spi-fsl-espi.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * Freescale eSPI controller driver.
  3. *
  4. * Copyright 2010 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/delay.h>
  12. #include <linux/err.h>
  13. #include <linux/fsl_devices.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/module.h>
  16. #include <linux/mm.h>
  17. #include <linux/of.h>
  18. #include <linux/of_address.h>
  19. #include <linux/of_irq.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/pm_runtime.h>
  24. #include <sysdev/fsl_soc.h>
  25. #include "spi-fsl-lib.h"
  26. /* eSPI Controller registers */
  27. #define ESPI_SPMODE 0x00 /* eSPI mode register */
  28. #define ESPI_SPIE 0x04 /* eSPI event register */
  29. #define ESPI_SPIM 0x08 /* eSPI mask register */
  30. #define ESPI_SPCOM 0x0c /* eSPI command register */
  31. #define ESPI_SPITF 0x10 /* eSPI transmit FIFO access register*/
  32. #define ESPI_SPIRF 0x14 /* eSPI receive FIFO access register*/
  33. #define ESPI_SPMODE0 0x20 /* eSPI cs0 mode register */
  34. #define ESPI_SPMODEx(x) (ESPI_SPMODE0 + (x) * 4)
  35. /* eSPI Controller mode register definitions */
  36. #define SPMODE_ENABLE BIT(31)
  37. #define SPMODE_LOOP BIT(30)
  38. #define SPMODE_TXTHR(x) ((x) << 8)
  39. #define SPMODE_RXTHR(x) ((x) << 0)
  40. /* eSPI Controller CS mode register definitions */
  41. #define CSMODE_CI_INACTIVEHIGH BIT(31)
  42. #define CSMODE_CP_BEGIN_EDGECLK BIT(30)
  43. #define CSMODE_REV BIT(29)
  44. #define CSMODE_DIV16 BIT(28)
  45. #define CSMODE_PM(x) ((x) << 24)
  46. #define CSMODE_POL_1 BIT(20)
  47. #define CSMODE_LEN(x) ((x) << 16)
  48. #define CSMODE_BEF(x) ((x) << 12)
  49. #define CSMODE_AFT(x) ((x) << 8)
  50. #define CSMODE_CG(x) ((x) << 3)
  51. #define FSL_ESPI_FIFO_SIZE 32
  52. #define FSL_ESPI_RXTHR 15
  53. /* Default mode/csmode for eSPI controller */
  54. #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
  55. #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
  56. | CSMODE_AFT(0) | CSMODE_CG(1))
  57. /* SPIE register values */
  58. #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
  59. #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
  60. #define SPIE_TXE BIT(15) /* TX FIFO empty */
  61. #define SPIE_DON BIT(14) /* TX done */
  62. #define SPIE_RXT BIT(13) /* RX FIFO threshold */
  63. #define SPIE_RXF BIT(12) /* RX FIFO full */
  64. #define SPIE_TXT BIT(11) /* TX FIFO threshold*/
  65. #define SPIE_RNE BIT(9) /* RX FIFO not empty */
  66. #define SPIE_TNF BIT(8) /* TX FIFO not full */
  67. /* SPIM register values */
  68. #define SPIM_TXE BIT(15) /* TX FIFO empty */
  69. #define SPIM_DON BIT(14) /* TX done */
  70. #define SPIM_RXT BIT(13) /* RX FIFO threshold */
  71. #define SPIM_RXF BIT(12) /* RX FIFO full */
  72. #define SPIM_TXT BIT(11) /* TX FIFO threshold*/
  73. #define SPIM_RNE BIT(9) /* RX FIFO not empty */
  74. #define SPIM_TNF BIT(8) /* TX FIFO not full */
  75. /* SPCOM register values */
  76. #define SPCOM_CS(x) ((x) << 30)
  77. #define SPCOM_DO BIT(28) /* Dual output */
  78. #define SPCOM_TO BIT(27) /* TX only */
  79. #define SPCOM_RXSKIP(x) ((x) << 16)
  80. #define SPCOM_TRANLEN(x) ((x) << 0)
  81. #define SPCOM_TRANLEN_MAX 0x10000 /* Max transaction length */
  82. #define AUTOSUSPEND_TIMEOUT 2000
  83. struct fsl_espi_cs {
  84. u32 hw_mode;
  85. };
  86. static inline u32 fsl_espi_read_reg(struct mpc8xxx_spi *mspi, int offset)
  87. {
  88. return ioread32be(mspi->reg_base + offset);
  89. }
  90. static inline u8 fsl_espi_read_reg8(struct mpc8xxx_spi *mspi, int offset)
  91. {
  92. return ioread8(mspi->reg_base + offset);
  93. }
  94. static inline void fsl_espi_write_reg(struct mpc8xxx_spi *mspi, int offset,
  95. u32 val)
  96. {
  97. iowrite32be(val, mspi->reg_base + offset);
  98. }
  99. static inline void fsl_espi_write_reg8(struct mpc8xxx_spi *mspi, int offset,
  100. u8 val)
  101. {
  102. iowrite8(val, mspi->reg_base + offset);
  103. }
  104. static void fsl_espi_memcpy_swab(void *to, const void *from,
  105. struct spi_message *m,
  106. struct spi_transfer *t)
  107. {
  108. unsigned int len = t->len;
  109. if (!(m->spi->mode & SPI_LSB_FIRST) || t->bits_per_word <= 8) {
  110. memcpy(to, from, len);
  111. return;
  112. }
  113. /* In case of LSB-first and bits_per_word > 8 byte-swap all words */
  114. while (len)
  115. if (len >= 4) {
  116. *(u32 *)to = swahb32p(from);
  117. to += 4;
  118. from += 4;
  119. len -= 4;
  120. } else {
  121. *(u16 *)to = swab16p(from);
  122. to += 2;
  123. from += 2;
  124. len -= 2;
  125. }
  126. }
  127. static void fsl_espi_copy_to_buf(struct spi_message *m,
  128. struct mpc8xxx_spi *mspi)
  129. {
  130. struct spi_transfer *t;
  131. u8 *buf = mspi->local_buf;
  132. list_for_each_entry(t, &m->transfers, transfer_list) {
  133. if (t->tx_buf)
  134. fsl_espi_memcpy_swab(buf, t->tx_buf, m, t);
  135. /* In RXSKIP mode controller shifts out zeros internally */
  136. else if (!mspi->rxskip)
  137. memset(buf, 0, t->len);
  138. buf += t->len;
  139. }
  140. }
  141. static void fsl_espi_copy_from_buf(struct spi_message *m,
  142. struct mpc8xxx_spi *mspi)
  143. {
  144. struct spi_transfer *t;
  145. u8 *buf = mspi->local_buf;
  146. list_for_each_entry(t, &m->transfers, transfer_list) {
  147. if (t->rx_buf)
  148. fsl_espi_memcpy_swab(t->rx_buf, buf, m, t);
  149. buf += t->len;
  150. }
  151. }
  152. static int fsl_espi_check_message(struct spi_message *m)
  153. {
  154. struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
  155. struct spi_transfer *t, *first;
  156. if (m->frame_length > SPCOM_TRANLEN_MAX) {
  157. dev_err(mspi->dev, "message too long, size is %u bytes\n",
  158. m->frame_length);
  159. return -EMSGSIZE;
  160. }
  161. first = list_first_entry(&m->transfers, struct spi_transfer,
  162. transfer_list);
  163. list_for_each_entry(t, &m->transfers, transfer_list) {
  164. if (first->bits_per_word != t->bits_per_word ||
  165. first->speed_hz != t->speed_hz) {
  166. dev_err(mspi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
  167. return -EINVAL;
  168. }
  169. }
  170. /* ESPI supports MSB-first transfers for word size 8 / 16 only */
  171. if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
  172. first->bits_per_word != 16) {
  173. dev_err(mspi->dev,
  174. "MSB-first transfer not supported for wordsize %u\n",
  175. first->bits_per_word);
  176. return -EINVAL;
  177. }
  178. return 0;
  179. }
  180. static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
  181. {
  182. struct spi_transfer *t;
  183. unsigned int i = 0, rxskip = 0;
  184. /*
  185. * prerequisites for ESPI rxskip mode:
  186. * - message has two transfers
  187. * - first transfer is a write and second is a read
  188. *
  189. * In addition the current low-level transfer mechanism requires
  190. * that the rxskip bytes fit into the TX FIFO. Else the transfer
  191. * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
  192. * the TX FIFO isn't re-filled.
  193. */
  194. list_for_each_entry(t, &m->transfers, transfer_list) {
  195. if (i == 0) {
  196. if (!t->tx_buf || t->rx_buf ||
  197. t->len > FSL_ESPI_FIFO_SIZE)
  198. return 0;
  199. rxskip = t->len;
  200. } else if (i == 1) {
  201. if (t->tx_buf || !t->rx_buf)
  202. return 0;
  203. }
  204. i++;
  205. }
  206. return i == 2 ? rxskip : 0;
  207. }
  208. static void fsl_espi_fill_tx_fifo(struct mpc8xxx_spi *mspi, u32 events)
  209. {
  210. u32 tx_fifo_avail;
  211. /* if events is zero transfer has not started and tx fifo is empty */
  212. tx_fifo_avail = events ? SPIE_TXCNT(events) : FSL_ESPI_FIFO_SIZE;
  213. while (tx_fifo_avail >= min(4U, mspi->tx_len) && mspi->tx_len)
  214. if (mspi->tx_len >= 4) {
  215. fsl_espi_write_reg(mspi, ESPI_SPITF, *(u32 *)mspi->tx);
  216. mspi->tx += 4;
  217. mspi->tx_len -= 4;
  218. tx_fifo_avail -= 4;
  219. } else {
  220. fsl_espi_write_reg8(mspi, ESPI_SPITF, *(u8 *)mspi->tx);
  221. mspi->tx += 1;
  222. mspi->tx_len -= 1;
  223. tx_fifo_avail -= 1;
  224. }
  225. }
  226. static void fsl_espi_read_rx_fifo(struct mpc8xxx_spi *mspi, u32 events)
  227. {
  228. u32 rx_fifo_avail = SPIE_RXCNT(events);
  229. while (rx_fifo_avail >= min(4U, mspi->rx_len) && mspi->rx_len)
  230. if (mspi->rx_len >= 4) {
  231. *(u32 *)mspi->rx = fsl_espi_read_reg(mspi, ESPI_SPIRF);
  232. mspi->rx += 4;
  233. mspi->rx_len -= 4;
  234. rx_fifo_avail -= 4;
  235. } else {
  236. *(u8 *)mspi->rx = fsl_espi_read_reg8(mspi, ESPI_SPIRF);
  237. mspi->rx += 1;
  238. mspi->rx_len -= 1;
  239. rx_fifo_avail -= 1;
  240. }
  241. }
  242. static void fsl_espi_setup_transfer(struct spi_device *spi,
  243. struct spi_transfer *t)
  244. {
  245. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  246. int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
  247. u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
  248. struct fsl_espi_cs *cs = spi_get_ctldata(spi);
  249. u32 hw_mode_old = cs->hw_mode;
  250. /* mask out bits we are going to set */
  251. cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
  252. cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
  253. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4) - 1;
  254. if (pm > 15) {
  255. cs->hw_mode |= CSMODE_DIV16;
  256. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4) - 1;
  257. WARN_ONCE(pm > 15,
  258. "%s: Requested speed is too low: %u Hz. Will use %u Hz instead.\n",
  259. dev_name(&spi->dev), hz,
  260. mpc8xxx_spi->spibrg / (4 * 16 * (15 + 1)));
  261. if (pm > 15)
  262. pm = 15;
  263. }
  264. cs->hw_mode |= CSMODE_PM(pm);
  265. /* don't write the mode register if the mode doesn't change */
  266. if (cs->hw_mode != hw_mode_old)
  267. fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODEx(spi->chip_select),
  268. cs->hw_mode);
  269. }
  270. static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
  271. {
  272. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  273. u32 mask, spcom;
  274. int ret;
  275. mpc8xxx_spi->rx_len = t->len;
  276. mpc8xxx_spi->tx_len = t->len;
  277. mpc8xxx_spi->tx = t->tx_buf;
  278. mpc8xxx_spi->rx = t->rx_buf;
  279. reinit_completion(&mpc8xxx_spi->done);
  280. /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
  281. spcom = SPCOM_CS(spi->chip_select);
  282. spcom |= SPCOM_TRANLEN(t->len - 1);
  283. /* configure RXSKIP mode */
  284. if (mpc8xxx_spi->rxskip) {
  285. spcom |= SPCOM_RXSKIP(mpc8xxx_spi->rxskip);
  286. mpc8xxx_spi->tx_len = mpc8xxx_spi->rxskip;
  287. mpc8xxx_spi->rx_len = t->len - mpc8xxx_spi->rxskip;
  288. mpc8xxx_spi->rx = t->rx_buf + mpc8xxx_spi->rxskip;
  289. if (t->rx_nbits == SPI_NBITS_DUAL)
  290. spcom |= SPCOM_DO;
  291. }
  292. fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPCOM, spcom);
  293. /* enable interrupts */
  294. mask = SPIM_DON;
  295. if (mpc8xxx_spi->rx_len > FSL_ESPI_FIFO_SIZE)
  296. mask |= SPIM_RXT;
  297. fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, mask);
  298. /* Prevent filling the fifo from getting interrupted */
  299. spin_lock_irq(&mpc8xxx_spi->lock);
  300. fsl_espi_fill_tx_fifo(mpc8xxx_spi, 0);
  301. spin_unlock_irq(&mpc8xxx_spi->lock);
  302. /* Won't hang up forever, SPI bus sometimes got lost interrupts... */
  303. ret = wait_for_completion_timeout(&mpc8xxx_spi->done, 2 * HZ);
  304. if (ret == 0)
  305. dev_err(mpc8xxx_spi->dev,
  306. "Transaction hanging up (left %u tx bytes, %u rx bytes)\n",
  307. mpc8xxx_spi->tx_len, mpc8xxx_spi->rx_len);
  308. /* disable rx ints */
  309. fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, 0);
  310. return ret == 0 ? -ETIMEDOUT : 0;
  311. }
  312. static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
  313. {
  314. struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
  315. struct spi_device *spi = m->spi;
  316. int ret;
  317. mspi->rxskip = fsl_espi_check_rxskip_mode(m);
  318. if (trans->rx_nbits == SPI_NBITS_DUAL && !mspi->rxskip) {
  319. dev_err(mspi->dev, "Dual output mode requires RXSKIP mode!\n");
  320. return -EINVAL;
  321. }
  322. fsl_espi_copy_to_buf(m, mspi);
  323. fsl_espi_setup_transfer(spi, trans);
  324. ret = fsl_espi_bufs(spi, trans);
  325. if (trans->delay_usecs)
  326. udelay(trans->delay_usecs);
  327. if (!ret)
  328. fsl_espi_copy_from_buf(m, mspi);
  329. return ret;
  330. }
  331. static int fsl_espi_do_one_msg(struct spi_master *master,
  332. struct spi_message *m)
  333. {
  334. struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
  335. unsigned int delay_usecs = 0, rx_nbits = 0;
  336. struct spi_transfer *t, trans = {};
  337. int ret;
  338. ret = fsl_espi_check_message(m);
  339. if (ret)
  340. goto out;
  341. list_for_each_entry(t, &m->transfers, transfer_list) {
  342. if (t->delay_usecs > delay_usecs)
  343. delay_usecs = t->delay_usecs;
  344. if (t->rx_nbits > rx_nbits)
  345. rx_nbits = t->rx_nbits;
  346. }
  347. t = list_first_entry(&m->transfers, struct spi_transfer,
  348. transfer_list);
  349. trans.len = m->frame_length;
  350. trans.speed_hz = t->speed_hz;
  351. trans.bits_per_word = t->bits_per_word;
  352. trans.delay_usecs = delay_usecs;
  353. trans.tx_buf = mspi->local_buf;
  354. trans.rx_buf = mspi->local_buf;
  355. trans.rx_nbits = rx_nbits;
  356. if (trans.len)
  357. ret = fsl_espi_trans(m, &trans);
  358. m->actual_length = ret ? 0 : trans.len;
  359. out:
  360. if (m->status == -EINPROGRESS)
  361. m->status = ret;
  362. spi_finalize_current_message(master);
  363. return ret;
  364. }
  365. static int fsl_espi_setup(struct spi_device *spi)
  366. {
  367. struct mpc8xxx_spi *mpc8xxx_spi;
  368. u32 loop_mode;
  369. struct fsl_espi_cs *cs = spi_get_ctldata(spi);
  370. if (!spi->max_speed_hz)
  371. return -EINVAL;
  372. if (!cs) {
  373. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  374. if (!cs)
  375. return -ENOMEM;
  376. spi_set_ctldata(spi, cs);
  377. }
  378. mpc8xxx_spi = spi_master_get_devdata(spi->master);
  379. pm_runtime_get_sync(mpc8xxx_spi->dev);
  380. cs->hw_mode = fsl_espi_read_reg(mpc8xxx_spi,
  381. ESPI_SPMODEx(spi->chip_select));
  382. /* mask out bits we are going to set */
  383. cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
  384. | CSMODE_REV);
  385. if (spi->mode & SPI_CPHA)
  386. cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
  387. if (spi->mode & SPI_CPOL)
  388. cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
  389. if (!(spi->mode & SPI_LSB_FIRST))
  390. cs->hw_mode |= CSMODE_REV;
  391. /* Handle the loop mode */
  392. loop_mode = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
  393. loop_mode &= ~SPMODE_LOOP;
  394. if (spi->mode & SPI_LOOP)
  395. loop_mode |= SPMODE_LOOP;
  396. fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, loop_mode);
  397. fsl_espi_setup_transfer(spi, NULL);
  398. pm_runtime_mark_last_busy(mpc8xxx_spi->dev);
  399. pm_runtime_put_autosuspend(mpc8xxx_spi->dev);
  400. return 0;
  401. }
  402. static void fsl_espi_cleanup(struct spi_device *spi)
  403. {
  404. struct fsl_espi_cs *cs = spi_get_ctldata(spi);
  405. kfree(cs);
  406. spi_set_ctldata(spi, NULL);
  407. }
  408. static void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
  409. {
  410. if (mspi->rx_len)
  411. fsl_espi_read_rx_fifo(mspi, events);
  412. if (mspi->tx_len)
  413. fsl_espi_fill_tx_fifo(mspi, events);
  414. if (mspi->tx_len || mspi->rx_len)
  415. return;
  416. /* we're done, but check for errors before returning */
  417. events = fsl_espi_read_reg(mspi, ESPI_SPIE);
  418. if (!(events & SPIE_DON))
  419. dev_err(mspi->dev,
  420. "Transfer done but SPIE_DON isn't set!\n");
  421. if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
  422. dev_err(mspi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
  423. complete(&mspi->done);
  424. }
  425. static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
  426. {
  427. struct mpc8xxx_spi *mspi = context_data;
  428. u32 events;
  429. spin_lock(&mspi->lock);
  430. /* Get interrupt events(tx/rx) */
  431. events = fsl_espi_read_reg(mspi, ESPI_SPIE);
  432. if (!events) {
  433. spin_unlock(&mspi->lock);
  434. return IRQ_NONE;
  435. }
  436. dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
  437. fsl_espi_cpu_irq(mspi, events);
  438. /* Clear the events */
  439. fsl_espi_write_reg(mspi, ESPI_SPIE, events);
  440. spin_unlock(&mspi->lock);
  441. return IRQ_HANDLED;
  442. }
  443. #ifdef CONFIG_PM
  444. static int fsl_espi_runtime_suspend(struct device *dev)
  445. {
  446. struct spi_master *master = dev_get_drvdata(dev);
  447. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
  448. u32 regval;
  449. regval = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
  450. regval &= ~SPMODE_ENABLE;
  451. fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
  452. return 0;
  453. }
  454. static int fsl_espi_runtime_resume(struct device *dev)
  455. {
  456. struct spi_master *master = dev_get_drvdata(dev);
  457. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
  458. u32 regval;
  459. regval = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
  460. regval |= SPMODE_ENABLE;
  461. fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
  462. return 0;
  463. }
  464. #endif
  465. static size_t fsl_espi_max_message_size(struct spi_device *spi)
  466. {
  467. return SPCOM_TRANLEN_MAX;
  468. }
  469. static void fsl_espi_init_regs(struct device *dev, bool initial)
  470. {
  471. struct spi_master *master = dev_get_drvdata(dev);
  472. struct mpc8xxx_spi *mspi = spi_master_get_devdata(master);
  473. struct device_node *nc;
  474. u32 csmode, cs, prop;
  475. int ret;
  476. /* SPI controller initializations */
  477. fsl_espi_write_reg(mspi, ESPI_SPMODE, 0);
  478. fsl_espi_write_reg(mspi, ESPI_SPIM, 0);
  479. fsl_espi_write_reg(mspi, ESPI_SPCOM, 0);
  480. fsl_espi_write_reg(mspi, ESPI_SPIE, 0xffffffff);
  481. /* Init eSPI CS mode register */
  482. for_each_available_child_of_node(master->dev.of_node, nc) {
  483. /* get chip select */
  484. ret = of_property_read_u32(nc, "reg", &cs);
  485. if (ret || cs >= master->num_chipselect)
  486. continue;
  487. csmode = CSMODE_INIT_VAL;
  488. /* check if CSBEF is set in device tree */
  489. ret = of_property_read_u32(nc, "fsl,csbef", &prop);
  490. if (!ret) {
  491. csmode &= ~(CSMODE_BEF(0xf));
  492. csmode |= CSMODE_BEF(prop);
  493. }
  494. /* check if CSAFT is set in device tree */
  495. ret = of_property_read_u32(nc, "fsl,csaft", &prop);
  496. if (!ret) {
  497. csmode &= ~(CSMODE_AFT(0xf));
  498. csmode |= CSMODE_AFT(prop);
  499. }
  500. fsl_espi_write_reg(mspi, ESPI_SPMODEx(cs), csmode);
  501. if (initial)
  502. dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
  503. }
  504. /* Enable SPI interface */
  505. fsl_espi_write_reg(mspi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
  506. }
  507. static int fsl_espi_probe(struct device *dev, struct resource *mem,
  508. unsigned int irq, unsigned int num_cs)
  509. {
  510. struct spi_master *master;
  511. struct mpc8xxx_spi *mpc8xxx_spi;
  512. int ret;
  513. master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
  514. if (!master)
  515. return -ENOMEM;
  516. dev_set_drvdata(dev, master);
  517. master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
  518. SPI_LSB_FIRST | SPI_LOOP;
  519. master->dev.of_node = dev->of_node;
  520. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  521. master->setup = fsl_espi_setup;
  522. master->cleanup = fsl_espi_cleanup;
  523. master->transfer_one_message = fsl_espi_do_one_msg;
  524. master->auto_runtime_pm = true;
  525. master->max_message_size = fsl_espi_max_message_size;
  526. master->num_chipselect = num_cs;
  527. mpc8xxx_spi = spi_master_get_devdata(master);
  528. spin_lock_init(&mpc8xxx_spi->lock);
  529. mpc8xxx_spi->dev = dev;
  530. mpc8xxx_spi->spibrg = fsl_get_sys_freq();
  531. if (mpc8xxx_spi->spibrg == -1) {
  532. dev_err(dev, "Can't get sys frequency!\n");
  533. ret = -EINVAL;
  534. goto err_probe;
  535. }
  536. init_completion(&mpc8xxx_spi->done);
  537. mpc8xxx_spi->local_buf =
  538. devm_kmalloc(dev, SPCOM_TRANLEN_MAX, GFP_KERNEL);
  539. if (!mpc8xxx_spi->local_buf) {
  540. ret = -ENOMEM;
  541. goto err_probe;
  542. }
  543. mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem);
  544. if (IS_ERR(mpc8xxx_spi->reg_base)) {
  545. ret = PTR_ERR(mpc8xxx_spi->reg_base);
  546. goto err_probe;
  547. }
  548. /* Register for SPI Interrupt */
  549. ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi",
  550. mpc8xxx_spi);
  551. if (ret)
  552. goto err_probe;
  553. fsl_espi_init_regs(dev, true);
  554. pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
  555. pm_runtime_use_autosuspend(dev);
  556. pm_runtime_set_active(dev);
  557. pm_runtime_enable(dev);
  558. pm_runtime_get_sync(dev);
  559. ret = devm_spi_register_master(dev, master);
  560. if (ret < 0)
  561. goto err_pm;
  562. dev_info(dev, "at 0x%p (irq = %u)\n", mpc8xxx_spi->reg_base, irq);
  563. pm_runtime_mark_last_busy(dev);
  564. pm_runtime_put_autosuspend(dev);
  565. return 0;
  566. err_pm:
  567. pm_runtime_put_noidle(dev);
  568. pm_runtime_disable(dev);
  569. pm_runtime_set_suspended(dev);
  570. err_probe:
  571. spi_master_put(master);
  572. return ret;
  573. }
  574. static int of_fsl_espi_get_chipselects(struct device *dev)
  575. {
  576. struct device_node *np = dev->of_node;
  577. u32 num_cs;
  578. int ret;
  579. ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
  580. if (ret) {
  581. dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
  582. return 0;
  583. }
  584. return num_cs;
  585. }
  586. static int of_fsl_espi_probe(struct platform_device *ofdev)
  587. {
  588. struct device *dev = &ofdev->dev;
  589. struct device_node *np = ofdev->dev.of_node;
  590. struct resource mem;
  591. unsigned int irq, num_cs;
  592. int ret;
  593. if (of_property_read_bool(np, "mode")) {
  594. dev_err(dev, "mode property is not supported on ESPI!\n");
  595. return -EINVAL;
  596. }
  597. num_cs = of_fsl_espi_get_chipselects(dev);
  598. if (!num_cs)
  599. return -EINVAL;
  600. ret = of_address_to_resource(np, 0, &mem);
  601. if (ret)
  602. return ret;
  603. irq = irq_of_parse_and_map(np, 0);
  604. if (!irq)
  605. return -EINVAL;
  606. return fsl_espi_probe(dev, &mem, irq, num_cs);
  607. }
  608. static int of_fsl_espi_remove(struct platform_device *dev)
  609. {
  610. pm_runtime_disable(&dev->dev);
  611. return 0;
  612. }
  613. #ifdef CONFIG_PM_SLEEP
  614. static int of_fsl_espi_suspend(struct device *dev)
  615. {
  616. struct spi_master *master = dev_get_drvdata(dev);
  617. int ret;
  618. ret = spi_master_suspend(master);
  619. if (ret) {
  620. dev_warn(dev, "cannot suspend master\n");
  621. return ret;
  622. }
  623. ret = pm_runtime_force_suspend(dev);
  624. if (ret < 0)
  625. return ret;
  626. return 0;
  627. }
  628. static int of_fsl_espi_resume(struct device *dev)
  629. {
  630. struct spi_master *master = dev_get_drvdata(dev);
  631. int ret;
  632. fsl_espi_init_regs(dev, false);
  633. ret = pm_runtime_force_resume(dev);
  634. if (ret < 0)
  635. return ret;
  636. return spi_master_resume(master);
  637. }
  638. #endif /* CONFIG_PM_SLEEP */
  639. static const struct dev_pm_ops espi_pm = {
  640. SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
  641. fsl_espi_runtime_resume, NULL)
  642. SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
  643. };
  644. static const struct of_device_id of_fsl_espi_match[] = {
  645. { .compatible = "fsl,mpc8536-espi" },
  646. {}
  647. };
  648. MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
  649. static struct platform_driver fsl_espi_driver = {
  650. .driver = {
  651. .name = "fsl_espi",
  652. .of_match_table = of_fsl_espi_match,
  653. .pm = &espi_pm,
  654. },
  655. .probe = of_fsl_espi_probe,
  656. .remove = of_fsl_espi_remove,
  657. };
  658. module_platform_driver(fsl_espi_driver);
  659. MODULE_AUTHOR("Mingkai Hu");
  660. MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
  661. MODULE_LICENSE("GPL");