posix-cpu-timers.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705
  1. /*
  2. * Implement CPU time clocks for the POSIX clock interface.
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/posix-timers.h>
  6. #include <linux/errno.h>
  7. #include <linux/math64.h>
  8. #include <asm/uaccess.h>
  9. #include <linux/kernel_stat.h>
  10. /*
  11. * Called after updating RLIMIT_CPU to set timer expiration if necessary.
  12. */
  13. void update_rlimit_cpu(unsigned long rlim_new)
  14. {
  15. cputime_t cputime = secs_to_cputime(rlim_new);
  16. struct signal_struct *const sig = current->signal;
  17. if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
  18. cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
  19. spin_lock_irq(&current->sighand->siglock);
  20. set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
  21. spin_unlock_irq(&current->sighand->siglock);
  22. }
  23. }
  24. static int check_clock(const clockid_t which_clock)
  25. {
  26. int error = 0;
  27. struct task_struct *p;
  28. const pid_t pid = CPUCLOCK_PID(which_clock);
  29. if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  30. return -EINVAL;
  31. if (pid == 0)
  32. return 0;
  33. read_lock(&tasklist_lock);
  34. p = find_task_by_vpid(pid);
  35. if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  36. same_thread_group(p, current) : thread_group_leader(p))) {
  37. error = -EINVAL;
  38. }
  39. read_unlock(&tasklist_lock);
  40. return error;
  41. }
  42. static inline union cpu_time_count
  43. timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  44. {
  45. union cpu_time_count ret;
  46. ret.sched = 0; /* high half always zero when .cpu used */
  47. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  48. ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  49. } else {
  50. ret.cpu = timespec_to_cputime(tp);
  51. }
  52. return ret;
  53. }
  54. static void sample_to_timespec(const clockid_t which_clock,
  55. union cpu_time_count cpu,
  56. struct timespec *tp)
  57. {
  58. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  59. *tp = ns_to_timespec(cpu.sched);
  60. else
  61. cputime_to_timespec(cpu.cpu, tp);
  62. }
  63. static inline int cpu_time_before(const clockid_t which_clock,
  64. union cpu_time_count now,
  65. union cpu_time_count then)
  66. {
  67. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  68. return now.sched < then.sched;
  69. } else {
  70. return cputime_lt(now.cpu, then.cpu);
  71. }
  72. }
  73. static inline void cpu_time_add(const clockid_t which_clock,
  74. union cpu_time_count *acc,
  75. union cpu_time_count val)
  76. {
  77. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  78. acc->sched += val.sched;
  79. } else {
  80. acc->cpu = cputime_add(acc->cpu, val.cpu);
  81. }
  82. }
  83. static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
  84. union cpu_time_count a,
  85. union cpu_time_count b)
  86. {
  87. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  88. a.sched -= b.sched;
  89. } else {
  90. a.cpu = cputime_sub(a.cpu, b.cpu);
  91. }
  92. return a;
  93. }
  94. /*
  95. * Divide and limit the result to res >= 1
  96. *
  97. * This is necessary to prevent signal delivery starvation, when the result of
  98. * the division would be rounded down to 0.
  99. */
  100. static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
  101. {
  102. cputime_t res = cputime_div(time, div);
  103. return max_t(cputime_t, res, 1);
  104. }
  105. /*
  106. * Update expiry time from increment, and increase overrun count,
  107. * given the current clock sample.
  108. */
  109. static void bump_cpu_timer(struct k_itimer *timer,
  110. union cpu_time_count now)
  111. {
  112. int i;
  113. if (timer->it.cpu.incr.sched == 0)
  114. return;
  115. if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
  116. unsigned long long delta, incr;
  117. if (now.sched < timer->it.cpu.expires.sched)
  118. return;
  119. incr = timer->it.cpu.incr.sched;
  120. delta = now.sched + incr - timer->it.cpu.expires.sched;
  121. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  122. for (i = 0; incr < delta - incr; i++)
  123. incr = incr << 1;
  124. for (; i >= 0; incr >>= 1, i--) {
  125. if (delta < incr)
  126. continue;
  127. timer->it.cpu.expires.sched += incr;
  128. timer->it_overrun += 1 << i;
  129. delta -= incr;
  130. }
  131. } else {
  132. cputime_t delta, incr;
  133. if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
  134. return;
  135. incr = timer->it.cpu.incr.cpu;
  136. delta = cputime_sub(cputime_add(now.cpu, incr),
  137. timer->it.cpu.expires.cpu);
  138. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  139. for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
  140. incr = cputime_add(incr, incr);
  141. for (; i >= 0; incr = cputime_halve(incr), i--) {
  142. if (cputime_lt(delta, incr))
  143. continue;
  144. timer->it.cpu.expires.cpu =
  145. cputime_add(timer->it.cpu.expires.cpu, incr);
  146. timer->it_overrun += 1 << i;
  147. delta = cputime_sub(delta, incr);
  148. }
  149. }
  150. }
  151. static inline cputime_t prof_ticks(struct task_struct *p)
  152. {
  153. return cputime_add(p->utime, p->stime);
  154. }
  155. static inline cputime_t virt_ticks(struct task_struct *p)
  156. {
  157. return p->utime;
  158. }
  159. int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
  160. {
  161. int error = check_clock(which_clock);
  162. if (!error) {
  163. tp->tv_sec = 0;
  164. tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
  165. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  166. /*
  167. * If sched_clock is using a cycle counter, we
  168. * don't have any idea of its true resolution
  169. * exported, but it is much more than 1s/HZ.
  170. */
  171. tp->tv_nsec = 1;
  172. }
  173. }
  174. return error;
  175. }
  176. int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
  177. {
  178. /*
  179. * You can never reset a CPU clock, but we check for other errors
  180. * in the call before failing with EPERM.
  181. */
  182. int error = check_clock(which_clock);
  183. if (error == 0) {
  184. error = -EPERM;
  185. }
  186. return error;
  187. }
  188. /*
  189. * Sample a per-thread clock for the given task.
  190. */
  191. static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
  192. union cpu_time_count *cpu)
  193. {
  194. switch (CPUCLOCK_WHICH(which_clock)) {
  195. default:
  196. return -EINVAL;
  197. case CPUCLOCK_PROF:
  198. cpu->cpu = prof_ticks(p);
  199. break;
  200. case CPUCLOCK_VIRT:
  201. cpu->cpu = virt_ticks(p);
  202. break;
  203. case CPUCLOCK_SCHED:
  204. cpu->sched = task_sched_runtime(p);
  205. break;
  206. }
  207. return 0;
  208. }
  209. void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
  210. {
  211. struct sighand_struct *sighand;
  212. struct signal_struct *sig;
  213. struct task_struct *t;
  214. *times = INIT_CPUTIME;
  215. rcu_read_lock();
  216. sighand = rcu_dereference(tsk->sighand);
  217. if (!sighand)
  218. goto out;
  219. sig = tsk->signal;
  220. t = tsk;
  221. do {
  222. times->utime = cputime_add(times->utime, t->utime);
  223. times->stime = cputime_add(times->stime, t->stime);
  224. times->sum_exec_runtime += t->se.sum_exec_runtime;
  225. t = next_thread(t);
  226. } while (t != tsk);
  227. times->utime = cputime_add(times->utime, sig->utime);
  228. times->stime = cputime_add(times->stime, sig->stime);
  229. times->sum_exec_runtime += sig->sum_sched_runtime;
  230. out:
  231. rcu_read_unlock();
  232. }
  233. static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
  234. {
  235. if (cputime_gt(b->utime, a->utime))
  236. a->utime = b->utime;
  237. if (cputime_gt(b->stime, a->stime))
  238. a->stime = b->stime;
  239. if (b->sum_exec_runtime > a->sum_exec_runtime)
  240. a->sum_exec_runtime = b->sum_exec_runtime;
  241. }
  242. void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
  243. {
  244. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  245. struct task_cputime sum;
  246. unsigned long flags;
  247. spin_lock_irqsave(&cputimer->lock, flags);
  248. if (!cputimer->running) {
  249. cputimer->running = 1;
  250. /*
  251. * The POSIX timer interface allows for absolute time expiry
  252. * values through the TIMER_ABSTIME flag, therefore we have
  253. * to synchronize the timer to the clock every time we start
  254. * it.
  255. */
  256. thread_group_cputime(tsk, &sum);
  257. update_gt_cputime(&cputimer->cputime, &sum);
  258. }
  259. *times = cputimer->cputime;
  260. spin_unlock_irqrestore(&cputimer->lock, flags);
  261. }
  262. /*
  263. * Sample a process (thread group) clock for the given group_leader task.
  264. * Must be called with tasklist_lock held for reading.
  265. */
  266. static int cpu_clock_sample_group(const clockid_t which_clock,
  267. struct task_struct *p,
  268. union cpu_time_count *cpu)
  269. {
  270. struct task_cputime cputime;
  271. switch (CPUCLOCK_WHICH(which_clock)) {
  272. default:
  273. return -EINVAL;
  274. case CPUCLOCK_PROF:
  275. thread_group_cputime(p, &cputime);
  276. cpu->cpu = cputime_add(cputime.utime, cputime.stime);
  277. break;
  278. case CPUCLOCK_VIRT:
  279. thread_group_cputime(p, &cputime);
  280. cpu->cpu = cputime.utime;
  281. break;
  282. case CPUCLOCK_SCHED:
  283. cpu->sched = thread_group_sched_runtime(p);
  284. break;
  285. }
  286. return 0;
  287. }
  288. int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
  289. {
  290. const pid_t pid = CPUCLOCK_PID(which_clock);
  291. int error = -EINVAL;
  292. union cpu_time_count rtn;
  293. if (pid == 0) {
  294. /*
  295. * Special case constant value for our own clocks.
  296. * We don't have to do any lookup to find ourselves.
  297. */
  298. if (CPUCLOCK_PERTHREAD(which_clock)) {
  299. /*
  300. * Sampling just ourselves we can do with no locking.
  301. */
  302. error = cpu_clock_sample(which_clock,
  303. current, &rtn);
  304. } else {
  305. read_lock(&tasklist_lock);
  306. error = cpu_clock_sample_group(which_clock,
  307. current, &rtn);
  308. read_unlock(&tasklist_lock);
  309. }
  310. } else {
  311. /*
  312. * Find the given PID, and validate that the caller
  313. * should be able to see it.
  314. */
  315. struct task_struct *p;
  316. rcu_read_lock();
  317. p = find_task_by_vpid(pid);
  318. if (p) {
  319. if (CPUCLOCK_PERTHREAD(which_clock)) {
  320. if (same_thread_group(p, current)) {
  321. error = cpu_clock_sample(which_clock,
  322. p, &rtn);
  323. }
  324. } else {
  325. read_lock(&tasklist_lock);
  326. if (thread_group_leader(p) && p->signal) {
  327. error =
  328. cpu_clock_sample_group(which_clock,
  329. p, &rtn);
  330. }
  331. read_unlock(&tasklist_lock);
  332. }
  333. }
  334. rcu_read_unlock();
  335. }
  336. if (error)
  337. return error;
  338. sample_to_timespec(which_clock, rtn, tp);
  339. return 0;
  340. }
  341. /*
  342. * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
  343. * This is called from sys_timer_create with the new timer already locked.
  344. */
  345. int posix_cpu_timer_create(struct k_itimer *new_timer)
  346. {
  347. int ret = 0;
  348. const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
  349. struct task_struct *p;
  350. if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
  351. return -EINVAL;
  352. INIT_LIST_HEAD(&new_timer->it.cpu.entry);
  353. new_timer->it.cpu.incr.sched = 0;
  354. new_timer->it.cpu.expires.sched = 0;
  355. read_lock(&tasklist_lock);
  356. if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
  357. if (pid == 0) {
  358. p = current;
  359. } else {
  360. p = find_task_by_vpid(pid);
  361. if (p && !same_thread_group(p, current))
  362. p = NULL;
  363. }
  364. } else {
  365. if (pid == 0) {
  366. p = current->group_leader;
  367. } else {
  368. p = find_task_by_vpid(pid);
  369. if (p && !thread_group_leader(p))
  370. p = NULL;
  371. }
  372. }
  373. new_timer->it.cpu.task = p;
  374. if (p) {
  375. get_task_struct(p);
  376. } else {
  377. ret = -EINVAL;
  378. }
  379. read_unlock(&tasklist_lock);
  380. return ret;
  381. }
  382. /*
  383. * Clean up a CPU-clock timer that is about to be destroyed.
  384. * This is called from timer deletion with the timer already locked.
  385. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  386. * and try again. (This happens when the timer is in the middle of firing.)
  387. */
  388. int posix_cpu_timer_del(struct k_itimer *timer)
  389. {
  390. struct task_struct *p = timer->it.cpu.task;
  391. int ret = 0;
  392. if (likely(p != NULL)) {
  393. read_lock(&tasklist_lock);
  394. if (unlikely(p->signal == NULL)) {
  395. /*
  396. * We raced with the reaping of the task.
  397. * The deletion should have cleared us off the list.
  398. */
  399. BUG_ON(!list_empty(&timer->it.cpu.entry));
  400. } else {
  401. spin_lock(&p->sighand->siglock);
  402. if (timer->it.cpu.firing)
  403. ret = TIMER_RETRY;
  404. else
  405. list_del(&timer->it.cpu.entry);
  406. spin_unlock(&p->sighand->siglock);
  407. }
  408. read_unlock(&tasklist_lock);
  409. if (!ret)
  410. put_task_struct(p);
  411. }
  412. return ret;
  413. }
  414. /*
  415. * Clean out CPU timers still ticking when a thread exited. The task
  416. * pointer is cleared, and the expiry time is replaced with the residual
  417. * time for later timer_gettime calls to return.
  418. * This must be called with the siglock held.
  419. */
  420. static void cleanup_timers(struct list_head *head,
  421. cputime_t utime, cputime_t stime,
  422. unsigned long long sum_exec_runtime)
  423. {
  424. struct cpu_timer_list *timer, *next;
  425. cputime_t ptime = cputime_add(utime, stime);
  426. list_for_each_entry_safe(timer, next, head, entry) {
  427. list_del_init(&timer->entry);
  428. if (cputime_lt(timer->expires.cpu, ptime)) {
  429. timer->expires.cpu = cputime_zero;
  430. } else {
  431. timer->expires.cpu = cputime_sub(timer->expires.cpu,
  432. ptime);
  433. }
  434. }
  435. ++head;
  436. list_for_each_entry_safe(timer, next, head, entry) {
  437. list_del_init(&timer->entry);
  438. if (cputime_lt(timer->expires.cpu, utime)) {
  439. timer->expires.cpu = cputime_zero;
  440. } else {
  441. timer->expires.cpu = cputime_sub(timer->expires.cpu,
  442. utime);
  443. }
  444. }
  445. ++head;
  446. list_for_each_entry_safe(timer, next, head, entry) {
  447. list_del_init(&timer->entry);
  448. if (timer->expires.sched < sum_exec_runtime) {
  449. timer->expires.sched = 0;
  450. } else {
  451. timer->expires.sched -= sum_exec_runtime;
  452. }
  453. }
  454. }
  455. /*
  456. * These are both called with the siglock held, when the current thread
  457. * is being reaped. When the final (leader) thread in the group is reaped,
  458. * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
  459. */
  460. void posix_cpu_timers_exit(struct task_struct *tsk)
  461. {
  462. cleanup_timers(tsk->cpu_timers,
  463. tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
  464. }
  465. void posix_cpu_timers_exit_group(struct task_struct *tsk)
  466. {
  467. struct task_cputime cputime;
  468. thread_group_cputimer(tsk, &cputime);
  469. cleanup_timers(tsk->signal->cpu_timers,
  470. cputime.utime, cputime.stime, cputime.sum_exec_runtime);
  471. }
  472. static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
  473. {
  474. /*
  475. * That's all for this thread or process.
  476. * We leave our residual in expires to be reported.
  477. */
  478. put_task_struct(timer->it.cpu.task);
  479. timer->it.cpu.task = NULL;
  480. timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
  481. timer->it.cpu.expires,
  482. now);
  483. }
  484. /*
  485. * Insert the timer on the appropriate list before any timers that
  486. * expire later. This must be called with the tasklist_lock held
  487. * for reading, and interrupts disabled.
  488. */
  489. static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
  490. {
  491. struct task_struct *p = timer->it.cpu.task;
  492. struct list_head *head, *listpos;
  493. struct cpu_timer_list *const nt = &timer->it.cpu;
  494. struct cpu_timer_list *next;
  495. unsigned long i;
  496. head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
  497. p->cpu_timers : p->signal->cpu_timers);
  498. head += CPUCLOCK_WHICH(timer->it_clock);
  499. BUG_ON(!irqs_disabled());
  500. spin_lock(&p->sighand->siglock);
  501. listpos = head;
  502. if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
  503. list_for_each_entry(next, head, entry) {
  504. if (next->expires.sched > nt->expires.sched)
  505. break;
  506. listpos = &next->entry;
  507. }
  508. } else {
  509. list_for_each_entry(next, head, entry) {
  510. if (cputime_gt(next->expires.cpu, nt->expires.cpu))
  511. break;
  512. listpos = &next->entry;
  513. }
  514. }
  515. list_add(&nt->entry, listpos);
  516. if (listpos == head) {
  517. /*
  518. * We are the new earliest-expiring timer.
  519. * If we are a thread timer, there can always
  520. * be a process timer telling us to stop earlier.
  521. */
  522. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  523. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  524. default:
  525. BUG();
  526. case CPUCLOCK_PROF:
  527. if (cputime_eq(p->cputime_expires.prof_exp,
  528. cputime_zero) ||
  529. cputime_gt(p->cputime_expires.prof_exp,
  530. nt->expires.cpu))
  531. p->cputime_expires.prof_exp =
  532. nt->expires.cpu;
  533. break;
  534. case CPUCLOCK_VIRT:
  535. if (cputime_eq(p->cputime_expires.virt_exp,
  536. cputime_zero) ||
  537. cputime_gt(p->cputime_expires.virt_exp,
  538. nt->expires.cpu))
  539. p->cputime_expires.virt_exp =
  540. nt->expires.cpu;
  541. break;
  542. case CPUCLOCK_SCHED:
  543. if (p->cputime_expires.sched_exp == 0 ||
  544. p->cputime_expires.sched_exp >
  545. nt->expires.sched)
  546. p->cputime_expires.sched_exp =
  547. nt->expires.sched;
  548. break;
  549. }
  550. } else {
  551. struct signal_struct *const sig = p->signal;
  552. union cpu_time_count *exp = &timer->it.cpu.expires;
  553. /*
  554. * For a process timer, set the cached expiration time.
  555. */
  556. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  557. default:
  558. BUG();
  559. case CPUCLOCK_VIRT:
  560. if (!cputime_eq(sig->it[CPUCLOCK_VIRT].expires,
  561. cputime_zero) &&
  562. cputime_lt(sig->it[CPUCLOCK_VIRT].expires,
  563. exp->cpu))
  564. break;
  565. sig->cputime_expires.virt_exp = exp->cpu;
  566. break;
  567. case CPUCLOCK_PROF:
  568. if (!cputime_eq(sig->it[CPUCLOCK_PROF].expires,
  569. cputime_zero) &&
  570. cputime_lt(sig->it[CPUCLOCK_PROF].expires,
  571. exp->cpu))
  572. break;
  573. i = sig->rlim[RLIMIT_CPU].rlim_cur;
  574. if (i != RLIM_INFINITY &&
  575. i <= cputime_to_secs(exp->cpu))
  576. break;
  577. sig->cputime_expires.prof_exp = exp->cpu;
  578. break;
  579. case CPUCLOCK_SCHED:
  580. sig->cputime_expires.sched_exp = exp->sched;
  581. break;
  582. }
  583. }
  584. }
  585. spin_unlock(&p->sighand->siglock);
  586. }
  587. /*
  588. * The timer is locked, fire it and arrange for its reload.
  589. */
  590. static void cpu_timer_fire(struct k_itimer *timer)
  591. {
  592. if (unlikely(timer->sigq == NULL)) {
  593. /*
  594. * This a special case for clock_nanosleep,
  595. * not a normal timer from sys_timer_create.
  596. */
  597. wake_up_process(timer->it_process);
  598. timer->it.cpu.expires.sched = 0;
  599. } else if (timer->it.cpu.incr.sched == 0) {
  600. /*
  601. * One-shot timer. Clear it as soon as it's fired.
  602. */
  603. posix_timer_event(timer, 0);
  604. timer->it.cpu.expires.sched = 0;
  605. } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
  606. /*
  607. * The signal did not get queued because the signal
  608. * was ignored, so we won't get any callback to
  609. * reload the timer. But we need to keep it
  610. * ticking in case the signal is deliverable next time.
  611. */
  612. posix_cpu_timer_schedule(timer);
  613. }
  614. }
  615. /*
  616. * Sample a process (thread group) timer for the given group_leader task.
  617. * Must be called with tasklist_lock held for reading.
  618. */
  619. static int cpu_timer_sample_group(const clockid_t which_clock,
  620. struct task_struct *p,
  621. union cpu_time_count *cpu)
  622. {
  623. struct task_cputime cputime;
  624. thread_group_cputimer(p, &cputime);
  625. switch (CPUCLOCK_WHICH(which_clock)) {
  626. default:
  627. return -EINVAL;
  628. case CPUCLOCK_PROF:
  629. cpu->cpu = cputime_add(cputime.utime, cputime.stime);
  630. break;
  631. case CPUCLOCK_VIRT:
  632. cpu->cpu = cputime.utime;
  633. break;
  634. case CPUCLOCK_SCHED:
  635. cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
  636. break;
  637. }
  638. return 0;
  639. }
  640. /*
  641. * Guts of sys_timer_settime for CPU timers.
  642. * This is called with the timer locked and interrupts disabled.
  643. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  644. * and try again. (This happens when the timer is in the middle of firing.)
  645. */
  646. int posix_cpu_timer_set(struct k_itimer *timer, int flags,
  647. struct itimerspec *new, struct itimerspec *old)
  648. {
  649. struct task_struct *p = timer->it.cpu.task;
  650. union cpu_time_count old_expires, new_expires, val;
  651. int ret;
  652. if (unlikely(p == NULL)) {
  653. /*
  654. * Timer refers to a dead task's clock.
  655. */
  656. return -ESRCH;
  657. }
  658. new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
  659. read_lock(&tasklist_lock);
  660. /*
  661. * We need the tasklist_lock to protect against reaping that
  662. * clears p->signal. If p has just been reaped, we can no
  663. * longer get any information about it at all.
  664. */
  665. if (unlikely(p->signal == NULL)) {
  666. read_unlock(&tasklist_lock);
  667. put_task_struct(p);
  668. timer->it.cpu.task = NULL;
  669. return -ESRCH;
  670. }
  671. /*
  672. * Disarm any old timer after extracting its expiry time.
  673. */
  674. BUG_ON(!irqs_disabled());
  675. ret = 0;
  676. spin_lock(&p->sighand->siglock);
  677. old_expires = timer->it.cpu.expires;
  678. if (unlikely(timer->it.cpu.firing)) {
  679. timer->it.cpu.firing = -1;
  680. ret = TIMER_RETRY;
  681. } else
  682. list_del_init(&timer->it.cpu.entry);
  683. spin_unlock(&p->sighand->siglock);
  684. /*
  685. * We need to sample the current value to convert the new
  686. * value from to relative and absolute, and to convert the
  687. * old value from absolute to relative. To set a process
  688. * timer, we need a sample to balance the thread expiry
  689. * times (in arm_timer). With an absolute time, we must
  690. * check if it's already passed. In short, we need a sample.
  691. */
  692. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  693. cpu_clock_sample(timer->it_clock, p, &val);
  694. } else {
  695. cpu_timer_sample_group(timer->it_clock, p, &val);
  696. }
  697. if (old) {
  698. if (old_expires.sched == 0) {
  699. old->it_value.tv_sec = 0;
  700. old->it_value.tv_nsec = 0;
  701. } else {
  702. /*
  703. * Update the timer in case it has
  704. * overrun already. If it has,
  705. * we'll report it as having overrun
  706. * and with the next reloaded timer
  707. * already ticking, though we are
  708. * swallowing that pending
  709. * notification here to install the
  710. * new setting.
  711. */
  712. bump_cpu_timer(timer, val);
  713. if (cpu_time_before(timer->it_clock, val,
  714. timer->it.cpu.expires)) {
  715. old_expires = cpu_time_sub(
  716. timer->it_clock,
  717. timer->it.cpu.expires, val);
  718. sample_to_timespec(timer->it_clock,
  719. old_expires,
  720. &old->it_value);
  721. } else {
  722. old->it_value.tv_nsec = 1;
  723. old->it_value.tv_sec = 0;
  724. }
  725. }
  726. }
  727. if (unlikely(ret)) {
  728. /*
  729. * We are colliding with the timer actually firing.
  730. * Punt after filling in the timer's old value, and
  731. * disable this firing since we are already reporting
  732. * it as an overrun (thanks to bump_cpu_timer above).
  733. */
  734. read_unlock(&tasklist_lock);
  735. goto out;
  736. }
  737. if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
  738. cpu_time_add(timer->it_clock, &new_expires, val);
  739. }
  740. /*
  741. * Install the new expiry time (or zero).
  742. * For a timer with no notification action, we don't actually
  743. * arm the timer (we'll just fake it for timer_gettime).
  744. */
  745. timer->it.cpu.expires = new_expires;
  746. if (new_expires.sched != 0 &&
  747. (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
  748. cpu_time_before(timer->it_clock, val, new_expires)) {
  749. arm_timer(timer, val);
  750. }
  751. read_unlock(&tasklist_lock);
  752. /*
  753. * Install the new reload setting, and
  754. * set up the signal and overrun bookkeeping.
  755. */
  756. timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
  757. &new->it_interval);
  758. /*
  759. * This acts as a modification timestamp for the timer,
  760. * so any automatic reload attempt will punt on seeing
  761. * that we have reset the timer manually.
  762. */
  763. timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
  764. ~REQUEUE_PENDING;
  765. timer->it_overrun_last = 0;
  766. timer->it_overrun = -1;
  767. if (new_expires.sched != 0 &&
  768. (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
  769. !cpu_time_before(timer->it_clock, val, new_expires)) {
  770. /*
  771. * The designated time already passed, so we notify
  772. * immediately, even if the thread never runs to
  773. * accumulate more time on this clock.
  774. */
  775. cpu_timer_fire(timer);
  776. }
  777. ret = 0;
  778. out:
  779. if (old) {
  780. sample_to_timespec(timer->it_clock,
  781. timer->it.cpu.incr, &old->it_interval);
  782. }
  783. return ret;
  784. }
  785. void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
  786. {
  787. union cpu_time_count now;
  788. struct task_struct *p = timer->it.cpu.task;
  789. int clear_dead;
  790. /*
  791. * Easy part: convert the reload time.
  792. */
  793. sample_to_timespec(timer->it_clock,
  794. timer->it.cpu.incr, &itp->it_interval);
  795. if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
  796. itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
  797. return;
  798. }
  799. if (unlikely(p == NULL)) {
  800. /*
  801. * This task already died and the timer will never fire.
  802. * In this case, expires is actually the dead value.
  803. */
  804. dead:
  805. sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
  806. &itp->it_value);
  807. return;
  808. }
  809. /*
  810. * Sample the clock to take the difference with the expiry time.
  811. */
  812. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  813. cpu_clock_sample(timer->it_clock, p, &now);
  814. clear_dead = p->exit_state;
  815. } else {
  816. read_lock(&tasklist_lock);
  817. if (unlikely(p->signal == NULL)) {
  818. /*
  819. * The process has been reaped.
  820. * We can't even collect a sample any more.
  821. * Call the timer disarmed, nothing else to do.
  822. */
  823. put_task_struct(p);
  824. timer->it.cpu.task = NULL;
  825. timer->it.cpu.expires.sched = 0;
  826. read_unlock(&tasklist_lock);
  827. goto dead;
  828. } else {
  829. cpu_timer_sample_group(timer->it_clock, p, &now);
  830. clear_dead = (unlikely(p->exit_state) &&
  831. thread_group_empty(p));
  832. }
  833. read_unlock(&tasklist_lock);
  834. }
  835. if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
  836. if (timer->it.cpu.incr.sched == 0 &&
  837. cpu_time_before(timer->it_clock,
  838. timer->it.cpu.expires, now)) {
  839. /*
  840. * Do-nothing timer expired and has no reload,
  841. * so it's as if it was never set.
  842. */
  843. timer->it.cpu.expires.sched = 0;
  844. itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
  845. return;
  846. }
  847. /*
  848. * Account for any expirations and reloads that should
  849. * have happened.
  850. */
  851. bump_cpu_timer(timer, now);
  852. }
  853. if (unlikely(clear_dead)) {
  854. /*
  855. * We've noticed that the thread is dead, but
  856. * not yet reaped. Take this opportunity to
  857. * drop our task ref.
  858. */
  859. clear_dead_task(timer, now);
  860. goto dead;
  861. }
  862. if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
  863. sample_to_timespec(timer->it_clock,
  864. cpu_time_sub(timer->it_clock,
  865. timer->it.cpu.expires, now),
  866. &itp->it_value);
  867. } else {
  868. /*
  869. * The timer should have expired already, but the firing
  870. * hasn't taken place yet. Say it's just about to expire.
  871. */
  872. itp->it_value.tv_nsec = 1;
  873. itp->it_value.tv_sec = 0;
  874. }
  875. }
  876. /*
  877. * Check for any per-thread CPU timers that have fired and move them off
  878. * the tsk->cpu_timers[N] list onto the firing list. Here we update the
  879. * tsk->it_*_expires values to reflect the remaining thread CPU timers.
  880. */
  881. static void check_thread_timers(struct task_struct *tsk,
  882. struct list_head *firing)
  883. {
  884. int maxfire;
  885. struct list_head *timers = tsk->cpu_timers;
  886. struct signal_struct *const sig = tsk->signal;
  887. maxfire = 20;
  888. tsk->cputime_expires.prof_exp = cputime_zero;
  889. while (!list_empty(timers)) {
  890. struct cpu_timer_list *t = list_first_entry(timers,
  891. struct cpu_timer_list,
  892. entry);
  893. if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
  894. tsk->cputime_expires.prof_exp = t->expires.cpu;
  895. break;
  896. }
  897. t->firing = 1;
  898. list_move_tail(&t->entry, firing);
  899. }
  900. ++timers;
  901. maxfire = 20;
  902. tsk->cputime_expires.virt_exp = cputime_zero;
  903. while (!list_empty(timers)) {
  904. struct cpu_timer_list *t = list_first_entry(timers,
  905. struct cpu_timer_list,
  906. entry);
  907. if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
  908. tsk->cputime_expires.virt_exp = t->expires.cpu;
  909. break;
  910. }
  911. t->firing = 1;
  912. list_move_tail(&t->entry, firing);
  913. }
  914. ++timers;
  915. maxfire = 20;
  916. tsk->cputime_expires.sched_exp = 0;
  917. while (!list_empty(timers)) {
  918. struct cpu_timer_list *t = list_first_entry(timers,
  919. struct cpu_timer_list,
  920. entry);
  921. if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
  922. tsk->cputime_expires.sched_exp = t->expires.sched;
  923. break;
  924. }
  925. t->firing = 1;
  926. list_move_tail(&t->entry, firing);
  927. }
  928. /*
  929. * Check for the special case thread timers.
  930. */
  931. if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
  932. unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
  933. unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
  934. if (hard != RLIM_INFINITY &&
  935. tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
  936. /*
  937. * At the hard limit, we just die.
  938. * No need to calculate anything else now.
  939. */
  940. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  941. return;
  942. }
  943. if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
  944. /*
  945. * At the soft limit, send a SIGXCPU every second.
  946. */
  947. if (sig->rlim[RLIMIT_RTTIME].rlim_cur
  948. < sig->rlim[RLIMIT_RTTIME].rlim_max) {
  949. sig->rlim[RLIMIT_RTTIME].rlim_cur +=
  950. USEC_PER_SEC;
  951. }
  952. printk(KERN_INFO
  953. "RT Watchdog Timeout: %s[%d]\n",
  954. tsk->comm, task_pid_nr(tsk));
  955. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  956. }
  957. }
  958. }
  959. static void stop_process_timers(struct task_struct *tsk)
  960. {
  961. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  962. unsigned long flags;
  963. if (!cputimer->running)
  964. return;
  965. spin_lock_irqsave(&cputimer->lock, flags);
  966. cputimer->running = 0;
  967. spin_unlock_irqrestore(&cputimer->lock, flags);
  968. }
  969. static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
  970. cputime_t *expires, cputime_t cur_time, int signo)
  971. {
  972. if (cputime_eq(it->expires, cputime_zero))
  973. return;
  974. if (cputime_ge(cur_time, it->expires)) {
  975. it->expires = it->incr;
  976. if (!cputime_eq(it->expires, cputime_zero))
  977. it->expires = cputime_add(it->expires, cur_time);
  978. __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
  979. }
  980. if (!cputime_eq(it->expires, cputime_zero) &&
  981. (cputime_eq(*expires, cputime_zero) ||
  982. cputime_lt(it->expires, *expires))) {
  983. *expires = it->expires;
  984. }
  985. }
  986. /*
  987. * Check for any per-thread CPU timers that have fired and move them
  988. * off the tsk->*_timers list onto the firing list. Per-thread timers
  989. * have already been taken off.
  990. */
  991. static void check_process_timers(struct task_struct *tsk,
  992. struct list_head *firing)
  993. {
  994. int maxfire;
  995. struct signal_struct *const sig = tsk->signal;
  996. cputime_t utime, ptime, virt_expires, prof_expires;
  997. unsigned long long sum_sched_runtime, sched_expires;
  998. struct list_head *timers = sig->cpu_timers;
  999. struct task_cputime cputime;
  1000. /*
  1001. * Don't sample the current process CPU clocks if there are no timers.
  1002. */
  1003. if (list_empty(&timers[CPUCLOCK_PROF]) &&
  1004. cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
  1005. sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
  1006. list_empty(&timers[CPUCLOCK_VIRT]) &&
  1007. cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
  1008. list_empty(&timers[CPUCLOCK_SCHED])) {
  1009. stop_process_timers(tsk);
  1010. return;
  1011. }
  1012. /*
  1013. * Collect the current process totals.
  1014. */
  1015. thread_group_cputimer(tsk, &cputime);
  1016. utime = cputime.utime;
  1017. ptime = cputime_add(utime, cputime.stime);
  1018. sum_sched_runtime = cputime.sum_exec_runtime;
  1019. maxfire = 20;
  1020. prof_expires = cputime_zero;
  1021. while (!list_empty(timers)) {
  1022. struct cpu_timer_list *tl = list_first_entry(timers,
  1023. struct cpu_timer_list,
  1024. entry);
  1025. if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
  1026. prof_expires = tl->expires.cpu;
  1027. break;
  1028. }
  1029. tl->firing = 1;
  1030. list_move_tail(&tl->entry, firing);
  1031. }
  1032. ++timers;
  1033. maxfire = 20;
  1034. virt_expires = cputime_zero;
  1035. while (!list_empty(timers)) {
  1036. struct cpu_timer_list *tl = list_first_entry(timers,
  1037. struct cpu_timer_list,
  1038. entry);
  1039. if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
  1040. virt_expires = tl->expires.cpu;
  1041. break;
  1042. }
  1043. tl->firing = 1;
  1044. list_move_tail(&tl->entry, firing);
  1045. }
  1046. ++timers;
  1047. maxfire = 20;
  1048. sched_expires = 0;
  1049. while (!list_empty(timers)) {
  1050. struct cpu_timer_list *tl = list_first_entry(timers,
  1051. struct cpu_timer_list,
  1052. entry);
  1053. if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
  1054. sched_expires = tl->expires.sched;
  1055. break;
  1056. }
  1057. tl->firing = 1;
  1058. list_move_tail(&tl->entry, firing);
  1059. }
  1060. /*
  1061. * Check for the special case process timers.
  1062. */
  1063. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
  1064. SIGPROF);
  1065. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
  1066. SIGVTALRM);
  1067. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  1068. unsigned long psecs = cputime_to_secs(ptime);
  1069. cputime_t x;
  1070. if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
  1071. /*
  1072. * At the hard limit, we just die.
  1073. * No need to calculate anything else now.
  1074. */
  1075. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  1076. return;
  1077. }
  1078. if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
  1079. /*
  1080. * At the soft limit, send a SIGXCPU every second.
  1081. */
  1082. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  1083. if (sig->rlim[RLIMIT_CPU].rlim_cur
  1084. < sig->rlim[RLIMIT_CPU].rlim_max) {
  1085. sig->rlim[RLIMIT_CPU].rlim_cur++;
  1086. }
  1087. }
  1088. x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  1089. if (cputime_eq(prof_expires, cputime_zero) ||
  1090. cputime_lt(x, prof_expires)) {
  1091. prof_expires = x;
  1092. }
  1093. }
  1094. if (!cputime_eq(prof_expires, cputime_zero) &&
  1095. (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
  1096. cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
  1097. sig->cputime_expires.prof_exp = prof_expires;
  1098. if (!cputime_eq(virt_expires, cputime_zero) &&
  1099. (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
  1100. cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
  1101. sig->cputime_expires.virt_exp = virt_expires;
  1102. if (sched_expires != 0 &&
  1103. (sig->cputime_expires.sched_exp == 0 ||
  1104. sig->cputime_expires.sched_exp > sched_expires))
  1105. sig->cputime_expires.sched_exp = sched_expires;
  1106. }
  1107. /*
  1108. * This is called from the signal code (via do_schedule_next_timer)
  1109. * when the last timer signal was delivered and we have to reload the timer.
  1110. */
  1111. void posix_cpu_timer_schedule(struct k_itimer *timer)
  1112. {
  1113. struct task_struct *p = timer->it.cpu.task;
  1114. union cpu_time_count now;
  1115. if (unlikely(p == NULL))
  1116. /*
  1117. * The task was cleaned up already, no future firings.
  1118. */
  1119. goto out;
  1120. /*
  1121. * Fetch the current sample and update the timer's expiry time.
  1122. */
  1123. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  1124. cpu_clock_sample(timer->it_clock, p, &now);
  1125. bump_cpu_timer(timer, now);
  1126. if (unlikely(p->exit_state)) {
  1127. clear_dead_task(timer, now);
  1128. goto out;
  1129. }
  1130. read_lock(&tasklist_lock); /* arm_timer needs it. */
  1131. } else {
  1132. read_lock(&tasklist_lock);
  1133. if (unlikely(p->signal == NULL)) {
  1134. /*
  1135. * The process has been reaped.
  1136. * We can't even collect a sample any more.
  1137. */
  1138. put_task_struct(p);
  1139. timer->it.cpu.task = p = NULL;
  1140. timer->it.cpu.expires.sched = 0;
  1141. goto out_unlock;
  1142. } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
  1143. /*
  1144. * We've noticed that the thread is dead, but
  1145. * not yet reaped. Take this opportunity to
  1146. * drop our task ref.
  1147. */
  1148. clear_dead_task(timer, now);
  1149. goto out_unlock;
  1150. }
  1151. cpu_timer_sample_group(timer->it_clock, p, &now);
  1152. bump_cpu_timer(timer, now);
  1153. /* Leave the tasklist_lock locked for the call below. */
  1154. }
  1155. /*
  1156. * Now re-arm for the new expiry time.
  1157. */
  1158. arm_timer(timer, now);
  1159. out_unlock:
  1160. read_unlock(&tasklist_lock);
  1161. out:
  1162. timer->it_overrun_last = timer->it_overrun;
  1163. timer->it_overrun = -1;
  1164. ++timer->it_requeue_pending;
  1165. }
  1166. /**
  1167. * task_cputime_zero - Check a task_cputime struct for all zero fields.
  1168. *
  1169. * @cputime: The struct to compare.
  1170. *
  1171. * Checks @cputime to see if all fields are zero. Returns true if all fields
  1172. * are zero, false if any field is nonzero.
  1173. */
  1174. static inline int task_cputime_zero(const struct task_cputime *cputime)
  1175. {
  1176. if (cputime_eq(cputime->utime, cputime_zero) &&
  1177. cputime_eq(cputime->stime, cputime_zero) &&
  1178. cputime->sum_exec_runtime == 0)
  1179. return 1;
  1180. return 0;
  1181. }
  1182. /**
  1183. * task_cputime_expired - Compare two task_cputime entities.
  1184. *
  1185. * @sample: The task_cputime structure to be checked for expiration.
  1186. * @expires: Expiration times, against which @sample will be checked.
  1187. *
  1188. * Checks @sample against @expires to see if any field of @sample has expired.
  1189. * Returns true if any field of the former is greater than the corresponding
  1190. * field of the latter if the latter field is set. Otherwise returns false.
  1191. */
  1192. static inline int task_cputime_expired(const struct task_cputime *sample,
  1193. const struct task_cputime *expires)
  1194. {
  1195. if (!cputime_eq(expires->utime, cputime_zero) &&
  1196. cputime_ge(sample->utime, expires->utime))
  1197. return 1;
  1198. if (!cputime_eq(expires->stime, cputime_zero) &&
  1199. cputime_ge(cputime_add(sample->utime, sample->stime),
  1200. expires->stime))
  1201. return 1;
  1202. if (expires->sum_exec_runtime != 0 &&
  1203. sample->sum_exec_runtime >= expires->sum_exec_runtime)
  1204. return 1;
  1205. return 0;
  1206. }
  1207. /**
  1208. * fastpath_timer_check - POSIX CPU timers fast path.
  1209. *
  1210. * @tsk: The task (thread) being checked.
  1211. *
  1212. * Check the task and thread group timers. If both are zero (there are no
  1213. * timers set) return false. Otherwise snapshot the task and thread group
  1214. * timers and compare them with the corresponding expiration times. Return
  1215. * true if a timer has expired, else return false.
  1216. */
  1217. static inline int fastpath_timer_check(struct task_struct *tsk)
  1218. {
  1219. struct signal_struct *sig;
  1220. /* tsk == current, ensure it is safe to use ->signal/sighand */
  1221. if (unlikely(tsk->exit_state))
  1222. return 0;
  1223. if (!task_cputime_zero(&tsk->cputime_expires)) {
  1224. struct task_cputime task_sample = {
  1225. .utime = tsk->utime,
  1226. .stime = tsk->stime,
  1227. .sum_exec_runtime = tsk->se.sum_exec_runtime
  1228. };
  1229. if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
  1230. return 1;
  1231. }
  1232. sig = tsk->signal;
  1233. if (!task_cputime_zero(&sig->cputime_expires)) {
  1234. struct task_cputime group_sample;
  1235. thread_group_cputimer(tsk, &group_sample);
  1236. if (task_cputime_expired(&group_sample, &sig->cputime_expires))
  1237. return 1;
  1238. }
  1239. return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
  1240. }
  1241. /*
  1242. * This is called from the timer interrupt handler. The irq handler has
  1243. * already updated our counts. We need to check if any timers fire now.
  1244. * Interrupts are disabled.
  1245. */
  1246. void run_posix_cpu_timers(struct task_struct *tsk)
  1247. {
  1248. LIST_HEAD(firing);
  1249. struct k_itimer *timer, *next;
  1250. BUG_ON(!irqs_disabled());
  1251. /*
  1252. * The fast path checks that there are no expired thread or thread
  1253. * group timers. If that's so, just return.
  1254. */
  1255. if (!fastpath_timer_check(tsk))
  1256. return;
  1257. spin_lock(&tsk->sighand->siglock);
  1258. /*
  1259. * Here we take off tsk->signal->cpu_timers[N] and
  1260. * tsk->cpu_timers[N] all the timers that are firing, and
  1261. * put them on the firing list.
  1262. */
  1263. check_thread_timers(tsk, &firing);
  1264. check_process_timers(tsk, &firing);
  1265. /*
  1266. * We must release these locks before taking any timer's lock.
  1267. * There is a potential race with timer deletion here, as the
  1268. * siglock now protects our private firing list. We have set
  1269. * the firing flag in each timer, so that a deletion attempt
  1270. * that gets the timer lock before we do will give it up and
  1271. * spin until we've taken care of that timer below.
  1272. */
  1273. spin_unlock(&tsk->sighand->siglock);
  1274. /*
  1275. * Now that all the timers on our list have the firing flag,
  1276. * noone will touch their list entries but us. We'll take
  1277. * each timer's lock before clearing its firing flag, so no
  1278. * timer call will interfere.
  1279. */
  1280. list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
  1281. int cpu_firing;
  1282. spin_lock(&timer->it_lock);
  1283. list_del_init(&timer->it.cpu.entry);
  1284. cpu_firing = timer->it.cpu.firing;
  1285. timer->it.cpu.firing = 0;
  1286. /*
  1287. * The firing flag is -1 if we collided with a reset
  1288. * of the timer, which already reported this
  1289. * almost-firing as an overrun. So don't generate an event.
  1290. */
  1291. if (likely(cpu_firing >= 0))
  1292. cpu_timer_fire(timer);
  1293. spin_unlock(&timer->it_lock);
  1294. }
  1295. }
  1296. /*
  1297. * Set one of the process-wide special case CPU timers.
  1298. * The tsk->sighand->siglock must be held by the caller.
  1299. * The *newval argument is relative and we update it to be absolute, *oldval
  1300. * is absolute and we update it to be relative.
  1301. */
  1302. void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
  1303. cputime_t *newval, cputime_t *oldval)
  1304. {
  1305. union cpu_time_count now;
  1306. struct list_head *head;
  1307. BUG_ON(clock_idx == CPUCLOCK_SCHED);
  1308. cpu_timer_sample_group(clock_idx, tsk, &now);
  1309. if (oldval) {
  1310. if (!cputime_eq(*oldval, cputime_zero)) {
  1311. if (cputime_le(*oldval, now.cpu)) {
  1312. /* Just about to fire. */
  1313. *oldval = jiffies_to_cputime(1);
  1314. } else {
  1315. *oldval = cputime_sub(*oldval, now.cpu);
  1316. }
  1317. }
  1318. if (cputime_eq(*newval, cputime_zero))
  1319. return;
  1320. *newval = cputime_add(*newval, now.cpu);
  1321. /*
  1322. * If the RLIMIT_CPU timer will expire before the
  1323. * ITIMER_PROF timer, we have nothing else to do.
  1324. */
  1325. if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
  1326. < cputime_to_secs(*newval))
  1327. return;
  1328. }
  1329. /*
  1330. * Check whether there are any process timers already set to fire
  1331. * before this one. If so, we don't have anything more to do.
  1332. */
  1333. head = &tsk->signal->cpu_timers[clock_idx];
  1334. if (list_empty(head) ||
  1335. cputime_ge(list_first_entry(head,
  1336. struct cpu_timer_list, entry)->expires.cpu,
  1337. *newval)) {
  1338. switch (clock_idx) {
  1339. case CPUCLOCK_PROF:
  1340. tsk->signal->cputime_expires.prof_exp = *newval;
  1341. break;
  1342. case CPUCLOCK_VIRT:
  1343. tsk->signal->cputime_expires.virt_exp = *newval;
  1344. break;
  1345. }
  1346. }
  1347. }
  1348. static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
  1349. struct timespec *rqtp, struct itimerspec *it)
  1350. {
  1351. struct k_itimer timer;
  1352. int error;
  1353. /*
  1354. * Set up a temporary timer and then wait for it to go off.
  1355. */
  1356. memset(&timer, 0, sizeof timer);
  1357. spin_lock_init(&timer.it_lock);
  1358. timer.it_clock = which_clock;
  1359. timer.it_overrun = -1;
  1360. error = posix_cpu_timer_create(&timer);
  1361. timer.it_process = current;
  1362. if (!error) {
  1363. static struct itimerspec zero_it;
  1364. memset(it, 0, sizeof *it);
  1365. it->it_value = *rqtp;
  1366. spin_lock_irq(&timer.it_lock);
  1367. error = posix_cpu_timer_set(&timer, flags, it, NULL);
  1368. if (error) {
  1369. spin_unlock_irq(&timer.it_lock);
  1370. return error;
  1371. }
  1372. while (!signal_pending(current)) {
  1373. if (timer.it.cpu.expires.sched == 0) {
  1374. /*
  1375. * Our timer fired and was reset.
  1376. */
  1377. spin_unlock_irq(&timer.it_lock);
  1378. return 0;
  1379. }
  1380. /*
  1381. * Block until cpu_timer_fire (or a signal) wakes us.
  1382. */
  1383. __set_current_state(TASK_INTERRUPTIBLE);
  1384. spin_unlock_irq(&timer.it_lock);
  1385. schedule();
  1386. spin_lock_irq(&timer.it_lock);
  1387. }
  1388. /*
  1389. * We were interrupted by a signal.
  1390. */
  1391. sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
  1392. posix_cpu_timer_set(&timer, 0, &zero_it, it);
  1393. spin_unlock_irq(&timer.it_lock);
  1394. if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
  1395. /*
  1396. * It actually did fire already.
  1397. */
  1398. return 0;
  1399. }
  1400. error = -ERESTART_RESTARTBLOCK;
  1401. }
  1402. return error;
  1403. }
  1404. int posix_cpu_nsleep(const clockid_t which_clock, int flags,
  1405. struct timespec *rqtp, struct timespec __user *rmtp)
  1406. {
  1407. struct restart_block *restart_block =
  1408. &current_thread_info()->restart_block;
  1409. struct itimerspec it;
  1410. int error;
  1411. /*
  1412. * Diagnose required errors first.
  1413. */
  1414. if (CPUCLOCK_PERTHREAD(which_clock) &&
  1415. (CPUCLOCK_PID(which_clock) == 0 ||
  1416. CPUCLOCK_PID(which_clock) == current->pid))
  1417. return -EINVAL;
  1418. error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
  1419. if (error == -ERESTART_RESTARTBLOCK) {
  1420. if (flags & TIMER_ABSTIME)
  1421. return -ERESTARTNOHAND;
  1422. /*
  1423. * Report back to the user the time still remaining.
  1424. */
  1425. if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1426. return -EFAULT;
  1427. restart_block->fn = posix_cpu_nsleep_restart;
  1428. restart_block->arg0 = which_clock;
  1429. restart_block->arg1 = (unsigned long) rmtp;
  1430. restart_block->arg2 = rqtp->tv_sec;
  1431. restart_block->arg3 = rqtp->tv_nsec;
  1432. }
  1433. return error;
  1434. }
  1435. long posix_cpu_nsleep_restart(struct restart_block *restart_block)
  1436. {
  1437. clockid_t which_clock = restart_block->arg0;
  1438. struct timespec __user *rmtp;
  1439. struct timespec t;
  1440. struct itimerspec it;
  1441. int error;
  1442. rmtp = (struct timespec __user *) restart_block->arg1;
  1443. t.tv_sec = restart_block->arg2;
  1444. t.tv_nsec = restart_block->arg3;
  1445. restart_block->fn = do_no_restart_syscall;
  1446. error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
  1447. if (error == -ERESTART_RESTARTBLOCK) {
  1448. /*
  1449. * Report back to the user the time still remaining.
  1450. */
  1451. if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
  1452. return -EFAULT;
  1453. restart_block->fn = posix_cpu_nsleep_restart;
  1454. restart_block->arg0 = which_clock;
  1455. restart_block->arg1 = (unsigned long) rmtp;
  1456. restart_block->arg2 = t.tv_sec;
  1457. restart_block->arg3 = t.tv_nsec;
  1458. }
  1459. return error;
  1460. }
  1461. #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
  1462. #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
  1463. static int process_cpu_clock_getres(const clockid_t which_clock,
  1464. struct timespec *tp)
  1465. {
  1466. return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
  1467. }
  1468. static int process_cpu_clock_get(const clockid_t which_clock,
  1469. struct timespec *tp)
  1470. {
  1471. return posix_cpu_clock_get(PROCESS_CLOCK, tp);
  1472. }
  1473. static int process_cpu_timer_create(struct k_itimer *timer)
  1474. {
  1475. timer->it_clock = PROCESS_CLOCK;
  1476. return posix_cpu_timer_create(timer);
  1477. }
  1478. static int process_cpu_nsleep(const clockid_t which_clock, int flags,
  1479. struct timespec *rqtp,
  1480. struct timespec __user *rmtp)
  1481. {
  1482. return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
  1483. }
  1484. static long process_cpu_nsleep_restart(struct restart_block *restart_block)
  1485. {
  1486. return -EINVAL;
  1487. }
  1488. static int thread_cpu_clock_getres(const clockid_t which_clock,
  1489. struct timespec *tp)
  1490. {
  1491. return posix_cpu_clock_getres(THREAD_CLOCK, tp);
  1492. }
  1493. static int thread_cpu_clock_get(const clockid_t which_clock,
  1494. struct timespec *tp)
  1495. {
  1496. return posix_cpu_clock_get(THREAD_CLOCK, tp);
  1497. }
  1498. static int thread_cpu_timer_create(struct k_itimer *timer)
  1499. {
  1500. timer->it_clock = THREAD_CLOCK;
  1501. return posix_cpu_timer_create(timer);
  1502. }
  1503. static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
  1504. struct timespec *rqtp, struct timespec __user *rmtp)
  1505. {
  1506. return -EINVAL;
  1507. }
  1508. static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
  1509. {
  1510. return -EINVAL;
  1511. }
  1512. static __init int init_posix_cpu_timers(void)
  1513. {
  1514. struct k_clock process = {
  1515. .clock_getres = process_cpu_clock_getres,
  1516. .clock_get = process_cpu_clock_get,
  1517. .clock_set = do_posix_clock_nosettime,
  1518. .timer_create = process_cpu_timer_create,
  1519. .nsleep = process_cpu_nsleep,
  1520. .nsleep_restart = process_cpu_nsleep_restart,
  1521. };
  1522. struct k_clock thread = {
  1523. .clock_getres = thread_cpu_clock_getres,
  1524. .clock_get = thread_cpu_clock_get,
  1525. .clock_set = do_posix_clock_nosettime,
  1526. .timer_create = thread_cpu_timer_create,
  1527. .nsleep = thread_cpu_nsleep,
  1528. .nsleep_restart = thread_cpu_nsleep_restart,
  1529. };
  1530. register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
  1531. register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
  1532. return 0;
  1533. }
  1534. __initcall(init_posix_cpu_timers);