mm.h 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. #include <linux/page_ref.h>
  23. struct mempolicy;
  24. struct anon_vma;
  25. struct anon_vma_chain;
  26. struct file_ra_state;
  27. struct user_struct;
  28. struct writeback_control;
  29. struct bdi_writeback;
  30. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  31. extern unsigned long max_mapnr;
  32. static inline void set_max_mapnr(unsigned long limit)
  33. {
  34. max_mapnr = limit;
  35. }
  36. #else
  37. static inline void set_max_mapnr(unsigned long limit) { }
  38. #endif
  39. extern unsigned long totalram_pages;
  40. extern void * high_memory;
  41. extern int page_cluster;
  42. #ifdef CONFIG_SYSCTL
  43. extern int sysctl_legacy_va_layout;
  44. #else
  45. #define sysctl_legacy_va_layout 0
  46. #endif
  47. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  48. extern const int mmap_rnd_bits_min;
  49. extern const int mmap_rnd_bits_max;
  50. extern int mmap_rnd_bits __read_mostly;
  51. #endif
  52. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  53. extern const int mmap_rnd_compat_bits_min;
  54. extern const int mmap_rnd_compat_bits_max;
  55. extern int mmap_rnd_compat_bits __read_mostly;
  56. #endif
  57. #include <asm/page.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/processor.h>
  60. #ifndef __pa_symbol
  61. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  62. #endif
  63. #ifndef page_to_virt
  64. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  65. #endif
  66. #ifndef lm_alias
  67. #define lm_alias(x) __va(__pa_symbol(x))
  68. #endif
  69. /*
  70. * To prevent common memory management code establishing
  71. * a zero page mapping on a read fault.
  72. * This macro should be defined within <asm/pgtable.h>.
  73. * s390 does this to prevent multiplexing of hardware bits
  74. * related to the physical page in case of virtualization.
  75. */
  76. #ifndef mm_forbids_zeropage
  77. #define mm_forbids_zeropage(X) (0)
  78. #endif
  79. /*
  80. * Default maximum number of active map areas, this limits the number of vmas
  81. * per mm struct. Users can overwrite this number by sysctl but there is a
  82. * problem.
  83. *
  84. * When a program's coredump is generated as ELF format, a section is created
  85. * per a vma. In ELF, the number of sections is represented in unsigned short.
  86. * This means the number of sections should be smaller than 65535 at coredump.
  87. * Because the kernel adds some informative sections to a image of program at
  88. * generating coredump, we need some margin. The number of extra sections is
  89. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  90. *
  91. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  92. * not a hard limit any more. Although some userspace tools can be surprised by
  93. * that.
  94. */
  95. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  96. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  97. extern int sysctl_max_map_count;
  98. extern unsigned long sysctl_user_reserve_kbytes;
  99. extern unsigned long sysctl_admin_reserve_kbytes;
  100. extern int sysctl_overcommit_memory;
  101. extern int sysctl_overcommit_ratio;
  102. extern unsigned long sysctl_overcommit_kbytes;
  103. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  104. size_t *, loff_t *);
  105. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  106. size_t *, loff_t *);
  107. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  108. /* to align the pointer to the (next) page boundary */
  109. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  110. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  111. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  112. /*
  113. * Linux kernel virtual memory manager primitives.
  114. * The idea being to have a "virtual" mm in the same way
  115. * we have a virtual fs - giving a cleaner interface to the
  116. * mm details, and allowing different kinds of memory mappings
  117. * (from shared memory to executable loading to arbitrary
  118. * mmap() functions).
  119. */
  120. extern struct kmem_cache *vm_area_cachep;
  121. #ifndef CONFIG_MMU
  122. extern struct rb_root nommu_region_tree;
  123. extern struct rw_semaphore nommu_region_sem;
  124. extern unsigned int kobjsize(const void *objp);
  125. #endif
  126. /*
  127. * vm_flags in vm_area_struct, see mm_types.h.
  128. * When changing, update also include/trace/events/mmflags.h
  129. */
  130. #define VM_NONE 0x00000000
  131. #define VM_READ 0x00000001 /* currently active flags */
  132. #define VM_WRITE 0x00000002
  133. #define VM_EXEC 0x00000004
  134. #define VM_SHARED 0x00000008
  135. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  136. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  137. #define VM_MAYWRITE 0x00000020
  138. #define VM_MAYEXEC 0x00000040
  139. #define VM_MAYSHARE 0x00000080
  140. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  141. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  142. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  143. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  144. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  145. #define VM_LOCKED 0x00002000
  146. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  147. /* Used by sys_madvise() */
  148. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  149. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  150. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  151. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  152. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  153. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  154. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  155. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  156. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  157. #define VM_ARCH_2 0x02000000
  158. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  159. #ifdef CONFIG_MEM_SOFT_DIRTY
  160. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  161. #else
  162. # define VM_SOFTDIRTY 0
  163. #endif
  164. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  165. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  166. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  167. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  168. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  169. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  170. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  171. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  172. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  173. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  174. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  175. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  176. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  177. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  178. #if defined(CONFIG_X86)
  179. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  180. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  181. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  182. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  183. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  184. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  185. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  186. #endif
  187. #elif defined(CONFIG_PPC)
  188. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  189. #elif defined(CONFIG_PARISC)
  190. # define VM_GROWSUP VM_ARCH_1
  191. #elif defined(CONFIG_METAG)
  192. # define VM_GROWSUP VM_ARCH_1
  193. #elif defined(CONFIG_IA64)
  194. # define VM_GROWSUP VM_ARCH_1
  195. #elif !defined(CONFIG_MMU)
  196. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  197. #endif
  198. #if defined(CONFIG_X86)
  199. /* MPX specific bounds table or bounds directory */
  200. # define VM_MPX VM_ARCH_2
  201. #endif
  202. #ifndef VM_GROWSUP
  203. # define VM_GROWSUP VM_NONE
  204. #endif
  205. /* Bits set in the VMA until the stack is in its final location */
  206. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  207. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  208. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  209. #endif
  210. #ifdef CONFIG_STACK_GROWSUP
  211. #define VM_STACK VM_GROWSUP
  212. #else
  213. #define VM_STACK VM_GROWSDOWN
  214. #endif
  215. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  216. /*
  217. * Special vmas that are non-mergable, non-mlock()able.
  218. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  219. */
  220. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  221. /* This mask defines which mm->def_flags a process can inherit its parent */
  222. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  223. /* This mask is used to clear all the VMA flags used by mlock */
  224. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  225. /*
  226. * mapping from the currently active vm_flags protection bits (the
  227. * low four bits) to a page protection mask..
  228. */
  229. extern pgprot_t protection_map[16];
  230. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  231. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  232. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  233. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  234. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  235. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  236. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  237. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  238. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  239. /*
  240. * vm_fault is filled by the the pagefault handler and passed to the vma's
  241. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  242. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  243. *
  244. * MM layer fills up gfp_mask for page allocations but fault handler might
  245. * alter it if its implementation requires a different allocation context.
  246. *
  247. * pgoff should be used in favour of virtual_address, if possible.
  248. */
  249. struct vm_fault {
  250. struct vm_area_struct *vma; /* Target VMA */
  251. unsigned int flags; /* FAULT_FLAG_xxx flags */
  252. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  253. pgoff_t pgoff; /* Logical page offset based on vma */
  254. unsigned long address; /* Faulting virtual address */
  255. pmd_t *pmd; /* Pointer to pmd entry matching
  256. * the 'address' */
  257. pte_t orig_pte; /* Value of PTE at the time of fault */
  258. struct page *cow_page; /* Page handler may use for COW fault */
  259. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  260. struct page *page; /* ->fault handlers should return a
  261. * page here, unless VM_FAULT_NOPAGE
  262. * is set (which is also implied by
  263. * VM_FAULT_ERROR).
  264. */
  265. /* These three entries are valid only while holding ptl lock */
  266. pte_t *pte; /* Pointer to pte entry matching
  267. * the 'address'. NULL if the page
  268. * table hasn't been allocated.
  269. */
  270. spinlock_t *ptl; /* Page table lock.
  271. * Protects pte page table if 'pte'
  272. * is not NULL, otherwise pmd.
  273. */
  274. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  275. * vm_ops->map_pages() calls
  276. * alloc_set_pte() from atomic context.
  277. * do_fault_around() pre-allocates
  278. * page table to avoid allocation from
  279. * atomic context.
  280. */
  281. };
  282. /*
  283. * These are the virtual MM functions - opening of an area, closing and
  284. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  285. * to the functions called when a no-page or a wp-page exception occurs.
  286. */
  287. struct vm_operations_struct {
  288. void (*open)(struct vm_area_struct * area);
  289. void (*close)(struct vm_area_struct * area);
  290. int (*mremap)(struct vm_area_struct * area);
  291. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  292. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  293. pmd_t *, unsigned int flags);
  294. void (*map_pages)(struct vm_fault *vmf,
  295. pgoff_t start_pgoff, pgoff_t end_pgoff);
  296. /* notification that a previously read-only page is about to become
  297. * writable, if an error is returned it will cause a SIGBUS */
  298. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  299. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  300. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  301. /* called by access_process_vm when get_user_pages() fails, typically
  302. * for use by special VMAs that can switch between memory and hardware
  303. */
  304. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  305. void *buf, int len, int write);
  306. /* Called by the /proc/PID/maps code to ask the vma whether it
  307. * has a special name. Returning non-NULL will also cause this
  308. * vma to be dumped unconditionally. */
  309. const char *(*name)(struct vm_area_struct *vma);
  310. #ifdef CONFIG_NUMA
  311. /*
  312. * set_policy() op must add a reference to any non-NULL @new mempolicy
  313. * to hold the policy upon return. Caller should pass NULL @new to
  314. * remove a policy and fall back to surrounding context--i.e. do not
  315. * install a MPOL_DEFAULT policy, nor the task or system default
  316. * mempolicy.
  317. */
  318. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  319. /*
  320. * get_policy() op must add reference [mpol_get()] to any policy at
  321. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  322. * in mm/mempolicy.c will do this automatically.
  323. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  324. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  325. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  326. * must return NULL--i.e., do not "fallback" to task or system default
  327. * policy.
  328. */
  329. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  330. unsigned long addr);
  331. #endif
  332. /*
  333. * Called by vm_normal_page() for special PTEs to find the
  334. * page for @addr. This is useful if the default behavior
  335. * (using pte_page()) would not find the correct page.
  336. */
  337. struct page *(*find_special_page)(struct vm_area_struct *vma,
  338. unsigned long addr);
  339. };
  340. struct mmu_gather;
  341. struct inode;
  342. #define page_private(page) ((page)->private)
  343. #define set_page_private(page, v) ((page)->private = (v))
  344. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  345. static inline int pmd_devmap(pmd_t pmd)
  346. {
  347. return 0;
  348. }
  349. #endif
  350. /*
  351. * FIXME: take this include out, include page-flags.h in
  352. * files which need it (119 of them)
  353. */
  354. #include <linux/page-flags.h>
  355. #include <linux/huge_mm.h>
  356. /*
  357. * Methods to modify the page usage count.
  358. *
  359. * What counts for a page usage:
  360. * - cache mapping (page->mapping)
  361. * - private data (page->private)
  362. * - page mapped in a task's page tables, each mapping
  363. * is counted separately
  364. *
  365. * Also, many kernel routines increase the page count before a critical
  366. * routine so they can be sure the page doesn't go away from under them.
  367. */
  368. /*
  369. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  370. */
  371. static inline int put_page_testzero(struct page *page)
  372. {
  373. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  374. return page_ref_dec_and_test(page);
  375. }
  376. /*
  377. * Try to grab a ref unless the page has a refcount of zero, return false if
  378. * that is the case.
  379. * This can be called when MMU is off so it must not access
  380. * any of the virtual mappings.
  381. */
  382. static inline int get_page_unless_zero(struct page *page)
  383. {
  384. return page_ref_add_unless(page, 1, 0);
  385. }
  386. extern int page_is_ram(unsigned long pfn);
  387. enum {
  388. REGION_INTERSECTS,
  389. REGION_DISJOINT,
  390. REGION_MIXED,
  391. };
  392. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  393. unsigned long desc);
  394. /* Support for virtually mapped pages */
  395. struct page *vmalloc_to_page(const void *addr);
  396. unsigned long vmalloc_to_pfn(const void *addr);
  397. /*
  398. * Determine if an address is within the vmalloc range
  399. *
  400. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  401. * is no special casing required.
  402. */
  403. static inline bool is_vmalloc_addr(const void *x)
  404. {
  405. #ifdef CONFIG_MMU
  406. unsigned long addr = (unsigned long)x;
  407. return addr >= VMALLOC_START && addr < VMALLOC_END;
  408. #else
  409. return false;
  410. #endif
  411. }
  412. #ifdef CONFIG_MMU
  413. extern int is_vmalloc_or_module_addr(const void *x);
  414. #else
  415. static inline int is_vmalloc_or_module_addr(const void *x)
  416. {
  417. return 0;
  418. }
  419. #endif
  420. extern void kvfree(const void *addr);
  421. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  422. {
  423. return &page[1].compound_mapcount;
  424. }
  425. static inline int compound_mapcount(struct page *page)
  426. {
  427. VM_BUG_ON_PAGE(!PageCompound(page), page);
  428. page = compound_head(page);
  429. return atomic_read(compound_mapcount_ptr(page)) + 1;
  430. }
  431. /*
  432. * The atomic page->_mapcount, starts from -1: so that transitions
  433. * both from it and to it can be tracked, using atomic_inc_and_test
  434. * and atomic_add_negative(-1).
  435. */
  436. static inline void page_mapcount_reset(struct page *page)
  437. {
  438. atomic_set(&(page)->_mapcount, -1);
  439. }
  440. int __page_mapcount(struct page *page);
  441. static inline int page_mapcount(struct page *page)
  442. {
  443. VM_BUG_ON_PAGE(PageSlab(page), page);
  444. if (unlikely(PageCompound(page)))
  445. return __page_mapcount(page);
  446. return atomic_read(&page->_mapcount) + 1;
  447. }
  448. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  449. int total_mapcount(struct page *page);
  450. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  451. #else
  452. static inline int total_mapcount(struct page *page)
  453. {
  454. return page_mapcount(page);
  455. }
  456. static inline int page_trans_huge_mapcount(struct page *page,
  457. int *total_mapcount)
  458. {
  459. int mapcount = page_mapcount(page);
  460. if (total_mapcount)
  461. *total_mapcount = mapcount;
  462. return mapcount;
  463. }
  464. #endif
  465. static inline struct page *virt_to_head_page(const void *x)
  466. {
  467. struct page *page = virt_to_page(x);
  468. return compound_head(page);
  469. }
  470. void __put_page(struct page *page);
  471. void put_pages_list(struct list_head *pages);
  472. void split_page(struct page *page, unsigned int order);
  473. /*
  474. * Compound pages have a destructor function. Provide a
  475. * prototype for that function and accessor functions.
  476. * These are _only_ valid on the head of a compound page.
  477. */
  478. typedef void compound_page_dtor(struct page *);
  479. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  480. enum compound_dtor_id {
  481. NULL_COMPOUND_DTOR,
  482. COMPOUND_PAGE_DTOR,
  483. #ifdef CONFIG_HUGETLB_PAGE
  484. HUGETLB_PAGE_DTOR,
  485. #endif
  486. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  487. TRANSHUGE_PAGE_DTOR,
  488. #endif
  489. NR_COMPOUND_DTORS,
  490. };
  491. extern compound_page_dtor * const compound_page_dtors[];
  492. static inline void set_compound_page_dtor(struct page *page,
  493. enum compound_dtor_id compound_dtor)
  494. {
  495. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  496. page[1].compound_dtor = compound_dtor;
  497. }
  498. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  499. {
  500. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  501. return compound_page_dtors[page[1].compound_dtor];
  502. }
  503. static inline unsigned int compound_order(struct page *page)
  504. {
  505. if (!PageHead(page))
  506. return 0;
  507. return page[1].compound_order;
  508. }
  509. static inline void set_compound_order(struct page *page, unsigned int order)
  510. {
  511. page[1].compound_order = order;
  512. }
  513. void free_compound_page(struct page *page);
  514. #ifdef CONFIG_MMU
  515. /*
  516. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  517. * servicing faults for write access. In the normal case, do always want
  518. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  519. * that do not have writing enabled, when used by access_process_vm.
  520. */
  521. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  522. {
  523. if (likely(vma->vm_flags & VM_WRITE))
  524. pte = pte_mkwrite(pte);
  525. return pte;
  526. }
  527. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  528. struct page *page);
  529. int finish_fault(struct vm_fault *vmf);
  530. int finish_mkwrite_fault(struct vm_fault *vmf);
  531. #endif
  532. /*
  533. * Multiple processes may "see" the same page. E.g. for untouched
  534. * mappings of /dev/null, all processes see the same page full of
  535. * zeroes, and text pages of executables and shared libraries have
  536. * only one copy in memory, at most, normally.
  537. *
  538. * For the non-reserved pages, page_count(page) denotes a reference count.
  539. * page_count() == 0 means the page is free. page->lru is then used for
  540. * freelist management in the buddy allocator.
  541. * page_count() > 0 means the page has been allocated.
  542. *
  543. * Pages are allocated by the slab allocator in order to provide memory
  544. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  545. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  546. * unless a particular usage is carefully commented. (the responsibility of
  547. * freeing the kmalloc memory is the caller's, of course).
  548. *
  549. * A page may be used by anyone else who does a __get_free_page().
  550. * In this case, page_count still tracks the references, and should only
  551. * be used through the normal accessor functions. The top bits of page->flags
  552. * and page->virtual store page management information, but all other fields
  553. * are unused and could be used privately, carefully. The management of this
  554. * page is the responsibility of the one who allocated it, and those who have
  555. * subsequently been given references to it.
  556. *
  557. * The other pages (we may call them "pagecache pages") are completely
  558. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  559. * The following discussion applies only to them.
  560. *
  561. * A pagecache page contains an opaque `private' member, which belongs to the
  562. * page's address_space. Usually, this is the address of a circular list of
  563. * the page's disk buffers. PG_private must be set to tell the VM to call
  564. * into the filesystem to release these pages.
  565. *
  566. * A page may belong to an inode's memory mapping. In this case, page->mapping
  567. * is the pointer to the inode, and page->index is the file offset of the page,
  568. * in units of PAGE_SIZE.
  569. *
  570. * If pagecache pages are not associated with an inode, they are said to be
  571. * anonymous pages. These may become associated with the swapcache, and in that
  572. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  573. *
  574. * In either case (swapcache or inode backed), the pagecache itself holds one
  575. * reference to the page. Setting PG_private should also increment the
  576. * refcount. The each user mapping also has a reference to the page.
  577. *
  578. * The pagecache pages are stored in a per-mapping radix tree, which is
  579. * rooted at mapping->page_tree, and indexed by offset.
  580. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  581. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  582. *
  583. * All pagecache pages may be subject to I/O:
  584. * - inode pages may need to be read from disk,
  585. * - inode pages which have been modified and are MAP_SHARED may need
  586. * to be written back to the inode on disk,
  587. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  588. * modified may need to be swapped out to swap space and (later) to be read
  589. * back into memory.
  590. */
  591. /*
  592. * The zone field is never updated after free_area_init_core()
  593. * sets it, so none of the operations on it need to be atomic.
  594. */
  595. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  596. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  597. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  598. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  599. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  600. /*
  601. * Define the bit shifts to access each section. For non-existent
  602. * sections we define the shift as 0; that plus a 0 mask ensures
  603. * the compiler will optimise away reference to them.
  604. */
  605. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  606. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  607. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  608. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  609. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  610. #ifdef NODE_NOT_IN_PAGE_FLAGS
  611. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  612. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  613. SECTIONS_PGOFF : ZONES_PGOFF)
  614. #else
  615. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  616. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  617. NODES_PGOFF : ZONES_PGOFF)
  618. #endif
  619. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  620. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  621. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  622. #endif
  623. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  624. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  625. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  626. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  627. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  628. static inline enum zone_type page_zonenum(const struct page *page)
  629. {
  630. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  631. }
  632. #ifdef CONFIG_ZONE_DEVICE
  633. void get_zone_device_page(struct page *page);
  634. void put_zone_device_page(struct page *page);
  635. static inline bool is_zone_device_page(const struct page *page)
  636. {
  637. return page_zonenum(page) == ZONE_DEVICE;
  638. }
  639. #else
  640. static inline void get_zone_device_page(struct page *page)
  641. {
  642. }
  643. static inline void put_zone_device_page(struct page *page)
  644. {
  645. }
  646. static inline bool is_zone_device_page(const struct page *page)
  647. {
  648. return false;
  649. }
  650. #endif
  651. static inline void get_page(struct page *page)
  652. {
  653. page = compound_head(page);
  654. /*
  655. * Getting a normal page or the head of a compound page
  656. * requires to already have an elevated page->_refcount.
  657. */
  658. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  659. page_ref_inc(page);
  660. if (unlikely(is_zone_device_page(page)))
  661. get_zone_device_page(page);
  662. }
  663. static inline void put_page(struct page *page)
  664. {
  665. page = compound_head(page);
  666. if (put_page_testzero(page))
  667. __put_page(page);
  668. if (unlikely(is_zone_device_page(page)))
  669. put_zone_device_page(page);
  670. }
  671. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  672. #define SECTION_IN_PAGE_FLAGS
  673. #endif
  674. /*
  675. * The identification function is mainly used by the buddy allocator for
  676. * determining if two pages could be buddies. We are not really identifying
  677. * the zone since we could be using the section number id if we do not have
  678. * node id available in page flags.
  679. * We only guarantee that it will return the same value for two combinable
  680. * pages in a zone.
  681. */
  682. static inline int page_zone_id(struct page *page)
  683. {
  684. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  685. }
  686. static inline int zone_to_nid(struct zone *zone)
  687. {
  688. #ifdef CONFIG_NUMA
  689. return zone->node;
  690. #else
  691. return 0;
  692. #endif
  693. }
  694. #ifdef NODE_NOT_IN_PAGE_FLAGS
  695. extern int page_to_nid(const struct page *page);
  696. #else
  697. static inline int page_to_nid(const struct page *page)
  698. {
  699. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  700. }
  701. #endif
  702. #ifdef CONFIG_NUMA_BALANCING
  703. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  704. {
  705. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  706. }
  707. static inline int cpupid_to_pid(int cpupid)
  708. {
  709. return cpupid & LAST__PID_MASK;
  710. }
  711. static inline int cpupid_to_cpu(int cpupid)
  712. {
  713. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  714. }
  715. static inline int cpupid_to_nid(int cpupid)
  716. {
  717. return cpu_to_node(cpupid_to_cpu(cpupid));
  718. }
  719. static inline bool cpupid_pid_unset(int cpupid)
  720. {
  721. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  722. }
  723. static inline bool cpupid_cpu_unset(int cpupid)
  724. {
  725. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  726. }
  727. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  728. {
  729. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  730. }
  731. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  732. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  733. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  734. {
  735. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  736. }
  737. static inline int page_cpupid_last(struct page *page)
  738. {
  739. return page->_last_cpupid;
  740. }
  741. static inline void page_cpupid_reset_last(struct page *page)
  742. {
  743. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  744. }
  745. #else
  746. static inline int page_cpupid_last(struct page *page)
  747. {
  748. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  749. }
  750. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  751. static inline void page_cpupid_reset_last(struct page *page)
  752. {
  753. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  754. }
  755. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  756. #else /* !CONFIG_NUMA_BALANCING */
  757. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  758. {
  759. return page_to_nid(page); /* XXX */
  760. }
  761. static inline int page_cpupid_last(struct page *page)
  762. {
  763. return page_to_nid(page); /* XXX */
  764. }
  765. static inline int cpupid_to_nid(int cpupid)
  766. {
  767. return -1;
  768. }
  769. static inline int cpupid_to_pid(int cpupid)
  770. {
  771. return -1;
  772. }
  773. static inline int cpupid_to_cpu(int cpupid)
  774. {
  775. return -1;
  776. }
  777. static inline int cpu_pid_to_cpupid(int nid, int pid)
  778. {
  779. return -1;
  780. }
  781. static inline bool cpupid_pid_unset(int cpupid)
  782. {
  783. return 1;
  784. }
  785. static inline void page_cpupid_reset_last(struct page *page)
  786. {
  787. }
  788. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  789. {
  790. return false;
  791. }
  792. #endif /* CONFIG_NUMA_BALANCING */
  793. static inline struct zone *page_zone(const struct page *page)
  794. {
  795. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  796. }
  797. static inline pg_data_t *page_pgdat(const struct page *page)
  798. {
  799. return NODE_DATA(page_to_nid(page));
  800. }
  801. #ifdef SECTION_IN_PAGE_FLAGS
  802. static inline void set_page_section(struct page *page, unsigned long section)
  803. {
  804. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  805. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  806. }
  807. static inline unsigned long page_to_section(const struct page *page)
  808. {
  809. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  810. }
  811. #endif
  812. static inline void set_page_zone(struct page *page, enum zone_type zone)
  813. {
  814. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  815. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  816. }
  817. static inline void set_page_node(struct page *page, unsigned long node)
  818. {
  819. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  820. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  821. }
  822. static inline void set_page_links(struct page *page, enum zone_type zone,
  823. unsigned long node, unsigned long pfn)
  824. {
  825. set_page_zone(page, zone);
  826. set_page_node(page, node);
  827. #ifdef SECTION_IN_PAGE_FLAGS
  828. set_page_section(page, pfn_to_section_nr(pfn));
  829. #endif
  830. }
  831. #ifdef CONFIG_MEMCG
  832. static inline struct mem_cgroup *page_memcg(struct page *page)
  833. {
  834. return page->mem_cgroup;
  835. }
  836. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  837. {
  838. WARN_ON_ONCE(!rcu_read_lock_held());
  839. return READ_ONCE(page->mem_cgroup);
  840. }
  841. #else
  842. static inline struct mem_cgroup *page_memcg(struct page *page)
  843. {
  844. return NULL;
  845. }
  846. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  847. {
  848. WARN_ON_ONCE(!rcu_read_lock_held());
  849. return NULL;
  850. }
  851. #endif
  852. /*
  853. * Some inline functions in vmstat.h depend on page_zone()
  854. */
  855. #include <linux/vmstat.h>
  856. static __always_inline void *lowmem_page_address(const struct page *page)
  857. {
  858. return page_to_virt(page);
  859. }
  860. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  861. #define HASHED_PAGE_VIRTUAL
  862. #endif
  863. #if defined(WANT_PAGE_VIRTUAL)
  864. static inline void *page_address(const struct page *page)
  865. {
  866. return page->virtual;
  867. }
  868. static inline void set_page_address(struct page *page, void *address)
  869. {
  870. page->virtual = address;
  871. }
  872. #define page_address_init() do { } while(0)
  873. #endif
  874. #if defined(HASHED_PAGE_VIRTUAL)
  875. void *page_address(const struct page *page);
  876. void set_page_address(struct page *page, void *virtual);
  877. void page_address_init(void);
  878. #endif
  879. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  880. #define page_address(page) lowmem_page_address(page)
  881. #define set_page_address(page, address) do { } while(0)
  882. #define page_address_init() do { } while(0)
  883. #endif
  884. extern void *page_rmapping(struct page *page);
  885. extern struct anon_vma *page_anon_vma(struct page *page);
  886. extern struct address_space *page_mapping(struct page *page);
  887. extern struct address_space *__page_file_mapping(struct page *);
  888. static inline
  889. struct address_space *page_file_mapping(struct page *page)
  890. {
  891. if (unlikely(PageSwapCache(page)))
  892. return __page_file_mapping(page);
  893. return page->mapping;
  894. }
  895. extern pgoff_t __page_file_index(struct page *page);
  896. /*
  897. * Return the pagecache index of the passed page. Regular pagecache pages
  898. * use ->index whereas swapcache pages use swp_offset(->private)
  899. */
  900. static inline pgoff_t page_index(struct page *page)
  901. {
  902. if (unlikely(PageSwapCache(page)))
  903. return __page_file_index(page);
  904. return page->index;
  905. }
  906. bool page_mapped(struct page *page);
  907. struct address_space *page_mapping(struct page *page);
  908. /*
  909. * Return true only if the page has been allocated with
  910. * ALLOC_NO_WATERMARKS and the low watermark was not
  911. * met implying that the system is under some pressure.
  912. */
  913. static inline bool page_is_pfmemalloc(struct page *page)
  914. {
  915. /*
  916. * Page index cannot be this large so this must be
  917. * a pfmemalloc page.
  918. */
  919. return page->index == -1UL;
  920. }
  921. /*
  922. * Only to be called by the page allocator on a freshly allocated
  923. * page.
  924. */
  925. static inline void set_page_pfmemalloc(struct page *page)
  926. {
  927. page->index = -1UL;
  928. }
  929. static inline void clear_page_pfmemalloc(struct page *page)
  930. {
  931. page->index = 0;
  932. }
  933. /*
  934. * Different kinds of faults, as returned by handle_mm_fault().
  935. * Used to decide whether a process gets delivered SIGBUS or
  936. * just gets major/minor fault counters bumped up.
  937. */
  938. #define VM_FAULT_OOM 0x0001
  939. #define VM_FAULT_SIGBUS 0x0002
  940. #define VM_FAULT_MAJOR 0x0004
  941. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  942. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  943. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  944. #define VM_FAULT_SIGSEGV 0x0040
  945. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  946. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  947. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  948. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  949. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  950. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  951. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  952. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  953. VM_FAULT_FALLBACK)
  954. /* Encode hstate index for a hwpoisoned large page */
  955. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  956. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  957. /*
  958. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  959. */
  960. extern void pagefault_out_of_memory(void);
  961. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  962. /*
  963. * Flags passed to show_mem() and show_free_areas() to suppress output in
  964. * various contexts.
  965. */
  966. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  967. extern void show_free_areas(unsigned int flags);
  968. extern bool skip_free_areas_node(unsigned int flags, int nid);
  969. int shmem_zero_setup(struct vm_area_struct *);
  970. #ifdef CONFIG_SHMEM
  971. bool shmem_mapping(struct address_space *mapping);
  972. #else
  973. static inline bool shmem_mapping(struct address_space *mapping)
  974. {
  975. return false;
  976. }
  977. #endif
  978. extern bool can_do_mlock(void);
  979. extern int user_shm_lock(size_t, struct user_struct *);
  980. extern void user_shm_unlock(size_t, struct user_struct *);
  981. /*
  982. * Parameter block passed down to zap_pte_range in exceptional cases.
  983. */
  984. struct zap_details {
  985. struct address_space *check_mapping; /* Check page->mapping if set */
  986. pgoff_t first_index; /* Lowest page->index to unmap */
  987. pgoff_t last_index; /* Highest page->index to unmap */
  988. bool ignore_dirty; /* Ignore dirty pages */
  989. bool check_swap_entries; /* Check also swap entries */
  990. };
  991. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  992. pte_t pte);
  993. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  994. pmd_t pmd);
  995. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  996. unsigned long size);
  997. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  998. unsigned long size, struct zap_details *);
  999. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1000. unsigned long start, unsigned long end);
  1001. /**
  1002. * mm_walk - callbacks for walk_page_range
  1003. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1004. * this handler is required to be able to handle
  1005. * pmd_trans_huge() pmds. They may simply choose to
  1006. * split_huge_page() instead of handling it explicitly.
  1007. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1008. * @pte_hole: if set, called for each hole at all levels
  1009. * @hugetlb_entry: if set, called for each hugetlb entry
  1010. * @test_walk: caller specific callback function to determine whether
  1011. * we walk over the current vma or not. Returning 0
  1012. * value means "do page table walk over the current vma,"
  1013. * and a negative one means "abort current page table walk
  1014. * right now." 1 means "skip the current vma."
  1015. * @mm: mm_struct representing the target process of page table walk
  1016. * @vma: vma currently walked (NULL if walking outside vmas)
  1017. * @private: private data for callbacks' usage
  1018. *
  1019. * (see the comment on walk_page_range() for more details)
  1020. */
  1021. struct mm_walk {
  1022. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1023. unsigned long next, struct mm_walk *walk);
  1024. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1025. unsigned long next, struct mm_walk *walk);
  1026. int (*pte_hole)(unsigned long addr, unsigned long next,
  1027. struct mm_walk *walk);
  1028. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1029. unsigned long addr, unsigned long next,
  1030. struct mm_walk *walk);
  1031. int (*test_walk)(unsigned long addr, unsigned long next,
  1032. struct mm_walk *walk);
  1033. struct mm_struct *mm;
  1034. struct vm_area_struct *vma;
  1035. void *private;
  1036. };
  1037. int walk_page_range(unsigned long addr, unsigned long end,
  1038. struct mm_walk *walk);
  1039. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1040. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1041. unsigned long end, unsigned long floor, unsigned long ceiling);
  1042. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1043. struct vm_area_struct *vma);
  1044. void unmap_mapping_range(struct address_space *mapping,
  1045. loff_t const holebegin, loff_t const holelen, int even_cows);
  1046. int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp,
  1047. spinlock_t **ptlp);
  1048. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1049. unsigned long *pfn);
  1050. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1051. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1052. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1053. void *buf, int len, int write);
  1054. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1055. loff_t const holebegin, loff_t const holelen)
  1056. {
  1057. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1058. }
  1059. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1060. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1061. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1062. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1063. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1064. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1065. int invalidate_inode_page(struct page *page);
  1066. #ifdef CONFIG_MMU
  1067. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1068. unsigned int flags);
  1069. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1070. unsigned long address, unsigned int fault_flags,
  1071. bool *unlocked);
  1072. #else
  1073. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1074. unsigned long address, unsigned int flags)
  1075. {
  1076. /* should never happen if there's no MMU */
  1077. BUG();
  1078. return VM_FAULT_SIGBUS;
  1079. }
  1080. static inline int fixup_user_fault(struct task_struct *tsk,
  1081. struct mm_struct *mm, unsigned long address,
  1082. unsigned int fault_flags, bool *unlocked)
  1083. {
  1084. /* should never happen if there's no MMU */
  1085. BUG();
  1086. return -EFAULT;
  1087. }
  1088. #endif
  1089. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
  1090. unsigned int gup_flags);
  1091. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1092. void *buf, int len, unsigned int gup_flags);
  1093. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1094. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1095. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1096. unsigned long start, unsigned long nr_pages,
  1097. unsigned int gup_flags, struct page **pages,
  1098. struct vm_area_struct **vmas, int *locked);
  1099. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1100. unsigned int gup_flags, struct page **pages,
  1101. struct vm_area_struct **vmas);
  1102. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1103. unsigned int gup_flags, struct page **pages, int *locked);
  1104. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1105. struct page **pages, unsigned int gup_flags);
  1106. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1107. struct page **pages);
  1108. /* Container for pinned pfns / pages */
  1109. struct frame_vector {
  1110. unsigned int nr_allocated; /* Number of frames we have space for */
  1111. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1112. bool got_ref; /* Did we pin pages by getting page ref? */
  1113. bool is_pfns; /* Does array contain pages or pfns? */
  1114. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1115. * pfns_vector_pages() or pfns_vector_pfns()
  1116. * for access */
  1117. };
  1118. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1119. void frame_vector_destroy(struct frame_vector *vec);
  1120. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1121. unsigned int gup_flags, struct frame_vector *vec);
  1122. void put_vaddr_frames(struct frame_vector *vec);
  1123. int frame_vector_to_pages(struct frame_vector *vec);
  1124. void frame_vector_to_pfns(struct frame_vector *vec);
  1125. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1126. {
  1127. return vec->nr_frames;
  1128. }
  1129. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1130. {
  1131. if (vec->is_pfns) {
  1132. int err = frame_vector_to_pages(vec);
  1133. if (err)
  1134. return ERR_PTR(err);
  1135. }
  1136. return (struct page **)(vec->ptrs);
  1137. }
  1138. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1139. {
  1140. if (!vec->is_pfns)
  1141. frame_vector_to_pfns(vec);
  1142. return (unsigned long *)(vec->ptrs);
  1143. }
  1144. struct kvec;
  1145. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1146. struct page **pages);
  1147. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1148. struct page *get_dump_page(unsigned long addr);
  1149. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1150. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1151. unsigned int length);
  1152. int __set_page_dirty_nobuffers(struct page *page);
  1153. int __set_page_dirty_no_writeback(struct page *page);
  1154. int redirty_page_for_writepage(struct writeback_control *wbc,
  1155. struct page *page);
  1156. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1157. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1158. struct bdi_writeback *wb);
  1159. int set_page_dirty(struct page *page);
  1160. int set_page_dirty_lock(struct page *page);
  1161. void cancel_dirty_page(struct page *page);
  1162. int clear_page_dirty_for_io(struct page *page);
  1163. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1164. /* Is the vma a continuation of the stack vma above it? */
  1165. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1166. {
  1167. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1168. }
  1169. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1170. {
  1171. return !vma->vm_ops;
  1172. }
  1173. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1174. unsigned long addr)
  1175. {
  1176. return (vma->vm_flags & VM_GROWSDOWN) &&
  1177. (vma->vm_start == addr) &&
  1178. !vma_growsdown(vma->vm_prev, addr);
  1179. }
  1180. /* Is the vma a continuation of the stack vma below it? */
  1181. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1182. {
  1183. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1184. }
  1185. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1186. unsigned long addr)
  1187. {
  1188. return (vma->vm_flags & VM_GROWSUP) &&
  1189. (vma->vm_end == addr) &&
  1190. !vma_growsup(vma->vm_next, addr);
  1191. }
  1192. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1193. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1194. unsigned long old_addr, struct vm_area_struct *new_vma,
  1195. unsigned long new_addr, unsigned long len,
  1196. bool need_rmap_locks);
  1197. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1198. unsigned long end, pgprot_t newprot,
  1199. int dirty_accountable, int prot_numa);
  1200. extern int mprotect_fixup(struct vm_area_struct *vma,
  1201. struct vm_area_struct **pprev, unsigned long start,
  1202. unsigned long end, unsigned long newflags);
  1203. /*
  1204. * doesn't attempt to fault and will return short.
  1205. */
  1206. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1207. struct page **pages);
  1208. /*
  1209. * per-process(per-mm_struct) statistics.
  1210. */
  1211. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1212. {
  1213. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1214. #ifdef SPLIT_RSS_COUNTING
  1215. /*
  1216. * counter is updated in asynchronous manner and may go to minus.
  1217. * But it's never be expected number for users.
  1218. */
  1219. if (val < 0)
  1220. val = 0;
  1221. #endif
  1222. return (unsigned long)val;
  1223. }
  1224. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1225. {
  1226. atomic_long_add(value, &mm->rss_stat.count[member]);
  1227. }
  1228. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1229. {
  1230. atomic_long_inc(&mm->rss_stat.count[member]);
  1231. }
  1232. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1233. {
  1234. atomic_long_dec(&mm->rss_stat.count[member]);
  1235. }
  1236. /* Optimized variant when page is already known not to be PageAnon */
  1237. static inline int mm_counter_file(struct page *page)
  1238. {
  1239. if (PageSwapBacked(page))
  1240. return MM_SHMEMPAGES;
  1241. return MM_FILEPAGES;
  1242. }
  1243. static inline int mm_counter(struct page *page)
  1244. {
  1245. if (PageAnon(page))
  1246. return MM_ANONPAGES;
  1247. return mm_counter_file(page);
  1248. }
  1249. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1250. {
  1251. return get_mm_counter(mm, MM_FILEPAGES) +
  1252. get_mm_counter(mm, MM_ANONPAGES) +
  1253. get_mm_counter(mm, MM_SHMEMPAGES);
  1254. }
  1255. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1256. {
  1257. return max(mm->hiwater_rss, get_mm_rss(mm));
  1258. }
  1259. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1260. {
  1261. return max(mm->hiwater_vm, mm->total_vm);
  1262. }
  1263. static inline void update_hiwater_rss(struct mm_struct *mm)
  1264. {
  1265. unsigned long _rss = get_mm_rss(mm);
  1266. if ((mm)->hiwater_rss < _rss)
  1267. (mm)->hiwater_rss = _rss;
  1268. }
  1269. static inline void update_hiwater_vm(struct mm_struct *mm)
  1270. {
  1271. if (mm->hiwater_vm < mm->total_vm)
  1272. mm->hiwater_vm = mm->total_vm;
  1273. }
  1274. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1275. {
  1276. mm->hiwater_rss = get_mm_rss(mm);
  1277. }
  1278. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1279. struct mm_struct *mm)
  1280. {
  1281. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1282. if (*maxrss < hiwater_rss)
  1283. *maxrss = hiwater_rss;
  1284. }
  1285. #if defined(SPLIT_RSS_COUNTING)
  1286. void sync_mm_rss(struct mm_struct *mm);
  1287. #else
  1288. static inline void sync_mm_rss(struct mm_struct *mm)
  1289. {
  1290. }
  1291. #endif
  1292. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1293. static inline int pte_devmap(pte_t pte)
  1294. {
  1295. return 0;
  1296. }
  1297. #endif
  1298. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1299. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1300. spinlock_t **ptl);
  1301. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1302. spinlock_t **ptl)
  1303. {
  1304. pte_t *ptep;
  1305. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1306. return ptep;
  1307. }
  1308. #ifdef __PAGETABLE_PUD_FOLDED
  1309. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1310. unsigned long address)
  1311. {
  1312. return 0;
  1313. }
  1314. #else
  1315. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1316. #endif
  1317. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1318. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1319. unsigned long address)
  1320. {
  1321. return 0;
  1322. }
  1323. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1324. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1325. {
  1326. return 0;
  1327. }
  1328. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1329. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1330. #else
  1331. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1332. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1333. {
  1334. atomic_long_set(&mm->nr_pmds, 0);
  1335. }
  1336. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1337. {
  1338. return atomic_long_read(&mm->nr_pmds);
  1339. }
  1340. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1341. {
  1342. atomic_long_inc(&mm->nr_pmds);
  1343. }
  1344. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1345. {
  1346. atomic_long_dec(&mm->nr_pmds);
  1347. }
  1348. #endif
  1349. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1350. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1351. /*
  1352. * The following ifdef needed to get the 4level-fixup.h header to work.
  1353. * Remove it when 4level-fixup.h has been removed.
  1354. */
  1355. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1356. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1357. {
  1358. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1359. NULL: pud_offset(pgd, address);
  1360. }
  1361. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1362. {
  1363. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1364. NULL: pmd_offset(pud, address);
  1365. }
  1366. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1367. #if USE_SPLIT_PTE_PTLOCKS
  1368. #if ALLOC_SPLIT_PTLOCKS
  1369. void __init ptlock_cache_init(void);
  1370. extern bool ptlock_alloc(struct page *page);
  1371. extern void ptlock_free(struct page *page);
  1372. static inline spinlock_t *ptlock_ptr(struct page *page)
  1373. {
  1374. return page->ptl;
  1375. }
  1376. #else /* ALLOC_SPLIT_PTLOCKS */
  1377. static inline void ptlock_cache_init(void)
  1378. {
  1379. }
  1380. static inline bool ptlock_alloc(struct page *page)
  1381. {
  1382. return true;
  1383. }
  1384. static inline void ptlock_free(struct page *page)
  1385. {
  1386. }
  1387. static inline spinlock_t *ptlock_ptr(struct page *page)
  1388. {
  1389. return &page->ptl;
  1390. }
  1391. #endif /* ALLOC_SPLIT_PTLOCKS */
  1392. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1393. {
  1394. return ptlock_ptr(pmd_page(*pmd));
  1395. }
  1396. static inline bool ptlock_init(struct page *page)
  1397. {
  1398. /*
  1399. * prep_new_page() initialize page->private (and therefore page->ptl)
  1400. * with 0. Make sure nobody took it in use in between.
  1401. *
  1402. * It can happen if arch try to use slab for page table allocation:
  1403. * slab code uses page->slab_cache, which share storage with page->ptl.
  1404. */
  1405. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1406. if (!ptlock_alloc(page))
  1407. return false;
  1408. spin_lock_init(ptlock_ptr(page));
  1409. return true;
  1410. }
  1411. /* Reset page->mapping so free_pages_check won't complain. */
  1412. static inline void pte_lock_deinit(struct page *page)
  1413. {
  1414. page->mapping = NULL;
  1415. ptlock_free(page);
  1416. }
  1417. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1418. /*
  1419. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1420. */
  1421. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1422. {
  1423. return &mm->page_table_lock;
  1424. }
  1425. static inline void ptlock_cache_init(void) {}
  1426. static inline bool ptlock_init(struct page *page) { return true; }
  1427. static inline void pte_lock_deinit(struct page *page) {}
  1428. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1429. static inline void pgtable_init(void)
  1430. {
  1431. ptlock_cache_init();
  1432. pgtable_cache_init();
  1433. }
  1434. static inline bool pgtable_page_ctor(struct page *page)
  1435. {
  1436. if (!ptlock_init(page))
  1437. return false;
  1438. inc_zone_page_state(page, NR_PAGETABLE);
  1439. return true;
  1440. }
  1441. static inline void pgtable_page_dtor(struct page *page)
  1442. {
  1443. pte_lock_deinit(page);
  1444. dec_zone_page_state(page, NR_PAGETABLE);
  1445. }
  1446. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1447. ({ \
  1448. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1449. pte_t *__pte = pte_offset_map(pmd, address); \
  1450. *(ptlp) = __ptl; \
  1451. spin_lock(__ptl); \
  1452. __pte; \
  1453. })
  1454. #define pte_unmap_unlock(pte, ptl) do { \
  1455. spin_unlock(ptl); \
  1456. pte_unmap(pte); \
  1457. } while (0)
  1458. #define pte_alloc(mm, pmd, address) \
  1459. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1460. #define pte_alloc_map(mm, pmd, address) \
  1461. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1462. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1463. (pte_alloc(mm, pmd, address) ? \
  1464. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1465. #define pte_alloc_kernel(pmd, address) \
  1466. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1467. NULL: pte_offset_kernel(pmd, address))
  1468. #if USE_SPLIT_PMD_PTLOCKS
  1469. static struct page *pmd_to_page(pmd_t *pmd)
  1470. {
  1471. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1472. return virt_to_page((void *)((unsigned long) pmd & mask));
  1473. }
  1474. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1475. {
  1476. return ptlock_ptr(pmd_to_page(pmd));
  1477. }
  1478. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1479. {
  1480. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1481. page->pmd_huge_pte = NULL;
  1482. #endif
  1483. return ptlock_init(page);
  1484. }
  1485. static inline void pgtable_pmd_page_dtor(struct page *page)
  1486. {
  1487. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1488. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1489. #endif
  1490. ptlock_free(page);
  1491. }
  1492. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1493. #else
  1494. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1495. {
  1496. return &mm->page_table_lock;
  1497. }
  1498. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1499. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1500. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1501. #endif
  1502. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1503. {
  1504. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1505. spin_lock(ptl);
  1506. return ptl;
  1507. }
  1508. extern void __init pagecache_init(void);
  1509. extern void free_area_init(unsigned long * zones_size);
  1510. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1511. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1512. extern void free_initmem(void);
  1513. /*
  1514. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1515. * into the buddy system. The freed pages will be poisoned with pattern
  1516. * "poison" if it's within range [0, UCHAR_MAX].
  1517. * Return pages freed into the buddy system.
  1518. */
  1519. extern unsigned long free_reserved_area(void *start, void *end,
  1520. int poison, char *s);
  1521. #ifdef CONFIG_HIGHMEM
  1522. /*
  1523. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1524. * and totalram_pages.
  1525. */
  1526. extern void free_highmem_page(struct page *page);
  1527. #endif
  1528. extern void adjust_managed_page_count(struct page *page, long count);
  1529. extern void mem_init_print_info(const char *str);
  1530. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1531. /* Free the reserved page into the buddy system, so it gets managed. */
  1532. static inline void __free_reserved_page(struct page *page)
  1533. {
  1534. ClearPageReserved(page);
  1535. init_page_count(page);
  1536. __free_page(page);
  1537. }
  1538. static inline void free_reserved_page(struct page *page)
  1539. {
  1540. __free_reserved_page(page);
  1541. adjust_managed_page_count(page, 1);
  1542. }
  1543. static inline void mark_page_reserved(struct page *page)
  1544. {
  1545. SetPageReserved(page);
  1546. adjust_managed_page_count(page, -1);
  1547. }
  1548. /*
  1549. * Default method to free all the __init memory into the buddy system.
  1550. * The freed pages will be poisoned with pattern "poison" if it's within
  1551. * range [0, UCHAR_MAX].
  1552. * Return pages freed into the buddy system.
  1553. */
  1554. static inline unsigned long free_initmem_default(int poison)
  1555. {
  1556. extern char __init_begin[], __init_end[];
  1557. return free_reserved_area(&__init_begin, &__init_end,
  1558. poison, "unused kernel");
  1559. }
  1560. static inline unsigned long get_num_physpages(void)
  1561. {
  1562. int nid;
  1563. unsigned long phys_pages = 0;
  1564. for_each_online_node(nid)
  1565. phys_pages += node_present_pages(nid);
  1566. return phys_pages;
  1567. }
  1568. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1569. /*
  1570. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1571. * zones, allocate the backing mem_map and account for memory holes in a more
  1572. * architecture independent manner. This is a substitute for creating the
  1573. * zone_sizes[] and zholes_size[] arrays and passing them to
  1574. * free_area_init_node()
  1575. *
  1576. * An architecture is expected to register range of page frames backed by
  1577. * physical memory with memblock_add[_node]() before calling
  1578. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1579. * usage, an architecture is expected to do something like
  1580. *
  1581. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1582. * max_highmem_pfn};
  1583. * for_each_valid_physical_page_range()
  1584. * memblock_add_node(base, size, nid)
  1585. * free_area_init_nodes(max_zone_pfns);
  1586. *
  1587. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1588. * registered physical page range. Similarly
  1589. * sparse_memory_present_with_active_regions() calls memory_present() for
  1590. * each range when SPARSEMEM is enabled.
  1591. *
  1592. * See mm/page_alloc.c for more information on each function exposed by
  1593. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1594. */
  1595. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1596. unsigned long node_map_pfn_alignment(void);
  1597. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1598. unsigned long end_pfn);
  1599. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1600. unsigned long end_pfn);
  1601. extern void get_pfn_range_for_nid(unsigned int nid,
  1602. unsigned long *start_pfn, unsigned long *end_pfn);
  1603. extern unsigned long find_min_pfn_with_active_regions(void);
  1604. extern void free_bootmem_with_active_regions(int nid,
  1605. unsigned long max_low_pfn);
  1606. extern void sparse_memory_present_with_active_regions(int nid);
  1607. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1608. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1609. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1610. static inline int __early_pfn_to_nid(unsigned long pfn,
  1611. struct mminit_pfnnid_cache *state)
  1612. {
  1613. return 0;
  1614. }
  1615. #else
  1616. /* please see mm/page_alloc.c */
  1617. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1618. /* there is a per-arch backend function. */
  1619. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1620. struct mminit_pfnnid_cache *state);
  1621. #endif
  1622. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1623. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1624. unsigned long, enum memmap_context);
  1625. extern void setup_per_zone_wmarks(void);
  1626. extern int __meminit init_per_zone_wmark_min(void);
  1627. extern void mem_init(void);
  1628. extern void __init mmap_init(void);
  1629. extern void show_mem(unsigned int flags);
  1630. extern long si_mem_available(void);
  1631. extern void si_meminfo(struct sysinfo * val);
  1632. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1633. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1634. extern unsigned long arch_reserved_kernel_pages(void);
  1635. #endif
  1636. extern __printf(2, 3)
  1637. void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
  1638. extern void setup_per_cpu_pageset(void);
  1639. extern void zone_pcp_update(struct zone *zone);
  1640. extern void zone_pcp_reset(struct zone *zone);
  1641. /* page_alloc.c */
  1642. extern int min_free_kbytes;
  1643. extern int watermark_scale_factor;
  1644. /* nommu.c */
  1645. extern atomic_long_t mmap_pages_allocated;
  1646. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1647. /* interval_tree.c */
  1648. void vma_interval_tree_insert(struct vm_area_struct *node,
  1649. struct rb_root *root);
  1650. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1651. struct vm_area_struct *prev,
  1652. struct rb_root *root);
  1653. void vma_interval_tree_remove(struct vm_area_struct *node,
  1654. struct rb_root *root);
  1655. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1656. unsigned long start, unsigned long last);
  1657. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1658. unsigned long start, unsigned long last);
  1659. #define vma_interval_tree_foreach(vma, root, start, last) \
  1660. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1661. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1662. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1663. struct rb_root *root);
  1664. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1665. struct rb_root *root);
  1666. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1667. struct rb_root *root, unsigned long start, unsigned long last);
  1668. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1669. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1670. #ifdef CONFIG_DEBUG_VM_RB
  1671. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1672. #endif
  1673. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1674. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1675. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1676. /* mmap.c */
  1677. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1678. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1679. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1680. struct vm_area_struct *expand);
  1681. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1682. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1683. {
  1684. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1685. }
  1686. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1687. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1688. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1689. struct mempolicy *, struct vm_userfaultfd_ctx);
  1690. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1691. extern int split_vma(struct mm_struct *,
  1692. struct vm_area_struct *, unsigned long addr, int new_below);
  1693. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1694. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1695. struct rb_node **, struct rb_node *);
  1696. extern void unlink_file_vma(struct vm_area_struct *);
  1697. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1698. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1699. bool *need_rmap_locks);
  1700. extern void exit_mmap(struct mm_struct *);
  1701. static inline int check_data_rlimit(unsigned long rlim,
  1702. unsigned long new,
  1703. unsigned long start,
  1704. unsigned long end_data,
  1705. unsigned long start_data)
  1706. {
  1707. if (rlim < RLIM_INFINITY) {
  1708. if (((new - start) + (end_data - start_data)) > rlim)
  1709. return -ENOSPC;
  1710. }
  1711. return 0;
  1712. }
  1713. extern int mm_take_all_locks(struct mm_struct *mm);
  1714. extern void mm_drop_all_locks(struct mm_struct *mm);
  1715. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1716. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1717. extern struct file *get_task_exe_file(struct task_struct *task);
  1718. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1719. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1720. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1721. const struct vm_special_mapping *sm);
  1722. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1723. unsigned long addr, unsigned long len,
  1724. unsigned long flags,
  1725. const struct vm_special_mapping *spec);
  1726. /* This is an obsolete alternative to _install_special_mapping. */
  1727. extern int install_special_mapping(struct mm_struct *mm,
  1728. unsigned long addr, unsigned long len,
  1729. unsigned long flags, struct page **pages);
  1730. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1731. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1732. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1733. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1734. unsigned long len, unsigned long prot, unsigned long flags,
  1735. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1736. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1737. static inline unsigned long
  1738. do_mmap_pgoff(struct file *file, unsigned long addr,
  1739. unsigned long len, unsigned long prot, unsigned long flags,
  1740. unsigned long pgoff, unsigned long *populate)
  1741. {
  1742. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1743. }
  1744. #ifdef CONFIG_MMU
  1745. extern int __mm_populate(unsigned long addr, unsigned long len,
  1746. int ignore_errors);
  1747. static inline void mm_populate(unsigned long addr, unsigned long len)
  1748. {
  1749. /* Ignore errors */
  1750. (void) __mm_populate(addr, len, 1);
  1751. }
  1752. #else
  1753. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1754. #endif
  1755. /* These take the mm semaphore themselves */
  1756. extern int __must_check vm_brk(unsigned long, unsigned long);
  1757. extern int vm_munmap(unsigned long, size_t);
  1758. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1759. unsigned long, unsigned long,
  1760. unsigned long, unsigned long);
  1761. struct vm_unmapped_area_info {
  1762. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1763. unsigned long flags;
  1764. unsigned long length;
  1765. unsigned long low_limit;
  1766. unsigned long high_limit;
  1767. unsigned long align_mask;
  1768. unsigned long align_offset;
  1769. };
  1770. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1771. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1772. /*
  1773. * Search for an unmapped address range.
  1774. *
  1775. * We are looking for a range that:
  1776. * - does not intersect with any VMA;
  1777. * - is contained within the [low_limit, high_limit) interval;
  1778. * - is at least the desired size.
  1779. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1780. */
  1781. static inline unsigned long
  1782. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1783. {
  1784. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1785. return unmapped_area_topdown(info);
  1786. else
  1787. return unmapped_area(info);
  1788. }
  1789. /* truncate.c */
  1790. extern void truncate_inode_pages(struct address_space *, loff_t);
  1791. extern void truncate_inode_pages_range(struct address_space *,
  1792. loff_t lstart, loff_t lend);
  1793. extern void truncate_inode_pages_final(struct address_space *);
  1794. /* generic vm_area_ops exported for stackable file systems */
  1795. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1796. extern void filemap_map_pages(struct vm_fault *vmf,
  1797. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1798. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1799. /* mm/page-writeback.c */
  1800. int write_one_page(struct page *page, int wait);
  1801. void task_dirty_inc(struct task_struct *tsk);
  1802. /* readahead.c */
  1803. #define VM_MAX_READAHEAD 128 /* kbytes */
  1804. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1805. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1806. pgoff_t offset, unsigned long nr_to_read);
  1807. void page_cache_sync_readahead(struct address_space *mapping,
  1808. struct file_ra_state *ra,
  1809. struct file *filp,
  1810. pgoff_t offset,
  1811. unsigned long size);
  1812. void page_cache_async_readahead(struct address_space *mapping,
  1813. struct file_ra_state *ra,
  1814. struct file *filp,
  1815. struct page *pg,
  1816. pgoff_t offset,
  1817. unsigned long size);
  1818. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1819. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1820. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1821. extern int expand_downwards(struct vm_area_struct *vma,
  1822. unsigned long address);
  1823. #if VM_GROWSUP
  1824. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1825. #else
  1826. #define expand_upwards(vma, address) (0)
  1827. #endif
  1828. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1829. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1830. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1831. struct vm_area_struct **pprev);
  1832. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1833. NULL if none. Assume start_addr < end_addr. */
  1834. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1835. {
  1836. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1837. if (vma && end_addr <= vma->vm_start)
  1838. vma = NULL;
  1839. return vma;
  1840. }
  1841. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1842. {
  1843. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1844. }
  1845. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1846. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1847. unsigned long vm_start, unsigned long vm_end)
  1848. {
  1849. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1850. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1851. vma = NULL;
  1852. return vma;
  1853. }
  1854. #ifdef CONFIG_MMU
  1855. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1856. void vma_set_page_prot(struct vm_area_struct *vma);
  1857. #else
  1858. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1859. {
  1860. return __pgprot(0);
  1861. }
  1862. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1863. {
  1864. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1865. }
  1866. #endif
  1867. #ifdef CONFIG_NUMA_BALANCING
  1868. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1869. unsigned long start, unsigned long end);
  1870. #endif
  1871. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1872. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1873. unsigned long pfn, unsigned long size, pgprot_t);
  1874. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1875. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1876. unsigned long pfn);
  1877. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1878. unsigned long pfn, pgprot_t pgprot);
  1879. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1880. pfn_t pfn);
  1881. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1882. struct page *follow_page_mask(struct vm_area_struct *vma,
  1883. unsigned long address, unsigned int foll_flags,
  1884. unsigned int *page_mask);
  1885. static inline struct page *follow_page(struct vm_area_struct *vma,
  1886. unsigned long address, unsigned int foll_flags)
  1887. {
  1888. unsigned int unused_page_mask;
  1889. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1890. }
  1891. #define FOLL_WRITE 0x01 /* check pte is writable */
  1892. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1893. #define FOLL_GET 0x04 /* do get_page on page */
  1894. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1895. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1896. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1897. * and return without waiting upon it */
  1898. #define FOLL_POPULATE 0x40 /* fault in page */
  1899. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1900. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1901. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1902. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1903. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1904. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1905. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1906. #define FOLL_COW 0x4000 /* internal GUP flag */
  1907. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1908. void *data);
  1909. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1910. unsigned long size, pte_fn_t fn, void *data);
  1911. #ifdef CONFIG_PAGE_POISONING
  1912. extern bool page_poisoning_enabled(void);
  1913. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  1914. extern bool page_is_poisoned(struct page *page);
  1915. #else
  1916. static inline bool page_poisoning_enabled(void) { return false; }
  1917. static inline void kernel_poison_pages(struct page *page, int numpages,
  1918. int enable) { }
  1919. static inline bool page_is_poisoned(struct page *page) { return false; }
  1920. #endif
  1921. #ifdef CONFIG_DEBUG_PAGEALLOC
  1922. extern bool _debug_pagealloc_enabled;
  1923. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1924. static inline bool debug_pagealloc_enabled(void)
  1925. {
  1926. return _debug_pagealloc_enabled;
  1927. }
  1928. static inline void
  1929. kernel_map_pages(struct page *page, int numpages, int enable)
  1930. {
  1931. if (!debug_pagealloc_enabled())
  1932. return;
  1933. __kernel_map_pages(page, numpages, enable);
  1934. }
  1935. #ifdef CONFIG_HIBERNATION
  1936. extern bool kernel_page_present(struct page *page);
  1937. #endif /* CONFIG_HIBERNATION */
  1938. #else /* CONFIG_DEBUG_PAGEALLOC */
  1939. static inline void
  1940. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1941. #ifdef CONFIG_HIBERNATION
  1942. static inline bool kernel_page_present(struct page *page) { return true; }
  1943. #endif /* CONFIG_HIBERNATION */
  1944. static inline bool debug_pagealloc_enabled(void)
  1945. {
  1946. return false;
  1947. }
  1948. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1949. #ifdef __HAVE_ARCH_GATE_AREA
  1950. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1951. extern int in_gate_area_no_mm(unsigned long addr);
  1952. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1953. #else
  1954. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1955. {
  1956. return NULL;
  1957. }
  1958. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1959. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1960. {
  1961. return 0;
  1962. }
  1963. #endif /* __HAVE_ARCH_GATE_AREA */
  1964. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  1965. #ifdef CONFIG_SYSCTL
  1966. extern int sysctl_drop_caches;
  1967. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1968. void __user *, size_t *, loff_t *);
  1969. #endif
  1970. void drop_slab(void);
  1971. void drop_slab_node(int nid);
  1972. #ifndef CONFIG_MMU
  1973. #define randomize_va_space 0
  1974. #else
  1975. extern int randomize_va_space;
  1976. #endif
  1977. const char * arch_vma_name(struct vm_area_struct *vma);
  1978. void print_vma_addr(char *prefix, unsigned long rip);
  1979. void sparse_mem_maps_populate_node(struct page **map_map,
  1980. unsigned long pnum_begin,
  1981. unsigned long pnum_end,
  1982. unsigned long map_count,
  1983. int nodeid);
  1984. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1985. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1986. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1987. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1988. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1989. void *vmemmap_alloc_block(unsigned long size, int node);
  1990. struct vmem_altmap;
  1991. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  1992. struct vmem_altmap *altmap);
  1993. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  1994. {
  1995. return __vmemmap_alloc_block_buf(size, node, NULL);
  1996. }
  1997. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1998. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1999. int node);
  2000. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  2001. void vmemmap_populate_print_last(void);
  2002. #ifdef CONFIG_MEMORY_HOTPLUG
  2003. void vmemmap_free(unsigned long start, unsigned long end);
  2004. #endif
  2005. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2006. unsigned long size);
  2007. enum mf_flags {
  2008. MF_COUNT_INCREASED = 1 << 0,
  2009. MF_ACTION_REQUIRED = 1 << 1,
  2010. MF_MUST_KILL = 1 << 2,
  2011. MF_SOFT_OFFLINE = 1 << 3,
  2012. };
  2013. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2014. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2015. extern int unpoison_memory(unsigned long pfn);
  2016. extern int get_hwpoison_page(struct page *page);
  2017. #define put_hwpoison_page(page) put_page(page)
  2018. extern int sysctl_memory_failure_early_kill;
  2019. extern int sysctl_memory_failure_recovery;
  2020. extern void shake_page(struct page *p, int access);
  2021. extern atomic_long_t num_poisoned_pages;
  2022. extern int soft_offline_page(struct page *page, int flags);
  2023. /*
  2024. * Error handlers for various types of pages.
  2025. */
  2026. enum mf_result {
  2027. MF_IGNORED, /* Error: cannot be handled */
  2028. MF_FAILED, /* Error: handling failed */
  2029. MF_DELAYED, /* Will be handled later */
  2030. MF_RECOVERED, /* Successfully recovered */
  2031. };
  2032. enum mf_action_page_type {
  2033. MF_MSG_KERNEL,
  2034. MF_MSG_KERNEL_HIGH_ORDER,
  2035. MF_MSG_SLAB,
  2036. MF_MSG_DIFFERENT_COMPOUND,
  2037. MF_MSG_POISONED_HUGE,
  2038. MF_MSG_HUGE,
  2039. MF_MSG_FREE_HUGE,
  2040. MF_MSG_UNMAP_FAILED,
  2041. MF_MSG_DIRTY_SWAPCACHE,
  2042. MF_MSG_CLEAN_SWAPCACHE,
  2043. MF_MSG_DIRTY_MLOCKED_LRU,
  2044. MF_MSG_CLEAN_MLOCKED_LRU,
  2045. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2046. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2047. MF_MSG_DIRTY_LRU,
  2048. MF_MSG_CLEAN_LRU,
  2049. MF_MSG_TRUNCATED_LRU,
  2050. MF_MSG_BUDDY,
  2051. MF_MSG_BUDDY_2ND,
  2052. MF_MSG_UNKNOWN,
  2053. };
  2054. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2055. extern void clear_huge_page(struct page *page,
  2056. unsigned long addr,
  2057. unsigned int pages_per_huge_page);
  2058. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2059. unsigned long addr, struct vm_area_struct *vma,
  2060. unsigned int pages_per_huge_page);
  2061. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2062. extern struct page_ext_operations debug_guardpage_ops;
  2063. extern struct page_ext_operations page_poisoning_ops;
  2064. #ifdef CONFIG_DEBUG_PAGEALLOC
  2065. extern unsigned int _debug_guardpage_minorder;
  2066. extern bool _debug_guardpage_enabled;
  2067. static inline unsigned int debug_guardpage_minorder(void)
  2068. {
  2069. return _debug_guardpage_minorder;
  2070. }
  2071. static inline bool debug_guardpage_enabled(void)
  2072. {
  2073. return _debug_guardpage_enabled;
  2074. }
  2075. static inline bool page_is_guard(struct page *page)
  2076. {
  2077. struct page_ext *page_ext;
  2078. if (!debug_guardpage_enabled())
  2079. return false;
  2080. page_ext = lookup_page_ext(page);
  2081. if (unlikely(!page_ext))
  2082. return false;
  2083. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2084. }
  2085. #else
  2086. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2087. static inline bool debug_guardpage_enabled(void) { return false; }
  2088. static inline bool page_is_guard(struct page *page) { return false; }
  2089. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2090. #if MAX_NUMNODES > 1
  2091. void __init setup_nr_node_ids(void);
  2092. #else
  2093. static inline void setup_nr_node_ids(void) {}
  2094. #endif
  2095. #endif /* __KERNEL__ */
  2096. #endif /* _LINUX_MM_H */