3551. }
  3552. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3553. i915_max_freq_get, i915_max_freq_set,
  3554. "%llu\n");
  3555. static int
  3556. i915_min_freq_get(void *data, u64 *val)
  3557. {
  3558. struct drm_i915_private *dev_priv = data;
  3559. if (INTEL_GEN(dev_priv) < 6)
  3560. return -ENODEV;
  3561. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3562. return 0;
  3563. }
  3564. static int
  3565. i915_min_freq_set(void *data, u64 val)
  3566. {
  3567. struct drm_i915_private *dev_priv = data;
  3568. u32 hw_max, hw_min;
  3569. int ret;
  3570. if (INTEL_GEN(dev_priv) < 6)
  3571. return -ENODEV;
  3572. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3573. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3574. if (ret)
  3575. return ret;
  3576. /*
  3577. * Turbo will still be enabled, but won't go below the set value.
  3578. */
  3579. val = intel_freq_opcode(dev_priv, val);
  3580. hw_max = dev_priv->rps.max_freq;
  3581. hw_min = dev_priv->rps.min_freq;
  3582. if (val < hw_min ||
  3583. val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3584. mutex_unlock(&dev_priv->rps.hw_lock);
  3585. return -EINVAL;
  3586. }
  3587. dev_priv->rps.min_freq_softlimit = val;
  3588. if (intel_set_rps(dev_priv, val))
  3589. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3590. mutex_unlock(&dev_priv->rps.hw_lock);
  3591. return 0;
  3592. }
  3593. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3594. i915_min_freq_get, i915_min_freq_set,
  3595. "%llu\n");
  3596. static int
  3597. i915_cache_sharing_get(void *data, u64 *val)
  3598. {
  3599. struct drm_i915_private *dev_priv = data;
  3600. u32 snpcr;
  3601. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3602. return -ENODEV;
  3603. intel_runtime_pm_get(dev_priv);
  3604. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3605. intel_runtime_pm_put(dev_priv);
  3606. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3607. return 0;
  3608. }
  3609. static int
  3610. i915_cache_sharing_set(void *data, u64 val)
  3611. {
  3612. struct drm_i915_private *dev_priv = data;
  3613. u32 snpcr;
  3614. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3615. return -ENODEV;
  3616. if (val > 3)
  3617. return -EINVAL;
  3618. intel_runtime_pm_get(dev_priv);
  3619. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3620. /* Update the cache sharing policy here as well */
  3621. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3622. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3623. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3624. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3625. intel_runtime_pm_put(dev_priv);
  3626. return 0;
  3627. }
  3628. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3629. i915_cache_sharing_get, i915_cache_sharing_set,
  3630. "%llu\n");
  3631. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3632. struct sseu_dev_info *sseu)
  3633. {
  3634. int ss_max = 2;
  3635. int ss;
  3636. u32 sig1[ss_max], sig2[ss_max];
  3637. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3638. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3639. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3640. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3641. for (ss = 0; ss < ss_max; ss++) {
  3642. unsigned int eu_cnt;
  3643. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3644. /* skip disabled subslice */
  3645. continue;
  3646. sseu->slice_mask = BIT(0);
  3647. sseu->subslice_mask |= BIT(ss);
  3648. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3649. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3650. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3651. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3652. sseu->eu_total += eu_cnt;
  3653. sseu->eu_per_subslice = max_t(unsigned int,
  3654. sseu->eu_per_subslice, eu_cnt);
  3655. }
  3656. }
  3657. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3658. struct sseu_dev_info *sseu)
  3659. {
  3660. int s_max = 3, ss_max = 4;
  3661. int s, ss;
  3662. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  3663. /* BXT has a single slice and at most 3 subslices. */
  3664. if (IS_GEN9_LP(dev_priv)) {
  3665. s_max = 1;
  3666. ss_max = 3;
  3667. }
  3668. for (s = 0; s < s_max; s++) {
  3669. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3670. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3671. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3672. }
  3673. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3674. GEN9_PGCTL_SSA_EU19_ACK |
  3675. GEN9_PGCTL_SSA_EU210_ACK |
  3676. GEN9_PGCTL_SSA_EU311_ACK;
  3677. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3678. GEN9_PGCTL_SSB_EU19_ACK |
  3679. GEN9_PGCTL_SSB_EU210_ACK |
  3680. GEN9_PGCTL_SSB_EU311_ACK;
  3681. for (s = 0; s < s_max; s++) {
  3682. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3683. /* skip disabled slice */
  3684. continue;
  3685. sseu->slice_mask |= BIT(s);
  3686. if (IS_GEN9_BC(dev_priv))
  3687. sseu->subslice_mask =
  3688. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3689. for (ss = 0; ss < ss_max; ss++) {
  3690. unsigned int eu_cnt;
  3691. if (IS_GEN9_LP(dev_priv)) {
  3692. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3693. /* skip disabled subslice */
  3694. continue;
  3695. sseu->subslice_mask |= BIT(ss);
  3696. }
  3697. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3698. eu_mask[ss%2]);
  3699. sseu->eu_total += eu_cnt;
  3700. sseu->eu_per_subslice = max_t(unsigned int,
  3701. sseu->eu_per_subslice,
  3702. eu_cnt);
  3703. }
  3704. }
  3705. }
  3706. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3707. struct sseu_dev_info *sseu)
  3708. {
  3709. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3710. int s;
  3711. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3712. if (sseu->slice_mask) {
  3713. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  3714. sseu->eu_per_subslice =
  3715. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3716. sseu->eu_total = sseu->eu_per_subslice *
  3717. sseu_subslice_total(sseu);
  3718. /* subtract fused off EU(s) from enabled slice(s) */
  3719. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3720. u8 subslice_7eu =
  3721. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3722. sseu->eu_total -= hweight8(subslice_7eu);
  3723. }
  3724. }
  3725. }
  3726. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3727. const struct sseu_dev_info *sseu)
  3728. {
  3729. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3730. const char *type = is_available_info ? "Available" : "Enabled";
  3731. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3732. sseu->slice_mask);
  3733. seq_printf(m, " %s Slice Total: %u\n", type,
  3734. hweight8(sseu->slice_mask));
  3735. seq_printf(m, " %s Subslice Total: %u\n", type,
  3736. sseu_subslice_total(sseu));
  3737. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  3738. sseu->subslice_mask);
  3739. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  3740. hweight8(sseu->subslice_mask));
  3741. seq_printf(m, " %s EU Total: %u\n", type,
  3742. sseu->eu_total);
  3743. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3744. sseu->eu_per_subslice);
  3745. if (!is_available_info)
  3746. return;
  3747. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3748. if (HAS_POOLED_EU(dev_priv))
  3749. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3750. seq_printf(m, " Has Slice Power Gating: %s\n",
  3751. yesno(sseu->has_slice_pg));
  3752. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3753. yesno(sseu->has_subslice_pg));
  3754. seq_printf(m, " Has EU Power Gating: %s\n",
  3755. yesno(sseu->has_eu_pg));
  3756. }
  3757. static int i915_sseu_status(struct seq_file *m, void *unused)
  3758. {
  3759. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3760. struct sseu_dev_info sseu;
  3761. if (INTEL_GEN(dev_priv) < 8)
  3762. return -ENODEV;
  3763. seq_puts(m, "SSEU Device Info\n");
  3764. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3765. seq_puts(m, "SSEU Device Status\n");
  3766. memset(&sseu, 0, sizeof(sseu));
  3767. intel_runtime_pm_get(dev_priv);
  3768. if (IS_CHERRYVIEW(dev_priv)) {
  3769. cherryview_sseu_device_status(dev_priv, &sseu);
  3770. } else if (IS_BROADWELL(dev_priv)) {
  3771. broadwell_sseu_device_status(dev_priv, &sseu);
  3772. } else if (INTEL_GEN(dev_priv) >= 9) {
  3773. gen9_sseu_device_status(dev_priv, &sseu);
  3774. }
  3775. intel_runtime_pm_put(dev_priv);
  3776. i915_print_sseu_info(m, false, &sseu);
  3777. return 0;
  3778. }
  3779. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3780. {
  3781. struct drm_i915_private *dev_priv = inode->i_private;
  3782. if (INTEL_GEN(dev_priv) < 6)
  3783. return 0;
  3784. intel_runtime_pm_get(dev_priv);
  3785. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3786. return 0;
  3787. }
  3788. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3789. {
  3790. struct drm_i915_private *dev_priv = inode->i_private;
  3791. if (INTEL_GEN(dev_priv) < 6)
  3792. return 0;
  3793. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3794. intel_runtime_pm_put(dev_priv);
  3795. return 0;
  3796. }
  3797. static const struct file_operations i915_forcewake_fops = {
  3798. .owner = THIS_MODULE,
  3799. .open = i915_forcewake_open,
  3800. .release = i915_forcewake_release,
  3801. };
  3802. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  3803. {
  3804. struct dentry *ent;
  3805. ent = debugfs_create_file("i915_forcewake_user",
  3806. S_IRUSR,
  3807. root, to_i915(minor->dev),
  3808. &i915_forcewake_fops);
  3809. if (!ent)
  3810. return -ENOMEM;
  3811. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  3812. }
  3813. static int i915_debugfs_create(struct dentry *root,
  3814. struct drm_minor *minor,
  3815. const char *name,
  3816. const struct file_operations *fops)
  3817. {
  3818. struct dentry *ent;
  3819. ent = debugfs_create_file(name,
  3820. S_IRUGO | S_IWUSR,
  3821. root, to_i915(minor->dev),
  3822. fops);
  3823. if (!ent)
  3824. return -ENOMEM;
  3825. return drm_add_fake_info_node(minor, ent, fops);
  3826. }
  3827. static const struct drm_info_list i915_debugfs_list[] = {
  3828. {"i915_capabilities", i915_capabilities, 0},
  3829. {"i915_gem_objects", i915_gem_object_info, 0},
  3830. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3831. {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
  3832. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3833. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  3834. {"i915_gem_request", i915_gem_request_info, 0},
  3835. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  3836. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3837. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3838. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3839. {"i915_guc_info", i915_guc_info, 0},
  3840. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3841. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3842. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3843. {"i915_frequency_info", i915_frequency_info, 0},
  3844. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3845. {"i915_drpc_info", i915_drpc_info, 0},
  3846. {"i915_emon_status", i915_emon_status, 0},
  3847. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3848. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3849. {"i915_fbc_status", i915_fbc_status, 0},
  3850. {"i915_ips_status", i915_ips_status, 0},
  3851. {"i915_sr_status", i915_sr_status, 0},
  3852. {"i915_opregion", i915_opregion, 0},
  3853. {"i915_vbt", i915_vbt, 0},
  3854. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3855. {"i915_context_status", i915_context_status, 0},
  3856. {"i915_dump_lrc", i915_dump_lrc, 0},
  3857. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3858. {"i915_swizzle_info", i915_swizzle_info, 0},
  3859. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3860. {"i915_llc", i915_llc, 0},
  3861. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3862. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3863. {"i915_energy_uJ", i915_energy_uJ, 0},
  3864. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3865. {"i915_power_domain_info", i915_power_domain_info, 0},
  3866. {"i915_dmc_info", i915_dmc_info, 0},
  3867. {"i915_display_info", i915_display_info, 0},
  3868. {"i915_engine_info", i915_engine_info, 0},
  3869. {"i915_semaphore_status", i915_semaphore_status, 0},
  3870. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3871. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3872. {"i915_wa_registers", i915_wa_registers, 0},
  3873. {"i915_ddb_info", i915_ddb_info, 0},
  3874. {"i915_sseu_status", i915_sseu_status, 0},
  3875. {"i915_drrs_status", i915_drrs_status, 0},
  3876. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3877. };
  3878. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3879. static const struct i915_debugfs_files {
  3880. const char *name;
  3881. const struct file_operations *fops;
  3882. } i915_debugfs_files[] = {
  3883. {"i915_wedged", &i915_wedged_fops},
  3884. {"i915_max_freq", &i915_max_freq_fops},
  3885. {"i915_min_freq", &i915_min_freq_fops},
  3886. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3887. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3888. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3889. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3890. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3891. {"i915_error_state", &i915_error_state_fops},
  3892. #endif
  3893. {"i915_next_seqno", &i915_next_seqno_fops},
  3894. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3895. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3896. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3897. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3898. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  3899. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  3900. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  3901. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  3902. {"i915_guc_log_control", &i915_guc_log_control_fops}
  3903. };
  3904. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  3905. {
  3906. struct drm_minor *minor = dev_priv->drm.primary;
  3907. int ret, i;
  3908. ret = i915_forcewake_create(minor->debugfs_root, minor);
  3909. if (ret)
  3910. return ret;
  3911. ret = intel_pipe_crc_create(minor);
  3912. if (ret)
  3913. return ret;
  3914. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3915. ret = i915_debugfs_create(minor->debugfs_root, minor,
  3916. i915_debugfs_files[i].name,
  3917. i915_debugfs_files[i].fops);
  3918. if (ret)
  3919. return ret;
  3920. }
  3921. return drm_debugfs_create_files(i915_debugfs_list,
  3922. I915_DEBUGFS_ENTRIES,
  3923. minor->debugfs_root, minor);
  3924. }
  3925. void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
  3926. {
  3927. struct drm_minor *minor = dev_priv->drm.primary;
  3928. int i;
  3929. drm_debugfs_remove_files(i915_debugfs_list,
  3930. I915_DEBUGFS_ENTRIES, minor);
  3931. drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
  3932. 1, minor);
  3933. intel_pipe_crc_cleanup(minor);
  3934. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3935. struct drm_info_list *info_list =
  3936. (struct drm_info_list *)i915_debugfs_files[i].fops;
  3937. drm_debugfs_remove_files(info_list, 1, minor);
  3938. }
  3939. }
  3940. struct dpcd_block {
  3941. /* DPCD dump start address. */
  3942. unsigned int offset;
  3943. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  3944. unsigned int end;
  3945. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  3946. size_t size;
  3947. /* Only valid for eDP. */
  3948. bool edp;
  3949. };
  3950. static const struct dpcd_block i915_dpcd_debug[] = {
  3951. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  3952. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  3953. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  3954. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  3955. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  3956. { .offset = DP_SET_POWER },
  3957. { .offset = DP_EDP_DPCD_REV },
  3958. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  3959. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  3960. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  3961. };
  3962. static int i915_dpcd_show(struct seq_file *m, void *data)
  3963. {
  3964. struct drm_connector *connector = m->private;
  3965. struct intel_dp *intel_dp =
  3966. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  3967. uint8_t buf[16];
  3968. ssize_t err;
  3969. int i;
  3970. if (connector->status != connector_status_connected)
  3971. return -ENODEV;
  3972. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  3973. const struct dpcd_block *b = &i915_dpcd_debug[i];
  3974. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  3975. if (b->edp &&
  3976. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  3977. continue;
  3978. /* low tech for now */
  3979. if (WARN_ON(size > sizeof(buf)))
  3980. continue;
  3981. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  3982. if (err <= 0) {
  3983. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  3984. size, b->offset, err);
  3985. continue;
  3986. }
  3987. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  3988. }
  3989. return 0;
  3990. }
  3991. static int i915_dpcd_open(struct inode *inode, struct file *file)
  3992. {
  3993. return single_open(file, i915_dpcd_show, inode->i_private);
  3994. }
  3995. static const struct file_operations i915_dpcd_fops = {
  3996. .owner = THIS_MODULE,
  3997. .open = i915_dpcd_open,
  3998. .read = seq_read,
  3999. .llseek = seq_lseek,
  4000. .release = single_release,
  4001. };
  4002. static int i915_panel_show(struct seq_file *m, void *data)
  4003. {
  4004. struct drm_connector *connector = m->private;
  4005. struct intel_dp *intel_dp =
  4006. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4007. if (connector->status != connector_status_connected)
  4008. return -ENODEV;
  4009. seq_printf(m, "Panel power up delay: %d\n",
  4010. intel_dp->panel_power_up_delay);
  4011. seq_printf(m, "Panel power down delay: %d\n",
  4012. intel_dp->panel_power_down_delay);
  4013. seq_printf(m, "Backlight on delay: %d\n",
  4014. intel_dp->backlight_on_delay);
  4015. seq_printf(m, "Backlight off delay: %d\n",
  4016. intel_dp->backlight_off_delay);
  4017. return 0;
  4018. }
  4019. static int i915_panel_open(struct inode *inode, struct file *file)
  4020. {
  4021. return single_open(file, i915_panel_show, inode->i_private);
  4022. }
  4023. static const struct file_operations i915_panel_fops = {
  4024. .owner = THIS_MODULE,
  4025. .open = i915_panel_open,
  4026. .read = seq_read,
  4027. .llseek = seq_lseek,
  4028. .release = single_release,
  4029. };
  4030. /**
  4031. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4032. * @connector: pointer to a registered drm_connector
  4033. *
  4034. * Cleanup will be done by drm_connector_unregister() through a call to
  4035. * drm_debugfs_connector_remove().
  4036. *
  4037. * Returns 0 on success, negative error codes on error.
  4038. */
  4039. int i915_debugfs_connector_add(struct drm_connector *connector)
  4040. {
  4041. struct dentry *root = connector->debugfs_entry;
  4042. /* The connector must have been registered beforehands. */
  4043. if (!root)
  4044. return -ENODEV;
  4045. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4046. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4047. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4048. connector, &i915_dpcd_fops);
  4049. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4050. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4051. connector, &i915_panel_fops);
  4052. return 0;
  4053. }