traps.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/bug.h>
  17. #include <linux/compiler.h>
  18. #include <linux/context_tracking.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/kexec.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/sched.h>
  26. #include <linux/smp.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/bootmem.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/kgdb.h>
  33. #include <linux/kdebug.h>
  34. #include <linux/kprobes.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kdb.h>
  37. #include <linux/irq.h>
  38. #include <linux/perf_event.h>
  39. #include <asm/addrspace.h>
  40. #include <asm/bootinfo.h>
  41. #include <asm/branch.h>
  42. #include <asm/break.h>
  43. #include <asm/cop2.h>
  44. #include <asm/cpu.h>
  45. #include <asm/cpu-type.h>
  46. #include <asm/dsp.h>
  47. #include <asm/fpu.h>
  48. #include <asm/fpu_emulator.h>
  49. #include <asm/idle.h>
  50. #include <asm/mips-r2-to-r6-emul.h>
  51. #include <asm/mipsregs.h>
  52. #include <asm/mipsmtregs.h>
  53. #include <asm/module.h>
  54. #include <asm/msa.h>
  55. #include <asm/pgtable.h>
  56. #include <asm/ptrace.h>
  57. #include <asm/sections.h>
  58. #include <asm/tlbdebug.h>
  59. #include <asm/traps.h>
  60. #include <asm/uaccess.h>
  61. #include <asm/watch.h>
  62. #include <asm/mmu_context.h>
  63. #include <asm/types.h>
  64. #include <asm/stacktrace.h>
  65. #include <asm/uasm.h>
  66. extern void check_wait(void);
  67. extern asmlinkage void rollback_handle_int(void);
  68. extern asmlinkage void handle_int(void);
  69. extern u32 handle_tlbl[];
  70. extern u32 handle_tlbs[];
  71. extern u32 handle_tlbm[];
  72. extern asmlinkage void handle_adel(void);
  73. extern asmlinkage void handle_ades(void);
  74. extern asmlinkage void handle_ibe(void);
  75. extern asmlinkage void handle_dbe(void);
  76. extern asmlinkage void handle_sys(void);
  77. extern asmlinkage void handle_bp(void);
  78. extern asmlinkage void handle_ri(void);
  79. extern asmlinkage void handle_ri_rdhwr_vivt(void);
  80. extern asmlinkage void handle_ri_rdhwr(void);
  81. extern asmlinkage void handle_cpu(void);
  82. extern asmlinkage void handle_ov(void);
  83. extern asmlinkage void handle_tr(void);
  84. extern asmlinkage void handle_msa_fpe(void);
  85. extern asmlinkage void handle_fpe(void);
  86. extern asmlinkage void handle_ftlb(void);
  87. extern asmlinkage void handle_msa(void);
  88. extern asmlinkage void handle_mdmx(void);
  89. extern asmlinkage void handle_watch(void);
  90. extern asmlinkage void handle_mt(void);
  91. extern asmlinkage void handle_dsp(void);
  92. extern asmlinkage void handle_mcheck(void);
  93. extern asmlinkage void handle_reserved(void);
  94. extern void tlb_do_page_fault_0(void);
  95. void (*board_be_init)(void);
  96. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  97. void (*board_nmi_handler_setup)(void);
  98. void (*board_ejtag_handler_setup)(void);
  99. void (*board_bind_eic_interrupt)(int irq, int regset);
  100. void (*board_ebase_setup)(void);
  101. void(*board_cache_error_setup)(void);
  102. static void show_raw_backtrace(unsigned long reg29)
  103. {
  104. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  105. unsigned long addr;
  106. printk("Call Trace:");
  107. #ifdef CONFIG_KALLSYMS
  108. printk("\n");
  109. #endif
  110. while (!kstack_end(sp)) {
  111. unsigned long __user *p =
  112. (unsigned long __user *)(unsigned long)sp++;
  113. if (__get_user(addr, p)) {
  114. printk(" (Bad stack address)");
  115. break;
  116. }
  117. if (__kernel_text_address(addr))
  118. print_ip_sym(addr);
  119. }
  120. printk("\n");
  121. }
  122. #ifdef CONFIG_KALLSYMS
  123. int raw_show_trace;
  124. static int __init set_raw_show_trace(char *str)
  125. {
  126. raw_show_trace = 1;
  127. return 1;
  128. }
  129. __setup("raw_show_trace", set_raw_show_trace);
  130. #endif
  131. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  132. {
  133. unsigned long sp = regs->regs[29];
  134. unsigned long ra = regs->regs[31];
  135. unsigned long pc = regs->cp0_epc;
  136. if (!task)
  137. task = current;
  138. if (raw_show_trace || !__kernel_text_address(pc)) {
  139. show_raw_backtrace(sp);
  140. return;
  141. }
  142. printk("Call Trace:\n");
  143. do {
  144. print_ip_sym(pc);
  145. pc = unwind_stack(task, &sp, pc, &ra);
  146. } while (pc);
  147. printk("\n");
  148. }
  149. /*
  150. * This routine abuses get_user()/put_user() to reference pointers
  151. * with at least a bit of error checking ...
  152. */
  153. static void show_stacktrace(struct task_struct *task,
  154. const struct pt_regs *regs)
  155. {
  156. const int field = 2 * sizeof(unsigned long);
  157. long stackdata;
  158. int i;
  159. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  160. printk("Stack :");
  161. i = 0;
  162. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  163. if (i && ((i % (64 / field)) == 0))
  164. printk("\n ");
  165. if (i > 39) {
  166. printk(" ...");
  167. break;
  168. }
  169. if (__get_user(stackdata, sp++)) {
  170. printk(" (Bad stack address)");
  171. break;
  172. }
  173. printk(" %0*lx", field, stackdata);
  174. i++;
  175. }
  176. printk("\n");
  177. show_backtrace(task, regs);
  178. }
  179. void show_stack(struct task_struct *task, unsigned long *sp)
  180. {
  181. struct pt_regs regs;
  182. mm_segment_t old_fs = get_fs();
  183. if (sp) {
  184. regs.regs[29] = (unsigned long)sp;
  185. regs.regs[31] = 0;
  186. regs.cp0_epc = 0;
  187. } else {
  188. if (task && task != current) {
  189. regs.regs[29] = task->thread.reg29;
  190. regs.regs[31] = 0;
  191. regs.cp0_epc = task->thread.reg31;
  192. #ifdef CONFIG_KGDB_KDB
  193. } else if (atomic_read(&kgdb_active) != -1 &&
  194. kdb_current_regs) {
  195. memcpy(&regs, kdb_current_regs, sizeof(regs));
  196. #endif /* CONFIG_KGDB_KDB */
  197. } else {
  198. prepare_frametrace(&regs);
  199. }
  200. }
  201. /*
  202. * show_stack() deals exclusively with kernel mode, so be sure to access
  203. * the stack in the kernel (not user) address space.
  204. */
  205. set_fs(KERNEL_DS);
  206. show_stacktrace(task, &regs);
  207. set_fs(old_fs);
  208. }
  209. static void show_code(unsigned int __user *pc)
  210. {
  211. long i;
  212. unsigned short __user *pc16 = NULL;
  213. printk("\nCode:");
  214. if ((unsigned long)pc & 1)
  215. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  216. for(i = -3 ; i < 6 ; i++) {
  217. unsigned int insn;
  218. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  219. printk(" (Bad address in epc)\n");
  220. break;
  221. }
  222. printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  223. }
  224. }
  225. static void __show_regs(const struct pt_regs *regs)
  226. {
  227. const int field = 2 * sizeof(unsigned long);
  228. unsigned int cause = regs->cp0_cause;
  229. unsigned int exccode;
  230. int i;
  231. show_regs_print_info(KERN_DEFAULT);
  232. /*
  233. * Saved main processor registers
  234. */
  235. for (i = 0; i < 32; ) {
  236. if ((i % 4) == 0)
  237. printk("$%2d :", i);
  238. if (i == 0)
  239. printk(" %0*lx", field, 0UL);
  240. else if (i == 26 || i == 27)
  241. printk(" %*s", field, "");
  242. else
  243. printk(" %0*lx", field, regs->regs[i]);
  244. i++;
  245. if ((i % 4) == 0)
  246. printk("\n");
  247. }
  248. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  249. printk("Acx : %0*lx\n", field, regs->acx);
  250. #endif
  251. printk("Hi : %0*lx\n", field, regs->hi);
  252. printk("Lo : %0*lx\n", field, regs->lo);
  253. /*
  254. * Saved cp0 registers
  255. */
  256. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  257. (void *) regs->cp0_epc);
  258. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  259. (void *) regs->regs[31]);
  260. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  261. if (cpu_has_3kex) {
  262. if (regs->cp0_status & ST0_KUO)
  263. printk("KUo ");
  264. if (regs->cp0_status & ST0_IEO)
  265. printk("IEo ");
  266. if (regs->cp0_status & ST0_KUP)
  267. printk("KUp ");
  268. if (regs->cp0_status & ST0_IEP)
  269. printk("IEp ");
  270. if (regs->cp0_status & ST0_KUC)
  271. printk("KUc ");
  272. if (regs->cp0_status & ST0_IEC)
  273. printk("IEc ");
  274. } else if (cpu_has_4kex) {
  275. if (regs->cp0_status & ST0_KX)
  276. printk("KX ");
  277. if (regs->cp0_status & ST0_SX)
  278. printk("SX ");
  279. if (regs->cp0_status & ST0_UX)
  280. printk("UX ");
  281. switch (regs->cp0_status & ST0_KSU) {
  282. case KSU_USER:
  283. printk("USER ");
  284. break;
  285. case KSU_SUPERVISOR:
  286. printk("SUPERVISOR ");
  287. break;
  288. case KSU_KERNEL:
  289. printk("KERNEL ");
  290. break;
  291. default:
  292. printk("BAD_MODE ");
  293. break;
  294. }
  295. if (regs->cp0_status & ST0_ERL)
  296. printk("ERL ");
  297. if (regs->cp0_status & ST0_EXL)
  298. printk("EXL ");
  299. if (regs->cp0_status & ST0_IE)
  300. printk("IE ");
  301. }
  302. printk("\n");
  303. exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  304. printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
  305. if (1 <= exccode && exccode <= 5)
  306. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  307. printk("PrId : %08x (%s)\n", read_c0_prid(),
  308. cpu_name_string());
  309. }
  310. /*
  311. * FIXME: really the generic show_regs should take a const pointer argument.
  312. */
  313. void show_regs(struct pt_regs *regs)
  314. {
  315. __show_regs((struct pt_regs *)regs);
  316. }
  317. void show_registers(struct pt_regs *regs)
  318. {
  319. const int field = 2 * sizeof(unsigned long);
  320. mm_segment_t old_fs = get_fs();
  321. __show_regs(regs);
  322. print_modules();
  323. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  324. current->comm, current->pid, current_thread_info(), current,
  325. field, current_thread_info()->tp_value);
  326. if (cpu_has_userlocal) {
  327. unsigned long tls;
  328. tls = read_c0_userlocal();
  329. if (tls != current_thread_info()->tp_value)
  330. printk("*HwTLS: %0*lx\n", field, tls);
  331. }
  332. if (!user_mode(regs))
  333. /* Necessary for getting the correct stack content */
  334. set_fs(KERNEL_DS);
  335. show_stacktrace(current, regs);
  336. show_code((unsigned int __user *) regs->cp0_epc);
  337. printk("\n");
  338. set_fs(old_fs);
  339. }
  340. static DEFINE_RAW_SPINLOCK(die_lock);
  341. void __noreturn die(const char *str, struct pt_regs *regs)
  342. {
  343. static int die_counter;
  344. int sig = SIGSEGV;
  345. oops_enter();
  346. if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
  347. SIGSEGV) == NOTIFY_STOP)
  348. sig = 0;
  349. console_verbose();
  350. raw_spin_lock_irq(&die_lock);
  351. bust_spinlocks(1);
  352. printk("%s[#%d]:\n", str, ++die_counter);
  353. show_registers(regs);
  354. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  355. raw_spin_unlock_irq(&die_lock);
  356. oops_exit();
  357. if (in_interrupt())
  358. panic("Fatal exception in interrupt");
  359. if (panic_on_oops) {
  360. printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
  361. ssleep(5);
  362. panic("Fatal exception");
  363. }
  364. if (regs && kexec_should_crash(current))
  365. crash_kexec(regs);
  366. do_exit(sig);
  367. }
  368. extern struct exception_table_entry __start___dbe_table[];
  369. extern struct exception_table_entry __stop___dbe_table[];
  370. __asm__(
  371. " .section __dbe_table, \"a\"\n"
  372. " .previous \n");
  373. /* Given an address, look for it in the exception tables. */
  374. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  375. {
  376. const struct exception_table_entry *e;
  377. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  378. if (!e)
  379. e = search_module_dbetables(addr);
  380. return e;
  381. }
  382. asmlinkage void do_be(struct pt_regs *regs)
  383. {
  384. const int field = 2 * sizeof(unsigned long);
  385. const struct exception_table_entry *fixup = NULL;
  386. int data = regs->cp0_cause & 4;
  387. int action = MIPS_BE_FATAL;
  388. enum ctx_state prev_state;
  389. prev_state = exception_enter();
  390. /* XXX For now. Fixme, this searches the wrong table ... */
  391. if (data && !user_mode(regs))
  392. fixup = search_dbe_tables(exception_epc(regs));
  393. if (fixup)
  394. action = MIPS_BE_FIXUP;
  395. if (board_be_handler)
  396. action = board_be_handler(regs, fixup != NULL);
  397. switch (action) {
  398. case MIPS_BE_DISCARD:
  399. goto out;
  400. case MIPS_BE_FIXUP:
  401. if (fixup) {
  402. regs->cp0_epc = fixup->nextinsn;
  403. goto out;
  404. }
  405. break;
  406. default:
  407. break;
  408. }
  409. /*
  410. * Assume it would be too dangerous to continue ...
  411. */
  412. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  413. data ? "Data" : "Instruction",
  414. field, regs->cp0_epc, field, regs->regs[31]);
  415. if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
  416. SIGBUS) == NOTIFY_STOP)
  417. goto out;
  418. die_if_kernel("Oops", regs);
  419. force_sig(SIGBUS, current);
  420. out:
  421. exception_exit(prev_state);
  422. }
  423. /*
  424. * ll/sc, rdhwr, sync emulation
  425. */
  426. #define OPCODE 0xfc000000
  427. #define BASE 0x03e00000
  428. #define RT 0x001f0000
  429. #define OFFSET 0x0000ffff
  430. #define LL 0xc0000000
  431. #define SC 0xe0000000
  432. #define SPEC0 0x00000000
  433. #define SPEC3 0x7c000000
  434. #define RD 0x0000f800
  435. #define FUNC 0x0000003f
  436. #define SYNC 0x0000000f
  437. #define RDHWR 0x0000003b
  438. /* microMIPS definitions */
  439. #define MM_POOL32A_FUNC 0xfc00ffff
  440. #define MM_RDHWR 0x00006b3c
  441. #define MM_RS 0x001f0000
  442. #define MM_RT 0x03e00000
  443. /*
  444. * The ll_bit is cleared by r*_switch.S
  445. */
  446. unsigned int ll_bit;
  447. struct task_struct *ll_task;
  448. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  449. {
  450. unsigned long value, __user *vaddr;
  451. long offset;
  452. /*
  453. * analyse the ll instruction that just caused a ri exception
  454. * and put the referenced address to addr.
  455. */
  456. /* sign extend offset */
  457. offset = opcode & OFFSET;
  458. offset <<= 16;
  459. offset >>= 16;
  460. vaddr = (unsigned long __user *)
  461. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  462. if ((unsigned long)vaddr & 3)
  463. return SIGBUS;
  464. if (get_user(value, vaddr))
  465. return SIGSEGV;
  466. preempt_disable();
  467. if (ll_task == NULL || ll_task == current) {
  468. ll_bit = 1;
  469. } else {
  470. ll_bit = 0;
  471. }
  472. ll_task = current;
  473. preempt_enable();
  474. regs->regs[(opcode & RT) >> 16] = value;
  475. return 0;
  476. }
  477. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  478. {
  479. unsigned long __user *vaddr;
  480. unsigned long reg;
  481. long offset;
  482. /*
  483. * analyse the sc instruction that just caused a ri exception
  484. * and put the referenced address to addr.
  485. */
  486. /* sign extend offset */
  487. offset = opcode & OFFSET;
  488. offset <<= 16;
  489. offset >>= 16;
  490. vaddr = (unsigned long __user *)
  491. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  492. reg = (opcode & RT) >> 16;
  493. if ((unsigned long)vaddr & 3)
  494. return SIGBUS;
  495. preempt_disable();
  496. if (ll_bit == 0 || ll_task != current) {
  497. regs->regs[reg] = 0;
  498. preempt_enable();
  499. return 0;
  500. }
  501. preempt_enable();
  502. if (put_user(regs->regs[reg], vaddr))
  503. return SIGSEGV;
  504. regs->regs[reg] = 1;
  505. return 0;
  506. }
  507. /*
  508. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  509. * opcodes are supposed to result in coprocessor unusable exceptions if
  510. * executed on ll/sc-less processors. That's the theory. In practice a
  511. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  512. * instead, so we're doing the emulation thing in both exception handlers.
  513. */
  514. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  515. {
  516. if ((opcode & OPCODE) == LL) {
  517. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  518. 1, regs, 0);
  519. return simulate_ll(regs, opcode);
  520. }
  521. if ((opcode & OPCODE) == SC) {
  522. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  523. 1, regs, 0);
  524. return simulate_sc(regs, opcode);
  525. }
  526. return -1; /* Must be something else ... */
  527. }
  528. /*
  529. * Simulate trapping 'rdhwr' instructions to provide user accessible
  530. * registers not implemented in hardware.
  531. */
  532. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  533. {
  534. struct thread_info *ti = task_thread_info(current);
  535. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  536. 1, regs, 0);
  537. switch (rd) {
  538. case 0: /* CPU number */
  539. regs->regs[rt] = smp_processor_id();
  540. return 0;
  541. case 1: /* SYNCI length */
  542. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  543. current_cpu_data.icache.linesz);
  544. return 0;
  545. case 2: /* Read count register */
  546. regs->regs[rt] = read_c0_count();
  547. return 0;
  548. case 3: /* Count register resolution */
  549. switch (current_cpu_type()) {
  550. case CPU_20KC:
  551. case CPU_25KF:
  552. regs->regs[rt] = 1;
  553. break;
  554. default:
  555. regs->regs[rt] = 2;
  556. }
  557. return 0;
  558. case 29:
  559. regs->regs[rt] = ti->tp_value;
  560. return 0;
  561. default:
  562. return -1;
  563. }
  564. }
  565. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  566. {
  567. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  568. int rd = (opcode & RD) >> 11;
  569. int rt = (opcode & RT) >> 16;
  570. simulate_rdhwr(regs, rd, rt);
  571. return 0;
  572. }
  573. /* Not ours. */
  574. return -1;
  575. }
  576. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
  577. {
  578. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  579. int rd = (opcode & MM_RS) >> 16;
  580. int rt = (opcode & MM_RT) >> 21;
  581. simulate_rdhwr(regs, rd, rt);
  582. return 0;
  583. }
  584. /* Not ours. */
  585. return -1;
  586. }
  587. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  588. {
  589. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  590. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  591. 1, regs, 0);
  592. return 0;
  593. }
  594. return -1; /* Must be something else ... */
  595. }
  596. asmlinkage void do_ov(struct pt_regs *regs)
  597. {
  598. enum ctx_state prev_state;
  599. siginfo_t info = {
  600. .si_signo = SIGFPE,
  601. .si_code = FPE_INTOVF,
  602. .si_addr = (void __user *)regs->cp0_epc,
  603. };
  604. prev_state = exception_enter();
  605. die_if_kernel("Integer overflow", regs);
  606. force_sig_info(SIGFPE, &info, current);
  607. exception_exit(prev_state);
  608. }
  609. int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
  610. {
  611. struct siginfo si = { 0 };
  612. switch (sig) {
  613. case 0:
  614. return 0;
  615. case SIGFPE:
  616. si.si_addr = fault_addr;
  617. si.si_signo = sig;
  618. /*
  619. * Inexact can happen together with Overflow or Underflow.
  620. * Respect the mask to deliver the correct exception.
  621. */
  622. fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
  623. (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
  624. if (fcr31 & FPU_CSR_INV_X)
  625. si.si_code = FPE_FLTINV;
  626. else if (fcr31 & FPU_CSR_DIV_X)
  627. si.si_code = FPE_FLTDIV;
  628. else if (fcr31 & FPU_CSR_OVF_X)
  629. si.si_code = FPE_FLTOVF;
  630. else if (fcr31 & FPU_CSR_UDF_X)
  631. si.si_code = FPE_FLTUND;
  632. else if (fcr31 & FPU_CSR_INE_X)
  633. si.si_code = FPE_FLTRES;
  634. else
  635. si.si_code = __SI_FAULT;
  636. force_sig_info(sig, &si, current);
  637. return 1;
  638. case SIGBUS:
  639. si.si_addr = fault_addr;
  640. si.si_signo = sig;
  641. si.si_code = BUS_ADRERR;
  642. force_sig_info(sig, &si, current);
  643. return 1;
  644. case SIGSEGV:
  645. si.si_addr = fault_addr;
  646. si.si_signo = sig;
  647. down_read(&current->mm->mmap_sem);
  648. if (find_vma(current->mm, (unsigned long)fault_addr))
  649. si.si_code = SEGV_ACCERR;
  650. else
  651. si.si_code = SEGV_MAPERR;
  652. up_read(&current->mm->mmap_sem);
  653. force_sig_info(sig, &si, current);
  654. return 1;
  655. default:
  656. force_sig(sig, current);
  657. return 1;
  658. }
  659. }
  660. static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
  661. unsigned long old_epc, unsigned long old_ra)
  662. {
  663. union mips_instruction inst = { .word = opcode };
  664. void __user *fault_addr;
  665. unsigned long fcr31;
  666. int sig;
  667. /* If it's obviously not an FP instruction, skip it */
  668. switch (inst.i_format.opcode) {
  669. case cop1_op:
  670. case cop1x_op:
  671. case lwc1_op:
  672. case ldc1_op:
  673. case swc1_op:
  674. case sdc1_op:
  675. break;
  676. default:
  677. return -1;
  678. }
  679. /*
  680. * do_ri skipped over the instruction via compute_return_epc, undo
  681. * that for the FPU emulator.
  682. */
  683. regs->cp0_epc = old_epc;
  684. regs->regs[31] = old_ra;
  685. /* Save the FP context to struct thread_struct */
  686. lose_fpu(1);
  687. /* Run the emulator */
  688. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  689. &fault_addr);
  690. fcr31 = current->thread.fpu.fcr31;
  691. /*
  692. * We can't allow the emulated instruction to leave any of
  693. * the cause bits set in $fcr31.
  694. */
  695. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  696. /* Restore the hardware register state */
  697. own_fpu(1);
  698. /* Send a signal if required. */
  699. process_fpemu_return(sig, fault_addr, fcr31);
  700. return 0;
  701. }
  702. /*
  703. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  704. */
  705. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  706. {
  707. enum ctx_state prev_state;
  708. void __user *fault_addr;
  709. int sig;
  710. prev_state = exception_enter();
  711. if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
  712. SIGFPE) == NOTIFY_STOP)
  713. goto out;
  714. /* Clear FCSR.Cause before enabling interrupts */
  715. write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
  716. local_irq_enable();
  717. die_if_kernel("FP exception in kernel code", regs);
  718. if (fcr31 & FPU_CSR_UNI_X) {
  719. /*
  720. * Unimplemented operation exception. If we've got the full
  721. * software emulator on-board, let's use it...
  722. *
  723. * Force FPU to dump state into task/thread context. We're
  724. * moving a lot of data here for what is probably a single
  725. * instruction, but the alternative is to pre-decode the FP
  726. * register operands before invoking the emulator, which seems
  727. * a bit extreme for what should be an infrequent event.
  728. */
  729. /* Ensure 'resume' not overwrite saved fp context again. */
  730. lose_fpu(1);
  731. /* Run the emulator */
  732. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  733. &fault_addr);
  734. fcr31 = current->thread.fpu.fcr31;
  735. /*
  736. * We can't allow the emulated instruction to leave any of
  737. * the cause bits set in $fcr31.
  738. */
  739. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  740. /* Restore the hardware register state */
  741. own_fpu(1); /* Using the FPU again. */
  742. } else {
  743. sig = SIGFPE;
  744. fault_addr = (void __user *) regs->cp0_epc;
  745. }
  746. /* Send a signal if required. */
  747. process_fpemu_return(sig, fault_addr, fcr31);
  748. out:
  749. exception_exit(prev_state);
  750. }
  751. void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
  752. const char *str)
  753. {
  754. siginfo_t info = { 0 };
  755. char b[40];
  756. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  757. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  758. SIGTRAP) == NOTIFY_STOP)
  759. return;
  760. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  761. if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  762. SIGTRAP) == NOTIFY_STOP)
  763. return;
  764. /*
  765. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  766. * insns, even for trap and break codes that indicate arithmetic
  767. * failures. Weird ...
  768. * But should we continue the brokenness??? --macro
  769. */
  770. switch (code) {
  771. case BRK_OVERFLOW:
  772. case BRK_DIVZERO:
  773. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  774. die_if_kernel(b, regs);
  775. if (code == BRK_DIVZERO)
  776. info.si_code = FPE_INTDIV;
  777. else
  778. info.si_code = FPE_INTOVF;
  779. info.si_signo = SIGFPE;
  780. info.si_addr = (void __user *) regs->cp0_epc;
  781. force_sig_info(SIGFPE, &info, current);
  782. break;
  783. case BRK_BUG:
  784. die_if_kernel("Kernel bug detected", regs);
  785. force_sig(SIGTRAP, current);
  786. break;
  787. case BRK_MEMU:
  788. /*
  789. * This breakpoint code is used by the FPU emulator to retake
  790. * control of the CPU after executing the instruction from the
  791. * delay slot of an emulated branch.
  792. *
  793. * Terminate if exception was recognized as a delay slot return
  794. * otherwise handle as normal.
  795. */
  796. if (do_dsemulret(regs))
  797. return;
  798. die_if_kernel("Math emu break/trap", regs);
  799. force_sig(SIGTRAP, current);
  800. break;
  801. default:
  802. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  803. die_if_kernel(b, regs);
  804. force_sig(SIGTRAP, current);
  805. }
  806. }
  807. asmlinkage void do_bp(struct pt_regs *regs)
  808. {
  809. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  810. unsigned int opcode, bcode;
  811. enum ctx_state prev_state;
  812. mm_segment_t seg;
  813. seg = get_fs();
  814. if (!user_mode(regs))
  815. set_fs(KERNEL_DS);
  816. prev_state = exception_enter();
  817. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  818. if (get_isa16_mode(regs->cp0_epc)) {
  819. u16 instr[2];
  820. if (__get_user(instr[0], (u16 __user *)epc))
  821. goto out_sigsegv;
  822. if (!cpu_has_mmips) {
  823. /* MIPS16e mode */
  824. bcode = (instr[0] >> 5) & 0x3f;
  825. } else if (mm_insn_16bit(instr[0])) {
  826. /* 16-bit microMIPS BREAK */
  827. bcode = instr[0] & 0xf;
  828. } else {
  829. /* 32-bit microMIPS BREAK */
  830. if (__get_user(instr[1], (u16 __user *)(epc + 2)))
  831. goto out_sigsegv;
  832. opcode = (instr[0] << 16) | instr[1];
  833. bcode = (opcode >> 6) & ((1 << 20) - 1);
  834. }
  835. } else {
  836. if (__get_user(opcode, (unsigned int __user *)epc))
  837. goto out_sigsegv;
  838. bcode = (opcode >> 6) & ((1 << 20) - 1);
  839. }
  840. /*
  841. * There is the ancient bug in the MIPS assemblers that the break
  842. * code starts left to bit 16 instead to bit 6 in the opcode.
  843. * Gas is bug-compatible, but not always, grrr...
  844. * We handle both cases with a simple heuristics. --macro
  845. */
  846. if (bcode >= (1 << 10))
  847. bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
  848. /*
  849. * notify the kprobe handlers, if instruction is likely to
  850. * pertain to them.
  851. */
  852. switch (bcode) {
  853. case BRK_UPROBE:
  854. if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
  855. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  856. goto out;
  857. else
  858. break;
  859. case BRK_UPROBE_XOL:
  860. if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
  861. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  862. goto out;
  863. else
  864. break;
  865. case BRK_KPROBE_BP:
  866. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  867. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  868. goto out;
  869. else
  870. break;
  871. case BRK_KPROBE_SSTEPBP:
  872. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  873. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  874. goto out;
  875. else
  876. break;
  877. default:
  878. break;
  879. }
  880. do_trap_or_bp(regs, bcode, "Break");
  881. out:
  882. set_fs(seg);
  883. exception_exit(prev_state);
  884. return;
  885. out_sigsegv:
  886. force_sig(SIGSEGV, current);
  887. goto out;
  888. }
  889. asmlinkage void do_tr(struct pt_regs *regs)
  890. {
  891. u32 opcode, tcode = 0;
  892. enum ctx_state prev_state;
  893. u16 instr[2];
  894. mm_segment_t seg;
  895. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  896. seg = get_fs();
  897. if (!user_mode(regs))
  898. set_fs(get_ds());
  899. prev_state = exception_enter();
  900. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  901. if (get_isa16_mode(regs->cp0_epc)) {
  902. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  903. __get_user(instr[1], (u16 __user *)(epc + 2)))
  904. goto out_sigsegv;
  905. opcode = (instr[0] << 16) | instr[1];
  906. /* Immediate versions don't provide a code. */
  907. if (!(opcode & OPCODE))
  908. tcode = (opcode >> 12) & ((1 << 4) - 1);
  909. } else {
  910. if (__get_user(opcode, (u32 __user *)epc))
  911. goto out_sigsegv;
  912. /* Immediate versions don't provide a code. */
  913. if (!(opcode & OPCODE))
  914. tcode = (opcode >> 6) & ((1 << 10) - 1);
  915. }
  916. do_trap_or_bp(regs, tcode, "Trap");
  917. out:
  918. set_fs(seg);
  919. exception_exit(prev_state);
  920. return;
  921. out_sigsegv:
  922. force_sig(SIGSEGV, current);
  923. goto out;
  924. }
  925. asmlinkage void do_ri(struct pt_regs *regs)
  926. {
  927. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  928. unsigned long old_epc = regs->cp0_epc;
  929. unsigned long old31 = regs->regs[31];
  930. enum ctx_state prev_state;
  931. unsigned int opcode = 0;
  932. int status = -1;
  933. /*
  934. * Avoid any kernel code. Just emulate the R2 instruction
  935. * as quickly as possible.
  936. */
  937. if (mipsr2_emulation && cpu_has_mips_r6 &&
  938. likely(user_mode(regs)) &&
  939. likely(get_user(opcode, epc) >= 0)) {
  940. unsigned long fcr31 = 0;
  941. status = mipsr2_decoder(regs, opcode, &fcr31);
  942. switch (status) {
  943. case 0:
  944. case SIGEMT:
  945. task_thread_info(current)->r2_emul_return = 1;
  946. return;
  947. case SIGILL:
  948. goto no_r2_instr;
  949. default:
  950. process_fpemu_return(status,
  951. &current->thread.cp0_baduaddr,
  952. fcr31);
  953. task_thread_info(current)->r2_emul_return = 1;
  954. return;
  955. }
  956. }
  957. no_r2_instr:
  958. prev_state = exception_enter();
  959. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  960. if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
  961. SIGILL) == NOTIFY_STOP)
  962. goto out;
  963. die_if_kernel("Reserved instruction in kernel code", regs);
  964. if (unlikely(compute_return_epc(regs) < 0))
  965. goto out;
  966. if (get_isa16_mode(regs->cp0_epc)) {
  967. unsigned short mmop[2] = { 0 };
  968. if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
  969. status = SIGSEGV;
  970. if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
  971. status = SIGSEGV;
  972. opcode = mmop[0];
  973. opcode = (opcode << 16) | mmop[1];
  974. if (status < 0)
  975. status = simulate_rdhwr_mm(regs, opcode);
  976. } else {
  977. if (unlikely(get_user(opcode, epc) < 0))
  978. status = SIGSEGV;
  979. if (!cpu_has_llsc && status < 0)
  980. status = simulate_llsc(regs, opcode);
  981. if (status < 0)
  982. status = simulate_rdhwr_normal(regs, opcode);
  983. if (status < 0)
  984. status = simulate_sync(regs, opcode);
  985. if (status < 0)
  986. status = simulate_fp(regs, opcode, old_epc, old31);
  987. }
  988. if (status < 0)
  989. status = SIGILL;
  990. if (unlikely(status > 0)) {
  991. regs->cp0_epc = old_epc; /* Undo skip-over. */
  992. regs->regs[31] = old31;
  993. force_sig(status, current);
  994. }
  995. out:
  996. exception_exit(prev_state);
  997. }
  998. /*
  999. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  1000. * emulated more than some threshold number of instructions, force migration to
  1001. * a "CPU" that has FP support.
  1002. */
  1003. static void mt_ase_fp_affinity(void)
  1004. {
  1005. #ifdef CONFIG_MIPS_MT_FPAFF
  1006. if (mt_fpemul_threshold > 0 &&
  1007. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  1008. /*
  1009. * If there's no FPU present, or if the application has already
  1010. * restricted the allowed set to exclude any CPUs with FPUs,
  1011. * we'll skip the procedure.
  1012. */
  1013. if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
  1014. cpumask_t tmask;
  1015. current->thread.user_cpus_allowed
  1016. = current->cpus_allowed;
  1017. cpumask_and(&tmask, &current->cpus_allowed,
  1018. &mt_fpu_cpumask);
  1019. set_cpus_allowed_ptr(current, &tmask);
  1020. set_thread_flag(TIF_FPUBOUND);
  1021. }
  1022. }
  1023. #endif /* CONFIG_MIPS_MT_FPAFF */
  1024. }
  1025. /*
  1026. * No lock; only written during early bootup by CPU 0.
  1027. */
  1028. static RAW_NOTIFIER_HEAD(cu2_chain);
  1029. int __ref register_cu2_notifier(struct notifier_block *nb)
  1030. {
  1031. return raw_notifier_chain_register(&cu2_chain, nb);
  1032. }
  1033. int cu2_notifier_call_chain(unsigned long val, void *v)
  1034. {
  1035. return raw_notifier_call_chain(&cu2_chain, val, v);
  1036. }
  1037. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  1038. void *data)
  1039. {
  1040. struct pt_regs *regs = data;
  1041. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  1042. "instruction", regs);
  1043. force_sig(SIGILL, current);
  1044. return NOTIFY_OK;
  1045. }
  1046. static int wait_on_fp_mode_switch(atomic_t *p)
  1047. {
  1048. /*
  1049. * The FP mode for this task is currently being switched. That may
  1050. * involve modifications to the format of this tasks FP context which
  1051. * make it unsafe to proceed with execution for the moment. Instead,
  1052. * schedule some other task.
  1053. */
  1054. schedule();
  1055. return 0;
  1056. }
  1057. static int enable_restore_fp_context(int msa)
  1058. {
  1059. int err, was_fpu_owner, prior_msa;
  1060. /*
  1061. * If an FP mode switch is currently underway, wait for it to
  1062. * complete before proceeding.
  1063. */
  1064. wait_on_atomic_t(&current->mm->context.fp_mode_switching,
  1065. wait_on_fp_mode_switch, TASK_KILLABLE);
  1066. if (!used_math()) {
  1067. /* First time FP context user. */
  1068. preempt_disable();
  1069. err = init_fpu();
  1070. if (msa && !err) {
  1071. enable_msa();
  1072. _init_msa_upper();
  1073. set_thread_flag(TIF_USEDMSA);
  1074. set_thread_flag(TIF_MSA_CTX_LIVE);
  1075. }
  1076. preempt_enable();
  1077. if (!err)
  1078. set_used_math();
  1079. return err;
  1080. }
  1081. /*
  1082. * This task has formerly used the FP context.
  1083. *
  1084. * If this thread has no live MSA vector context then we can simply
  1085. * restore the scalar FP context. If it has live MSA vector context
  1086. * (that is, it has or may have used MSA since last performing a
  1087. * function call) then we'll need to restore the vector context. This
  1088. * applies even if we're currently only executing a scalar FP
  1089. * instruction. This is because if we were to later execute an MSA
  1090. * instruction then we'd either have to:
  1091. *
  1092. * - Restore the vector context & clobber any registers modified by
  1093. * scalar FP instructions between now & then.
  1094. *
  1095. * or
  1096. *
  1097. * - Not restore the vector context & lose the most significant bits
  1098. * of all vector registers.
  1099. *
  1100. * Neither of those options is acceptable. We cannot restore the least
  1101. * significant bits of the registers now & only restore the most
  1102. * significant bits later because the most significant bits of any
  1103. * vector registers whose aliased FP register is modified now will have
  1104. * been zeroed. We'd have no way to know that when restoring the vector
  1105. * context & thus may load an outdated value for the most significant
  1106. * bits of a vector register.
  1107. */
  1108. if (!msa && !thread_msa_context_live())
  1109. return own_fpu(1);
  1110. /*
  1111. * This task is using or has previously used MSA. Thus we require
  1112. * that Status.FR == 1.
  1113. */
  1114. preempt_disable();
  1115. was_fpu_owner = is_fpu_owner();
  1116. err = own_fpu_inatomic(0);
  1117. if (err)
  1118. goto out;
  1119. enable_msa();
  1120. write_msa_csr(current->thread.fpu.msacsr);
  1121. set_thread_flag(TIF_USEDMSA);
  1122. /*
  1123. * If this is the first time that the task is using MSA and it has
  1124. * previously used scalar FP in this time slice then we already nave
  1125. * FP context which we shouldn't clobber. We do however need to clear
  1126. * the upper 64b of each vector register so that this task has no
  1127. * opportunity to see data left behind by another.
  1128. */
  1129. prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
  1130. if (!prior_msa && was_fpu_owner) {
  1131. _init_msa_upper();
  1132. goto out;
  1133. }
  1134. if (!prior_msa) {
  1135. /*
  1136. * Restore the least significant 64b of each vector register
  1137. * from the existing scalar FP context.
  1138. */
  1139. _restore_fp(current);
  1140. /*
  1141. * The task has not formerly used MSA, so clear the upper 64b
  1142. * of each vector register such that it cannot see data left
  1143. * behind by another task.
  1144. */
  1145. _init_msa_upper();
  1146. } else {
  1147. /* We need to restore the vector context. */
  1148. restore_msa(current);
  1149. /* Restore the scalar FP control & status register */
  1150. if (!was_fpu_owner)
  1151. write_32bit_cp1_register(CP1_STATUS,
  1152. current->thread.fpu.fcr31);
  1153. }
  1154. out:
  1155. preempt_enable();
  1156. return 0;
  1157. }
  1158. asmlinkage void do_cpu(struct pt_regs *regs)
  1159. {
  1160. enum ctx_state prev_state;
  1161. unsigned int __user *epc;
  1162. unsigned long old_epc, old31;
  1163. void __user *fault_addr;
  1164. unsigned int opcode;
  1165. unsigned long fcr31;
  1166. unsigned int cpid;
  1167. int status, err;
  1168. unsigned long __maybe_unused flags;
  1169. int sig;
  1170. prev_state = exception_enter();
  1171. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1172. if (cpid != 2)
  1173. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1174. switch (cpid) {
  1175. case 0:
  1176. epc = (unsigned int __user *)exception_epc(regs);
  1177. old_epc = regs->cp0_epc;
  1178. old31 = regs->regs[31];
  1179. opcode = 0;
  1180. status = -1;
  1181. if (unlikely(compute_return_epc(regs) < 0))
  1182. break;
  1183. if (!get_isa16_mode(regs->cp0_epc)) {
  1184. if (unlikely(get_user(opcode, epc) < 0))
  1185. status = SIGSEGV;
  1186. if (!cpu_has_llsc && status < 0)
  1187. status = simulate_llsc(regs, opcode);
  1188. }
  1189. if (status < 0)
  1190. status = SIGILL;
  1191. if (unlikely(status > 0)) {
  1192. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1193. regs->regs[31] = old31;
  1194. force_sig(status, current);
  1195. }
  1196. break;
  1197. case 3:
  1198. /*
  1199. * The COP3 opcode space and consequently the CP0.Status.CU3
  1200. * bit and the CP0.Cause.CE=3 encoding have been removed as
  1201. * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
  1202. * up the space has been reused for COP1X instructions, that
  1203. * are enabled by the CP0.Status.CU1 bit and consequently
  1204. * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
  1205. * exceptions. Some FPU-less processors that implement one
  1206. * of these ISAs however use this code erroneously for COP1X
  1207. * instructions. Therefore we redirect this trap to the FP
  1208. * emulator too.
  1209. */
  1210. if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
  1211. force_sig(SIGILL, current);
  1212. break;
  1213. }
  1214. /* Fall through. */
  1215. case 1:
  1216. err = enable_restore_fp_context(0);
  1217. if (raw_cpu_has_fpu && !err)
  1218. break;
  1219. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
  1220. &fault_addr);
  1221. fcr31 = current->thread.fpu.fcr31;
  1222. /*
  1223. * We can't allow the emulated instruction to leave
  1224. * any of the cause bits set in $fcr31.
  1225. */
  1226. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  1227. /* Send a signal if required. */
  1228. if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
  1229. mt_ase_fp_affinity();
  1230. break;
  1231. case 2:
  1232. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1233. break;
  1234. }
  1235. exception_exit(prev_state);
  1236. }
  1237. asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
  1238. {
  1239. enum ctx_state prev_state;
  1240. prev_state = exception_enter();
  1241. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  1242. if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
  1243. current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
  1244. goto out;
  1245. /* Clear MSACSR.Cause before enabling interrupts */
  1246. write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
  1247. local_irq_enable();
  1248. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1249. force_sig(SIGFPE, current);
  1250. out:
  1251. exception_exit(prev_state);
  1252. }
  1253. asmlinkage void do_msa(struct pt_regs *regs)
  1254. {
  1255. enum ctx_state prev_state;
  1256. int err;
  1257. prev_state = exception_enter();
  1258. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1259. force_sig(SIGILL, current);
  1260. goto out;
  1261. }
  1262. die_if_kernel("do_msa invoked from kernel context!", regs);
  1263. err = enable_restore_fp_context(1);
  1264. if (err)
  1265. force_sig(SIGILL, current);
  1266. out:
  1267. exception_exit(prev_state);
  1268. }
  1269. asmlinkage void do_mdmx(struct pt_regs *regs)
  1270. {
  1271. enum ctx_state prev_state;
  1272. prev_state = exception_enter();
  1273. force_sig(SIGILL, current);
  1274. exception_exit(prev_state);
  1275. }
  1276. /*
  1277. * Called with interrupts disabled.
  1278. */
  1279. asmlinkage void do_watch(struct pt_regs *regs)
  1280. {
  1281. enum ctx_state prev_state;
  1282. u32 cause;
  1283. prev_state = exception_enter();
  1284. /*
  1285. * Clear WP (bit 22) bit of cause register so we don't loop
  1286. * forever.
  1287. */
  1288. cause = read_c0_cause();
  1289. cause &= ~(1 << 22);
  1290. write_c0_cause(cause);
  1291. /*
  1292. * If the current thread has the watch registers loaded, save
  1293. * their values and send SIGTRAP. Otherwise another thread
  1294. * left the registers set, clear them and continue.
  1295. */
  1296. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1297. mips_read_watch_registers();
  1298. local_irq_enable();
  1299. force_sig(SIGTRAP, current);
  1300. } else {
  1301. mips_clear_watch_registers();
  1302. local_irq_enable();
  1303. }
  1304. exception_exit(prev_state);
  1305. }
  1306. asmlinkage void do_mcheck(struct pt_regs *regs)
  1307. {
  1308. int multi_match = regs->cp0_status & ST0_TS;
  1309. enum ctx_state prev_state;
  1310. mm_segment_t old_fs = get_fs();
  1311. prev_state = exception_enter();
  1312. show_regs(regs);
  1313. if (multi_match) {
  1314. dump_tlb_regs();
  1315. pr_info("\n");
  1316. dump_tlb_all();
  1317. }
  1318. if (!user_mode(regs))
  1319. set_fs(KERNEL_DS);
  1320. show_code((unsigned int __user *) regs->cp0_epc);
  1321. set_fs(old_fs);
  1322. /*
  1323. * Some chips may have other causes of machine check (e.g. SB1
  1324. * graduation timer)
  1325. */
  1326. panic("Caught Machine Check exception - %scaused by multiple "
  1327. "matching entries in the TLB.",
  1328. (multi_match) ? "" : "not ");
  1329. }
  1330. asmlinkage void do_mt(struct pt_regs *regs)
  1331. {
  1332. int subcode;
  1333. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1334. >> VPECONTROL_EXCPT_SHIFT;
  1335. switch (subcode) {
  1336. case 0:
  1337. printk(KERN_DEBUG "Thread Underflow\n");
  1338. break;
  1339. case 1:
  1340. printk(KERN_DEBUG "Thread Overflow\n");
  1341. break;
  1342. case 2:
  1343. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1344. break;
  1345. case 3:
  1346. printk(KERN_DEBUG "Gating Storage Exception\n");
  1347. break;
  1348. case 4:
  1349. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1350. break;
  1351. case 5:
  1352. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1353. break;
  1354. default:
  1355. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1356. subcode);
  1357. break;
  1358. }
  1359. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1360. force_sig(SIGILL, current);
  1361. }
  1362. asmlinkage void do_dsp(struct pt_regs *regs)
  1363. {
  1364. if (cpu_has_dsp)
  1365. panic("Unexpected DSP exception");
  1366. force_sig(SIGILL, current);
  1367. }
  1368. asmlinkage void do_reserved(struct pt_regs *regs)
  1369. {
  1370. /*
  1371. * Game over - no way to handle this if it ever occurs. Most probably
  1372. * caused by a new unknown cpu type or after another deadly
  1373. * hard/software error.
  1374. */
  1375. show_regs(regs);
  1376. panic("Caught reserved exception %ld - should not happen.",
  1377. (regs->cp0_cause & 0x7f) >> 2);
  1378. }
  1379. static int __initdata l1parity = 1;
  1380. static int __init nol1parity(char *s)
  1381. {
  1382. l1parity = 0;
  1383. return 1;
  1384. }
  1385. __setup("nol1par", nol1parity);
  1386. static int __initdata l2parity = 1;
  1387. static int __init nol2parity(char *s)
  1388. {
  1389. l2parity = 0;
  1390. return 1;
  1391. }
  1392. __setup("nol2par", nol2parity);
  1393. /*
  1394. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1395. * it different ways.
  1396. */
  1397. static inline void parity_protection_init(void)
  1398. {
  1399. switch (current_cpu_type()) {
  1400. case CPU_24K:
  1401. case CPU_34K:
  1402. case CPU_74K:
  1403. case CPU_1004K:
  1404. case CPU_1074K:
  1405. case CPU_INTERAPTIV:
  1406. case CPU_PROAPTIV:
  1407. case CPU_P5600:
  1408. case CPU_QEMU_GENERIC:
  1409. case CPU_I6400:
  1410. {
  1411. #define ERRCTL_PE 0x80000000
  1412. #define ERRCTL_L2P 0x00800000
  1413. unsigned long errctl;
  1414. unsigned int l1parity_present, l2parity_present;
  1415. errctl = read_c0_ecc();
  1416. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1417. /* probe L1 parity support */
  1418. write_c0_ecc(errctl | ERRCTL_PE);
  1419. back_to_back_c0_hazard();
  1420. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1421. /* probe L2 parity support */
  1422. write_c0_ecc(errctl|ERRCTL_L2P);
  1423. back_to_back_c0_hazard();
  1424. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1425. if (l1parity_present && l2parity_present) {
  1426. if (l1parity)
  1427. errctl |= ERRCTL_PE;
  1428. if (l1parity ^ l2parity)
  1429. errctl |= ERRCTL_L2P;
  1430. } else if (l1parity_present) {
  1431. if (l1parity)
  1432. errctl |= ERRCTL_PE;
  1433. } else if (l2parity_present) {
  1434. if (l2parity)
  1435. errctl |= ERRCTL_L2P;
  1436. } else {
  1437. /* No parity available */
  1438. }
  1439. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1440. write_c0_ecc(errctl);
  1441. back_to_back_c0_hazard();
  1442. errctl = read_c0_ecc();
  1443. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1444. if (l1parity_present)
  1445. printk(KERN_INFO "Cache parity protection %sabled\n",
  1446. (errctl & ERRCTL_PE) ? "en" : "dis");
  1447. if (l2parity_present) {
  1448. if (l1parity_present && l1parity)
  1449. errctl ^= ERRCTL_L2P;
  1450. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1451. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1452. }
  1453. }
  1454. break;
  1455. case CPU_5KC:
  1456. case CPU_5KE:
  1457. case CPU_LOONGSON1:
  1458. write_c0_ecc(0x80000000);
  1459. back_to_back_c0_hazard();
  1460. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1461. printk(KERN_INFO "Cache parity protection %sabled\n",
  1462. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1463. break;
  1464. case CPU_20KC:
  1465. case CPU_25KF:
  1466. /* Clear the DE bit (bit 16) in the c0_status register. */
  1467. printk(KERN_INFO "Enable cache parity protection for "
  1468. "MIPS 20KC/25KF CPUs.\n");
  1469. clear_c0_status(ST0_DE);
  1470. break;
  1471. default:
  1472. break;
  1473. }
  1474. }
  1475. asmlinkage void cache_parity_error(void)
  1476. {
  1477. const int field = 2 * sizeof(unsigned long);
  1478. unsigned int reg_val;
  1479. /* For the moment, report the problem and hang. */
  1480. printk("Cache error exception:\n");
  1481. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1482. reg_val = read_c0_cacheerr();
  1483. printk("c0_cacheerr == %08x\n", reg_val);
  1484. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1485. reg_val & (1<<30) ? "secondary" : "primary",
  1486. reg_val & (1<<31) ? "data" : "insn");
  1487. if ((cpu_has_mips_r2_r6) &&
  1488. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1489. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1490. reg_val & (1<<29) ? "ED " : "",
  1491. reg_val & (1<<28) ? "ET " : "",
  1492. reg_val & (1<<27) ? "ES " : "",
  1493. reg_val & (1<<26) ? "EE " : "",
  1494. reg_val & (1<<25) ? "EB " : "",
  1495. reg_val & (1<<24) ? "EI " : "",
  1496. reg_val & (1<<23) ? "E1 " : "",
  1497. reg_val & (1<<22) ? "E0 " : "");
  1498. } else {
  1499. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1500. reg_val & (1<<29) ? "ED " : "",
  1501. reg_val & (1<<28) ? "ET " : "",
  1502. reg_val & (1<<26) ? "EE " : "",
  1503. reg_val & (1<<25) ? "EB " : "",
  1504. reg_val & (1<<24) ? "EI " : "",
  1505. reg_val & (1<<23) ? "E1 " : "",
  1506. reg_val & (1<<22) ? "E0 " : "");
  1507. }
  1508. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1509. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1510. if (reg_val & (1<<22))
  1511. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1512. if (reg_val & (1<<23))
  1513. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1514. #endif
  1515. panic("Can't handle the cache error!");
  1516. }
  1517. asmlinkage void do_ftlb(void)
  1518. {
  1519. const int field = 2 * sizeof(unsigned long);
  1520. unsigned int reg_val;
  1521. /* For the moment, report the problem and hang. */
  1522. if ((cpu_has_mips_r2_r6) &&
  1523. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1524. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1525. read_c0_ecc());
  1526. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1527. reg_val = read_c0_cacheerr();
  1528. pr_err("c0_cacheerr == %08x\n", reg_val);
  1529. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1530. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1531. } else {
  1532. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1533. reg_val & (1<<30) ? "secondary" : "primary",
  1534. reg_val & (1<<31) ? "data" : "insn");
  1535. }
  1536. } else {
  1537. pr_err("FTLB error exception\n");
  1538. }
  1539. /* Just print the cacheerr bits for now */
  1540. cache_parity_error();
  1541. }
  1542. /*
  1543. * SDBBP EJTAG debug exception handler.
  1544. * We skip the instruction and return to the next instruction.
  1545. */
  1546. void ejtag_exception_handler(struct pt_regs *regs)
  1547. {
  1548. const int field = 2 * sizeof(unsigned long);
  1549. unsigned long depc, old_epc, old_ra;
  1550. unsigned int debug;
  1551. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1552. depc = read_c0_depc();
  1553. debug = read_c0_debug();
  1554. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1555. if (debug & 0x80000000) {
  1556. /*
  1557. * In branch delay slot.
  1558. * We cheat a little bit here and use EPC to calculate the
  1559. * debug return address (DEPC). EPC is restored after the
  1560. * calculation.
  1561. */
  1562. old_epc = regs->cp0_epc;
  1563. old_ra = regs->regs[31];
  1564. regs->cp0_epc = depc;
  1565. compute_return_epc(regs);
  1566. depc = regs->cp0_epc;
  1567. regs->cp0_epc = old_epc;
  1568. regs->regs[31] = old_ra;
  1569. } else
  1570. depc += 4;
  1571. write_c0_depc(depc);
  1572. #if 0
  1573. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1574. write_c0_debug(debug | 0x100);
  1575. #endif
  1576. }
  1577. /*
  1578. * NMI exception handler.
  1579. * No lock; only written during early bootup by CPU 0.
  1580. */
  1581. static RAW_NOTIFIER_HEAD(nmi_chain);
  1582. int register_nmi_notifier(struct notifier_block *nb)
  1583. {
  1584. return raw_notifier_chain_register(&nmi_chain, nb);
  1585. }
  1586. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1587. {
  1588. char str[100];
  1589. nmi_enter();
  1590. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1591. bust_spinlocks(1);
  1592. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1593. smp_processor_id(), regs->cp0_epc);
  1594. regs->cp0_epc = read_c0_errorepc();
  1595. die(str, regs);
  1596. nmi_exit();
  1597. }
  1598. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1599. unsigned long ebase;
  1600. unsigned long exception_handlers[32];
  1601. unsigned long vi_handlers[64];
  1602. void __init *set_except_vector(int n, void *addr)
  1603. {
  1604. unsigned long handler = (unsigned long) addr;
  1605. unsigned long old_handler;
  1606. #ifdef CONFIG_CPU_MICROMIPS
  1607. /*
  1608. * Only the TLB handlers are cache aligned with an even
  1609. * address. All other handlers are on an odd address and
  1610. * require no modification. Otherwise, MIPS32 mode will
  1611. * be entered when handling any TLB exceptions. That
  1612. * would be bad...since we must stay in microMIPS mode.
  1613. */
  1614. if (!(handler & 0x1))
  1615. handler |= 1;
  1616. #endif
  1617. old_handler = xchg(&exception_handlers[n], handler);
  1618. if (n == 0 && cpu_has_divec) {
  1619. #ifdef CONFIG_CPU_MICROMIPS
  1620. unsigned long jump_mask = ~((1 << 27) - 1);
  1621. #else
  1622. unsigned long jump_mask = ~((1 << 28) - 1);
  1623. #endif
  1624. u32 *buf = (u32 *)(ebase + 0x200);
  1625. unsigned int k0 = 26;
  1626. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1627. uasm_i_j(&buf, handler & ~jump_mask);
  1628. uasm_i_nop(&buf);
  1629. } else {
  1630. UASM_i_LA(&buf, k0, handler);
  1631. uasm_i_jr(&buf, k0);
  1632. uasm_i_nop(&buf);
  1633. }
  1634. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1635. }
  1636. return (void *)old_handler;
  1637. }
  1638. static void do_default_vi(void)
  1639. {
  1640. show_regs(get_irq_regs());
  1641. panic("Caught unexpected vectored interrupt.");
  1642. }
  1643. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1644. {
  1645. unsigned long handler;
  1646. unsigned long old_handler = vi_handlers[n];
  1647. int srssets = current_cpu_data.srsets;
  1648. u16 *h;
  1649. unsigned char *b;
  1650. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1651. if (addr == NULL) {
  1652. handler = (unsigned long) do_default_vi;
  1653. srs = 0;
  1654. } else
  1655. handler = (unsigned long) addr;
  1656. vi_handlers[n] = handler;
  1657. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1658. if (srs >= srssets)
  1659. panic("Shadow register set %d not supported", srs);
  1660. if (cpu_has_veic) {
  1661. if (board_bind_eic_interrupt)
  1662. board_bind_eic_interrupt(n, srs);
  1663. } else if (cpu_has_vint) {
  1664. /* SRSMap is only defined if shadow sets are implemented */
  1665. if (srssets > 1)
  1666. change_c0_srsmap(0xf << n*4, srs << n*4);
  1667. }
  1668. if (srs == 0) {
  1669. /*
  1670. * If no shadow set is selected then use the default handler
  1671. * that does normal register saving and standard interrupt exit
  1672. */
  1673. extern char except_vec_vi, except_vec_vi_lui;
  1674. extern char except_vec_vi_ori, except_vec_vi_end;
  1675. extern char rollback_except_vec_vi;
  1676. char *vec_start = using_rollback_handler() ?
  1677. &rollback_except_vec_vi : &except_vec_vi;
  1678. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1679. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1680. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1681. #else
  1682. const int lui_offset = &except_vec_vi_lui - vec_start;
  1683. const int ori_offset = &except_vec_vi_ori - vec_start;
  1684. #endif
  1685. const int handler_len = &except_vec_vi_end - vec_start;
  1686. if (handler_len > VECTORSPACING) {
  1687. /*
  1688. * Sigh... panicing won't help as the console
  1689. * is probably not configured :(
  1690. */
  1691. panic("VECTORSPACING too small");
  1692. }
  1693. set_handler(((unsigned long)b - ebase), vec_start,
  1694. #ifdef CONFIG_CPU_MICROMIPS
  1695. (handler_len - 1));
  1696. #else
  1697. handler_len);
  1698. #endif
  1699. h = (u16 *)(b + lui_offset);
  1700. *h = (handler >> 16) & 0xffff;
  1701. h = (u16 *)(b + ori_offset);
  1702. *h = (handler & 0xffff);
  1703. local_flush_icache_range((unsigned long)b,
  1704. (unsigned long)(b+handler_len));
  1705. }
  1706. else {
  1707. /*
  1708. * In other cases jump directly to the interrupt handler. It
  1709. * is the handler's responsibility to save registers if required
  1710. * (eg hi/lo) and return from the exception using "eret".
  1711. */
  1712. u32 insn;
  1713. h = (u16 *)b;
  1714. /* j handler */
  1715. #ifdef CONFIG_CPU_MICROMIPS
  1716. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1717. #else
  1718. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1719. #endif
  1720. h[0] = (insn >> 16) & 0xffff;
  1721. h[1] = insn & 0xffff;
  1722. h[2] = 0;
  1723. h[3] = 0;
  1724. local_flush_icache_range((unsigned long)b,
  1725. (unsigned long)(b+8));
  1726. }
  1727. return (void *)old_handler;
  1728. }
  1729. void *set_vi_handler(int n, vi_handler_t addr)
  1730. {
  1731. return set_vi_srs_handler(n, addr, 0);
  1732. }
  1733. extern void tlb_init(void);
  1734. /*
  1735. * Timer interrupt
  1736. */
  1737. int cp0_compare_irq;
  1738. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1739. int cp0_compare_irq_shift;
  1740. /*
  1741. * Performance counter IRQ or -1 if shared with timer
  1742. */
  1743. int cp0_perfcount_irq;
  1744. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1745. /*
  1746. * Fast debug channel IRQ or -1 if not present
  1747. */
  1748. int cp0_fdc_irq;
  1749. EXPORT_SYMBOL_GPL(cp0_fdc_irq);
  1750. static int noulri;
  1751. static int __init ulri_disable(char *s)
  1752. {
  1753. pr_info("Disabling ulri\n");
  1754. noulri = 1;
  1755. return 1;
  1756. }
  1757. __setup("noulri", ulri_disable);
  1758. /* configure STATUS register */
  1759. static void configure_status(void)
  1760. {
  1761. /*
  1762. * Disable coprocessors and select 32-bit or 64-bit addressing
  1763. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1764. * flag that some firmware may have left set and the TS bit (for
  1765. * IP27). Set XX for ISA IV code to work.
  1766. */
  1767. unsigned int status_set = ST0_CU0;
  1768. #ifdef CONFIG_64BIT
  1769. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1770. #endif
  1771. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1772. status_set |= ST0_XX;
  1773. if (cpu_has_dsp)
  1774. status_set |= ST0_MX;
  1775. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1776. status_set);
  1777. }
  1778. /* configure HWRENA register */
  1779. static void configure_hwrena(void)
  1780. {
  1781. unsigned int hwrena = cpu_hwrena_impl_bits;
  1782. if (cpu_has_mips_r2_r6)
  1783. hwrena |= 0x0000000f;
  1784. if (!noulri && cpu_has_userlocal)
  1785. hwrena |= (1 << 29);
  1786. if (hwrena)
  1787. write_c0_hwrena(hwrena);
  1788. }
  1789. static void configure_exception_vector(void)
  1790. {
  1791. if (cpu_has_veic || cpu_has_vint) {
  1792. unsigned long sr = set_c0_status(ST0_BEV);
  1793. write_c0_ebase(ebase);
  1794. write_c0_status(sr);
  1795. /* Setting vector spacing enables EI/VI mode */
  1796. change_c0_intctl(0x3e0, VECTORSPACING);
  1797. }
  1798. if (cpu_has_divec) {
  1799. if (cpu_has_mipsmt) {
  1800. unsigned int vpflags = dvpe();
  1801. set_c0_cause(CAUSEF_IV);
  1802. evpe(vpflags);
  1803. } else
  1804. set_c0_cause(CAUSEF_IV);
  1805. }
  1806. }
  1807. void per_cpu_trap_init(bool is_boot_cpu)
  1808. {
  1809. unsigned int cpu = smp_processor_id();
  1810. configure_status();
  1811. configure_hwrena();
  1812. configure_exception_vector();
  1813. /*
  1814. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1815. *
  1816. * o read IntCtl.IPTI to determine the timer interrupt
  1817. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1818. * o read IntCtl.IPFDC to determine the fast debug channel interrupt
  1819. */
  1820. if (cpu_has_mips_r2_r6) {
  1821. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1822. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1823. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1824. cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
  1825. if (!cp0_fdc_irq)
  1826. cp0_fdc_irq = -1;
  1827. } else {
  1828. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1829. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1830. cp0_perfcount_irq = -1;
  1831. cp0_fdc_irq = -1;
  1832. }
  1833. if (!cpu_data[cpu].asid_cache)
  1834. cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
  1835. atomic_inc(&init_mm.mm_count);
  1836. current->active_mm = &init_mm;
  1837. BUG_ON(current->mm);
  1838. enter_lazy_tlb(&init_mm, current);
  1839. /* Boot CPU's cache setup in setup_arch(). */
  1840. if (!is_boot_cpu)
  1841. cpu_cache_init();
  1842. tlb_init();
  1843. TLBMISS_HANDLER_SETUP();
  1844. }
  1845. /* Install CPU exception handler */
  1846. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1847. {
  1848. #ifdef CONFIG_CPU_MICROMIPS
  1849. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1850. #else
  1851. memcpy((void *)(ebase + offset), addr, size);
  1852. #endif
  1853. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1854. }
  1855. static char panic_null_cerr[] =
  1856. "Trying to set NULL cache error exception handler";
  1857. /*
  1858. * Install uncached CPU exception handler.
  1859. * This is suitable only for the cache error exception which is the only
  1860. * exception handler that is being run uncached.
  1861. */
  1862. void set_uncached_handler(unsigned long offset, void *addr,
  1863. unsigned long size)
  1864. {
  1865. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1866. if (!addr)
  1867. panic(panic_null_cerr);
  1868. memcpy((void *)(uncached_ebase + offset), addr, size);
  1869. }
  1870. static int __initdata rdhwr_noopt;
  1871. static int __init set_rdhwr_noopt(char *str)
  1872. {
  1873. rdhwr_noopt = 1;
  1874. return 1;
  1875. }
  1876. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1877. void __init trap_init(void)
  1878. {
  1879. extern char except_vec3_generic;
  1880. extern char except_vec4;
  1881. extern char except_vec3_r4000;
  1882. unsigned long i;
  1883. check_wait();
  1884. if (cpu_has_veic || cpu_has_vint) {
  1885. unsigned long size = 0x200 + VECTORSPACING*64;
  1886. ebase = (unsigned long)
  1887. __alloc_bootmem(size, 1 << fls(size), 0);
  1888. } else {
  1889. ebase = CAC_BASE;
  1890. if (cpu_has_mips_r2_r6)
  1891. ebase += (read_c0_ebase() & 0x3ffff000);
  1892. }
  1893. if (cpu_has_mmips) {
  1894. unsigned int config3 = read_c0_config3();
  1895. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  1896. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  1897. else
  1898. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  1899. }
  1900. if (board_ebase_setup)
  1901. board_ebase_setup();
  1902. per_cpu_trap_init(true);
  1903. /*
  1904. * Copy the generic exception handlers to their final destination.
  1905. * This will be overriden later as suitable for a particular
  1906. * configuration.
  1907. */
  1908. set_handler(0x180, &except_vec3_generic, 0x80);
  1909. /*
  1910. * Setup default vectors
  1911. */
  1912. for (i = 0; i <= 31; i++)
  1913. set_except_vector(i, handle_reserved);
  1914. /*
  1915. * Copy the EJTAG debug exception vector handler code to it's final
  1916. * destination.
  1917. */
  1918. if (cpu_has_ejtag && board_ejtag_handler_setup)
  1919. board_ejtag_handler_setup();
  1920. /*
  1921. * Only some CPUs have the watch exceptions.
  1922. */
  1923. if (cpu_has_watch)
  1924. set_except_vector(EXCCODE_WATCH, handle_watch);
  1925. /*
  1926. * Initialise interrupt handlers
  1927. */
  1928. if (cpu_has_veic || cpu_has_vint) {
  1929. int nvec = cpu_has_veic ? 64 : 8;
  1930. for (i = 0; i < nvec; i++)
  1931. set_vi_handler(i, NULL);
  1932. }
  1933. else if (cpu_has_divec)
  1934. set_handler(0x200, &except_vec4, 0x8);
  1935. /*
  1936. * Some CPUs can enable/disable for cache parity detection, but does
  1937. * it different ways.
  1938. */
  1939. parity_protection_init();
  1940. /*
  1941. * The Data Bus Errors / Instruction Bus Errors are signaled
  1942. * by external hardware. Therefore these two exceptions
  1943. * may have board specific handlers.
  1944. */
  1945. if (board_be_init)
  1946. board_be_init();
  1947. set_except_vector(EXCCODE_INT, using_rollback_handler() ?
  1948. rollback_handle_int : handle_int);
  1949. set_except_vector(EXCCODE_MOD, handle_tlbm);
  1950. set_except_vector(EXCCODE_TLBL, handle_tlbl);
  1951. set_except_vector(EXCCODE_TLBS, handle_tlbs);
  1952. set_except_vector(EXCCODE_ADEL, handle_adel);
  1953. set_except_vector(EXCCODE_ADES, handle_ades);
  1954. set_except_vector(EXCCODE_IBE, handle_ibe);
  1955. set_except_vector(EXCCODE_DBE, handle_dbe);
  1956. set_except_vector(EXCCODE_SYS, handle_sys);
  1957. set_except_vector(EXCCODE_BP, handle_bp);
  1958. set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
  1959. (cpu_has_vtag_icache ?
  1960. handle_ri_rdhwr_vivt : handle_ri_rdhwr));
  1961. set_except_vector(EXCCODE_CPU, handle_cpu);
  1962. set_except_vector(EXCCODE_OV, handle_ov);
  1963. set_except_vector(EXCCODE_TR, handle_tr);
  1964. set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
  1965. if (current_cpu_type() == CPU_R6000 ||
  1966. current_cpu_type() == CPU_R6000A) {
  1967. /*
  1968. * The R6000 is the only R-series CPU that features a machine
  1969. * check exception (similar to the R4000 cache error) and
  1970. * unaligned ldc1/sdc1 exception. The handlers have not been
  1971. * written yet. Well, anyway there is no R6000 machine on the
  1972. * current list of targets for Linux/MIPS.
  1973. * (Duh, crap, there is someone with a triple R6k machine)
  1974. */
  1975. //set_except_vector(14, handle_mc);
  1976. //set_except_vector(15, handle_ndc);
  1977. }
  1978. if (board_nmi_handler_setup)
  1979. board_nmi_handler_setup();
  1980. if (cpu_has_fpu && !cpu_has_nofpuex)
  1981. set_except_vector(EXCCODE_FPE, handle_fpe);
  1982. set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
  1983. if (cpu_has_rixiex) {
  1984. set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
  1985. set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
  1986. }
  1987. set_except_vector(EXCCODE_MSADIS, handle_msa);
  1988. set_except_vector(EXCCODE_MDMX, handle_mdmx);
  1989. if (cpu_has_mcheck)
  1990. set_except_vector(EXCCODE_MCHECK, handle_mcheck);
  1991. if (cpu_has_mipsmt)
  1992. set_except_vector(EXCCODE_THREAD, handle_mt);
  1993. set_except_vector(EXCCODE_DSPDIS, handle_dsp);
  1994. if (board_cache_error_setup)
  1995. board_cache_error_setup();
  1996. if (cpu_has_vce)
  1997. /* Special exception: R4[04]00 uses also the divec space. */
  1998. set_handler(0x180, &except_vec3_r4000, 0x100);
  1999. else if (cpu_has_4kex)
  2000. set_handler(0x180, &except_vec3_generic, 0x80);
  2001. else
  2002. set_handler(0x080, &except_vec3_generic, 0x80);
  2003. local_flush_icache_range(ebase, ebase + 0x400);
  2004. sort_extable(__start___dbe_table, __stop___dbe_table);
  2005. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  2006. }
  2007. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  2008. void *v)
  2009. {
  2010. switch (cmd) {
  2011. case CPU_PM_ENTER_FAILED:
  2012. case CPU_PM_EXIT:
  2013. configure_status();
  2014. configure_hwrena();
  2015. configure_exception_vector();
  2016. /* Restore register with CPU number for TLB handlers */
  2017. TLBMISS_HANDLER_RESTORE();
  2018. break;
  2019. }
  2020. return NOTIFY_OK;
  2021. }
  2022. static struct notifier_block trap_pm_notifier_block = {
  2023. .notifier_call = trap_pm_notifier,
  2024. };
  2025. static int __init trap_pm_init(void)
  2026. {
  2027. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  2028. }
  2029. arch_initcall(trap_pm_init);