namespace.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/quotaops.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <linux/log2.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/unistd.h>
  30. #include "pnode.h"
  31. #include "internal.h"
  32. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  33. #define HASH_SIZE (1UL << HASH_SHIFT)
  34. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  35. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  36. static int event;
  37. static struct list_head *mount_hashtable __read_mostly;
  38. static struct kmem_cache *mnt_cache __read_mostly;
  39. static struct rw_semaphore namespace_sem;
  40. /* /sys/fs */
  41. struct kobject *fs_kobj;
  42. EXPORT_SYMBOL_GPL(fs_kobj);
  43. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  44. {
  45. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  46. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  47. tmp = tmp + (tmp >> HASH_SHIFT);
  48. return tmp & (HASH_SIZE - 1);
  49. }
  50. struct vfsmount *alloc_vfsmnt(const char *name)
  51. {
  52. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  53. if (mnt) {
  54. atomic_set(&mnt->mnt_count, 1);
  55. INIT_LIST_HEAD(&mnt->mnt_hash);
  56. INIT_LIST_HEAD(&mnt->mnt_child);
  57. INIT_LIST_HEAD(&mnt->mnt_mounts);
  58. INIT_LIST_HEAD(&mnt->mnt_list);
  59. INIT_LIST_HEAD(&mnt->mnt_expire);
  60. INIT_LIST_HEAD(&mnt->mnt_share);
  61. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  62. INIT_LIST_HEAD(&mnt->mnt_slave);
  63. if (name) {
  64. int size = strlen(name) + 1;
  65. char *newname = kmalloc(size, GFP_KERNEL);
  66. if (newname) {
  67. memcpy(newname, name, size);
  68. mnt->mnt_devname = newname;
  69. }
  70. }
  71. }
  72. return mnt;
  73. }
  74. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  75. {
  76. mnt->mnt_sb = sb;
  77. mnt->mnt_root = dget(sb->s_root);
  78. return 0;
  79. }
  80. EXPORT_SYMBOL(simple_set_mnt);
  81. void free_vfsmnt(struct vfsmount *mnt)
  82. {
  83. kfree(mnt->mnt_devname);
  84. kmem_cache_free(mnt_cache, mnt);
  85. }
  86. /*
  87. * find the first or last mount at @dentry on vfsmount @mnt depending on
  88. * @dir. If @dir is set return the first mount else return the last mount.
  89. */
  90. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  91. int dir)
  92. {
  93. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  94. struct list_head *tmp = head;
  95. struct vfsmount *p, *found = NULL;
  96. for (;;) {
  97. tmp = dir ? tmp->next : tmp->prev;
  98. p = NULL;
  99. if (tmp == head)
  100. break;
  101. p = list_entry(tmp, struct vfsmount, mnt_hash);
  102. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  103. found = p;
  104. break;
  105. }
  106. }
  107. return found;
  108. }
  109. /*
  110. * lookup_mnt increments the ref count before returning
  111. * the vfsmount struct.
  112. */
  113. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  114. {
  115. struct vfsmount *child_mnt;
  116. spin_lock(&vfsmount_lock);
  117. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  118. mntget(child_mnt);
  119. spin_unlock(&vfsmount_lock);
  120. return child_mnt;
  121. }
  122. static inline int check_mnt(struct vfsmount *mnt)
  123. {
  124. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  125. }
  126. static void touch_mnt_namespace(struct mnt_namespace *ns)
  127. {
  128. if (ns) {
  129. ns->event = ++event;
  130. wake_up_interruptible(&ns->poll);
  131. }
  132. }
  133. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  134. {
  135. if (ns && ns->event != event) {
  136. ns->event = event;
  137. wake_up_interruptible(&ns->poll);
  138. }
  139. }
  140. static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
  141. {
  142. old_nd->dentry = mnt->mnt_mountpoint;
  143. old_nd->mnt = mnt->mnt_parent;
  144. mnt->mnt_parent = mnt;
  145. mnt->mnt_mountpoint = mnt->mnt_root;
  146. list_del_init(&mnt->mnt_child);
  147. list_del_init(&mnt->mnt_hash);
  148. old_nd->dentry->d_mounted--;
  149. }
  150. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  151. struct vfsmount *child_mnt)
  152. {
  153. child_mnt->mnt_parent = mntget(mnt);
  154. child_mnt->mnt_mountpoint = dget(dentry);
  155. dentry->d_mounted++;
  156. }
  157. static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
  158. {
  159. mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
  160. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  161. hash(nd->mnt, nd->dentry));
  162. list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
  163. }
  164. /*
  165. * the caller must hold vfsmount_lock
  166. */
  167. static void commit_tree(struct vfsmount *mnt)
  168. {
  169. struct vfsmount *parent = mnt->mnt_parent;
  170. struct vfsmount *m;
  171. LIST_HEAD(head);
  172. struct mnt_namespace *n = parent->mnt_ns;
  173. BUG_ON(parent == mnt);
  174. list_add_tail(&head, &mnt->mnt_list);
  175. list_for_each_entry(m, &head, mnt_list)
  176. m->mnt_ns = n;
  177. list_splice(&head, n->list.prev);
  178. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  179. hash(parent, mnt->mnt_mountpoint));
  180. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  181. touch_mnt_namespace(n);
  182. }
  183. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  184. {
  185. struct list_head *next = p->mnt_mounts.next;
  186. if (next == &p->mnt_mounts) {
  187. while (1) {
  188. if (p == root)
  189. return NULL;
  190. next = p->mnt_child.next;
  191. if (next != &p->mnt_parent->mnt_mounts)
  192. break;
  193. p = p->mnt_parent;
  194. }
  195. }
  196. return list_entry(next, struct vfsmount, mnt_child);
  197. }
  198. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  199. {
  200. struct list_head *prev = p->mnt_mounts.prev;
  201. while (prev != &p->mnt_mounts) {
  202. p = list_entry(prev, struct vfsmount, mnt_child);
  203. prev = p->mnt_mounts.prev;
  204. }
  205. return p;
  206. }
  207. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  208. int flag)
  209. {
  210. struct super_block *sb = old->mnt_sb;
  211. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  212. if (mnt) {
  213. mnt->mnt_flags = old->mnt_flags;
  214. atomic_inc(&sb->s_active);
  215. mnt->mnt_sb = sb;
  216. mnt->mnt_root = dget(root);
  217. mnt->mnt_mountpoint = mnt->mnt_root;
  218. mnt->mnt_parent = mnt;
  219. if (flag & CL_SLAVE) {
  220. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  221. mnt->mnt_master = old;
  222. CLEAR_MNT_SHARED(mnt);
  223. } else if (!(flag & CL_PRIVATE)) {
  224. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  225. list_add(&mnt->mnt_share, &old->mnt_share);
  226. if (IS_MNT_SLAVE(old))
  227. list_add(&mnt->mnt_slave, &old->mnt_slave);
  228. mnt->mnt_master = old->mnt_master;
  229. }
  230. if (flag & CL_MAKE_SHARED)
  231. set_mnt_shared(mnt);
  232. /* stick the duplicate mount on the same expiry list
  233. * as the original if that was on one */
  234. if (flag & CL_EXPIRE) {
  235. spin_lock(&vfsmount_lock);
  236. if (!list_empty(&old->mnt_expire))
  237. list_add(&mnt->mnt_expire, &old->mnt_expire);
  238. spin_unlock(&vfsmount_lock);
  239. }
  240. }
  241. return mnt;
  242. }
  243. static inline void __mntput(struct vfsmount *mnt)
  244. {
  245. struct super_block *sb = mnt->mnt_sb;
  246. dput(mnt->mnt_root);
  247. free_vfsmnt(mnt);
  248. deactivate_super(sb);
  249. }
  250. void mntput_no_expire(struct vfsmount *mnt)
  251. {
  252. repeat:
  253. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  254. if (likely(!mnt->mnt_pinned)) {
  255. spin_unlock(&vfsmount_lock);
  256. __mntput(mnt);
  257. return;
  258. }
  259. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  260. mnt->mnt_pinned = 0;
  261. spin_unlock(&vfsmount_lock);
  262. acct_auto_close_mnt(mnt);
  263. security_sb_umount_close(mnt);
  264. goto repeat;
  265. }
  266. }
  267. EXPORT_SYMBOL(mntput_no_expire);
  268. void mnt_pin(struct vfsmount *mnt)
  269. {
  270. spin_lock(&vfsmount_lock);
  271. mnt->mnt_pinned++;
  272. spin_unlock(&vfsmount_lock);
  273. }
  274. EXPORT_SYMBOL(mnt_pin);
  275. void mnt_unpin(struct vfsmount *mnt)
  276. {
  277. spin_lock(&vfsmount_lock);
  278. if (mnt->mnt_pinned) {
  279. atomic_inc(&mnt->mnt_count);
  280. mnt->mnt_pinned--;
  281. }
  282. spin_unlock(&vfsmount_lock);
  283. }
  284. EXPORT_SYMBOL(mnt_unpin);
  285. static inline void mangle(struct seq_file *m, const char *s)
  286. {
  287. seq_escape(m, s, " \t\n\\");
  288. }
  289. /*
  290. * Simple .show_options callback for filesystems which don't want to
  291. * implement more complex mount option showing.
  292. *
  293. * See also save_mount_options().
  294. */
  295. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  296. {
  297. const char *options = mnt->mnt_sb->s_options;
  298. if (options != NULL && options[0]) {
  299. seq_putc(m, ',');
  300. mangle(m, options);
  301. }
  302. return 0;
  303. }
  304. EXPORT_SYMBOL(generic_show_options);
  305. /*
  306. * If filesystem uses generic_show_options(), this function should be
  307. * called from the fill_super() callback.
  308. *
  309. * The .remount_fs callback usually needs to be handled in a special
  310. * way, to make sure, that previous options are not overwritten if the
  311. * remount fails.
  312. *
  313. * Also note, that if the filesystem's .remount_fs function doesn't
  314. * reset all options to their default value, but changes only newly
  315. * given options, then the displayed options will not reflect reality
  316. * any more.
  317. */
  318. void save_mount_options(struct super_block *sb, char *options)
  319. {
  320. kfree(sb->s_options);
  321. sb->s_options = kstrdup(options, GFP_KERNEL);
  322. }
  323. EXPORT_SYMBOL(save_mount_options);
  324. /* iterator */
  325. static void *m_start(struct seq_file *m, loff_t *pos)
  326. {
  327. struct mnt_namespace *n = m->private;
  328. down_read(&namespace_sem);
  329. return seq_list_start(&n->list, *pos);
  330. }
  331. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  332. {
  333. struct mnt_namespace *n = m->private;
  334. return seq_list_next(v, &n->list, pos);
  335. }
  336. static void m_stop(struct seq_file *m, void *v)
  337. {
  338. up_read(&namespace_sem);
  339. }
  340. static int show_vfsmnt(struct seq_file *m, void *v)
  341. {
  342. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  343. int err = 0;
  344. static struct proc_fs_info {
  345. int flag;
  346. char *str;
  347. } fs_info[] = {
  348. { MS_SYNCHRONOUS, ",sync" },
  349. { MS_DIRSYNC, ",dirsync" },
  350. { MS_MANDLOCK, ",mand" },
  351. { 0, NULL }
  352. };
  353. static struct proc_fs_info mnt_info[] = {
  354. { MNT_NOSUID, ",nosuid" },
  355. { MNT_NODEV, ",nodev" },
  356. { MNT_NOEXEC, ",noexec" },
  357. { MNT_NOATIME, ",noatime" },
  358. { MNT_NODIRATIME, ",nodiratime" },
  359. { MNT_RELATIME, ",relatime" },
  360. { 0, NULL }
  361. };
  362. struct proc_fs_info *fs_infop;
  363. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  364. seq_putc(m, ' ');
  365. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  366. seq_putc(m, ' ');
  367. mangle(m, mnt->mnt_sb->s_type->name);
  368. if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
  369. seq_putc(m, '.');
  370. mangle(m, mnt->mnt_sb->s_subtype);
  371. }
  372. seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
  373. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  374. if (mnt->mnt_sb->s_flags & fs_infop->flag)
  375. seq_puts(m, fs_infop->str);
  376. }
  377. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  378. if (mnt->mnt_flags & fs_infop->flag)
  379. seq_puts(m, fs_infop->str);
  380. }
  381. if (mnt->mnt_sb->s_op->show_options)
  382. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  383. seq_puts(m, " 0 0\n");
  384. return err;
  385. }
  386. struct seq_operations mounts_op = {
  387. .start = m_start,
  388. .next = m_next,
  389. .stop = m_stop,
  390. .show = show_vfsmnt
  391. };
  392. static int show_vfsstat(struct seq_file *m, void *v)
  393. {
  394. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  395. int err = 0;
  396. /* device */
  397. if (mnt->mnt_devname) {
  398. seq_puts(m, "device ");
  399. mangle(m, mnt->mnt_devname);
  400. } else
  401. seq_puts(m, "no device");
  402. /* mount point */
  403. seq_puts(m, " mounted on ");
  404. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  405. seq_putc(m, ' ');
  406. /* file system type */
  407. seq_puts(m, "with fstype ");
  408. mangle(m, mnt->mnt_sb->s_type->name);
  409. /* optional statistics */
  410. if (mnt->mnt_sb->s_op->show_stats) {
  411. seq_putc(m, ' ');
  412. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  413. }
  414. seq_putc(m, '\n');
  415. return err;
  416. }
  417. struct seq_operations mountstats_op = {
  418. .start = m_start,
  419. .next = m_next,
  420. .stop = m_stop,
  421. .show = show_vfsstat,
  422. };
  423. /**
  424. * may_umount_tree - check if a mount tree is busy
  425. * @mnt: root of mount tree
  426. *
  427. * This is called to check if a tree of mounts has any
  428. * open files, pwds, chroots or sub mounts that are
  429. * busy.
  430. */
  431. int may_umount_tree(struct vfsmount *mnt)
  432. {
  433. int actual_refs = 0;
  434. int minimum_refs = 0;
  435. struct vfsmount *p;
  436. spin_lock(&vfsmount_lock);
  437. for (p = mnt; p; p = next_mnt(p, mnt)) {
  438. actual_refs += atomic_read(&p->mnt_count);
  439. minimum_refs += 2;
  440. }
  441. spin_unlock(&vfsmount_lock);
  442. if (actual_refs > minimum_refs)
  443. return 0;
  444. return 1;
  445. }
  446. EXPORT_SYMBOL(may_umount_tree);
  447. /**
  448. * may_umount - check if a mount point is busy
  449. * @mnt: root of mount
  450. *
  451. * This is called to check if a mount point has any
  452. * open files, pwds, chroots or sub mounts. If the
  453. * mount has sub mounts this will return busy
  454. * regardless of whether the sub mounts are busy.
  455. *
  456. * Doesn't take quota and stuff into account. IOW, in some cases it will
  457. * give false negatives. The main reason why it's here is that we need
  458. * a non-destructive way to look for easily umountable filesystems.
  459. */
  460. int may_umount(struct vfsmount *mnt)
  461. {
  462. int ret = 1;
  463. spin_lock(&vfsmount_lock);
  464. if (propagate_mount_busy(mnt, 2))
  465. ret = 0;
  466. spin_unlock(&vfsmount_lock);
  467. return ret;
  468. }
  469. EXPORT_SYMBOL(may_umount);
  470. void release_mounts(struct list_head *head)
  471. {
  472. struct vfsmount *mnt;
  473. while (!list_empty(head)) {
  474. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  475. list_del_init(&mnt->mnt_hash);
  476. if (mnt->mnt_parent != mnt) {
  477. struct dentry *dentry;
  478. struct vfsmount *m;
  479. spin_lock(&vfsmount_lock);
  480. dentry = mnt->mnt_mountpoint;
  481. m = mnt->mnt_parent;
  482. mnt->mnt_mountpoint = mnt->mnt_root;
  483. mnt->mnt_parent = mnt;
  484. spin_unlock(&vfsmount_lock);
  485. dput(dentry);
  486. mntput(m);
  487. }
  488. mntput(mnt);
  489. }
  490. }
  491. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  492. {
  493. struct vfsmount *p;
  494. for (p = mnt; p; p = next_mnt(p, mnt))
  495. list_move(&p->mnt_hash, kill);
  496. if (propagate)
  497. propagate_umount(kill);
  498. list_for_each_entry(p, kill, mnt_hash) {
  499. list_del_init(&p->mnt_expire);
  500. list_del_init(&p->mnt_list);
  501. __touch_mnt_namespace(p->mnt_ns);
  502. p->mnt_ns = NULL;
  503. list_del_init(&p->mnt_child);
  504. if (p->mnt_parent != p)
  505. p->mnt_mountpoint->d_mounted--;
  506. change_mnt_propagation(p, MS_PRIVATE);
  507. }
  508. }
  509. static int do_umount(struct vfsmount *mnt, int flags)
  510. {
  511. struct super_block *sb = mnt->mnt_sb;
  512. int retval;
  513. LIST_HEAD(umount_list);
  514. retval = security_sb_umount(mnt, flags);
  515. if (retval)
  516. return retval;
  517. /*
  518. * Allow userspace to request a mountpoint be expired rather than
  519. * unmounting unconditionally. Unmount only happens if:
  520. * (1) the mark is already set (the mark is cleared by mntput())
  521. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  522. */
  523. if (flags & MNT_EXPIRE) {
  524. if (mnt == current->fs->rootmnt ||
  525. flags & (MNT_FORCE | MNT_DETACH))
  526. return -EINVAL;
  527. if (atomic_read(&mnt->mnt_count) != 2)
  528. return -EBUSY;
  529. if (!xchg(&mnt->mnt_expiry_mark, 1))
  530. return -EAGAIN;
  531. }
  532. /*
  533. * If we may have to abort operations to get out of this
  534. * mount, and they will themselves hold resources we must
  535. * allow the fs to do things. In the Unix tradition of
  536. * 'Gee thats tricky lets do it in userspace' the umount_begin
  537. * might fail to complete on the first run through as other tasks
  538. * must return, and the like. Thats for the mount program to worry
  539. * about for the moment.
  540. */
  541. lock_kernel();
  542. if (sb->s_op->umount_begin)
  543. sb->s_op->umount_begin(mnt, flags);
  544. unlock_kernel();
  545. /*
  546. * No sense to grab the lock for this test, but test itself looks
  547. * somewhat bogus. Suggestions for better replacement?
  548. * Ho-hum... In principle, we might treat that as umount + switch
  549. * to rootfs. GC would eventually take care of the old vfsmount.
  550. * Actually it makes sense, especially if rootfs would contain a
  551. * /reboot - static binary that would close all descriptors and
  552. * call reboot(9). Then init(8) could umount root and exec /reboot.
  553. */
  554. if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
  555. /*
  556. * Special case for "unmounting" root ...
  557. * we just try to remount it readonly.
  558. */
  559. down_write(&sb->s_umount);
  560. if (!(sb->s_flags & MS_RDONLY)) {
  561. lock_kernel();
  562. DQUOT_OFF(sb);
  563. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  564. unlock_kernel();
  565. }
  566. up_write(&sb->s_umount);
  567. return retval;
  568. }
  569. down_write(&namespace_sem);
  570. spin_lock(&vfsmount_lock);
  571. event++;
  572. retval = -EBUSY;
  573. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  574. if (!list_empty(&mnt->mnt_list))
  575. umount_tree(mnt, 1, &umount_list);
  576. retval = 0;
  577. }
  578. spin_unlock(&vfsmount_lock);
  579. if (retval)
  580. security_sb_umount_busy(mnt);
  581. up_write(&namespace_sem);
  582. release_mounts(&umount_list);
  583. return retval;
  584. }
  585. /*
  586. * Now umount can handle mount points as well as block devices.
  587. * This is important for filesystems which use unnamed block devices.
  588. *
  589. * We now support a flag for forced unmount like the other 'big iron'
  590. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  591. */
  592. asmlinkage long sys_umount(char __user * name, int flags)
  593. {
  594. struct nameidata nd;
  595. int retval;
  596. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  597. if (retval)
  598. goto out;
  599. retval = -EINVAL;
  600. if (nd.dentry != nd.mnt->mnt_root)
  601. goto dput_and_out;
  602. if (!check_mnt(nd.mnt))
  603. goto dput_and_out;
  604. retval = -EPERM;
  605. if (!capable(CAP_SYS_ADMIN))
  606. goto dput_and_out;
  607. retval = do_umount(nd.mnt, flags);
  608. dput_and_out:
  609. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  610. dput(nd.dentry);
  611. mntput_no_expire(nd.mnt);
  612. out:
  613. return retval;
  614. }
  615. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  616. /*
  617. * The 2.0 compatible umount. No flags.
  618. */
  619. asmlinkage long sys_oldumount(char __user * name)
  620. {
  621. return sys_umount(name, 0);
  622. }
  623. #endif
  624. static int mount_is_safe(struct nameidata *nd)
  625. {
  626. if (capable(CAP_SYS_ADMIN))
  627. return 0;
  628. return -EPERM;
  629. #ifdef notyet
  630. if (S_ISLNK(nd->dentry->d_inode->i_mode))
  631. return -EPERM;
  632. if (nd->dentry->d_inode->i_mode & S_ISVTX) {
  633. if (current->uid != nd->dentry->d_inode->i_uid)
  634. return -EPERM;
  635. }
  636. if (vfs_permission(nd, MAY_WRITE))
  637. return -EPERM;
  638. return 0;
  639. #endif
  640. }
  641. static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
  642. {
  643. while (1) {
  644. if (d == dentry)
  645. return 1;
  646. if (d == NULL || d == d->d_parent)
  647. return 0;
  648. d = d->d_parent;
  649. }
  650. }
  651. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  652. int flag)
  653. {
  654. struct vfsmount *res, *p, *q, *r, *s;
  655. struct nameidata nd;
  656. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  657. return NULL;
  658. res = q = clone_mnt(mnt, dentry, flag);
  659. if (!q)
  660. goto Enomem;
  661. q->mnt_mountpoint = mnt->mnt_mountpoint;
  662. p = mnt;
  663. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  664. if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
  665. continue;
  666. for (s = r; s; s = next_mnt(s, r)) {
  667. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  668. s = skip_mnt_tree(s);
  669. continue;
  670. }
  671. while (p != s->mnt_parent) {
  672. p = p->mnt_parent;
  673. q = q->mnt_parent;
  674. }
  675. p = s;
  676. nd.mnt = q;
  677. nd.dentry = p->mnt_mountpoint;
  678. q = clone_mnt(p, p->mnt_root, flag);
  679. if (!q)
  680. goto Enomem;
  681. spin_lock(&vfsmount_lock);
  682. list_add_tail(&q->mnt_list, &res->mnt_list);
  683. attach_mnt(q, &nd);
  684. spin_unlock(&vfsmount_lock);
  685. }
  686. }
  687. return res;
  688. Enomem:
  689. if (res) {
  690. LIST_HEAD(umount_list);
  691. spin_lock(&vfsmount_lock);
  692. umount_tree(res, 0, &umount_list);
  693. spin_unlock(&vfsmount_lock);
  694. release_mounts(&umount_list);
  695. }
  696. return NULL;
  697. }
  698. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  699. {
  700. struct vfsmount *tree;
  701. down_read(&namespace_sem);
  702. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  703. up_read(&namespace_sem);
  704. return tree;
  705. }
  706. void drop_collected_mounts(struct vfsmount *mnt)
  707. {
  708. LIST_HEAD(umount_list);
  709. down_read(&namespace_sem);
  710. spin_lock(&vfsmount_lock);
  711. umount_tree(mnt, 0, &umount_list);
  712. spin_unlock(&vfsmount_lock);
  713. up_read(&namespace_sem);
  714. release_mounts(&umount_list);
  715. }
  716. /*
  717. * @source_mnt : mount tree to be attached
  718. * @nd : place the mount tree @source_mnt is attached
  719. * @parent_nd : if non-null, detach the source_mnt from its parent and
  720. * store the parent mount and mountpoint dentry.
  721. * (done when source_mnt is moved)
  722. *
  723. * NOTE: in the table below explains the semantics when a source mount
  724. * of a given type is attached to a destination mount of a given type.
  725. * ---------------------------------------------------------------------------
  726. * | BIND MOUNT OPERATION |
  727. * |**************************************************************************
  728. * | source-->| shared | private | slave | unbindable |
  729. * | dest | | | | |
  730. * | | | | | | |
  731. * | v | | | | |
  732. * |**************************************************************************
  733. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  734. * | | | | | |
  735. * |non-shared| shared (+) | private | slave (*) | invalid |
  736. * ***************************************************************************
  737. * A bind operation clones the source mount and mounts the clone on the
  738. * destination mount.
  739. *
  740. * (++) the cloned mount is propagated to all the mounts in the propagation
  741. * tree of the destination mount and the cloned mount is added to
  742. * the peer group of the source mount.
  743. * (+) the cloned mount is created under the destination mount and is marked
  744. * as shared. The cloned mount is added to the peer group of the source
  745. * mount.
  746. * (+++) the mount is propagated to all the mounts in the propagation tree
  747. * of the destination mount and the cloned mount is made slave
  748. * of the same master as that of the source mount. The cloned mount
  749. * is marked as 'shared and slave'.
  750. * (*) the cloned mount is made a slave of the same master as that of the
  751. * source mount.
  752. *
  753. * ---------------------------------------------------------------------------
  754. * | MOVE MOUNT OPERATION |
  755. * |**************************************************************************
  756. * | source-->| shared | private | slave | unbindable |
  757. * | dest | | | | |
  758. * | | | | | | |
  759. * | v | | | | |
  760. * |**************************************************************************
  761. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  762. * | | | | | |
  763. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  764. * ***************************************************************************
  765. *
  766. * (+) the mount is moved to the destination. And is then propagated to
  767. * all the mounts in the propagation tree of the destination mount.
  768. * (+*) the mount is moved to the destination.
  769. * (+++) the mount is moved to the destination and is then propagated to
  770. * all the mounts belonging to the destination mount's propagation tree.
  771. * the mount is marked as 'shared and slave'.
  772. * (*) the mount continues to be a slave at the new location.
  773. *
  774. * if the source mount is a tree, the operations explained above is
  775. * applied to each mount in the tree.
  776. * Must be called without spinlocks held, since this function can sleep
  777. * in allocations.
  778. */
  779. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  780. struct nameidata *nd, struct nameidata *parent_nd)
  781. {
  782. LIST_HEAD(tree_list);
  783. struct vfsmount *dest_mnt = nd->mnt;
  784. struct dentry *dest_dentry = nd->dentry;
  785. struct vfsmount *child, *p;
  786. if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
  787. return -EINVAL;
  788. if (IS_MNT_SHARED(dest_mnt)) {
  789. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  790. set_mnt_shared(p);
  791. }
  792. spin_lock(&vfsmount_lock);
  793. if (parent_nd) {
  794. detach_mnt(source_mnt, parent_nd);
  795. attach_mnt(source_mnt, nd);
  796. touch_mnt_namespace(current->nsproxy->mnt_ns);
  797. } else {
  798. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  799. commit_tree(source_mnt);
  800. }
  801. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  802. list_del_init(&child->mnt_hash);
  803. commit_tree(child);
  804. }
  805. spin_unlock(&vfsmount_lock);
  806. return 0;
  807. }
  808. static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
  809. {
  810. int err;
  811. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  812. return -EINVAL;
  813. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  814. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  815. return -ENOTDIR;
  816. err = -ENOENT;
  817. mutex_lock(&nd->dentry->d_inode->i_mutex);
  818. if (IS_DEADDIR(nd->dentry->d_inode))
  819. goto out_unlock;
  820. err = security_sb_check_sb(mnt, nd);
  821. if (err)
  822. goto out_unlock;
  823. err = -ENOENT;
  824. if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
  825. err = attach_recursive_mnt(mnt, nd, NULL);
  826. out_unlock:
  827. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  828. if (!err)
  829. security_sb_post_addmount(mnt, nd);
  830. return err;
  831. }
  832. /*
  833. * recursively change the type of the mountpoint.
  834. * noinline this do_mount helper to save do_mount stack space.
  835. */
  836. static noinline int do_change_type(struct nameidata *nd, int flag)
  837. {
  838. struct vfsmount *m, *mnt = nd->mnt;
  839. int recurse = flag & MS_REC;
  840. int type = flag & ~MS_REC;
  841. if (!capable(CAP_SYS_ADMIN))
  842. return -EPERM;
  843. if (nd->dentry != nd->mnt->mnt_root)
  844. return -EINVAL;
  845. down_write(&namespace_sem);
  846. spin_lock(&vfsmount_lock);
  847. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  848. change_mnt_propagation(m, type);
  849. spin_unlock(&vfsmount_lock);
  850. up_write(&namespace_sem);
  851. return 0;
  852. }
  853. /*
  854. * do loopback mount.
  855. * noinline this do_mount helper to save do_mount stack space.
  856. */
  857. static noinline int do_loopback(struct nameidata *nd, char *old_name,
  858. int recurse)
  859. {
  860. struct nameidata old_nd;
  861. struct vfsmount *mnt = NULL;
  862. int err = mount_is_safe(nd);
  863. if (err)
  864. return err;
  865. if (!old_name || !*old_name)
  866. return -EINVAL;
  867. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  868. if (err)
  869. return err;
  870. down_write(&namespace_sem);
  871. err = -EINVAL;
  872. if (IS_MNT_UNBINDABLE(old_nd.mnt))
  873. goto out;
  874. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  875. goto out;
  876. err = -ENOMEM;
  877. if (recurse)
  878. mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
  879. else
  880. mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
  881. if (!mnt)
  882. goto out;
  883. err = graft_tree(mnt, nd);
  884. if (err) {
  885. LIST_HEAD(umount_list);
  886. spin_lock(&vfsmount_lock);
  887. umount_tree(mnt, 0, &umount_list);
  888. spin_unlock(&vfsmount_lock);
  889. release_mounts(&umount_list);
  890. }
  891. out:
  892. up_write(&namespace_sem);
  893. path_release(&old_nd);
  894. return err;
  895. }
  896. /*
  897. * change filesystem flags. dir should be a physical root of filesystem.
  898. * If you've mounted a non-root directory somewhere and want to do remount
  899. * on it - tough luck.
  900. * noinline this do_mount helper to save do_mount stack space.
  901. */
  902. static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  903. void *data)
  904. {
  905. int err;
  906. struct super_block *sb = nd->mnt->mnt_sb;
  907. if (!capable(CAP_SYS_ADMIN))
  908. return -EPERM;
  909. if (!check_mnt(nd->mnt))
  910. return -EINVAL;
  911. if (nd->dentry != nd->mnt->mnt_root)
  912. return -EINVAL;
  913. down_write(&sb->s_umount);
  914. err = do_remount_sb(sb, flags, data, 0);
  915. if (!err)
  916. nd->mnt->mnt_flags = mnt_flags;
  917. up_write(&sb->s_umount);
  918. if (!err)
  919. security_sb_post_remount(nd->mnt, flags, data);
  920. return err;
  921. }
  922. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  923. {
  924. struct vfsmount *p;
  925. for (p = mnt; p; p = next_mnt(p, mnt)) {
  926. if (IS_MNT_UNBINDABLE(p))
  927. return 1;
  928. }
  929. return 0;
  930. }
  931. /*
  932. * noinline this do_mount helper to save do_mount stack space.
  933. */
  934. static noinline int do_move_mount(struct nameidata *nd, char *old_name)
  935. {
  936. struct nameidata old_nd, parent_nd;
  937. struct vfsmount *p;
  938. int err = 0;
  939. if (!capable(CAP_SYS_ADMIN))
  940. return -EPERM;
  941. if (!old_name || !*old_name)
  942. return -EINVAL;
  943. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  944. if (err)
  945. return err;
  946. down_write(&namespace_sem);
  947. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  948. ;
  949. err = -EINVAL;
  950. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  951. goto out;
  952. err = -ENOENT;
  953. mutex_lock(&nd->dentry->d_inode->i_mutex);
  954. if (IS_DEADDIR(nd->dentry->d_inode))
  955. goto out1;
  956. if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
  957. goto out1;
  958. err = -EINVAL;
  959. if (old_nd.dentry != old_nd.mnt->mnt_root)
  960. goto out1;
  961. if (old_nd.mnt == old_nd.mnt->mnt_parent)
  962. goto out1;
  963. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  964. S_ISDIR(old_nd.dentry->d_inode->i_mode))
  965. goto out1;
  966. /*
  967. * Don't move a mount residing in a shared parent.
  968. */
  969. if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
  970. goto out1;
  971. /*
  972. * Don't move a mount tree containing unbindable mounts to a destination
  973. * mount which is shared.
  974. */
  975. if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
  976. goto out1;
  977. err = -ELOOP;
  978. for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
  979. if (p == old_nd.mnt)
  980. goto out1;
  981. if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
  982. goto out1;
  983. spin_lock(&vfsmount_lock);
  984. /* if the mount is moved, it should no longer be expire
  985. * automatically */
  986. list_del_init(&old_nd.mnt->mnt_expire);
  987. spin_unlock(&vfsmount_lock);
  988. out1:
  989. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  990. out:
  991. up_write(&namespace_sem);
  992. if (!err)
  993. path_release(&parent_nd);
  994. path_release(&old_nd);
  995. return err;
  996. }
  997. /*
  998. * create a new mount for userspace and request it to be added into the
  999. * namespace's tree
  1000. * noinline this do_mount helper to save do_mount stack space.
  1001. */
  1002. static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
  1003. int mnt_flags, char *name, void *data)
  1004. {
  1005. struct vfsmount *mnt;
  1006. if (!type || !memchr(type, 0, PAGE_SIZE))
  1007. return -EINVAL;
  1008. /* we need capabilities... */
  1009. if (!capable(CAP_SYS_ADMIN))
  1010. return -EPERM;
  1011. mnt = do_kern_mount(type, flags, name, data);
  1012. if (IS_ERR(mnt))
  1013. return PTR_ERR(mnt);
  1014. return do_add_mount(mnt, nd, mnt_flags, NULL);
  1015. }
  1016. /*
  1017. * add a mount into a namespace's mount tree
  1018. * - provide the option of adding the new mount to an expiration list
  1019. */
  1020. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  1021. int mnt_flags, struct list_head *fslist)
  1022. {
  1023. int err;
  1024. down_write(&namespace_sem);
  1025. /* Something was mounted here while we slept */
  1026. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  1027. ;
  1028. err = -EINVAL;
  1029. if (!check_mnt(nd->mnt))
  1030. goto unlock;
  1031. /* Refuse the same filesystem on the same mount point */
  1032. err = -EBUSY;
  1033. if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
  1034. nd->mnt->mnt_root == nd->dentry)
  1035. goto unlock;
  1036. err = -EINVAL;
  1037. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1038. goto unlock;
  1039. newmnt->mnt_flags = mnt_flags;
  1040. if ((err = graft_tree(newmnt, nd)))
  1041. goto unlock;
  1042. if (fslist) {
  1043. /* add to the specified expiration list */
  1044. spin_lock(&vfsmount_lock);
  1045. list_add_tail(&newmnt->mnt_expire, fslist);
  1046. spin_unlock(&vfsmount_lock);
  1047. }
  1048. up_write(&namespace_sem);
  1049. return 0;
  1050. unlock:
  1051. up_write(&namespace_sem);
  1052. mntput(newmnt);
  1053. return err;
  1054. }
  1055. EXPORT_SYMBOL_GPL(do_add_mount);
  1056. static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
  1057. struct list_head *umounts)
  1058. {
  1059. spin_lock(&vfsmount_lock);
  1060. /*
  1061. * Check if mount is still attached, if not, let whoever holds it deal
  1062. * with the sucker
  1063. */
  1064. if (mnt->mnt_parent == mnt) {
  1065. spin_unlock(&vfsmount_lock);
  1066. return;
  1067. }
  1068. /*
  1069. * Check that it is still dead: the count should now be 2 - as
  1070. * contributed by the vfsmount parent and the mntget above
  1071. */
  1072. if (!propagate_mount_busy(mnt, 2)) {
  1073. /* delete from the namespace */
  1074. touch_mnt_namespace(mnt->mnt_ns);
  1075. list_del_init(&mnt->mnt_list);
  1076. mnt->mnt_ns = NULL;
  1077. umount_tree(mnt, 1, umounts);
  1078. spin_unlock(&vfsmount_lock);
  1079. } else {
  1080. /*
  1081. * Someone brought it back to life whilst we didn't have any
  1082. * locks held so return it to the expiration list
  1083. */
  1084. list_add_tail(&mnt->mnt_expire, mounts);
  1085. spin_unlock(&vfsmount_lock);
  1086. }
  1087. }
  1088. /*
  1089. * go through the vfsmounts we've just consigned to the graveyard to
  1090. * - check that they're still dead
  1091. * - delete the vfsmount from the appropriate namespace under lock
  1092. * - dispose of the corpse
  1093. */
  1094. static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
  1095. {
  1096. struct mnt_namespace *ns;
  1097. struct vfsmount *mnt;
  1098. while (!list_empty(graveyard)) {
  1099. LIST_HEAD(umounts);
  1100. mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
  1101. list_del_init(&mnt->mnt_expire);
  1102. /* don't do anything if the namespace is dead - all the
  1103. * vfsmounts from it are going away anyway */
  1104. ns = mnt->mnt_ns;
  1105. if (!ns || !ns->root)
  1106. continue;
  1107. get_mnt_ns(ns);
  1108. spin_unlock(&vfsmount_lock);
  1109. down_write(&namespace_sem);
  1110. expire_mount(mnt, mounts, &umounts);
  1111. up_write(&namespace_sem);
  1112. release_mounts(&umounts);
  1113. mntput(mnt);
  1114. put_mnt_ns(ns);
  1115. spin_lock(&vfsmount_lock);
  1116. }
  1117. }
  1118. /*
  1119. * process a list of expirable mountpoints with the intent of discarding any
  1120. * mountpoints that aren't in use and haven't been touched since last we came
  1121. * here
  1122. */
  1123. void mark_mounts_for_expiry(struct list_head *mounts)
  1124. {
  1125. struct vfsmount *mnt, *next;
  1126. LIST_HEAD(graveyard);
  1127. if (list_empty(mounts))
  1128. return;
  1129. spin_lock(&vfsmount_lock);
  1130. /* extract from the expiration list every vfsmount that matches the
  1131. * following criteria:
  1132. * - only referenced by its parent vfsmount
  1133. * - still marked for expiry (marked on the last call here; marks are
  1134. * cleared by mntput())
  1135. */
  1136. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1137. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1138. atomic_read(&mnt->mnt_count) != 1)
  1139. continue;
  1140. mntget(mnt);
  1141. list_move(&mnt->mnt_expire, &graveyard);
  1142. }
  1143. expire_mount_list(&graveyard, mounts);
  1144. spin_unlock(&vfsmount_lock);
  1145. }
  1146. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1147. /*
  1148. * Ripoff of 'select_parent()'
  1149. *
  1150. * search the list of submounts for a given mountpoint, and move any
  1151. * shrinkable submounts to the 'graveyard' list.
  1152. */
  1153. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1154. {
  1155. struct vfsmount *this_parent = parent;
  1156. struct list_head *next;
  1157. int found = 0;
  1158. repeat:
  1159. next = this_parent->mnt_mounts.next;
  1160. resume:
  1161. while (next != &this_parent->mnt_mounts) {
  1162. struct list_head *tmp = next;
  1163. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1164. next = tmp->next;
  1165. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1166. continue;
  1167. /*
  1168. * Descend a level if the d_mounts list is non-empty.
  1169. */
  1170. if (!list_empty(&mnt->mnt_mounts)) {
  1171. this_parent = mnt;
  1172. goto repeat;
  1173. }
  1174. if (!propagate_mount_busy(mnt, 1)) {
  1175. mntget(mnt);
  1176. list_move_tail(&mnt->mnt_expire, graveyard);
  1177. found++;
  1178. }
  1179. }
  1180. /*
  1181. * All done at this level ... ascend and resume the search
  1182. */
  1183. if (this_parent != parent) {
  1184. next = this_parent->mnt_child.next;
  1185. this_parent = this_parent->mnt_parent;
  1186. goto resume;
  1187. }
  1188. return found;
  1189. }
  1190. /*
  1191. * process a list of expirable mountpoints with the intent of discarding any
  1192. * submounts of a specific parent mountpoint
  1193. */
  1194. void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
  1195. {
  1196. LIST_HEAD(graveyard);
  1197. int found;
  1198. spin_lock(&vfsmount_lock);
  1199. /* extract submounts of 'mountpoint' from the expiration list */
  1200. while ((found = select_submounts(mountpoint, &graveyard)) != 0)
  1201. expire_mount_list(&graveyard, mounts);
  1202. spin_unlock(&vfsmount_lock);
  1203. }
  1204. EXPORT_SYMBOL_GPL(shrink_submounts);
  1205. /*
  1206. * Some copy_from_user() implementations do not return the exact number of
  1207. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1208. * Note that this function differs from copy_from_user() in that it will oops
  1209. * on bad values of `to', rather than returning a short copy.
  1210. */
  1211. static long exact_copy_from_user(void *to, const void __user * from,
  1212. unsigned long n)
  1213. {
  1214. char *t = to;
  1215. const char __user *f = from;
  1216. char c;
  1217. if (!access_ok(VERIFY_READ, from, n))
  1218. return n;
  1219. while (n) {
  1220. if (__get_user(c, f)) {
  1221. memset(t, 0, n);
  1222. break;
  1223. }
  1224. *t++ = c;
  1225. f++;
  1226. n--;
  1227. }
  1228. return n;
  1229. }
  1230. int copy_mount_options(const void __user * data, unsigned long *where)
  1231. {
  1232. int i;
  1233. unsigned long page;
  1234. unsigned long size;
  1235. *where = 0;
  1236. if (!data)
  1237. return 0;
  1238. if (!(page = __get_free_page(GFP_KERNEL)))
  1239. return -ENOMEM;
  1240. /* We only care that *some* data at the address the user
  1241. * gave us is valid. Just in case, we'll zero
  1242. * the remainder of the page.
  1243. */
  1244. /* copy_from_user cannot cross TASK_SIZE ! */
  1245. size = TASK_SIZE - (unsigned long)data;
  1246. if (size > PAGE_SIZE)
  1247. size = PAGE_SIZE;
  1248. i = size - exact_copy_from_user((void *)page, data, size);
  1249. if (!i) {
  1250. free_page(page);
  1251. return -EFAULT;
  1252. }
  1253. if (i != PAGE_SIZE)
  1254. memset((char *)page + i, 0, PAGE_SIZE - i);
  1255. *where = page;
  1256. return 0;
  1257. }
  1258. /*
  1259. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1260. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1261. *
  1262. * data is a (void *) that can point to any structure up to
  1263. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1264. * information (or be NULL).
  1265. *
  1266. * Pre-0.97 versions of mount() didn't have a flags word.
  1267. * When the flags word was introduced its top half was required
  1268. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1269. * Therefore, if this magic number is present, it carries no information
  1270. * and must be discarded.
  1271. */
  1272. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1273. unsigned long flags, void *data_page)
  1274. {
  1275. struct nameidata nd;
  1276. int retval = 0;
  1277. int mnt_flags = 0;
  1278. /* Discard magic */
  1279. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1280. flags &= ~MS_MGC_MSK;
  1281. /* Basic sanity checks */
  1282. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1283. return -EINVAL;
  1284. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1285. return -EINVAL;
  1286. if (data_page)
  1287. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1288. /* Separate the per-mountpoint flags */
  1289. if (flags & MS_NOSUID)
  1290. mnt_flags |= MNT_NOSUID;
  1291. if (flags & MS_NODEV)
  1292. mnt_flags |= MNT_NODEV;
  1293. if (flags & MS_NOEXEC)
  1294. mnt_flags |= MNT_NOEXEC;
  1295. if (flags & MS_NOATIME)
  1296. mnt_flags |= MNT_NOATIME;
  1297. if (flags & MS_NODIRATIME)
  1298. mnt_flags |= MNT_NODIRATIME;
  1299. if (flags & MS_RELATIME)
  1300. mnt_flags |= MNT_RELATIME;
  1301. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1302. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
  1303. /* ... and get the mountpoint */
  1304. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1305. if (retval)
  1306. return retval;
  1307. retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
  1308. if (retval)
  1309. goto dput_out;
  1310. if (flags & MS_REMOUNT)
  1311. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1312. data_page);
  1313. else if (flags & MS_BIND)
  1314. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1315. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1316. retval = do_change_type(&nd, flags);
  1317. else if (flags & MS_MOVE)
  1318. retval = do_move_mount(&nd, dev_name);
  1319. else
  1320. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1321. dev_name, data_page);
  1322. dput_out:
  1323. path_release(&nd);
  1324. return retval;
  1325. }
  1326. /*
  1327. * Allocate a new namespace structure and populate it with contents
  1328. * copied from the namespace of the passed in task structure.
  1329. */
  1330. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1331. struct fs_struct *fs)
  1332. {
  1333. struct mnt_namespace *new_ns;
  1334. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1335. struct vfsmount *p, *q;
  1336. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1337. if (!new_ns)
  1338. return ERR_PTR(-ENOMEM);
  1339. atomic_set(&new_ns->count, 1);
  1340. INIT_LIST_HEAD(&new_ns->list);
  1341. init_waitqueue_head(&new_ns->poll);
  1342. new_ns->event = 0;
  1343. down_write(&namespace_sem);
  1344. /* First pass: copy the tree topology */
  1345. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1346. CL_COPY_ALL | CL_EXPIRE);
  1347. if (!new_ns->root) {
  1348. up_write(&namespace_sem);
  1349. kfree(new_ns);
  1350. return ERR_PTR(-ENOMEM);;
  1351. }
  1352. spin_lock(&vfsmount_lock);
  1353. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1354. spin_unlock(&vfsmount_lock);
  1355. /*
  1356. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1357. * as belonging to new namespace. We have already acquired a private
  1358. * fs_struct, so tsk->fs->lock is not needed.
  1359. */
  1360. p = mnt_ns->root;
  1361. q = new_ns->root;
  1362. while (p) {
  1363. q->mnt_ns = new_ns;
  1364. if (fs) {
  1365. if (p == fs->rootmnt) {
  1366. rootmnt = p;
  1367. fs->rootmnt = mntget(q);
  1368. }
  1369. if (p == fs->pwdmnt) {
  1370. pwdmnt = p;
  1371. fs->pwdmnt = mntget(q);
  1372. }
  1373. if (p == fs->altrootmnt) {
  1374. altrootmnt = p;
  1375. fs->altrootmnt = mntget(q);
  1376. }
  1377. }
  1378. p = next_mnt(p, mnt_ns->root);
  1379. q = next_mnt(q, new_ns->root);
  1380. }
  1381. up_write(&namespace_sem);
  1382. if (rootmnt)
  1383. mntput(rootmnt);
  1384. if (pwdmnt)
  1385. mntput(pwdmnt);
  1386. if (altrootmnt)
  1387. mntput(altrootmnt);
  1388. return new_ns;
  1389. }
  1390. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1391. struct fs_struct *new_fs)
  1392. {
  1393. struct mnt_namespace *new_ns;
  1394. BUG_ON(!ns);
  1395. get_mnt_ns(ns);
  1396. if (!(flags & CLONE_NEWNS))
  1397. return ns;
  1398. new_ns = dup_mnt_ns(ns, new_fs);
  1399. put_mnt_ns(ns);
  1400. return new_ns;
  1401. }
  1402. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1403. char __user * type, unsigned long flags,
  1404. void __user * data)
  1405. {
  1406. int retval;
  1407. unsigned long data_page;
  1408. unsigned long type_page;
  1409. unsigned long dev_page;
  1410. char *dir_page;
  1411. retval = copy_mount_options(type, &type_page);
  1412. if (retval < 0)
  1413. return retval;
  1414. dir_page = getname(dir_name);
  1415. retval = PTR_ERR(dir_page);
  1416. if (IS_ERR(dir_page))
  1417. goto out1;
  1418. retval = copy_mount_options(dev_name, &dev_page);
  1419. if (retval < 0)
  1420. goto out2;
  1421. retval = copy_mount_options(data, &data_page);
  1422. if (retval < 0)
  1423. goto out3;
  1424. lock_kernel();
  1425. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1426. flags, (void *)data_page);
  1427. unlock_kernel();
  1428. free_page(data_page);
  1429. out3:
  1430. free_page(dev_page);
  1431. out2:
  1432. putname(dir_page);
  1433. out1:
  1434. free_page(type_page);
  1435. return retval;
  1436. }
  1437. /*
  1438. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1439. * It can block. Requires the big lock held.
  1440. */
  1441. void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
  1442. struct dentry *dentry)
  1443. {
  1444. struct dentry *old_root;
  1445. struct vfsmount *old_rootmnt;
  1446. write_lock(&fs->lock);
  1447. old_root = fs->root;
  1448. old_rootmnt = fs->rootmnt;
  1449. fs->rootmnt = mntget(mnt);
  1450. fs->root = dget(dentry);
  1451. write_unlock(&fs->lock);
  1452. if (old_root) {
  1453. dput(old_root);
  1454. mntput(old_rootmnt);
  1455. }
  1456. }
  1457. /*
  1458. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1459. * It can block. Requires the big lock held.
  1460. */
  1461. void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
  1462. struct dentry *dentry)
  1463. {
  1464. struct dentry *old_pwd;
  1465. struct vfsmount *old_pwdmnt;
  1466. write_lock(&fs->lock);
  1467. old_pwd = fs->pwd;
  1468. old_pwdmnt = fs->pwdmnt;
  1469. fs->pwdmnt = mntget(mnt);
  1470. fs->pwd = dget(dentry);
  1471. write_unlock(&fs->lock);
  1472. if (old_pwd) {
  1473. dput(old_pwd);
  1474. mntput(old_pwdmnt);
  1475. }
  1476. }
  1477. static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
  1478. {
  1479. struct task_struct *g, *p;
  1480. struct fs_struct *fs;
  1481. read_lock(&tasklist_lock);
  1482. do_each_thread(g, p) {
  1483. task_lock(p);
  1484. fs = p->fs;
  1485. if (fs) {
  1486. atomic_inc(&fs->count);
  1487. task_unlock(p);
  1488. if (fs->root == old_nd->dentry
  1489. && fs->rootmnt == old_nd->mnt)
  1490. set_fs_root(fs, new_nd->mnt, new_nd->dentry);
  1491. if (fs->pwd == old_nd->dentry
  1492. && fs->pwdmnt == old_nd->mnt)
  1493. set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
  1494. put_fs_struct(fs);
  1495. } else
  1496. task_unlock(p);
  1497. } while_each_thread(g, p);
  1498. read_unlock(&tasklist_lock);
  1499. }
  1500. /*
  1501. * pivot_root Semantics:
  1502. * Moves the root file system of the current process to the directory put_old,
  1503. * makes new_root as the new root file system of the current process, and sets
  1504. * root/cwd of all processes which had them on the current root to new_root.
  1505. *
  1506. * Restrictions:
  1507. * The new_root and put_old must be directories, and must not be on the
  1508. * same file system as the current process root. The put_old must be
  1509. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1510. * pointed to by put_old must yield the same directory as new_root. No other
  1511. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1512. *
  1513. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1514. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1515. * in this situation.
  1516. *
  1517. * Notes:
  1518. * - we don't move root/cwd if they are not at the root (reason: if something
  1519. * cared enough to change them, it's probably wrong to force them elsewhere)
  1520. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1521. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1522. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1523. * first.
  1524. */
  1525. asmlinkage long sys_pivot_root(const char __user * new_root,
  1526. const char __user * put_old)
  1527. {
  1528. struct vfsmount *tmp;
  1529. struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
  1530. int error;
  1531. if (!capable(CAP_SYS_ADMIN))
  1532. return -EPERM;
  1533. lock_kernel();
  1534. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1535. &new_nd);
  1536. if (error)
  1537. goto out0;
  1538. error = -EINVAL;
  1539. if (!check_mnt(new_nd.mnt))
  1540. goto out1;
  1541. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1542. if (error)
  1543. goto out1;
  1544. error = security_sb_pivotroot(&old_nd, &new_nd);
  1545. if (error) {
  1546. path_release(&old_nd);
  1547. goto out1;
  1548. }
  1549. read_lock(&current->fs->lock);
  1550. user_nd.mnt = mntget(current->fs->rootmnt);
  1551. user_nd.dentry = dget(current->fs->root);
  1552. read_unlock(&current->fs->lock);
  1553. down_write(&namespace_sem);
  1554. mutex_lock(&old_nd.dentry->d_inode->i_mutex);
  1555. error = -EINVAL;
  1556. if (IS_MNT_SHARED(old_nd.mnt) ||
  1557. IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
  1558. IS_MNT_SHARED(user_nd.mnt->mnt_parent))
  1559. goto out2;
  1560. if (!check_mnt(user_nd.mnt))
  1561. goto out2;
  1562. error = -ENOENT;
  1563. if (IS_DEADDIR(new_nd.dentry->d_inode))
  1564. goto out2;
  1565. if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
  1566. goto out2;
  1567. if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
  1568. goto out2;
  1569. error = -EBUSY;
  1570. if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
  1571. goto out2; /* loop, on the same file system */
  1572. error = -EINVAL;
  1573. if (user_nd.mnt->mnt_root != user_nd.dentry)
  1574. goto out2; /* not a mountpoint */
  1575. if (user_nd.mnt->mnt_parent == user_nd.mnt)
  1576. goto out2; /* not attached */
  1577. if (new_nd.mnt->mnt_root != new_nd.dentry)
  1578. goto out2; /* not a mountpoint */
  1579. if (new_nd.mnt->mnt_parent == new_nd.mnt)
  1580. goto out2; /* not attached */
  1581. tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
  1582. spin_lock(&vfsmount_lock);
  1583. if (tmp != new_nd.mnt) {
  1584. for (;;) {
  1585. if (tmp->mnt_parent == tmp)
  1586. goto out3; /* already mounted on put_old */
  1587. if (tmp->mnt_parent == new_nd.mnt)
  1588. break;
  1589. tmp = tmp->mnt_parent;
  1590. }
  1591. if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
  1592. goto out3;
  1593. } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
  1594. goto out3;
  1595. detach_mnt(new_nd.mnt, &parent_nd);
  1596. detach_mnt(user_nd.mnt, &root_parent);
  1597. attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
  1598. attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
  1599. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1600. spin_unlock(&vfsmount_lock);
  1601. chroot_fs_refs(&user_nd, &new_nd);
  1602. security_sb_post_pivotroot(&user_nd, &new_nd);
  1603. error = 0;
  1604. path_release(&root_parent);
  1605. path_release(&parent_nd);
  1606. out2:
  1607. mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
  1608. up_write(&namespace_sem);
  1609. path_release(&user_nd);
  1610. path_release(&old_nd);
  1611. out1:
  1612. path_release(&new_nd);
  1613. out0:
  1614. unlock_kernel();
  1615. return error;
  1616. out3:
  1617. spin_unlock(&vfsmount_lock);
  1618. goto out2;
  1619. }
  1620. static void __init init_mount_tree(void)
  1621. {
  1622. struct vfsmount *mnt;
  1623. struct mnt_namespace *ns;
  1624. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1625. if (IS_ERR(mnt))
  1626. panic("Can't create rootfs");
  1627. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  1628. if (!ns)
  1629. panic("Can't allocate initial namespace");
  1630. atomic_set(&ns->count, 1);
  1631. INIT_LIST_HEAD(&ns->list);
  1632. init_waitqueue_head(&ns->poll);
  1633. ns->event = 0;
  1634. list_add(&mnt->mnt_list, &ns->list);
  1635. ns->root = mnt;
  1636. mnt->mnt_ns = ns;
  1637. init_task.nsproxy->mnt_ns = ns;
  1638. get_mnt_ns(ns);
  1639. set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
  1640. set_fs_root(current->fs, ns->root, ns->root->mnt_root);
  1641. }
  1642. void __init mnt_init(void)
  1643. {
  1644. unsigned u;
  1645. int err;
  1646. init_rwsem(&namespace_sem);
  1647. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  1648. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  1649. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  1650. if (!mount_hashtable)
  1651. panic("Failed to allocate mount hash table\n");
  1652. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  1653. for (u = 0; u < HASH_SIZE; u++)
  1654. INIT_LIST_HEAD(&mount_hashtable[u]);
  1655. err = sysfs_init();
  1656. if (err)
  1657. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  1658. __FUNCTION__, err);
  1659. fs_kobj = kobject_create_and_add("fs", NULL);
  1660. if (!fs_kobj)
  1661. printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
  1662. init_rootfs();
  1663. init_mount_tree();
  1664. }
  1665. void __put_mnt_ns(struct mnt_namespace *ns)
  1666. {
  1667. struct vfsmount *root = ns->root;
  1668. LIST_HEAD(umount_list);
  1669. ns->root = NULL;
  1670. spin_unlock(&vfsmount_lock);
  1671. down_write(&namespace_sem);
  1672. spin_lock(&vfsmount_lock);
  1673. umount_tree(root, 0, &umount_list);
  1674. spin_unlock(&vfsmount_lock);
  1675. up_write(&namespace_sem);
  1676. release_mounts(&umount_list);
  1677. kfree(ns);
  1678. }