dmaengine.h 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called COPYING.
  16. */
  17. #ifndef LINUX_DMAENGINE_H
  18. #define LINUX_DMAENGINE_H
  19. #include <linux/device.h>
  20. #include <linux/err.h>
  21. #include <linux/uio.h>
  22. #include <linux/bug.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/bitmap.h>
  25. #include <linux/types.h>
  26. #include <asm/page.h>
  27. /**
  28. * typedef dma_cookie_t - an opaque DMA cookie
  29. *
  30. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  31. */
  32. typedef s32 dma_cookie_t;
  33. #define DMA_MIN_COOKIE 1
  34. static inline int dma_submit_error(dma_cookie_t cookie)
  35. {
  36. return cookie < 0 ? cookie : 0;
  37. }
  38. /**
  39. * enum dma_status - DMA transaction status
  40. * @DMA_COMPLETE: transaction completed
  41. * @DMA_IN_PROGRESS: transaction not yet processed
  42. * @DMA_PAUSED: transaction is paused
  43. * @DMA_ERROR: transaction failed
  44. */
  45. enum dma_status {
  46. DMA_COMPLETE,
  47. DMA_IN_PROGRESS,
  48. DMA_PAUSED,
  49. DMA_ERROR,
  50. };
  51. /**
  52. * enum dma_transaction_type - DMA transaction types/indexes
  53. *
  54. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  55. * automatically set as dma devices are registered.
  56. */
  57. enum dma_transaction_type {
  58. DMA_MEMCPY,
  59. DMA_XOR,
  60. DMA_PQ,
  61. DMA_XOR_VAL,
  62. DMA_PQ_VAL,
  63. DMA_MEMSET,
  64. DMA_INTERRUPT,
  65. DMA_SG,
  66. DMA_PRIVATE,
  67. DMA_ASYNC_TX,
  68. DMA_SLAVE,
  69. DMA_CYCLIC,
  70. DMA_INTERLEAVE,
  71. /* last transaction type for creation of the capabilities mask */
  72. DMA_TX_TYPE_END,
  73. };
  74. /**
  75. * enum dma_transfer_direction - dma transfer mode and direction indicator
  76. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  77. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  78. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  79. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  80. */
  81. enum dma_transfer_direction {
  82. DMA_MEM_TO_MEM,
  83. DMA_MEM_TO_DEV,
  84. DMA_DEV_TO_MEM,
  85. DMA_DEV_TO_DEV,
  86. DMA_TRANS_NONE,
  87. };
  88. /**
  89. * Interleaved Transfer Request
  90. * ----------------------------
  91. * A chunk is collection of contiguous bytes to be transfered.
  92. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  93. * ICGs may or maynot change between chunks.
  94. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  95. * that when repeated an integral number of times, specifies the transfer.
  96. * A transfer template is specification of a Frame, the number of times
  97. * it is to be repeated and other per-transfer attributes.
  98. *
  99. * Practically, a client driver would have ready a template for each
  100. * type of transfer it is going to need during its lifetime and
  101. * set only 'src_start' and 'dst_start' before submitting the requests.
  102. *
  103. *
  104. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  105. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  106. *
  107. * == Chunk size
  108. * ... ICG
  109. */
  110. /**
  111. * struct data_chunk - Element of scatter-gather list that makes a frame.
  112. * @size: Number of bytes to read from source.
  113. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  114. * @icg: Number of bytes to jump after last src/dst address of this
  115. * chunk and before first src/dst address for next chunk.
  116. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  117. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  118. */
  119. struct data_chunk {
  120. size_t size;
  121. size_t icg;
  122. };
  123. /**
  124. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  125. * and attributes.
  126. * @src_start: Bus address of source for the first chunk.
  127. * @dst_start: Bus address of destination for the first chunk.
  128. * @dir: Specifies the type of Source and Destination.
  129. * @src_inc: If the source address increments after reading from it.
  130. * @dst_inc: If the destination address increments after writing to it.
  131. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  132. * Otherwise, source is read contiguously (icg ignored).
  133. * Ignored if src_inc is false.
  134. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  135. * Otherwise, destination is filled contiguously (icg ignored).
  136. * Ignored if dst_inc is false.
  137. * @numf: Number of frames in this template.
  138. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  139. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  140. */
  141. struct dma_interleaved_template {
  142. dma_addr_t src_start;
  143. dma_addr_t dst_start;
  144. enum dma_transfer_direction dir;
  145. bool src_inc;
  146. bool dst_inc;
  147. bool src_sgl;
  148. bool dst_sgl;
  149. size_t numf;
  150. size_t frame_size;
  151. struct data_chunk sgl[0];
  152. };
  153. /**
  154. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  155. * control completion, and communicate status.
  156. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  157. * this transaction
  158. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  159. * acknowledges receipt, i.e. has has a chance to establish any dependency
  160. * chains
  161. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  162. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  163. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  164. * sources that were the result of a previous operation, in the case of a PQ
  165. * operation it continues the calculation with new sources
  166. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  167. * on the result of this operation
  168. */
  169. enum dma_ctrl_flags {
  170. DMA_PREP_INTERRUPT = (1 << 0),
  171. DMA_CTRL_ACK = (1 << 1),
  172. DMA_PREP_PQ_DISABLE_P = (1 << 2),
  173. DMA_PREP_PQ_DISABLE_Q = (1 << 3),
  174. DMA_PREP_CONTINUE = (1 << 4),
  175. DMA_PREP_FENCE = (1 << 5),
  176. };
  177. /**
  178. * enum sum_check_bits - bit position of pq_check_flags
  179. */
  180. enum sum_check_bits {
  181. SUM_CHECK_P = 0,
  182. SUM_CHECK_Q = 1,
  183. };
  184. /**
  185. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  186. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  187. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  188. */
  189. enum sum_check_flags {
  190. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  191. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  192. };
  193. /**
  194. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  195. * See linux/cpumask.h
  196. */
  197. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  198. /**
  199. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  200. * @memcpy_count: transaction counter
  201. * @bytes_transferred: byte counter
  202. */
  203. struct dma_chan_percpu {
  204. /* stats */
  205. unsigned long memcpy_count;
  206. unsigned long bytes_transferred;
  207. };
  208. /**
  209. * struct dma_chan - devices supply DMA channels, clients use them
  210. * @device: ptr to the dma device who supplies this channel, always !%NULL
  211. * @cookie: last cookie value returned to client
  212. * @completed_cookie: last completed cookie for this channel
  213. * @chan_id: channel ID for sysfs
  214. * @dev: class device for sysfs
  215. * @device_node: used to add this to the device chan list
  216. * @local: per-cpu pointer to a struct dma_chan_percpu
  217. * @client_count: how many clients are using this channel
  218. * @table_count: number of appearances in the mem-to-mem allocation table
  219. * @private: private data for certain client-channel associations
  220. */
  221. struct dma_chan {
  222. struct dma_device *device;
  223. dma_cookie_t cookie;
  224. dma_cookie_t completed_cookie;
  225. /* sysfs */
  226. int chan_id;
  227. struct dma_chan_dev *dev;
  228. struct list_head device_node;
  229. struct dma_chan_percpu __percpu *local;
  230. int client_count;
  231. int table_count;
  232. void *private;
  233. };
  234. /**
  235. * struct dma_chan_dev - relate sysfs device node to backing channel device
  236. * @chan: driver channel device
  237. * @device: sysfs device
  238. * @dev_id: parent dma_device dev_id
  239. * @idr_ref: reference count to gate release of dma_device dev_id
  240. */
  241. struct dma_chan_dev {
  242. struct dma_chan *chan;
  243. struct device device;
  244. int dev_id;
  245. atomic_t *idr_ref;
  246. };
  247. /**
  248. * enum dma_slave_buswidth - defines bus width of the DMA slave
  249. * device, source or target buses
  250. */
  251. enum dma_slave_buswidth {
  252. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  253. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  254. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  255. DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
  256. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  257. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  258. DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
  259. DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
  260. DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
  261. };
  262. /**
  263. * struct dma_slave_config - dma slave channel runtime config
  264. * @direction: whether the data shall go in or out on this slave
  265. * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
  266. * legal values. DEPRECATED, drivers should use the direction argument
  267. * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
  268. * the dir field in the dma_interleaved_template structure.
  269. * @src_addr: this is the physical address where DMA slave data
  270. * should be read (RX), if the source is memory this argument is
  271. * ignored.
  272. * @dst_addr: this is the physical address where DMA slave data
  273. * should be written (TX), if the source is memory this argument
  274. * is ignored.
  275. * @src_addr_width: this is the width in bytes of the source (RX)
  276. * register where DMA data shall be read. If the source
  277. * is memory this may be ignored depending on architecture.
  278. * Legal values: 1, 2, 4, 8.
  279. * @dst_addr_width: same as src_addr_width but for destination
  280. * target (TX) mutatis mutandis.
  281. * @src_maxburst: the maximum number of words (note: words, as in
  282. * units of the src_addr_width member, not bytes) that can be sent
  283. * in one burst to the device. Typically something like half the
  284. * FIFO depth on I/O peripherals so you don't overflow it. This
  285. * may or may not be applicable on memory sources.
  286. * @dst_maxburst: same as src_maxburst but for destination target
  287. * mutatis mutandis.
  288. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  289. * with 'true' if peripheral should be flow controller. Direction will be
  290. * selected at Runtime.
  291. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  292. * slave peripheral will have unique id as dma requester which need to be
  293. * pass as slave config.
  294. *
  295. * This struct is passed in as configuration data to a DMA engine
  296. * in order to set up a certain channel for DMA transport at runtime.
  297. * The DMA device/engine has to provide support for an additional
  298. * callback in the dma_device structure, device_config and this struct
  299. * will then be passed in as an argument to the function.
  300. *
  301. * The rationale for adding configuration information to this struct is as
  302. * follows: if it is likely that more than one DMA slave controllers in
  303. * the world will support the configuration option, then make it generic.
  304. * If not: if it is fixed so that it be sent in static from the platform
  305. * data, then prefer to do that.
  306. */
  307. struct dma_slave_config {
  308. enum dma_transfer_direction direction;
  309. dma_addr_t src_addr;
  310. dma_addr_t dst_addr;
  311. enum dma_slave_buswidth src_addr_width;
  312. enum dma_slave_buswidth dst_addr_width;
  313. u32 src_maxburst;
  314. u32 dst_maxburst;
  315. bool device_fc;
  316. unsigned int slave_id;
  317. };
  318. /**
  319. * enum dma_residue_granularity - Granularity of the reported transfer residue
  320. * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
  321. * DMA channel is only able to tell whether a descriptor has been completed or
  322. * not, which means residue reporting is not supported by this channel. The
  323. * residue field of the dma_tx_state field will always be 0.
  324. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
  325. * completed segment of the transfer (For cyclic transfers this is after each
  326. * period). This is typically implemented by having the hardware generate an
  327. * interrupt after each transferred segment and then the drivers updates the
  328. * outstanding residue by the size of the segment. Another possibility is if
  329. * the hardware supports scatter-gather and the segment descriptor has a field
  330. * which gets set after the segment has been completed. The driver then counts
  331. * the number of segments without the flag set to compute the residue.
  332. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
  333. * burst. This is typically only supported if the hardware has a progress
  334. * register of some sort (E.g. a register with the current read/write address
  335. * or a register with the amount of bursts/beats/bytes that have been
  336. * transferred or still need to be transferred).
  337. */
  338. enum dma_residue_granularity {
  339. DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
  340. DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
  341. DMA_RESIDUE_GRANULARITY_BURST = 2,
  342. };
  343. /* struct dma_slave_caps - expose capabilities of a slave channel only
  344. *
  345. * @src_addr_widths: bit mask of src addr widths the channel supports
  346. * @dst_addr_widths: bit mask of dstn addr widths the channel supports
  347. * @directions: bit mask of slave direction the channel supported
  348. * since the enum dma_transfer_direction is not defined as bits for each
  349. * type of direction, the dma controller should fill (1 << <TYPE>) and same
  350. * should be checked by controller as well
  351. * @cmd_pause: true, if pause and thereby resume is supported
  352. * @cmd_terminate: true, if terminate cmd is supported
  353. * @residue_granularity: granularity of the reported transfer residue
  354. */
  355. struct dma_slave_caps {
  356. u32 src_addr_widths;
  357. u32 dst_addr_widths;
  358. u32 directions;
  359. bool cmd_pause;
  360. bool cmd_terminate;
  361. enum dma_residue_granularity residue_granularity;
  362. };
  363. static inline const char *dma_chan_name(struct dma_chan *chan)
  364. {
  365. return dev_name(&chan->dev->device);
  366. }
  367. void dma_chan_cleanup(struct kref *kref);
  368. /**
  369. * typedef dma_filter_fn - callback filter for dma_request_channel
  370. * @chan: channel to be reviewed
  371. * @filter_param: opaque parameter passed through dma_request_channel
  372. *
  373. * When this optional parameter is specified in a call to dma_request_channel a
  374. * suitable channel is passed to this routine for further dispositioning before
  375. * being returned. Where 'suitable' indicates a non-busy channel that
  376. * satisfies the given capability mask. It returns 'true' to indicate that the
  377. * channel is suitable.
  378. */
  379. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  380. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  381. struct dmaengine_unmap_data {
  382. u8 map_cnt;
  383. u8 to_cnt;
  384. u8 from_cnt;
  385. u8 bidi_cnt;
  386. struct device *dev;
  387. struct kref kref;
  388. size_t len;
  389. dma_addr_t addr[0];
  390. };
  391. /**
  392. * struct dma_async_tx_descriptor - async transaction descriptor
  393. * ---dma generic offload fields---
  394. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  395. * this tx is sitting on a dependency list
  396. * @flags: flags to augment operation preparation, control completion, and
  397. * communicate status
  398. * @phys: physical address of the descriptor
  399. * @chan: target channel for this operation
  400. * @tx_submit: accept the descriptor, assign ordered cookie and mark the
  401. * descriptor pending. To be pushed on .issue_pending() call
  402. * @callback: routine to call after this operation is complete
  403. * @callback_param: general parameter to pass to the callback routine
  404. * ---async_tx api specific fields---
  405. * @next: at completion submit this descriptor
  406. * @parent: pointer to the next level up in the dependency chain
  407. * @lock: protect the parent and next pointers
  408. */
  409. struct dma_async_tx_descriptor {
  410. dma_cookie_t cookie;
  411. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  412. dma_addr_t phys;
  413. struct dma_chan *chan;
  414. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  415. dma_async_tx_callback callback;
  416. void *callback_param;
  417. struct dmaengine_unmap_data *unmap;
  418. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  419. struct dma_async_tx_descriptor *next;
  420. struct dma_async_tx_descriptor *parent;
  421. spinlock_t lock;
  422. #endif
  423. };
  424. #ifdef CONFIG_DMA_ENGINE
  425. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  426. struct dmaengine_unmap_data *unmap)
  427. {
  428. kref_get(&unmap->kref);
  429. tx->unmap = unmap;
  430. }
  431. struct dmaengine_unmap_data *
  432. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
  433. void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
  434. #else
  435. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  436. struct dmaengine_unmap_data *unmap)
  437. {
  438. }
  439. static inline struct dmaengine_unmap_data *
  440. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
  441. {
  442. return NULL;
  443. }
  444. static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
  445. {
  446. }
  447. #endif
  448. static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
  449. {
  450. if (tx->unmap) {
  451. dmaengine_unmap_put(tx->unmap);
  452. tx->unmap = NULL;
  453. }
  454. }
  455. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  456. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  457. {
  458. }
  459. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  460. {
  461. }
  462. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  463. {
  464. BUG();
  465. }
  466. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  467. {
  468. }
  469. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  470. {
  471. }
  472. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  473. {
  474. return NULL;
  475. }
  476. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  477. {
  478. return NULL;
  479. }
  480. #else
  481. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  482. {
  483. spin_lock_bh(&txd->lock);
  484. }
  485. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  486. {
  487. spin_unlock_bh(&txd->lock);
  488. }
  489. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  490. {
  491. txd->next = next;
  492. next->parent = txd;
  493. }
  494. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  495. {
  496. txd->parent = NULL;
  497. }
  498. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  499. {
  500. txd->next = NULL;
  501. }
  502. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  503. {
  504. return txd->parent;
  505. }
  506. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  507. {
  508. return txd->next;
  509. }
  510. #endif
  511. /**
  512. * struct dma_tx_state - filled in to report the status of
  513. * a transfer.
  514. * @last: last completed DMA cookie
  515. * @used: last issued DMA cookie (i.e. the one in progress)
  516. * @residue: the remaining number of bytes left to transmit
  517. * on the selected transfer for states DMA_IN_PROGRESS and
  518. * DMA_PAUSED if this is implemented in the driver, else 0
  519. */
  520. struct dma_tx_state {
  521. dma_cookie_t last;
  522. dma_cookie_t used;
  523. u32 residue;
  524. };
  525. /**
  526. * struct dma_device - info on the entity supplying DMA services
  527. * @chancnt: how many DMA channels are supported
  528. * @privatecnt: how many DMA channels are requested by dma_request_channel
  529. * @channels: the list of struct dma_chan
  530. * @global_node: list_head for global dma_device_list
  531. * @cap_mask: one or more dma_capability flags
  532. * @max_xor: maximum number of xor sources, 0 if no capability
  533. * @max_pq: maximum number of PQ sources and PQ-continue capability
  534. * @copy_align: alignment shift for memcpy operations
  535. * @xor_align: alignment shift for xor operations
  536. * @pq_align: alignment shift for pq operations
  537. * @fill_align: alignment shift for memset operations
  538. * @dev_id: unique device ID
  539. * @dev: struct device reference for dma mapping api
  540. * @src_addr_widths: bit mask of src addr widths the device supports
  541. * @dst_addr_widths: bit mask of dst addr widths the device supports
  542. * @directions: bit mask of slave direction the device supports since
  543. * the enum dma_transfer_direction is not defined as bits for
  544. * each type of direction, the dma controller should fill (1 <<
  545. * <TYPE>) and same should be checked by controller as well
  546. * @residue_granularity: granularity of the transfer residue reported
  547. * by tx_status
  548. * @device_alloc_chan_resources: allocate resources and return the
  549. * number of allocated descriptors
  550. * @device_free_chan_resources: release DMA channel's resources
  551. * @device_prep_dma_memcpy: prepares a memcpy operation
  552. * @device_prep_dma_xor: prepares a xor operation
  553. * @device_prep_dma_xor_val: prepares a xor validation operation
  554. * @device_prep_dma_pq: prepares a pq operation
  555. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  556. * @device_prep_dma_memset: prepares a memset operation
  557. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  558. * @device_prep_slave_sg: prepares a slave dma operation
  559. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  560. * The function takes a buffer of size buf_len. The callback function will
  561. * be called after period_len bytes have been transferred.
  562. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  563. * @device_config: Pushes a new configuration to a channel, return 0 or an error
  564. * code
  565. * @device_pause: Pauses any transfer happening on a channel. Returns
  566. * 0 or an error code
  567. * @device_resume: Resumes any transfer on a channel previously
  568. * paused. Returns 0 or an error code
  569. * @device_terminate_all: Aborts all transfers on a channel. Returns 0
  570. * or an error code
  571. * @device_tx_status: poll for transaction completion, the optional
  572. * txstate parameter can be supplied with a pointer to get a
  573. * struct with auxiliary transfer status information, otherwise the call
  574. * will just return a simple status code
  575. * @device_issue_pending: push pending transactions to hardware
  576. */
  577. struct dma_device {
  578. unsigned int chancnt;
  579. unsigned int privatecnt;
  580. struct list_head channels;
  581. struct list_head global_node;
  582. dma_cap_mask_t cap_mask;
  583. unsigned short max_xor;
  584. unsigned short max_pq;
  585. u8 copy_align;
  586. u8 xor_align;
  587. u8 pq_align;
  588. u8 fill_align;
  589. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  590. int dev_id;
  591. struct device *dev;
  592. u32 src_addr_widths;
  593. u32 dst_addr_widths;
  594. u32 directions;
  595. enum dma_residue_granularity residue_granularity;
  596. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  597. void (*device_free_chan_resources)(struct dma_chan *chan);
  598. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  599. struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
  600. size_t len, unsigned long flags);
  601. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  602. struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
  603. unsigned int src_cnt, size_t len, unsigned long flags);
  604. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  605. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  606. size_t len, enum sum_check_flags *result, unsigned long flags);
  607. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  608. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  609. unsigned int src_cnt, const unsigned char *scf,
  610. size_t len, unsigned long flags);
  611. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  612. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  613. unsigned int src_cnt, const unsigned char *scf, size_t len,
  614. enum sum_check_flags *pqres, unsigned long flags);
  615. struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
  616. struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
  617. unsigned long flags);
  618. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  619. struct dma_chan *chan, unsigned long flags);
  620. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  621. struct dma_chan *chan,
  622. struct scatterlist *dst_sg, unsigned int dst_nents,
  623. struct scatterlist *src_sg, unsigned int src_nents,
  624. unsigned long flags);
  625. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  626. struct dma_chan *chan, struct scatterlist *sgl,
  627. unsigned int sg_len, enum dma_transfer_direction direction,
  628. unsigned long flags, void *context);
  629. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  630. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  631. size_t period_len, enum dma_transfer_direction direction,
  632. unsigned long flags);
  633. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  634. struct dma_chan *chan, struct dma_interleaved_template *xt,
  635. unsigned long flags);
  636. int (*device_config)(struct dma_chan *chan,
  637. struct dma_slave_config *config);
  638. int (*device_pause)(struct dma_chan *chan);
  639. int (*device_resume)(struct dma_chan *chan);
  640. int (*device_terminate_all)(struct dma_chan *chan);
  641. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  642. dma_cookie_t cookie,
  643. struct dma_tx_state *txstate);
  644. void (*device_issue_pending)(struct dma_chan *chan);
  645. };
  646. static inline int dmaengine_slave_config(struct dma_chan *chan,
  647. struct dma_slave_config *config)
  648. {
  649. if (chan->device->device_config)
  650. return chan->device->device_config(chan, config);
  651. return -ENOSYS;
  652. }
  653. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  654. {
  655. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  656. }
  657. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  658. struct dma_chan *chan, dma_addr_t buf, size_t len,
  659. enum dma_transfer_direction dir, unsigned long flags)
  660. {
  661. struct scatterlist sg;
  662. sg_init_table(&sg, 1);
  663. sg_dma_address(&sg) = buf;
  664. sg_dma_len(&sg) = len;
  665. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  666. dir, flags, NULL);
  667. }
  668. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  669. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  670. enum dma_transfer_direction dir, unsigned long flags)
  671. {
  672. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  673. dir, flags, NULL);
  674. }
  675. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  676. struct rio_dma_ext;
  677. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  678. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  679. enum dma_transfer_direction dir, unsigned long flags,
  680. struct rio_dma_ext *rio_ext)
  681. {
  682. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  683. dir, flags, rio_ext);
  684. }
  685. #endif
  686. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  687. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  688. size_t period_len, enum dma_transfer_direction dir,
  689. unsigned long flags)
  690. {
  691. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  692. period_len, dir, flags);
  693. }
  694. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  695. struct dma_chan *chan, struct dma_interleaved_template *xt,
  696. unsigned long flags)
  697. {
  698. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  699. }
  700. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
  701. struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
  702. unsigned long flags)
  703. {
  704. if (!chan || !chan->device)
  705. return NULL;
  706. return chan->device->device_prep_dma_memset(chan, dest, value,
  707. len, flags);
  708. }
  709. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
  710. struct dma_chan *chan,
  711. struct scatterlist *dst_sg, unsigned int dst_nents,
  712. struct scatterlist *src_sg, unsigned int src_nents,
  713. unsigned long flags)
  714. {
  715. return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
  716. src_sg, src_nents, flags);
  717. }
  718. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  719. {
  720. if (chan->device->device_terminate_all)
  721. return chan->device->device_terminate_all(chan);
  722. return -ENOSYS;
  723. }
  724. static inline int dmaengine_pause(struct dma_chan *chan)
  725. {
  726. if (chan->device->device_pause)
  727. return chan->device->device_pause(chan);
  728. return -ENOSYS;
  729. }
  730. static inline int dmaengine_resume(struct dma_chan *chan)
  731. {
  732. if (chan->device->device_resume)
  733. return chan->device->device_resume(chan);
  734. return -ENOSYS;
  735. }
  736. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  737. dma_cookie_t cookie, struct dma_tx_state *state)
  738. {
  739. return chan->device->device_tx_status(chan, cookie, state);
  740. }
  741. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  742. {
  743. return desc->tx_submit(desc);
  744. }
  745. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  746. {
  747. size_t mask;
  748. if (!align)
  749. return true;
  750. mask = (1 << align) - 1;
  751. if (mask & (off1 | off2 | len))
  752. return false;
  753. return true;
  754. }
  755. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  756. size_t off2, size_t len)
  757. {
  758. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  759. }
  760. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  761. size_t off2, size_t len)
  762. {
  763. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  764. }
  765. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  766. size_t off2, size_t len)
  767. {
  768. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  769. }
  770. static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
  771. size_t off2, size_t len)
  772. {
  773. return dmaengine_check_align(dev->fill_align, off1, off2, len);
  774. }
  775. static inline void
  776. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  777. {
  778. dma->max_pq = maxpq;
  779. if (has_pq_continue)
  780. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  781. }
  782. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  783. {
  784. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  785. }
  786. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  787. {
  788. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  789. return (flags & mask) == mask;
  790. }
  791. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  792. {
  793. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  794. }
  795. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  796. {
  797. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  798. }
  799. /* dma_maxpq - reduce maxpq in the face of continued operations
  800. * @dma - dma device with PQ capability
  801. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  802. *
  803. * When an engine does not support native continuation we need 3 extra
  804. * source slots to reuse P and Q with the following coefficients:
  805. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  806. * 2/ {01} * Q : use Q to continue Q' calculation
  807. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  808. *
  809. * In the case where P is disabled we only need 1 extra source:
  810. * 1/ {01} * Q : use Q to continue Q' calculation
  811. */
  812. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  813. {
  814. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  815. return dma_dev_to_maxpq(dma);
  816. else if (dmaf_p_disabled_continue(flags))
  817. return dma_dev_to_maxpq(dma) - 1;
  818. else if (dmaf_continue(flags))
  819. return dma_dev_to_maxpq(dma) - 3;
  820. BUG();
  821. }
  822. /* --- public DMA engine API --- */
  823. #ifdef CONFIG_DMA_ENGINE
  824. void dmaengine_get(void);
  825. void dmaengine_put(void);
  826. #else
  827. static inline void dmaengine_get(void)
  828. {
  829. }
  830. static inline void dmaengine_put(void)
  831. {
  832. }
  833. #endif
  834. #ifdef CONFIG_ASYNC_TX_DMA
  835. #define async_dmaengine_get() dmaengine_get()
  836. #define async_dmaengine_put() dmaengine_put()
  837. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  838. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  839. #else
  840. #define async_dma_find_channel(type) dma_find_channel(type)
  841. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  842. #else
  843. static inline void async_dmaengine_get(void)
  844. {
  845. }
  846. static inline void async_dmaengine_put(void)
  847. {
  848. }
  849. static inline struct dma_chan *
  850. async_dma_find_channel(enum dma_transaction_type type)
  851. {
  852. return NULL;
  853. }
  854. #endif /* CONFIG_ASYNC_TX_DMA */
  855. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  856. struct dma_chan *chan);
  857. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  858. {
  859. tx->flags |= DMA_CTRL_ACK;
  860. }
  861. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  862. {
  863. tx->flags &= ~DMA_CTRL_ACK;
  864. }
  865. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  866. {
  867. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  868. }
  869. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  870. static inline void
  871. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  872. {
  873. set_bit(tx_type, dstp->bits);
  874. }
  875. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  876. static inline void
  877. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  878. {
  879. clear_bit(tx_type, dstp->bits);
  880. }
  881. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  882. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  883. {
  884. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  885. }
  886. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  887. static inline int
  888. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  889. {
  890. return test_bit(tx_type, srcp->bits);
  891. }
  892. #define for_each_dma_cap_mask(cap, mask) \
  893. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  894. /**
  895. * dma_async_issue_pending - flush pending transactions to HW
  896. * @chan: target DMA channel
  897. *
  898. * This allows drivers to push copies to HW in batches,
  899. * reducing MMIO writes where possible.
  900. */
  901. static inline void dma_async_issue_pending(struct dma_chan *chan)
  902. {
  903. chan->device->device_issue_pending(chan);
  904. }
  905. /**
  906. * dma_async_is_tx_complete - poll for transaction completion
  907. * @chan: DMA channel
  908. * @cookie: transaction identifier to check status of
  909. * @last: returns last completed cookie, can be NULL
  910. * @used: returns last issued cookie, can be NULL
  911. *
  912. * If @last and @used are passed in, upon return they reflect the driver
  913. * internal state and can be used with dma_async_is_complete() to check
  914. * the status of multiple cookies without re-checking hardware state.
  915. */
  916. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  917. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  918. {
  919. struct dma_tx_state state;
  920. enum dma_status status;
  921. status = chan->device->device_tx_status(chan, cookie, &state);
  922. if (last)
  923. *last = state.last;
  924. if (used)
  925. *used = state.used;
  926. return status;
  927. }
  928. /**
  929. * dma_async_is_complete - test a cookie against chan state
  930. * @cookie: transaction identifier to test status of
  931. * @last_complete: last know completed transaction
  932. * @last_used: last cookie value handed out
  933. *
  934. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  935. * the test logic is separated for lightweight testing of multiple cookies
  936. */
  937. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  938. dma_cookie_t last_complete, dma_cookie_t last_used)
  939. {
  940. if (last_complete <= last_used) {
  941. if ((cookie <= last_complete) || (cookie > last_used))
  942. return DMA_COMPLETE;
  943. } else {
  944. if ((cookie <= last_complete) && (cookie > last_used))
  945. return DMA_COMPLETE;
  946. }
  947. return DMA_IN_PROGRESS;
  948. }
  949. static inline void
  950. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  951. {
  952. if (st) {
  953. st->last = last;
  954. st->used = used;
  955. st->residue = residue;
  956. }
  957. }
  958. #ifdef CONFIG_DMA_ENGINE
  959. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  960. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  961. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  962. void dma_issue_pending_all(void);
  963. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  964. dma_filter_fn fn, void *fn_param);
  965. struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
  966. const char *name);
  967. struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
  968. void dma_release_channel(struct dma_chan *chan);
  969. int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
  970. #else
  971. static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  972. {
  973. return NULL;
  974. }
  975. static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  976. {
  977. return DMA_COMPLETE;
  978. }
  979. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  980. {
  981. return DMA_COMPLETE;
  982. }
  983. static inline void dma_issue_pending_all(void)
  984. {
  985. }
  986. static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  987. dma_filter_fn fn, void *fn_param)
  988. {
  989. return NULL;
  990. }
  991. static inline struct dma_chan *dma_request_slave_channel_reason(
  992. struct device *dev, const char *name)
  993. {
  994. return ERR_PTR(-ENODEV);
  995. }
  996. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  997. const char *name)
  998. {
  999. return NULL;
  1000. }
  1001. static inline void dma_release_channel(struct dma_chan *chan)
  1002. {
  1003. }
  1004. static inline int dma_get_slave_caps(struct dma_chan *chan,
  1005. struct dma_slave_caps *caps)
  1006. {
  1007. return -ENXIO;
  1008. }
  1009. #endif
  1010. /* --- DMA device --- */
  1011. int dma_async_device_register(struct dma_device *device);
  1012. void dma_async_device_unregister(struct dma_device *device);
  1013. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  1014. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
  1015. struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
  1016. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  1017. #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
  1018. __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
  1019. static inline struct dma_chan
  1020. *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
  1021. dma_filter_fn fn, void *fn_param,
  1022. struct device *dev, char *name)
  1023. {
  1024. struct dma_chan *chan;
  1025. chan = dma_request_slave_channel(dev, name);
  1026. if (chan)
  1027. return chan;
  1028. return __dma_request_channel(mask, fn, fn_param);
  1029. }
  1030. #endif /* DMAENGINE_H */