setup.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_iommu.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/init.h>
  24. #include <linux/kexec.h>
  25. #include <linux/of_fdt.h>
  26. #include <linux/cpu.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/smp.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/memblock.h>
  31. #include <linux/bug.h>
  32. #include <linux/compiler.h>
  33. #include <linux/sort.h>
  34. #include <linux/psci.h>
  35. #include <asm/unified.h>
  36. #include <asm/cp15.h>
  37. #include <asm/cpu.h>
  38. #include <asm/cputype.h>
  39. #include <asm/elf.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/procinfo.h>
  42. #include <asm/psci.h>
  43. #include <asm/sections.h>
  44. #include <asm/setup.h>
  45. #include <asm/smp_plat.h>
  46. #include <asm/mach-types.h>
  47. #include <asm/cacheflush.h>
  48. #include <asm/cachetype.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/xen/hypervisor.h>
  51. #include <asm/prom.h>
  52. #include <asm/mach/arch.h>
  53. #include <asm/mach/irq.h>
  54. #include <asm/mach/time.h>
  55. #include <asm/system_info.h>
  56. #include <asm/system_misc.h>
  57. #include <asm/traps.h>
  58. #include <asm/unwind.h>
  59. #include <asm/memblock.h>
  60. #include <asm/virt.h>
  61. #include "atags.h"
  62. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  63. char fpe_type[8];
  64. static int __init fpe_setup(char *line)
  65. {
  66. memcpy(fpe_type, line, 8);
  67. return 1;
  68. }
  69. __setup("fpe=", fpe_setup);
  70. #endif
  71. extern void init_default_cache_policy(unsigned long);
  72. extern void paging_init(const struct machine_desc *desc);
  73. extern void early_paging_init(const struct machine_desc *);
  74. extern void sanity_check_meminfo(void);
  75. extern enum reboot_mode reboot_mode;
  76. extern void setup_dma_zone(const struct machine_desc *desc);
  77. unsigned int processor_id;
  78. EXPORT_SYMBOL(processor_id);
  79. unsigned int __machine_arch_type __read_mostly;
  80. EXPORT_SYMBOL(__machine_arch_type);
  81. unsigned int cacheid __read_mostly;
  82. EXPORT_SYMBOL(cacheid);
  83. unsigned int __atags_pointer __initdata;
  84. unsigned int system_rev;
  85. EXPORT_SYMBOL(system_rev);
  86. const char *system_serial;
  87. EXPORT_SYMBOL(system_serial);
  88. unsigned int system_serial_low;
  89. EXPORT_SYMBOL(system_serial_low);
  90. unsigned int system_serial_high;
  91. EXPORT_SYMBOL(system_serial_high);
  92. unsigned int elf_hwcap __read_mostly;
  93. EXPORT_SYMBOL(elf_hwcap);
  94. unsigned int elf_hwcap2 __read_mostly;
  95. EXPORT_SYMBOL(elf_hwcap2);
  96. #ifdef MULTI_CPU
  97. struct processor processor __read_mostly;
  98. #endif
  99. #ifdef MULTI_TLB
  100. struct cpu_tlb_fns cpu_tlb __read_mostly;
  101. #endif
  102. #ifdef MULTI_USER
  103. struct cpu_user_fns cpu_user __read_mostly;
  104. #endif
  105. #ifdef MULTI_CACHE
  106. struct cpu_cache_fns cpu_cache __read_mostly;
  107. #endif
  108. #ifdef CONFIG_OUTER_CACHE
  109. struct outer_cache_fns outer_cache __read_mostly;
  110. EXPORT_SYMBOL(outer_cache);
  111. #endif
  112. /*
  113. * Cached cpu_architecture() result for use by assembler code.
  114. * C code should use the cpu_architecture() function instead of accessing this
  115. * variable directly.
  116. */
  117. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  118. struct stack {
  119. u32 irq[3];
  120. u32 abt[3];
  121. u32 und[3];
  122. u32 fiq[3];
  123. } ____cacheline_aligned;
  124. #ifndef CONFIG_CPU_V7M
  125. static struct stack stacks[NR_CPUS];
  126. #endif
  127. char elf_platform[ELF_PLATFORM_SIZE];
  128. EXPORT_SYMBOL(elf_platform);
  129. static const char *cpu_name;
  130. static const char *machine_name;
  131. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  132. const struct machine_desc *machine_desc __initdata;
  133. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  134. #define ENDIANNESS ((char)endian_test.l)
  135. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  136. /*
  137. * Standard memory resources
  138. */
  139. static struct resource mem_res[] = {
  140. {
  141. .name = "Video RAM",
  142. .start = 0,
  143. .end = 0,
  144. .flags = IORESOURCE_MEM
  145. },
  146. {
  147. .name = "Kernel code",
  148. .start = 0,
  149. .end = 0,
  150. .flags = IORESOURCE_MEM
  151. },
  152. {
  153. .name = "Kernel data",
  154. .start = 0,
  155. .end = 0,
  156. .flags = IORESOURCE_MEM
  157. }
  158. };
  159. #define video_ram mem_res[0]
  160. #define kernel_code mem_res[1]
  161. #define kernel_data mem_res[2]
  162. static struct resource io_res[] = {
  163. {
  164. .name = "reserved",
  165. .start = 0x3bc,
  166. .end = 0x3be,
  167. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  168. },
  169. {
  170. .name = "reserved",
  171. .start = 0x378,
  172. .end = 0x37f,
  173. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  174. },
  175. {
  176. .name = "reserved",
  177. .start = 0x278,
  178. .end = 0x27f,
  179. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  180. }
  181. };
  182. #define lp0 io_res[0]
  183. #define lp1 io_res[1]
  184. #define lp2 io_res[2]
  185. static const char *proc_arch[] = {
  186. "undefined/unknown",
  187. "3",
  188. "4",
  189. "4T",
  190. "5",
  191. "5T",
  192. "5TE",
  193. "5TEJ",
  194. "6TEJ",
  195. "7",
  196. "7M",
  197. "?(12)",
  198. "?(13)",
  199. "?(14)",
  200. "?(15)",
  201. "?(16)",
  202. "?(17)",
  203. };
  204. #ifdef CONFIG_CPU_V7M
  205. static int __get_cpu_architecture(void)
  206. {
  207. return CPU_ARCH_ARMv7M;
  208. }
  209. #else
  210. static int __get_cpu_architecture(void)
  211. {
  212. int cpu_arch;
  213. if ((read_cpuid_id() & 0x0008f000) == 0) {
  214. cpu_arch = CPU_ARCH_UNKNOWN;
  215. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  216. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  217. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  218. cpu_arch = (read_cpuid_id() >> 16) & 7;
  219. if (cpu_arch)
  220. cpu_arch += CPU_ARCH_ARMv3;
  221. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  222. /* Revised CPUID format. Read the Memory Model Feature
  223. * Register 0 and check for VMSAv7 or PMSAv7 */
  224. unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
  225. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  226. (mmfr0 & 0x000000f0) >= 0x00000030)
  227. cpu_arch = CPU_ARCH_ARMv7;
  228. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  229. (mmfr0 & 0x000000f0) == 0x00000020)
  230. cpu_arch = CPU_ARCH_ARMv6;
  231. else
  232. cpu_arch = CPU_ARCH_UNKNOWN;
  233. } else
  234. cpu_arch = CPU_ARCH_UNKNOWN;
  235. return cpu_arch;
  236. }
  237. #endif
  238. int __pure cpu_architecture(void)
  239. {
  240. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  241. return __cpu_architecture;
  242. }
  243. static int cpu_has_aliasing_icache(unsigned int arch)
  244. {
  245. int aliasing_icache;
  246. unsigned int id_reg, num_sets, line_size;
  247. /* PIPT caches never alias. */
  248. if (icache_is_pipt())
  249. return 0;
  250. /* arch specifies the register format */
  251. switch (arch) {
  252. case CPU_ARCH_ARMv7:
  253. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  254. : /* No output operands */
  255. : "r" (1));
  256. isb();
  257. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  258. : "=r" (id_reg));
  259. line_size = 4 << ((id_reg & 0x7) + 2);
  260. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  261. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  262. break;
  263. case CPU_ARCH_ARMv6:
  264. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  265. break;
  266. default:
  267. /* I-cache aliases will be handled by D-cache aliasing code */
  268. aliasing_icache = 0;
  269. }
  270. return aliasing_icache;
  271. }
  272. static void __init cacheid_init(void)
  273. {
  274. unsigned int arch = cpu_architecture();
  275. if (arch == CPU_ARCH_ARMv7M) {
  276. cacheid = 0;
  277. } else if (arch >= CPU_ARCH_ARMv6) {
  278. unsigned int cachetype = read_cpuid_cachetype();
  279. if ((cachetype & (7 << 29)) == 4 << 29) {
  280. /* ARMv7 register format */
  281. arch = CPU_ARCH_ARMv7;
  282. cacheid = CACHEID_VIPT_NONALIASING;
  283. switch (cachetype & (3 << 14)) {
  284. case (1 << 14):
  285. cacheid |= CACHEID_ASID_TAGGED;
  286. break;
  287. case (3 << 14):
  288. cacheid |= CACHEID_PIPT;
  289. break;
  290. }
  291. } else {
  292. arch = CPU_ARCH_ARMv6;
  293. if (cachetype & (1 << 23))
  294. cacheid = CACHEID_VIPT_ALIASING;
  295. else
  296. cacheid = CACHEID_VIPT_NONALIASING;
  297. }
  298. if (cpu_has_aliasing_icache(arch))
  299. cacheid |= CACHEID_VIPT_I_ALIASING;
  300. } else {
  301. cacheid = CACHEID_VIVT;
  302. }
  303. pr_info("CPU: %s data cache, %s instruction cache\n",
  304. cache_is_vivt() ? "VIVT" :
  305. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  306. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  307. cache_is_vivt() ? "VIVT" :
  308. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  309. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  310. icache_is_pipt() ? "PIPT" :
  311. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  312. }
  313. /*
  314. * These functions re-use the assembly code in head.S, which
  315. * already provide the required functionality.
  316. */
  317. extern struct proc_info_list *lookup_processor_type(unsigned int);
  318. void __init early_print(const char *str, ...)
  319. {
  320. extern void printascii(const char *);
  321. char buf[256];
  322. va_list ap;
  323. va_start(ap, str);
  324. vsnprintf(buf, sizeof(buf), str, ap);
  325. va_end(ap);
  326. #ifdef CONFIG_DEBUG_LL
  327. printascii(buf);
  328. #endif
  329. printk("%s", buf);
  330. }
  331. #ifdef CONFIG_ARM_PATCH_IDIV
  332. static inline u32 __attribute_const__ sdiv_instruction(void)
  333. {
  334. if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
  335. /* "sdiv r0, r0, r1" */
  336. u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
  337. return __opcode_to_mem_thumb32(insn);
  338. }
  339. /* "sdiv r0, r0, r1" */
  340. return __opcode_to_mem_arm(0xe710f110);
  341. }
  342. static inline u32 __attribute_const__ udiv_instruction(void)
  343. {
  344. if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
  345. /* "udiv r0, r0, r1" */
  346. u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
  347. return __opcode_to_mem_thumb32(insn);
  348. }
  349. /* "udiv r0, r0, r1" */
  350. return __opcode_to_mem_arm(0xe730f110);
  351. }
  352. static inline u32 __attribute_const__ bx_lr_instruction(void)
  353. {
  354. if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
  355. /* "bx lr; nop" */
  356. u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
  357. return __opcode_to_mem_thumb32(insn);
  358. }
  359. /* "bx lr" */
  360. return __opcode_to_mem_arm(0xe12fff1e);
  361. }
  362. static void __init patch_aeabi_idiv(void)
  363. {
  364. extern void __aeabi_uidiv(void);
  365. extern void __aeabi_idiv(void);
  366. uintptr_t fn_addr;
  367. unsigned int mask;
  368. mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
  369. if (!(elf_hwcap & mask))
  370. return;
  371. pr_info("CPU: div instructions available: patching division code\n");
  372. fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
  373. ((u32 *)fn_addr)[0] = udiv_instruction();
  374. ((u32 *)fn_addr)[1] = bx_lr_instruction();
  375. flush_icache_range(fn_addr, fn_addr + 8);
  376. fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
  377. ((u32 *)fn_addr)[0] = sdiv_instruction();
  378. ((u32 *)fn_addr)[1] = bx_lr_instruction();
  379. flush_icache_range(fn_addr, fn_addr + 8);
  380. }
  381. #else
  382. static inline void patch_aeabi_idiv(void) { }
  383. #endif
  384. static void __init cpuid_init_hwcaps(void)
  385. {
  386. int block;
  387. u32 isar5;
  388. if (cpu_architecture() < CPU_ARCH_ARMv7)
  389. return;
  390. block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
  391. if (block >= 2)
  392. elf_hwcap |= HWCAP_IDIVA;
  393. if (block >= 1)
  394. elf_hwcap |= HWCAP_IDIVT;
  395. /* LPAE implies atomic ldrd/strd instructions */
  396. block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
  397. if (block >= 5)
  398. elf_hwcap |= HWCAP_LPAE;
  399. /* check for supported v8 Crypto instructions */
  400. isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
  401. block = cpuid_feature_extract_field(isar5, 4);
  402. if (block >= 2)
  403. elf_hwcap2 |= HWCAP2_PMULL;
  404. if (block >= 1)
  405. elf_hwcap2 |= HWCAP2_AES;
  406. block = cpuid_feature_extract_field(isar5, 8);
  407. if (block >= 1)
  408. elf_hwcap2 |= HWCAP2_SHA1;
  409. block = cpuid_feature_extract_field(isar5, 12);
  410. if (block >= 1)
  411. elf_hwcap2 |= HWCAP2_SHA2;
  412. block = cpuid_feature_extract_field(isar5, 16);
  413. if (block >= 1)
  414. elf_hwcap2 |= HWCAP2_CRC32;
  415. }
  416. static void __init elf_hwcap_fixup(void)
  417. {
  418. unsigned id = read_cpuid_id();
  419. /*
  420. * HWCAP_TLS is available only on 1136 r1p0 and later,
  421. * see also kuser_get_tls_init.
  422. */
  423. if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
  424. ((id >> 20) & 3) == 0) {
  425. elf_hwcap &= ~HWCAP_TLS;
  426. return;
  427. }
  428. /* Verify if CPUID scheme is implemented */
  429. if ((id & 0x000f0000) != 0x000f0000)
  430. return;
  431. /*
  432. * If the CPU supports LDREX/STREX and LDREXB/STREXB,
  433. * avoid advertising SWP; it may not be atomic with
  434. * multiprocessing cores.
  435. */
  436. if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
  437. (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
  438. cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
  439. elf_hwcap &= ~HWCAP_SWP;
  440. }
  441. /*
  442. * cpu_init - initialise one CPU.
  443. *
  444. * cpu_init sets up the per-CPU stacks.
  445. */
  446. void notrace cpu_init(void)
  447. {
  448. #ifndef CONFIG_CPU_V7M
  449. unsigned int cpu = smp_processor_id();
  450. struct stack *stk = &stacks[cpu];
  451. if (cpu >= NR_CPUS) {
  452. pr_crit("CPU%u: bad primary CPU number\n", cpu);
  453. BUG();
  454. }
  455. /*
  456. * This only works on resume and secondary cores. For booting on the
  457. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  458. */
  459. set_my_cpu_offset(per_cpu_offset(cpu));
  460. cpu_proc_init();
  461. /*
  462. * Define the placement constraint for the inline asm directive below.
  463. * In Thumb-2, msr with an immediate value is not allowed.
  464. */
  465. #ifdef CONFIG_THUMB2_KERNEL
  466. #define PLC "r"
  467. #else
  468. #define PLC "I"
  469. #endif
  470. /*
  471. * setup stacks for re-entrant exception handlers
  472. */
  473. __asm__ (
  474. "msr cpsr_c, %1\n\t"
  475. "add r14, %0, %2\n\t"
  476. "mov sp, r14\n\t"
  477. "msr cpsr_c, %3\n\t"
  478. "add r14, %0, %4\n\t"
  479. "mov sp, r14\n\t"
  480. "msr cpsr_c, %5\n\t"
  481. "add r14, %0, %6\n\t"
  482. "mov sp, r14\n\t"
  483. "msr cpsr_c, %7\n\t"
  484. "add r14, %0, %8\n\t"
  485. "mov sp, r14\n\t"
  486. "msr cpsr_c, %9"
  487. :
  488. : "r" (stk),
  489. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  490. "I" (offsetof(struct stack, irq[0])),
  491. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  492. "I" (offsetof(struct stack, abt[0])),
  493. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  494. "I" (offsetof(struct stack, und[0])),
  495. PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
  496. "I" (offsetof(struct stack, fiq[0])),
  497. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  498. : "r14");
  499. #endif
  500. }
  501. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  502. void __init smp_setup_processor_id(void)
  503. {
  504. int i;
  505. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  506. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  507. cpu_logical_map(0) = cpu;
  508. for (i = 1; i < nr_cpu_ids; ++i)
  509. cpu_logical_map(i) = i == cpu ? 0 : i;
  510. /*
  511. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  512. * using percpu variable early, for example, lockdep will
  513. * access percpu variable inside lock_release
  514. */
  515. set_my_cpu_offset(0);
  516. pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
  517. }
  518. struct mpidr_hash mpidr_hash;
  519. #ifdef CONFIG_SMP
  520. /**
  521. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  522. * level in order to build a linear index from an
  523. * MPIDR value. Resulting algorithm is a collision
  524. * free hash carried out through shifting and ORing
  525. */
  526. static void __init smp_build_mpidr_hash(void)
  527. {
  528. u32 i, affinity;
  529. u32 fs[3], bits[3], ls, mask = 0;
  530. /*
  531. * Pre-scan the list of MPIDRS and filter out bits that do
  532. * not contribute to affinity levels, ie they never toggle.
  533. */
  534. for_each_possible_cpu(i)
  535. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  536. pr_debug("mask of set bits 0x%x\n", mask);
  537. /*
  538. * Find and stash the last and first bit set at all affinity levels to
  539. * check how many bits are required to represent them.
  540. */
  541. for (i = 0; i < 3; i++) {
  542. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  543. /*
  544. * Find the MSB bit and LSB bits position
  545. * to determine how many bits are required
  546. * to express the affinity level.
  547. */
  548. ls = fls(affinity);
  549. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  550. bits[i] = ls - fs[i];
  551. }
  552. /*
  553. * An index can be created from the MPIDR by isolating the
  554. * significant bits at each affinity level and by shifting
  555. * them in order to compress the 24 bits values space to a
  556. * compressed set of values. This is equivalent to hashing
  557. * the MPIDR through shifting and ORing. It is a collision free
  558. * hash though not minimal since some levels might contain a number
  559. * of CPUs that is not an exact power of 2 and their bit
  560. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  561. */
  562. mpidr_hash.shift_aff[0] = fs[0];
  563. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  564. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  565. (bits[1] + bits[0]);
  566. mpidr_hash.mask = mask;
  567. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  568. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  569. mpidr_hash.shift_aff[0],
  570. mpidr_hash.shift_aff[1],
  571. mpidr_hash.shift_aff[2],
  572. mpidr_hash.mask,
  573. mpidr_hash.bits);
  574. /*
  575. * 4x is an arbitrary value used to warn on a hash table much bigger
  576. * than expected on most systems.
  577. */
  578. if (mpidr_hash_size() > 4 * num_possible_cpus())
  579. pr_warn("Large number of MPIDR hash buckets detected\n");
  580. sync_cache_w(&mpidr_hash);
  581. }
  582. #endif
  583. static void __init setup_processor(void)
  584. {
  585. struct proc_info_list *list;
  586. /*
  587. * locate processor in the list of supported processor
  588. * types. The linker builds this table for us from the
  589. * entries in arch/arm/mm/proc-*.S
  590. */
  591. list = lookup_processor_type(read_cpuid_id());
  592. if (!list) {
  593. pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
  594. read_cpuid_id());
  595. while (1);
  596. }
  597. cpu_name = list->cpu_name;
  598. __cpu_architecture = __get_cpu_architecture();
  599. #ifdef MULTI_CPU
  600. processor = *list->proc;
  601. #endif
  602. #ifdef MULTI_TLB
  603. cpu_tlb = *list->tlb;
  604. #endif
  605. #ifdef MULTI_USER
  606. cpu_user = *list->user;
  607. #endif
  608. #ifdef MULTI_CACHE
  609. cpu_cache = *list->cache;
  610. #endif
  611. pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  612. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  613. proc_arch[cpu_architecture()], get_cr());
  614. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  615. list->arch_name, ENDIANNESS);
  616. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  617. list->elf_name, ENDIANNESS);
  618. elf_hwcap = list->elf_hwcap;
  619. cpuid_init_hwcaps();
  620. patch_aeabi_idiv();
  621. #ifndef CONFIG_ARM_THUMB
  622. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  623. #endif
  624. #ifdef CONFIG_MMU
  625. init_default_cache_policy(list->__cpu_mm_mmu_flags);
  626. #endif
  627. erratum_a15_798181_init();
  628. elf_hwcap_fixup();
  629. cacheid_init();
  630. cpu_init();
  631. }
  632. void __init dump_machine_table(void)
  633. {
  634. const struct machine_desc *p;
  635. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  636. for_each_machine_desc(p)
  637. early_print("%08x\t%s\n", p->nr, p->name);
  638. early_print("\nPlease check your kernel config and/or bootloader.\n");
  639. while (true)
  640. /* can't use cpu_relax() here as it may require MMU setup */;
  641. }
  642. int __init arm_add_memory(u64 start, u64 size)
  643. {
  644. u64 aligned_start;
  645. /*
  646. * Ensure that start/size are aligned to a page boundary.
  647. * Size is rounded down, start is rounded up.
  648. */
  649. aligned_start = PAGE_ALIGN(start);
  650. if (aligned_start > start + size)
  651. size = 0;
  652. else
  653. size -= aligned_start - start;
  654. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  655. if (aligned_start > ULONG_MAX) {
  656. pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
  657. (long long)start);
  658. return -EINVAL;
  659. }
  660. if (aligned_start + size > ULONG_MAX) {
  661. pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
  662. (long long)start);
  663. /*
  664. * To ensure bank->start + bank->size is representable in
  665. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  666. * This means we lose a page after masking.
  667. */
  668. size = ULONG_MAX - aligned_start;
  669. }
  670. #endif
  671. if (aligned_start < PHYS_OFFSET) {
  672. if (aligned_start + size <= PHYS_OFFSET) {
  673. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  674. aligned_start, aligned_start + size);
  675. return -EINVAL;
  676. }
  677. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  678. aligned_start, (u64)PHYS_OFFSET);
  679. size -= PHYS_OFFSET - aligned_start;
  680. aligned_start = PHYS_OFFSET;
  681. }
  682. start = aligned_start;
  683. size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  684. /*
  685. * Check whether this memory region has non-zero size or
  686. * invalid node number.
  687. */
  688. if (size == 0)
  689. return -EINVAL;
  690. memblock_add(start, size);
  691. return 0;
  692. }
  693. /*
  694. * Pick out the memory size. We look for mem=size@start,
  695. * where start and size are "size[KkMm]"
  696. */
  697. static int __init early_mem(char *p)
  698. {
  699. static int usermem __initdata = 0;
  700. u64 size;
  701. u64 start;
  702. char *endp;
  703. /*
  704. * If the user specifies memory size, we
  705. * blow away any automatically generated
  706. * size.
  707. */
  708. if (usermem == 0) {
  709. usermem = 1;
  710. memblock_remove(memblock_start_of_DRAM(),
  711. memblock_end_of_DRAM() - memblock_start_of_DRAM());
  712. }
  713. start = PHYS_OFFSET;
  714. size = memparse(p, &endp);
  715. if (*endp == '@')
  716. start = memparse(endp + 1, NULL);
  717. arm_add_memory(start, size);
  718. return 0;
  719. }
  720. early_param("mem", early_mem);
  721. static void __init request_standard_resources(const struct machine_desc *mdesc)
  722. {
  723. struct memblock_region *region;
  724. struct resource *res;
  725. kernel_code.start = virt_to_phys(_text);
  726. kernel_code.end = virt_to_phys(_etext - 1);
  727. kernel_data.start = virt_to_phys(_sdata);
  728. kernel_data.end = virt_to_phys(_end - 1);
  729. for_each_memblock(memory, region) {
  730. res = memblock_virt_alloc(sizeof(*res), 0);
  731. res->name = "System RAM";
  732. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  733. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  734. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  735. request_resource(&iomem_resource, res);
  736. if (kernel_code.start >= res->start &&
  737. kernel_code.end <= res->end)
  738. request_resource(res, &kernel_code);
  739. if (kernel_data.start >= res->start &&
  740. kernel_data.end <= res->end)
  741. request_resource(res, &kernel_data);
  742. }
  743. if (mdesc->video_start) {
  744. video_ram.start = mdesc->video_start;
  745. video_ram.end = mdesc->video_end;
  746. request_resource(&iomem_resource, &video_ram);
  747. }
  748. /*
  749. * Some machines don't have the possibility of ever
  750. * possessing lp0, lp1 or lp2
  751. */
  752. if (mdesc->reserve_lp0)
  753. request_resource(&ioport_resource, &lp0);
  754. if (mdesc->reserve_lp1)
  755. request_resource(&ioport_resource, &lp1);
  756. if (mdesc->reserve_lp2)
  757. request_resource(&ioport_resource, &lp2);
  758. }
  759. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  760. struct screen_info screen_info = {
  761. .orig_video_lines = 30,
  762. .orig_video_cols = 80,
  763. .orig_video_mode = 0,
  764. .orig_video_ega_bx = 0,
  765. .orig_video_isVGA = 1,
  766. .orig_video_points = 8
  767. };
  768. #endif
  769. static int __init customize_machine(void)
  770. {
  771. /*
  772. * customizes platform devices, or adds new ones
  773. * On DT based machines, we fall back to populating the
  774. * machine from the device tree, if no callback is provided,
  775. * otherwise we would always need an init_machine callback.
  776. */
  777. of_iommu_init();
  778. if (machine_desc->init_machine)
  779. machine_desc->init_machine();
  780. #ifdef CONFIG_OF
  781. else
  782. of_platform_populate(NULL, of_default_bus_match_table,
  783. NULL, NULL);
  784. #endif
  785. return 0;
  786. }
  787. arch_initcall(customize_machine);
  788. static int __init init_machine_late(void)
  789. {
  790. struct device_node *root;
  791. int ret;
  792. if (machine_desc->init_late)
  793. machine_desc->init_late();
  794. root = of_find_node_by_path("/");
  795. if (root) {
  796. ret = of_property_read_string(root, "serial-number",
  797. &system_serial);
  798. if (ret)
  799. system_serial = NULL;
  800. }
  801. if (!system_serial)
  802. system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
  803. system_serial_high,
  804. system_serial_low);
  805. return 0;
  806. }
  807. late_initcall(init_machine_late);
  808. #ifdef CONFIG_KEXEC
  809. static inline unsigned long long get_total_mem(void)
  810. {
  811. unsigned long total;
  812. total = max_low_pfn - min_low_pfn;
  813. return total << PAGE_SHIFT;
  814. }
  815. /**
  816. * reserve_crashkernel() - reserves memory are for crash kernel
  817. *
  818. * This function reserves memory area given in "crashkernel=" kernel command
  819. * line parameter. The memory reserved is used by a dump capture kernel when
  820. * primary kernel is crashing.
  821. */
  822. static void __init reserve_crashkernel(void)
  823. {
  824. unsigned long long crash_size, crash_base;
  825. unsigned long long total_mem;
  826. int ret;
  827. total_mem = get_total_mem();
  828. ret = parse_crashkernel(boot_command_line, total_mem,
  829. &crash_size, &crash_base);
  830. if (ret)
  831. return;
  832. ret = memblock_reserve(crash_base, crash_size);
  833. if (ret < 0) {
  834. pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
  835. (unsigned long)crash_base);
  836. return;
  837. }
  838. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
  839. (unsigned long)(crash_size >> 20),
  840. (unsigned long)(crash_base >> 20),
  841. (unsigned long)(total_mem >> 20));
  842. crashk_res.start = crash_base;
  843. crashk_res.end = crash_base + crash_size - 1;
  844. insert_resource(&iomem_resource, &crashk_res);
  845. }
  846. #else
  847. static inline void reserve_crashkernel(void) {}
  848. #endif /* CONFIG_KEXEC */
  849. void __init hyp_mode_check(void)
  850. {
  851. #ifdef CONFIG_ARM_VIRT_EXT
  852. sync_boot_mode();
  853. if (is_hyp_mode_available()) {
  854. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  855. pr_info("CPU: Virtualization extensions available.\n");
  856. } else if (is_hyp_mode_mismatched()) {
  857. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  858. __boot_cpu_mode & MODE_MASK);
  859. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  860. } else
  861. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  862. #endif
  863. }
  864. void __init setup_arch(char **cmdline_p)
  865. {
  866. const struct machine_desc *mdesc;
  867. setup_processor();
  868. mdesc = setup_machine_fdt(__atags_pointer);
  869. if (!mdesc)
  870. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  871. machine_desc = mdesc;
  872. machine_name = mdesc->name;
  873. dump_stack_set_arch_desc("%s", mdesc->name);
  874. if (mdesc->reboot_mode != REBOOT_HARD)
  875. reboot_mode = mdesc->reboot_mode;
  876. init_mm.start_code = (unsigned long) _text;
  877. init_mm.end_code = (unsigned long) _etext;
  878. init_mm.end_data = (unsigned long) _edata;
  879. init_mm.brk = (unsigned long) _end;
  880. /* populate cmd_line too for later use, preserving boot_command_line */
  881. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  882. *cmdline_p = cmd_line;
  883. if (IS_ENABLED(CONFIG_FIX_EARLYCON_MEM))
  884. early_fixmap_init();
  885. parse_early_param();
  886. #ifdef CONFIG_MMU
  887. early_paging_init(mdesc);
  888. #endif
  889. setup_dma_zone(mdesc);
  890. sanity_check_meminfo();
  891. arm_memblock_init(mdesc);
  892. paging_init(mdesc);
  893. request_standard_resources(mdesc);
  894. if (mdesc->restart)
  895. arm_pm_restart = mdesc->restart;
  896. unflatten_device_tree();
  897. arm_dt_init_cpu_maps();
  898. psci_dt_init();
  899. xen_early_init();
  900. #ifdef CONFIG_SMP
  901. if (is_smp()) {
  902. if (!mdesc->smp_init || !mdesc->smp_init()) {
  903. if (psci_smp_available())
  904. smp_set_ops(&psci_smp_ops);
  905. else if (mdesc->smp)
  906. smp_set_ops(mdesc->smp);
  907. }
  908. smp_init_cpus();
  909. smp_build_mpidr_hash();
  910. }
  911. #endif
  912. if (!is_smp())
  913. hyp_mode_check();
  914. reserve_crashkernel();
  915. #ifdef CONFIG_MULTI_IRQ_HANDLER
  916. handle_arch_irq = mdesc->handle_irq;
  917. #endif
  918. #ifdef CONFIG_VT
  919. #if defined(CONFIG_VGA_CONSOLE)
  920. conswitchp = &vga_con;
  921. #elif defined(CONFIG_DUMMY_CONSOLE)
  922. conswitchp = &dummy_con;
  923. #endif
  924. #endif
  925. if (mdesc->init_early)
  926. mdesc->init_early();
  927. }
  928. static int __init topology_init(void)
  929. {
  930. int cpu;
  931. for_each_possible_cpu(cpu) {
  932. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  933. cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
  934. register_cpu(&cpuinfo->cpu, cpu);
  935. }
  936. return 0;
  937. }
  938. subsys_initcall(topology_init);
  939. #ifdef CONFIG_HAVE_PROC_CPU
  940. static int __init proc_cpu_init(void)
  941. {
  942. struct proc_dir_entry *res;
  943. res = proc_mkdir("cpu", NULL);
  944. if (!res)
  945. return -ENOMEM;
  946. return 0;
  947. }
  948. fs_initcall(proc_cpu_init);
  949. #endif
  950. static const char *hwcap_str[] = {
  951. "swp",
  952. "half",
  953. "thumb",
  954. "26bit",
  955. "fastmult",
  956. "fpa",
  957. "vfp",
  958. "edsp",
  959. "java",
  960. "iwmmxt",
  961. "crunch",
  962. "thumbee",
  963. "neon",
  964. "vfpv3",
  965. "vfpv3d16",
  966. "tls",
  967. "vfpv4",
  968. "idiva",
  969. "idivt",
  970. "vfpd32",
  971. "lpae",
  972. "evtstrm",
  973. NULL
  974. };
  975. static const char *hwcap2_str[] = {
  976. "aes",
  977. "pmull",
  978. "sha1",
  979. "sha2",
  980. "crc32",
  981. NULL
  982. };
  983. static int c_show(struct seq_file *m, void *v)
  984. {
  985. int i, j;
  986. u32 cpuid;
  987. for_each_online_cpu(i) {
  988. /*
  989. * glibc reads /proc/cpuinfo to determine the number of
  990. * online processors, looking for lines beginning with
  991. * "processor". Give glibc what it expects.
  992. */
  993. seq_printf(m, "processor\t: %d\n", i);
  994. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  995. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  996. cpu_name, cpuid & 15, elf_platform);
  997. #if defined(CONFIG_SMP)
  998. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  999. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  1000. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  1001. #else
  1002. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  1003. loops_per_jiffy / (500000/HZ),
  1004. (loops_per_jiffy / (5000/HZ)) % 100);
  1005. #endif
  1006. /* dump out the processor features */
  1007. seq_puts(m, "Features\t: ");
  1008. for (j = 0; hwcap_str[j]; j++)
  1009. if (elf_hwcap & (1 << j))
  1010. seq_printf(m, "%s ", hwcap_str[j]);
  1011. for (j = 0; hwcap2_str[j]; j++)
  1012. if (elf_hwcap2 & (1 << j))
  1013. seq_printf(m, "%s ", hwcap2_str[j]);
  1014. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  1015. seq_printf(m, "CPU architecture: %s\n",
  1016. proc_arch[cpu_architecture()]);
  1017. if ((cpuid & 0x0008f000) == 0x00000000) {
  1018. /* pre-ARM7 */
  1019. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  1020. } else {
  1021. if ((cpuid & 0x0008f000) == 0x00007000) {
  1022. /* ARM7 */
  1023. seq_printf(m, "CPU variant\t: 0x%02x\n",
  1024. (cpuid >> 16) & 127);
  1025. } else {
  1026. /* post-ARM7 */
  1027. seq_printf(m, "CPU variant\t: 0x%x\n",
  1028. (cpuid >> 20) & 15);
  1029. }
  1030. seq_printf(m, "CPU part\t: 0x%03x\n",
  1031. (cpuid >> 4) & 0xfff);
  1032. }
  1033. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  1034. }
  1035. seq_printf(m, "Hardware\t: %s\n", machine_name);
  1036. seq_printf(m, "Revision\t: %04x\n", system_rev);
  1037. seq_printf(m, "Serial\t\t: %s\n", system_serial);
  1038. return 0;
  1039. }
  1040. static void *c_start(struct seq_file *m, loff_t *pos)
  1041. {
  1042. return *pos < 1 ? (void *)1 : NULL;
  1043. }
  1044. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1045. {
  1046. ++*pos;
  1047. return NULL;
  1048. }
  1049. static void c_stop(struct seq_file *m, void *v)
  1050. {
  1051. }
  1052. const struct seq_operations cpuinfo_op = {
  1053. .start = c_start,
  1054. .next = c_next,
  1055. .stop = c_stop,
  1056. .show = c_show
  1057. };