page_alloc.c 205 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <linux/memcontrol.h>
  66. #include <asm/sections.h>
  67. #include <asm/tlbflush.h>
  68. #include <asm/div64.h>
  69. #include "internal.h"
  70. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  71. static DEFINE_MUTEX(pcp_batch_high_lock);
  72. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  73. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  74. DEFINE_PER_CPU(int, numa_node);
  75. EXPORT_PER_CPU_SYMBOL(numa_node);
  76. #endif
  77. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  78. /*
  79. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  80. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  81. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  82. * defined in <linux/topology.h>.
  83. */
  84. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  85. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  86. int _node_numa_mem_[MAX_NUMNODES];
  87. #endif
  88. /*
  89. * Array of node states.
  90. */
  91. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  92. [N_POSSIBLE] = NODE_MASK_ALL,
  93. [N_ONLINE] = { { [0] = 1UL } },
  94. #ifndef CONFIG_NUMA
  95. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  96. #ifdef CONFIG_HIGHMEM
  97. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  98. #endif
  99. #ifdef CONFIG_MOVABLE_NODE
  100. [N_MEMORY] = { { [0] = 1UL } },
  101. #endif
  102. [N_CPU] = { { [0] = 1UL } },
  103. #endif /* NUMA */
  104. };
  105. EXPORT_SYMBOL(node_states);
  106. /* Protect totalram_pages and zone->managed_pages */
  107. static DEFINE_SPINLOCK(managed_page_count_lock);
  108. unsigned long totalram_pages __read_mostly;
  109. unsigned long totalreserve_pages __read_mostly;
  110. unsigned long totalcma_pages __read_mostly;
  111. int percpu_pagelist_fraction;
  112. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  113. /*
  114. * A cached value of the page's pageblock's migratetype, used when the page is
  115. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  116. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  117. * Also the migratetype set in the page does not necessarily match the pcplist
  118. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  119. * other index - this ensures that it will be put on the correct CMA freelist.
  120. */
  121. static inline int get_pcppage_migratetype(struct page *page)
  122. {
  123. return page->index;
  124. }
  125. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  126. {
  127. page->index = migratetype;
  128. }
  129. #ifdef CONFIG_PM_SLEEP
  130. /*
  131. * The following functions are used by the suspend/hibernate code to temporarily
  132. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  133. * while devices are suspended. To avoid races with the suspend/hibernate code,
  134. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  135. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  136. * guaranteed not to run in parallel with that modification).
  137. */
  138. static gfp_t saved_gfp_mask;
  139. void pm_restore_gfp_mask(void)
  140. {
  141. WARN_ON(!mutex_is_locked(&pm_mutex));
  142. if (saved_gfp_mask) {
  143. gfp_allowed_mask = saved_gfp_mask;
  144. saved_gfp_mask = 0;
  145. }
  146. }
  147. void pm_restrict_gfp_mask(void)
  148. {
  149. WARN_ON(!mutex_is_locked(&pm_mutex));
  150. WARN_ON(saved_gfp_mask);
  151. saved_gfp_mask = gfp_allowed_mask;
  152. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  153. }
  154. bool pm_suspended_storage(void)
  155. {
  156. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  157. return false;
  158. return true;
  159. }
  160. #endif /* CONFIG_PM_SLEEP */
  161. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  162. unsigned int pageblock_order __read_mostly;
  163. #endif
  164. static void __free_pages_ok(struct page *page, unsigned int order);
  165. /*
  166. * results with 256, 32 in the lowmem_reserve sysctl:
  167. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  168. * 1G machine -> (16M dma, 784M normal, 224M high)
  169. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  170. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  171. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  172. *
  173. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  174. * don't need any ZONE_NORMAL reservation
  175. */
  176. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  177. #ifdef CONFIG_ZONE_DMA
  178. 256,
  179. #endif
  180. #ifdef CONFIG_ZONE_DMA32
  181. 256,
  182. #endif
  183. #ifdef CONFIG_HIGHMEM
  184. 32,
  185. #endif
  186. 32,
  187. };
  188. EXPORT_SYMBOL(totalram_pages);
  189. static char * const zone_names[MAX_NR_ZONES] = {
  190. #ifdef CONFIG_ZONE_DMA
  191. "DMA",
  192. #endif
  193. #ifdef CONFIG_ZONE_DMA32
  194. "DMA32",
  195. #endif
  196. "Normal",
  197. #ifdef CONFIG_HIGHMEM
  198. "HighMem",
  199. #endif
  200. "Movable",
  201. #ifdef CONFIG_ZONE_DEVICE
  202. "Device",
  203. #endif
  204. };
  205. char * const migratetype_names[MIGRATE_TYPES] = {
  206. "Unmovable",
  207. "Movable",
  208. "Reclaimable",
  209. "HighAtomic",
  210. #ifdef CONFIG_CMA
  211. "CMA",
  212. #endif
  213. #ifdef CONFIG_MEMORY_ISOLATION
  214. "Isolate",
  215. #endif
  216. };
  217. compound_page_dtor * const compound_page_dtors[] = {
  218. NULL,
  219. free_compound_page,
  220. #ifdef CONFIG_HUGETLB_PAGE
  221. free_huge_page,
  222. #endif
  223. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  224. free_transhuge_page,
  225. #endif
  226. };
  227. int min_free_kbytes = 1024;
  228. int user_min_free_kbytes = -1;
  229. int watermark_scale_factor = 10;
  230. static unsigned long __meminitdata nr_kernel_pages;
  231. static unsigned long __meminitdata nr_all_pages;
  232. static unsigned long __meminitdata dma_reserve;
  233. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  234. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  235. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  236. static unsigned long __initdata required_kernelcore;
  237. static unsigned long __initdata required_movablecore;
  238. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  239. static bool mirrored_kernelcore;
  240. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  241. int movable_zone;
  242. EXPORT_SYMBOL(movable_zone);
  243. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  244. #if MAX_NUMNODES > 1
  245. int nr_node_ids __read_mostly = MAX_NUMNODES;
  246. int nr_online_nodes __read_mostly = 1;
  247. EXPORT_SYMBOL(nr_node_ids);
  248. EXPORT_SYMBOL(nr_online_nodes);
  249. #endif
  250. int page_group_by_mobility_disabled __read_mostly;
  251. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  252. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  253. {
  254. pgdat->first_deferred_pfn = ULONG_MAX;
  255. }
  256. /* Returns true if the struct page for the pfn is uninitialised */
  257. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  258. {
  259. int nid = early_pfn_to_nid(pfn);
  260. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  261. return true;
  262. return false;
  263. }
  264. /*
  265. * Returns false when the remaining initialisation should be deferred until
  266. * later in the boot cycle when it can be parallelised.
  267. */
  268. static inline bool update_defer_init(pg_data_t *pgdat,
  269. unsigned long pfn, unsigned long zone_end,
  270. unsigned long *nr_initialised)
  271. {
  272. unsigned long max_initialise;
  273. /* Always populate low zones for address-contrained allocations */
  274. if (zone_end < pgdat_end_pfn(pgdat))
  275. return true;
  276. /*
  277. * Initialise at least 2G of a node but also take into account that
  278. * two large system hashes that can take up 1GB for 0.25TB/node.
  279. */
  280. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  281. (pgdat->node_spanned_pages >> 8));
  282. (*nr_initialised)++;
  283. if ((*nr_initialised > max_initialise) &&
  284. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  285. pgdat->first_deferred_pfn = pfn;
  286. return false;
  287. }
  288. return true;
  289. }
  290. #else
  291. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  292. {
  293. }
  294. static inline bool early_page_uninitialised(unsigned long pfn)
  295. {
  296. return false;
  297. }
  298. static inline bool update_defer_init(pg_data_t *pgdat,
  299. unsigned long pfn, unsigned long zone_end,
  300. unsigned long *nr_initialised)
  301. {
  302. return true;
  303. }
  304. #endif
  305. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  306. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  307. unsigned long pfn)
  308. {
  309. #ifdef CONFIG_SPARSEMEM
  310. return __pfn_to_section(pfn)->pageblock_flags;
  311. #else
  312. return page_zone(page)->pageblock_flags;
  313. #endif /* CONFIG_SPARSEMEM */
  314. }
  315. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  316. {
  317. #ifdef CONFIG_SPARSEMEM
  318. pfn &= (PAGES_PER_SECTION-1);
  319. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  320. #else
  321. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  322. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  323. #endif /* CONFIG_SPARSEMEM */
  324. }
  325. /**
  326. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  327. * @page: The page within the block of interest
  328. * @pfn: The target page frame number
  329. * @end_bitidx: The last bit of interest to retrieve
  330. * @mask: mask of bits that the caller is interested in
  331. *
  332. * Return: pageblock_bits flags
  333. */
  334. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  335. unsigned long pfn,
  336. unsigned long end_bitidx,
  337. unsigned long mask)
  338. {
  339. unsigned long *bitmap;
  340. unsigned long bitidx, word_bitidx;
  341. unsigned long word;
  342. bitmap = get_pageblock_bitmap(page, pfn);
  343. bitidx = pfn_to_bitidx(page, pfn);
  344. word_bitidx = bitidx / BITS_PER_LONG;
  345. bitidx &= (BITS_PER_LONG-1);
  346. word = bitmap[word_bitidx];
  347. bitidx += end_bitidx;
  348. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  349. }
  350. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  351. unsigned long end_bitidx,
  352. unsigned long mask)
  353. {
  354. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  355. }
  356. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  357. {
  358. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  359. }
  360. /**
  361. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  362. * @page: The page within the block of interest
  363. * @flags: The flags to set
  364. * @pfn: The target page frame number
  365. * @end_bitidx: The last bit of interest
  366. * @mask: mask of bits that the caller is interested in
  367. */
  368. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  369. unsigned long pfn,
  370. unsigned long end_bitidx,
  371. unsigned long mask)
  372. {
  373. unsigned long *bitmap;
  374. unsigned long bitidx, word_bitidx;
  375. unsigned long old_word, word;
  376. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  377. bitmap = get_pageblock_bitmap(page, pfn);
  378. bitidx = pfn_to_bitidx(page, pfn);
  379. word_bitidx = bitidx / BITS_PER_LONG;
  380. bitidx &= (BITS_PER_LONG-1);
  381. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  382. bitidx += end_bitidx;
  383. mask <<= (BITS_PER_LONG - bitidx - 1);
  384. flags <<= (BITS_PER_LONG - bitidx - 1);
  385. word = READ_ONCE(bitmap[word_bitidx]);
  386. for (;;) {
  387. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  388. if (word == old_word)
  389. break;
  390. word = old_word;
  391. }
  392. }
  393. void set_pageblock_migratetype(struct page *page, int migratetype)
  394. {
  395. if (unlikely(page_group_by_mobility_disabled &&
  396. migratetype < MIGRATE_PCPTYPES))
  397. migratetype = MIGRATE_UNMOVABLE;
  398. set_pageblock_flags_group(page, (unsigned long)migratetype,
  399. PB_migrate, PB_migrate_end);
  400. }
  401. #ifdef CONFIG_DEBUG_VM
  402. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  403. {
  404. int ret = 0;
  405. unsigned seq;
  406. unsigned long pfn = page_to_pfn(page);
  407. unsigned long sp, start_pfn;
  408. do {
  409. seq = zone_span_seqbegin(zone);
  410. start_pfn = zone->zone_start_pfn;
  411. sp = zone->spanned_pages;
  412. if (!zone_spans_pfn(zone, pfn))
  413. ret = 1;
  414. } while (zone_span_seqretry(zone, seq));
  415. if (ret)
  416. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  417. pfn, zone_to_nid(zone), zone->name,
  418. start_pfn, start_pfn + sp);
  419. return ret;
  420. }
  421. static int page_is_consistent(struct zone *zone, struct page *page)
  422. {
  423. if (!pfn_valid_within(page_to_pfn(page)))
  424. return 0;
  425. if (zone != page_zone(page))
  426. return 0;
  427. return 1;
  428. }
  429. /*
  430. * Temporary debugging check for pages not lying within a given zone.
  431. */
  432. static int bad_range(struct zone *zone, struct page *page)
  433. {
  434. if (page_outside_zone_boundaries(zone, page))
  435. return 1;
  436. if (!page_is_consistent(zone, page))
  437. return 1;
  438. return 0;
  439. }
  440. #else
  441. static inline int bad_range(struct zone *zone, struct page *page)
  442. {
  443. return 0;
  444. }
  445. #endif
  446. static void bad_page(struct page *page, const char *reason,
  447. unsigned long bad_flags)
  448. {
  449. static unsigned long resume;
  450. static unsigned long nr_shown;
  451. static unsigned long nr_unshown;
  452. /*
  453. * Allow a burst of 60 reports, then keep quiet for that minute;
  454. * or allow a steady drip of one report per second.
  455. */
  456. if (nr_shown == 60) {
  457. if (time_before(jiffies, resume)) {
  458. nr_unshown++;
  459. goto out;
  460. }
  461. if (nr_unshown) {
  462. pr_alert(
  463. "BUG: Bad page state: %lu messages suppressed\n",
  464. nr_unshown);
  465. nr_unshown = 0;
  466. }
  467. nr_shown = 0;
  468. }
  469. if (nr_shown++ == 0)
  470. resume = jiffies + 60 * HZ;
  471. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  472. current->comm, page_to_pfn(page));
  473. __dump_page(page, reason);
  474. bad_flags &= page->flags;
  475. if (bad_flags)
  476. pr_alert("bad because of flags: %#lx(%pGp)\n",
  477. bad_flags, &bad_flags);
  478. dump_page_owner(page);
  479. print_modules();
  480. dump_stack();
  481. out:
  482. /* Leave bad fields for debug, except PageBuddy could make trouble */
  483. page_mapcount_reset(page); /* remove PageBuddy */
  484. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  485. }
  486. /*
  487. * Higher-order pages are called "compound pages". They are structured thusly:
  488. *
  489. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  490. *
  491. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  492. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  493. *
  494. * The first tail page's ->compound_dtor holds the offset in array of compound
  495. * page destructors. See compound_page_dtors.
  496. *
  497. * The first tail page's ->compound_order holds the order of allocation.
  498. * This usage means that zero-order pages may not be compound.
  499. */
  500. void free_compound_page(struct page *page)
  501. {
  502. __free_pages_ok(page, compound_order(page));
  503. }
  504. void prep_compound_page(struct page *page, unsigned int order)
  505. {
  506. int i;
  507. int nr_pages = 1 << order;
  508. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  509. set_compound_order(page, order);
  510. __SetPageHead(page);
  511. for (i = 1; i < nr_pages; i++) {
  512. struct page *p = page + i;
  513. set_page_count(p, 0);
  514. p->mapping = TAIL_MAPPING;
  515. set_compound_head(p, page);
  516. }
  517. atomic_set(compound_mapcount_ptr(page), -1);
  518. }
  519. #ifdef CONFIG_DEBUG_PAGEALLOC
  520. unsigned int _debug_guardpage_minorder;
  521. bool _debug_pagealloc_enabled __read_mostly
  522. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  523. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  524. bool _debug_guardpage_enabled __read_mostly;
  525. static int __init early_debug_pagealloc(char *buf)
  526. {
  527. if (!buf)
  528. return -EINVAL;
  529. return kstrtobool(buf, &_debug_pagealloc_enabled);
  530. }
  531. early_param("debug_pagealloc", early_debug_pagealloc);
  532. static bool need_debug_guardpage(void)
  533. {
  534. /* If we don't use debug_pagealloc, we don't need guard page */
  535. if (!debug_pagealloc_enabled())
  536. return false;
  537. if (!debug_guardpage_minorder())
  538. return false;
  539. return true;
  540. }
  541. static void init_debug_guardpage(void)
  542. {
  543. if (!debug_pagealloc_enabled())
  544. return;
  545. if (!debug_guardpage_minorder())
  546. return;
  547. _debug_guardpage_enabled = true;
  548. }
  549. struct page_ext_operations debug_guardpage_ops = {
  550. .need = need_debug_guardpage,
  551. .init = init_debug_guardpage,
  552. };
  553. static int __init debug_guardpage_minorder_setup(char *buf)
  554. {
  555. unsigned long res;
  556. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  557. pr_err("Bad debug_guardpage_minorder value\n");
  558. return 0;
  559. }
  560. _debug_guardpage_minorder = res;
  561. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  562. return 0;
  563. }
  564. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  565. static inline bool set_page_guard(struct zone *zone, struct page *page,
  566. unsigned int order, int migratetype)
  567. {
  568. struct page_ext *page_ext;
  569. if (!debug_guardpage_enabled())
  570. return false;
  571. if (order >= debug_guardpage_minorder())
  572. return false;
  573. page_ext = lookup_page_ext(page);
  574. if (unlikely(!page_ext))
  575. return false;
  576. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  577. INIT_LIST_HEAD(&page->lru);
  578. set_page_private(page, order);
  579. /* Guard pages are not available for any usage */
  580. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  581. return true;
  582. }
  583. static inline void clear_page_guard(struct zone *zone, struct page *page,
  584. unsigned int order, int migratetype)
  585. {
  586. struct page_ext *page_ext;
  587. if (!debug_guardpage_enabled())
  588. return;
  589. page_ext = lookup_page_ext(page);
  590. if (unlikely(!page_ext))
  591. return;
  592. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  593. set_page_private(page, 0);
  594. if (!is_migrate_isolate(migratetype))
  595. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  596. }
  597. #else
  598. struct page_ext_operations debug_guardpage_ops;
  599. static inline bool set_page_guard(struct zone *zone, struct page *page,
  600. unsigned int order, int migratetype) { return false; }
  601. static inline void clear_page_guard(struct zone *zone, struct page *page,
  602. unsigned int order, int migratetype) {}
  603. #endif
  604. static inline void set_page_order(struct page *page, unsigned int order)
  605. {
  606. set_page_private(page, order);
  607. __SetPageBuddy(page);
  608. }
  609. static inline void rmv_page_order(struct page *page)
  610. {
  611. __ClearPageBuddy(page);
  612. set_page_private(page, 0);
  613. }
  614. /*
  615. * This function checks whether a page is free && is the buddy
  616. * we can do coalesce a page and its buddy if
  617. * (a) the buddy is not in a hole &&
  618. * (b) the buddy is in the buddy system &&
  619. * (c) a page and its buddy have the same order &&
  620. * (d) a page and its buddy are in the same zone.
  621. *
  622. * For recording whether a page is in the buddy system, we set ->_mapcount
  623. * PAGE_BUDDY_MAPCOUNT_VALUE.
  624. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  625. * serialized by zone->lock.
  626. *
  627. * For recording page's order, we use page_private(page).
  628. */
  629. static inline int page_is_buddy(struct page *page, struct page *buddy,
  630. unsigned int order)
  631. {
  632. if (!pfn_valid_within(page_to_pfn(buddy)))
  633. return 0;
  634. if (page_is_guard(buddy) && page_order(buddy) == order) {
  635. if (page_zone_id(page) != page_zone_id(buddy))
  636. return 0;
  637. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  638. return 1;
  639. }
  640. if (PageBuddy(buddy) && page_order(buddy) == order) {
  641. /*
  642. * zone check is done late to avoid uselessly
  643. * calculating zone/node ids for pages that could
  644. * never merge.
  645. */
  646. if (page_zone_id(page) != page_zone_id(buddy))
  647. return 0;
  648. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  649. return 1;
  650. }
  651. return 0;
  652. }
  653. /*
  654. * Freeing function for a buddy system allocator.
  655. *
  656. * The concept of a buddy system is to maintain direct-mapped table
  657. * (containing bit values) for memory blocks of various "orders".
  658. * The bottom level table contains the map for the smallest allocatable
  659. * units of memory (here, pages), and each level above it describes
  660. * pairs of units from the levels below, hence, "buddies".
  661. * At a high level, all that happens here is marking the table entry
  662. * at the bottom level available, and propagating the changes upward
  663. * as necessary, plus some accounting needed to play nicely with other
  664. * parts of the VM system.
  665. * At each level, we keep a list of pages, which are heads of continuous
  666. * free pages of length of (1 << order) and marked with _mapcount
  667. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  668. * field.
  669. * So when we are allocating or freeing one, we can derive the state of the
  670. * other. That is, if we allocate a small block, and both were
  671. * free, the remainder of the region must be split into blocks.
  672. * If a block is freed, and its buddy is also free, then this
  673. * triggers coalescing into a block of larger size.
  674. *
  675. * -- nyc
  676. */
  677. static inline void __free_one_page(struct page *page,
  678. unsigned long pfn,
  679. struct zone *zone, unsigned int order,
  680. int migratetype)
  681. {
  682. unsigned long page_idx;
  683. unsigned long combined_idx;
  684. unsigned long uninitialized_var(buddy_idx);
  685. struct page *buddy;
  686. unsigned int max_order;
  687. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  688. VM_BUG_ON(!zone_is_initialized(zone));
  689. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  690. VM_BUG_ON(migratetype == -1);
  691. if (likely(!is_migrate_isolate(migratetype)))
  692. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  693. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  694. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  695. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  696. continue_merging:
  697. while (order < max_order - 1) {
  698. buddy_idx = __find_buddy_index(page_idx, order);
  699. buddy = page + (buddy_idx - page_idx);
  700. if (!page_is_buddy(page, buddy, order))
  701. goto done_merging;
  702. /*
  703. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  704. * merge with it and move up one order.
  705. */
  706. if (page_is_guard(buddy)) {
  707. clear_page_guard(zone, buddy, order, migratetype);
  708. } else {
  709. list_del(&buddy->lru);
  710. zone->free_area[order].nr_free--;
  711. rmv_page_order(buddy);
  712. }
  713. combined_idx = buddy_idx & page_idx;
  714. page = page + (combined_idx - page_idx);
  715. page_idx = combined_idx;
  716. order++;
  717. }
  718. if (max_order < MAX_ORDER) {
  719. /* If we are here, it means order is >= pageblock_order.
  720. * We want to prevent merge between freepages on isolate
  721. * pageblock and normal pageblock. Without this, pageblock
  722. * isolation could cause incorrect freepage or CMA accounting.
  723. *
  724. * We don't want to hit this code for the more frequent
  725. * low-order merging.
  726. */
  727. if (unlikely(has_isolate_pageblock(zone))) {
  728. int buddy_mt;
  729. buddy_idx = __find_buddy_index(page_idx, order);
  730. buddy = page + (buddy_idx - page_idx);
  731. buddy_mt = get_pageblock_migratetype(buddy);
  732. if (migratetype != buddy_mt
  733. && (is_migrate_isolate(migratetype) ||
  734. is_migrate_isolate(buddy_mt)))
  735. goto done_merging;
  736. }
  737. max_order++;
  738. goto continue_merging;
  739. }
  740. done_merging:
  741. set_page_order(page, order);
  742. /*
  743. * If this is not the largest possible page, check if the buddy
  744. * of the next-highest order is free. If it is, it's possible
  745. * that pages are being freed that will coalesce soon. In case,
  746. * that is happening, add the free page to the tail of the list
  747. * so it's less likely to be used soon and more likely to be merged
  748. * as a higher order page
  749. */
  750. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  751. struct page *higher_page, *higher_buddy;
  752. combined_idx = buddy_idx & page_idx;
  753. higher_page = page + (combined_idx - page_idx);
  754. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  755. higher_buddy = higher_page + (buddy_idx - combined_idx);
  756. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  757. list_add_tail(&page->lru,
  758. &zone->free_area[order].free_list[migratetype]);
  759. goto out;
  760. }
  761. }
  762. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  763. out:
  764. zone->free_area[order].nr_free++;
  765. }
  766. /*
  767. * A bad page could be due to a number of fields. Instead of multiple branches,
  768. * try and check multiple fields with one check. The caller must do a detailed
  769. * check if necessary.
  770. */
  771. static inline bool page_expected_state(struct page *page,
  772. unsigned long check_flags)
  773. {
  774. if (unlikely(atomic_read(&page->_mapcount) != -1))
  775. return false;
  776. if (unlikely((unsigned long)page->mapping |
  777. page_ref_count(page) |
  778. #ifdef CONFIG_MEMCG
  779. (unsigned long)page->mem_cgroup |
  780. #endif
  781. (page->flags & check_flags)))
  782. return false;
  783. return true;
  784. }
  785. static void free_pages_check_bad(struct page *page)
  786. {
  787. const char *bad_reason;
  788. unsigned long bad_flags;
  789. bad_reason = NULL;
  790. bad_flags = 0;
  791. if (unlikely(atomic_read(&page->_mapcount) != -1))
  792. bad_reason = "nonzero mapcount";
  793. if (unlikely(page->mapping != NULL))
  794. bad_reason = "non-NULL mapping";
  795. if (unlikely(page_ref_count(page) != 0))
  796. bad_reason = "nonzero _refcount";
  797. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  798. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  799. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  800. }
  801. #ifdef CONFIG_MEMCG
  802. if (unlikely(page->mem_cgroup))
  803. bad_reason = "page still charged to cgroup";
  804. #endif
  805. bad_page(page, bad_reason, bad_flags);
  806. }
  807. static inline int free_pages_check(struct page *page)
  808. {
  809. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  810. return 0;
  811. /* Something has gone sideways, find it */
  812. free_pages_check_bad(page);
  813. return 1;
  814. }
  815. static int free_tail_pages_check(struct page *head_page, struct page *page)
  816. {
  817. int ret = 1;
  818. /*
  819. * We rely page->lru.next never has bit 0 set, unless the page
  820. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  821. */
  822. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  823. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  824. ret = 0;
  825. goto out;
  826. }
  827. switch (page - head_page) {
  828. case 1:
  829. /* the first tail page: ->mapping is compound_mapcount() */
  830. if (unlikely(compound_mapcount(page))) {
  831. bad_page(page, "nonzero compound_mapcount", 0);
  832. goto out;
  833. }
  834. break;
  835. case 2:
  836. /*
  837. * the second tail page: ->mapping is
  838. * page_deferred_list().next -- ignore value.
  839. */
  840. break;
  841. default:
  842. if (page->mapping != TAIL_MAPPING) {
  843. bad_page(page, "corrupted mapping in tail page", 0);
  844. goto out;
  845. }
  846. break;
  847. }
  848. if (unlikely(!PageTail(page))) {
  849. bad_page(page, "PageTail not set", 0);
  850. goto out;
  851. }
  852. if (unlikely(compound_head(page) != head_page)) {
  853. bad_page(page, "compound_head not consistent", 0);
  854. goto out;
  855. }
  856. ret = 0;
  857. out:
  858. page->mapping = NULL;
  859. clear_compound_head(page);
  860. return ret;
  861. }
  862. static __always_inline bool free_pages_prepare(struct page *page,
  863. unsigned int order, bool check_free)
  864. {
  865. int bad = 0;
  866. VM_BUG_ON_PAGE(PageTail(page), page);
  867. trace_mm_page_free(page, order);
  868. kmemcheck_free_shadow(page, order);
  869. /*
  870. * Check tail pages before head page information is cleared to
  871. * avoid checking PageCompound for order-0 pages.
  872. */
  873. if (unlikely(order)) {
  874. bool compound = PageCompound(page);
  875. int i;
  876. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  877. if (compound)
  878. ClearPageDoubleMap(page);
  879. for (i = 1; i < (1 << order); i++) {
  880. if (compound)
  881. bad += free_tail_pages_check(page, page + i);
  882. if (unlikely(free_pages_check(page + i))) {
  883. bad++;
  884. continue;
  885. }
  886. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  887. }
  888. }
  889. if (PageMappingFlags(page))
  890. page->mapping = NULL;
  891. if (memcg_kmem_enabled() && PageKmemcg(page))
  892. memcg_kmem_uncharge(page, order);
  893. if (check_free)
  894. bad += free_pages_check(page);
  895. if (bad)
  896. return false;
  897. page_cpupid_reset_last(page);
  898. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  899. reset_page_owner(page, order);
  900. if (!PageHighMem(page)) {
  901. debug_check_no_locks_freed(page_address(page),
  902. PAGE_SIZE << order);
  903. debug_check_no_obj_freed(page_address(page),
  904. PAGE_SIZE << order);
  905. }
  906. arch_free_page(page, order);
  907. kernel_poison_pages(page, 1 << order, 0);
  908. kernel_map_pages(page, 1 << order, 0);
  909. kasan_free_pages(page, order);
  910. return true;
  911. }
  912. #ifdef CONFIG_DEBUG_VM
  913. static inline bool free_pcp_prepare(struct page *page)
  914. {
  915. return free_pages_prepare(page, 0, true);
  916. }
  917. static inline bool bulkfree_pcp_prepare(struct page *page)
  918. {
  919. return false;
  920. }
  921. #else
  922. static bool free_pcp_prepare(struct page *page)
  923. {
  924. return free_pages_prepare(page, 0, false);
  925. }
  926. static bool bulkfree_pcp_prepare(struct page *page)
  927. {
  928. return free_pages_check(page);
  929. }
  930. #endif /* CONFIG_DEBUG_VM */
  931. /*
  932. * Frees a number of pages from the PCP lists
  933. * Assumes all pages on list are in same zone, and of same order.
  934. * count is the number of pages to free.
  935. *
  936. * If the zone was previously in an "all pages pinned" state then look to
  937. * see if this freeing clears that state.
  938. *
  939. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  940. * pinned" detection logic.
  941. */
  942. static void free_pcppages_bulk(struct zone *zone, int count,
  943. struct per_cpu_pages *pcp)
  944. {
  945. int migratetype = 0;
  946. int batch_free = 0;
  947. unsigned long nr_scanned;
  948. bool isolated_pageblocks;
  949. spin_lock(&zone->lock);
  950. isolated_pageblocks = has_isolate_pageblock(zone);
  951. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  952. if (nr_scanned)
  953. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  954. while (count) {
  955. struct page *page;
  956. struct list_head *list;
  957. /*
  958. * Remove pages from lists in a round-robin fashion. A
  959. * batch_free count is maintained that is incremented when an
  960. * empty list is encountered. This is so more pages are freed
  961. * off fuller lists instead of spinning excessively around empty
  962. * lists
  963. */
  964. do {
  965. batch_free++;
  966. if (++migratetype == MIGRATE_PCPTYPES)
  967. migratetype = 0;
  968. list = &pcp->lists[migratetype];
  969. } while (list_empty(list));
  970. /* This is the only non-empty list. Free them all. */
  971. if (batch_free == MIGRATE_PCPTYPES)
  972. batch_free = count;
  973. do {
  974. int mt; /* migratetype of the to-be-freed page */
  975. page = list_last_entry(list, struct page, lru);
  976. /* must delete as __free_one_page list manipulates */
  977. list_del(&page->lru);
  978. mt = get_pcppage_migratetype(page);
  979. /* MIGRATE_ISOLATE page should not go to pcplists */
  980. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  981. /* Pageblock could have been isolated meanwhile */
  982. if (unlikely(isolated_pageblocks))
  983. mt = get_pageblock_migratetype(page);
  984. if (bulkfree_pcp_prepare(page))
  985. continue;
  986. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  987. trace_mm_page_pcpu_drain(page, 0, mt);
  988. } while (--count && --batch_free && !list_empty(list));
  989. }
  990. spin_unlock(&zone->lock);
  991. }
  992. static void free_one_page(struct zone *zone,
  993. struct page *page, unsigned long pfn,
  994. unsigned int order,
  995. int migratetype)
  996. {
  997. unsigned long nr_scanned;
  998. spin_lock(&zone->lock);
  999. nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
  1000. if (nr_scanned)
  1001. __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
  1002. if (unlikely(has_isolate_pageblock(zone) ||
  1003. is_migrate_isolate(migratetype))) {
  1004. migratetype = get_pfnblock_migratetype(page, pfn);
  1005. }
  1006. __free_one_page(page, pfn, zone, order, migratetype);
  1007. spin_unlock(&zone->lock);
  1008. }
  1009. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1010. unsigned long zone, int nid)
  1011. {
  1012. set_page_links(page, zone, nid, pfn);
  1013. init_page_count(page);
  1014. page_mapcount_reset(page);
  1015. page_cpupid_reset_last(page);
  1016. INIT_LIST_HEAD(&page->lru);
  1017. #ifdef WANT_PAGE_VIRTUAL
  1018. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1019. if (!is_highmem_idx(zone))
  1020. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1021. #endif
  1022. }
  1023. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1024. int nid)
  1025. {
  1026. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1027. }
  1028. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1029. static void init_reserved_page(unsigned long pfn)
  1030. {
  1031. pg_data_t *pgdat;
  1032. int nid, zid;
  1033. if (!early_page_uninitialised(pfn))
  1034. return;
  1035. nid = early_pfn_to_nid(pfn);
  1036. pgdat = NODE_DATA(nid);
  1037. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1038. struct zone *zone = &pgdat->node_zones[zid];
  1039. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1040. break;
  1041. }
  1042. __init_single_pfn(pfn, zid, nid);
  1043. }
  1044. #else
  1045. static inline void init_reserved_page(unsigned long pfn)
  1046. {
  1047. }
  1048. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1049. /*
  1050. * Initialised pages do not have PageReserved set. This function is
  1051. * called for each range allocated by the bootmem allocator and
  1052. * marks the pages PageReserved. The remaining valid pages are later
  1053. * sent to the buddy page allocator.
  1054. */
  1055. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1056. {
  1057. unsigned long start_pfn = PFN_DOWN(start);
  1058. unsigned long end_pfn = PFN_UP(end);
  1059. for (; start_pfn < end_pfn; start_pfn++) {
  1060. if (pfn_valid(start_pfn)) {
  1061. struct page *page = pfn_to_page(start_pfn);
  1062. init_reserved_page(start_pfn);
  1063. /* Avoid false-positive PageTail() */
  1064. INIT_LIST_HEAD(&page->lru);
  1065. SetPageReserved(page);
  1066. }
  1067. }
  1068. }
  1069. static void __free_pages_ok(struct page *page, unsigned int order)
  1070. {
  1071. unsigned long flags;
  1072. int migratetype;
  1073. unsigned long pfn = page_to_pfn(page);
  1074. if (!free_pages_prepare(page, order, true))
  1075. return;
  1076. migratetype = get_pfnblock_migratetype(page, pfn);
  1077. local_irq_save(flags);
  1078. __count_vm_events(PGFREE, 1 << order);
  1079. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1080. local_irq_restore(flags);
  1081. }
  1082. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1083. {
  1084. unsigned int nr_pages = 1 << order;
  1085. struct page *p = page;
  1086. unsigned int loop;
  1087. prefetchw(p);
  1088. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1089. prefetchw(p + 1);
  1090. __ClearPageReserved(p);
  1091. set_page_count(p, 0);
  1092. }
  1093. __ClearPageReserved(p);
  1094. set_page_count(p, 0);
  1095. page_zone(page)->managed_pages += nr_pages;
  1096. set_page_refcounted(page);
  1097. __free_pages(page, order);
  1098. }
  1099. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1100. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1101. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1102. int __meminit early_pfn_to_nid(unsigned long pfn)
  1103. {
  1104. static DEFINE_SPINLOCK(early_pfn_lock);
  1105. int nid;
  1106. spin_lock(&early_pfn_lock);
  1107. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1108. if (nid < 0)
  1109. nid = first_online_node;
  1110. spin_unlock(&early_pfn_lock);
  1111. return nid;
  1112. }
  1113. #endif
  1114. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1115. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1116. struct mminit_pfnnid_cache *state)
  1117. {
  1118. int nid;
  1119. nid = __early_pfn_to_nid(pfn, state);
  1120. if (nid >= 0 && nid != node)
  1121. return false;
  1122. return true;
  1123. }
  1124. /* Only safe to use early in boot when initialisation is single-threaded */
  1125. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1126. {
  1127. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1128. }
  1129. #else
  1130. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1131. {
  1132. return true;
  1133. }
  1134. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1135. struct mminit_pfnnid_cache *state)
  1136. {
  1137. return true;
  1138. }
  1139. #endif
  1140. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1141. unsigned int order)
  1142. {
  1143. if (early_page_uninitialised(pfn))
  1144. return;
  1145. return __free_pages_boot_core(page, order);
  1146. }
  1147. /*
  1148. * Check that the whole (or subset of) a pageblock given by the interval of
  1149. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1150. * with the migration of free compaction scanner. The scanners then need to
  1151. * use only pfn_valid_within() check for arches that allow holes within
  1152. * pageblocks.
  1153. *
  1154. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1155. *
  1156. * It's possible on some configurations to have a setup like node0 node1 node0
  1157. * i.e. it's possible that all pages within a zones range of pages do not
  1158. * belong to a single zone. We assume that a border between node0 and node1
  1159. * can occur within a single pageblock, but not a node0 node1 node0
  1160. * interleaving within a single pageblock. It is therefore sufficient to check
  1161. * the first and last page of a pageblock and avoid checking each individual
  1162. * page in a pageblock.
  1163. */
  1164. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1165. unsigned long end_pfn, struct zone *zone)
  1166. {
  1167. struct page *start_page;
  1168. struct page *end_page;
  1169. /* end_pfn is one past the range we are checking */
  1170. end_pfn--;
  1171. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1172. return NULL;
  1173. start_page = pfn_to_page(start_pfn);
  1174. if (page_zone(start_page) != zone)
  1175. return NULL;
  1176. end_page = pfn_to_page(end_pfn);
  1177. /* This gives a shorter code than deriving page_zone(end_page) */
  1178. if (page_zone_id(start_page) != page_zone_id(end_page))
  1179. return NULL;
  1180. return start_page;
  1181. }
  1182. void set_zone_contiguous(struct zone *zone)
  1183. {
  1184. unsigned long block_start_pfn = zone->zone_start_pfn;
  1185. unsigned long block_end_pfn;
  1186. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1187. for (; block_start_pfn < zone_end_pfn(zone);
  1188. block_start_pfn = block_end_pfn,
  1189. block_end_pfn += pageblock_nr_pages) {
  1190. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1191. if (!__pageblock_pfn_to_page(block_start_pfn,
  1192. block_end_pfn, zone))
  1193. return;
  1194. }
  1195. /* We confirm that there is no hole */
  1196. zone->contiguous = true;
  1197. }
  1198. void clear_zone_contiguous(struct zone *zone)
  1199. {
  1200. zone->contiguous = false;
  1201. }
  1202. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1203. static void __init deferred_free_range(struct page *page,
  1204. unsigned long pfn, int nr_pages)
  1205. {
  1206. int i;
  1207. if (!page)
  1208. return;
  1209. /* Free a large naturally-aligned chunk if possible */
  1210. if (nr_pages == pageblock_nr_pages &&
  1211. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1212. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1213. __free_pages_boot_core(page, pageblock_order);
  1214. return;
  1215. }
  1216. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1217. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1218. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1219. __free_pages_boot_core(page, 0);
  1220. }
  1221. }
  1222. /* Completion tracking for deferred_init_memmap() threads */
  1223. static atomic_t pgdat_init_n_undone __initdata;
  1224. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1225. static inline void __init pgdat_init_report_one_done(void)
  1226. {
  1227. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1228. complete(&pgdat_init_all_done_comp);
  1229. }
  1230. /* Initialise remaining memory on a node */
  1231. static int __init deferred_init_memmap(void *data)
  1232. {
  1233. pg_data_t *pgdat = data;
  1234. int nid = pgdat->node_id;
  1235. struct mminit_pfnnid_cache nid_init_state = { };
  1236. unsigned long start = jiffies;
  1237. unsigned long nr_pages = 0;
  1238. unsigned long walk_start, walk_end;
  1239. int i, zid;
  1240. struct zone *zone;
  1241. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1242. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1243. if (first_init_pfn == ULONG_MAX) {
  1244. pgdat_init_report_one_done();
  1245. return 0;
  1246. }
  1247. /* Bind memory initialisation thread to a local node if possible */
  1248. if (!cpumask_empty(cpumask))
  1249. set_cpus_allowed_ptr(current, cpumask);
  1250. /* Sanity check boundaries */
  1251. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1252. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1253. pgdat->first_deferred_pfn = ULONG_MAX;
  1254. /* Only the highest zone is deferred so find it */
  1255. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1256. zone = pgdat->node_zones + zid;
  1257. if (first_init_pfn < zone_end_pfn(zone))
  1258. break;
  1259. }
  1260. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1261. unsigned long pfn, end_pfn;
  1262. struct page *page = NULL;
  1263. struct page *free_base_page = NULL;
  1264. unsigned long free_base_pfn = 0;
  1265. int nr_to_free = 0;
  1266. end_pfn = min(walk_end, zone_end_pfn(zone));
  1267. pfn = first_init_pfn;
  1268. if (pfn < walk_start)
  1269. pfn = walk_start;
  1270. if (pfn < zone->zone_start_pfn)
  1271. pfn = zone->zone_start_pfn;
  1272. for (; pfn < end_pfn; pfn++) {
  1273. if (!pfn_valid_within(pfn))
  1274. goto free_range;
  1275. /*
  1276. * Ensure pfn_valid is checked every
  1277. * pageblock_nr_pages for memory holes
  1278. */
  1279. if ((pfn & (pageblock_nr_pages - 1)) == 0) {
  1280. if (!pfn_valid(pfn)) {
  1281. page = NULL;
  1282. goto free_range;
  1283. }
  1284. }
  1285. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1286. page = NULL;
  1287. goto free_range;
  1288. }
  1289. /* Minimise pfn page lookups and scheduler checks */
  1290. if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
  1291. page++;
  1292. } else {
  1293. nr_pages += nr_to_free;
  1294. deferred_free_range(free_base_page,
  1295. free_base_pfn, nr_to_free);
  1296. free_base_page = NULL;
  1297. free_base_pfn = nr_to_free = 0;
  1298. page = pfn_to_page(pfn);
  1299. cond_resched();
  1300. }
  1301. if (page->flags) {
  1302. VM_BUG_ON(page_zone(page) != zone);
  1303. goto free_range;
  1304. }
  1305. __init_single_page(page, pfn, zid, nid);
  1306. if (!free_base_page) {
  1307. free_base_page = page;
  1308. free_base_pfn = pfn;
  1309. nr_to_free = 0;
  1310. }
  1311. nr_to_free++;
  1312. /* Where possible, batch up pages for a single free */
  1313. continue;
  1314. free_range:
  1315. /* Free the current block of pages to allocator */
  1316. nr_pages += nr_to_free;
  1317. deferred_free_range(free_base_page, free_base_pfn,
  1318. nr_to_free);
  1319. free_base_page = NULL;
  1320. free_base_pfn = nr_to_free = 0;
  1321. }
  1322. /* Free the last block of pages to allocator */
  1323. nr_pages += nr_to_free;
  1324. deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
  1325. first_init_pfn = max(end_pfn, first_init_pfn);
  1326. }
  1327. /* Sanity check that the next zone really is unpopulated */
  1328. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1329. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1330. jiffies_to_msecs(jiffies - start));
  1331. pgdat_init_report_one_done();
  1332. return 0;
  1333. }
  1334. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1335. void __init page_alloc_init_late(void)
  1336. {
  1337. struct zone *zone;
  1338. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1339. int nid;
  1340. /* There will be num_node_state(N_MEMORY) threads */
  1341. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1342. for_each_node_state(nid, N_MEMORY) {
  1343. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1344. }
  1345. /* Block until all are initialised */
  1346. wait_for_completion(&pgdat_init_all_done_comp);
  1347. /* Reinit limits that are based on free pages after the kernel is up */
  1348. files_maxfiles_init();
  1349. #endif
  1350. for_each_populated_zone(zone)
  1351. set_zone_contiguous(zone);
  1352. }
  1353. #ifdef CONFIG_CMA
  1354. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1355. void __init init_cma_reserved_pageblock(struct page *page)
  1356. {
  1357. unsigned i = pageblock_nr_pages;
  1358. struct page *p = page;
  1359. do {
  1360. __ClearPageReserved(p);
  1361. set_page_count(p, 0);
  1362. } while (++p, --i);
  1363. set_pageblock_migratetype(page, MIGRATE_CMA);
  1364. if (pageblock_order >= MAX_ORDER) {
  1365. i = pageblock_nr_pages;
  1366. p = page;
  1367. do {
  1368. set_page_refcounted(p);
  1369. __free_pages(p, MAX_ORDER - 1);
  1370. p += MAX_ORDER_NR_PAGES;
  1371. } while (i -= MAX_ORDER_NR_PAGES);
  1372. } else {
  1373. set_page_refcounted(page);
  1374. __free_pages(page, pageblock_order);
  1375. }
  1376. adjust_managed_page_count(page, pageblock_nr_pages);
  1377. }
  1378. #endif
  1379. /*
  1380. * The order of subdivision here is critical for the IO subsystem.
  1381. * Please do not alter this order without good reasons and regression
  1382. * testing. Specifically, as large blocks of memory are subdivided,
  1383. * the order in which smaller blocks are delivered depends on the order
  1384. * they're subdivided in this function. This is the primary factor
  1385. * influencing the order in which pages are delivered to the IO
  1386. * subsystem according to empirical testing, and this is also justified
  1387. * by considering the behavior of a buddy system containing a single
  1388. * large block of memory acted on by a series of small allocations.
  1389. * This behavior is a critical factor in sglist merging's success.
  1390. *
  1391. * -- nyc
  1392. */
  1393. static inline void expand(struct zone *zone, struct page *page,
  1394. int low, int high, struct free_area *area,
  1395. int migratetype)
  1396. {
  1397. unsigned long size = 1 << high;
  1398. while (high > low) {
  1399. area--;
  1400. high--;
  1401. size >>= 1;
  1402. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1403. /*
  1404. * Mark as guard pages (or page), that will allow to
  1405. * merge back to allocator when buddy will be freed.
  1406. * Corresponding page table entries will not be touched,
  1407. * pages will stay not present in virtual address space
  1408. */
  1409. if (set_page_guard(zone, &page[size], high, migratetype))
  1410. continue;
  1411. list_add(&page[size].lru, &area->free_list[migratetype]);
  1412. area->nr_free++;
  1413. set_page_order(&page[size], high);
  1414. }
  1415. }
  1416. static void check_new_page_bad(struct page *page)
  1417. {
  1418. const char *bad_reason = NULL;
  1419. unsigned long bad_flags = 0;
  1420. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1421. bad_reason = "nonzero mapcount";
  1422. if (unlikely(page->mapping != NULL))
  1423. bad_reason = "non-NULL mapping";
  1424. if (unlikely(page_ref_count(page) != 0))
  1425. bad_reason = "nonzero _count";
  1426. if (unlikely(page->flags & __PG_HWPOISON)) {
  1427. bad_reason = "HWPoisoned (hardware-corrupted)";
  1428. bad_flags = __PG_HWPOISON;
  1429. /* Don't complain about hwpoisoned pages */
  1430. page_mapcount_reset(page); /* remove PageBuddy */
  1431. return;
  1432. }
  1433. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1434. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1435. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1436. }
  1437. #ifdef CONFIG_MEMCG
  1438. if (unlikely(page->mem_cgroup))
  1439. bad_reason = "page still charged to cgroup";
  1440. #endif
  1441. bad_page(page, bad_reason, bad_flags);
  1442. }
  1443. /*
  1444. * This page is about to be returned from the page allocator
  1445. */
  1446. static inline int check_new_page(struct page *page)
  1447. {
  1448. if (likely(page_expected_state(page,
  1449. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1450. return 0;
  1451. check_new_page_bad(page);
  1452. return 1;
  1453. }
  1454. static inline bool free_pages_prezeroed(bool poisoned)
  1455. {
  1456. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1457. page_poisoning_enabled() && poisoned;
  1458. }
  1459. #ifdef CONFIG_DEBUG_VM
  1460. static bool check_pcp_refill(struct page *page)
  1461. {
  1462. return false;
  1463. }
  1464. static bool check_new_pcp(struct page *page)
  1465. {
  1466. return check_new_page(page);
  1467. }
  1468. #else
  1469. static bool check_pcp_refill(struct page *page)
  1470. {
  1471. return check_new_page(page);
  1472. }
  1473. static bool check_new_pcp(struct page *page)
  1474. {
  1475. return false;
  1476. }
  1477. #endif /* CONFIG_DEBUG_VM */
  1478. static bool check_new_pages(struct page *page, unsigned int order)
  1479. {
  1480. int i;
  1481. for (i = 0; i < (1 << order); i++) {
  1482. struct page *p = page + i;
  1483. if (unlikely(check_new_page(p)))
  1484. return true;
  1485. }
  1486. return false;
  1487. }
  1488. inline void post_alloc_hook(struct page *page, unsigned int order,
  1489. gfp_t gfp_flags)
  1490. {
  1491. set_page_private(page, 0);
  1492. set_page_refcounted(page);
  1493. arch_alloc_page(page, order);
  1494. kernel_map_pages(page, 1 << order, 1);
  1495. kernel_poison_pages(page, 1 << order, 1);
  1496. kasan_alloc_pages(page, order);
  1497. set_page_owner(page, order, gfp_flags);
  1498. }
  1499. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1500. unsigned int alloc_flags)
  1501. {
  1502. int i;
  1503. bool poisoned = true;
  1504. for (i = 0; i < (1 << order); i++) {
  1505. struct page *p = page + i;
  1506. if (poisoned)
  1507. poisoned &= page_is_poisoned(p);
  1508. }
  1509. post_alloc_hook(page, order, gfp_flags);
  1510. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1511. for (i = 0; i < (1 << order); i++)
  1512. clear_highpage(page + i);
  1513. if (order && (gfp_flags & __GFP_COMP))
  1514. prep_compound_page(page, order);
  1515. /*
  1516. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1517. * allocate the page. The expectation is that the caller is taking
  1518. * steps that will free more memory. The caller should avoid the page
  1519. * being used for !PFMEMALLOC purposes.
  1520. */
  1521. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1522. set_page_pfmemalloc(page);
  1523. else
  1524. clear_page_pfmemalloc(page);
  1525. }
  1526. /*
  1527. * Go through the free lists for the given migratetype and remove
  1528. * the smallest available page from the freelists
  1529. */
  1530. static inline
  1531. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1532. int migratetype)
  1533. {
  1534. unsigned int current_order;
  1535. struct free_area *area;
  1536. struct page *page;
  1537. /* Find a page of the appropriate size in the preferred list */
  1538. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1539. area = &(zone->free_area[current_order]);
  1540. page = list_first_entry_or_null(&area->free_list[migratetype],
  1541. struct page, lru);
  1542. if (!page)
  1543. continue;
  1544. list_del(&page->lru);
  1545. rmv_page_order(page);
  1546. area->nr_free--;
  1547. expand(zone, page, order, current_order, area, migratetype);
  1548. set_pcppage_migratetype(page, migratetype);
  1549. return page;
  1550. }
  1551. return NULL;
  1552. }
  1553. /*
  1554. * This array describes the order lists are fallen back to when
  1555. * the free lists for the desirable migrate type are depleted
  1556. */
  1557. static int fallbacks[MIGRATE_TYPES][4] = {
  1558. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1559. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1560. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1561. #ifdef CONFIG_CMA
  1562. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1563. #endif
  1564. #ifdef CONFIG_MEMORY_ISOLATION
  1565. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1566. #endif
  1567. };
  1568. #ifdef CONFIG_CMA
  1569. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1570. unsigned int order)
  1571. {
  1572. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1573. }
  1574. #else
  1575. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1576. unsigned int order) { return NULL; }
  1577. #endif
  1578. /*
  1579. * Move the free pages in a range to the free lists of the requested type.
  1580. * Note that start_page and end_pages are not aligned on a pageblock
  1581. * boundary. If alignment is required, use move_freepages_block()
  1582. */
  1583. int move_freepages(struct zone *zone,
  1584. struct page *start_page, struct page *end_page,
  1585. int migratetype)
  1586. {
  1587. struct page *page;
  1588. unsigned int order;
  1589. int pages_moved = 0;
  1590. #ifndef CONFIG_HOLES_IN_ZONE
  1591. /*
  1592. * page_zone is not safe to call in this context when
  1593. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1594. * anyway as we check zone boundaries in move_freepages_block().
  1595. * Remove at a later date when no bug reports exist related to
  1596. * grouping pages by mobility
  1597. */
  1598. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1599. #endif
  1600. for (page = start_page; page <= end_page;) {
  1601. /* Make sure we are not inadvertently changing nodes */
  1602. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1603. if (!pfn_valid_within(page_to_pfn(page))) {
  1604. page++;
  1605. continue;
  1606. }
  1607. if (!PageBuddy(page)) {
  1608. page++;
  1609. continue;
  1610. }
  1611. order = page_order(page);
  1612. list_move(&page->lru,
  1613. &zone->free_area[order].free_list[migratetype]);
  1614. page += 1 << order;
  1615. pages_moved += 1 << order;
  1616. }
  1617. return pages_moved;
  1618. }
  1619. int move_freepages_block(struct zone *zone, struct page *page,
  1620. int migratetype)
  1621. {
  1622. unsigned long start_pfn, end_pfn;
  1623. struct page *start_page, *end_page;
  1624. start_pfn = page_to_pfn(page);
  1625. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1626. start_page = pfn_to_page(start_pfn);
  1627. end_page = start_page + pageblock_nr_pages - 1;
  1628. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1629. /* Do not cross zone boundaries */
  1630. if (!zone_spans_pfn(zone, start_pfn))
  1631. start_page = page;
  1632. if (!zone_spans_pfn(zone, end_pfn))
  1633. return 0;
  1634. return move_freepages(zone, start_page, end_page, migratetype);
  1635. }
  1636. static void change_pageblock_range(struct page *pageblock_page,
  1637. int start_order, int migratetype)
  1638. {
  1639. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1640. while (nr_pageblocks--) {
  1641. set_pageblock_migratetype(pageblock_page, migratetype);
  1642. pageblock_page += pageblock_nr_pages;
  1643. }
  1644. }
  1645. /*
  1646. * When we are falling back to another migratetype during allocation, try to
  1647. * steal extra free pages from the same pageblocks to satisfy further
  1648. * allocations, instead of polluting multiple pageblocks.
  1649. *
  1650. * If we are stealing a relatively large buddy page, it is likely there will
  1651. * be more free pages in the pageblock, so try to steal them all. For
  1652. * reclaimable and unmovable allocations, we steal regardless of page size,
  1653. * as fragmentation caused by those allocations polluting movable pageblocks
  1654. * is worse than movable allocations stealing from unmovable and reclaimable
  1655. * pageblocks.
  1656. */
  1657. static bool can_steal_fallback(unsigned int order, int start_mt)
  1658. {
  1659. /*
  1660. * Leaving this order check is intended, although there is
  1661. * relaxed order check in next check. The reason is that
  1662. * we can actually steal whole pageblock if this condition met,
  1663. * but, below check doesn't guarantee it and that is just heuristic
  1664. * so could be changed anytime.
  1665. */
  1666. if (order >= pageblock_order)
  1667. return true;
  1668. if (order >= pageblock_order / 2 ||
  1669. start_mt == MIGRATE_RECLAIMABLE ||
  1670. start_mt == MIGRATE_UNMOVABLE ||
  1671. page_group_by_mobility_disabled)
  1672. return true;
  1673. return false;
  1674. }
  1675. /*
  1676. * This function implements actual steal behaviour. If order is large enough,
  1677. * we can steal whole pageblock. If not, we first move freepages in this
  1678. * pageblock and check whether half of pages are moved or not. If half of
  1679. * pages are moved, we can change migratetype of pageblock and permanently
  1680. * use it's pages as requested migratetype in the future.
  1681. */
  1682. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1683. int start_type)
  1684. {
  1685. unsigned int current_order = page_order(page);
  1686. int pages;
  1687. /* Take ownership for orders >= pageblock_order */
  1688. if (current_order >= pageblock_order) {
  1689. change_pageblock_range(page, current_order, start_type);
  1690. return;
  1691. }
  1692. pages = move_freepages_block(zone, page, start_type);
  1693. /* Claim the whole block if over half of it is free */
  1694. if (pages >= (1 << (pageblock_order-1)) ||
  1695. page_group_by_mobility_disabled)
  1696. set_pageblock_migratetype(page, start_type);
  1697. }
  1698. /*
  1699. * Check whether there is a suitable fallback freepage with requested order.
  1700. * If only_stealable is true, this function returns fallback_mt only if
  1701. * we can steal other freepages all together. This would help to reduce
  1702. * fragmentation due to mixed migratetype pages in one pageblock.
  1703. */
  1704. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1705. int migratetype, bool only_stealable, bool *can_steal)
  1706. {
  1707. int i;
  1708. int fallback_mt;
  1709. if (area->nr_free == 0)
  1710. return -1;
  1711. *can_steal = false;
  1712. for (i = 0;; i++) {
  1713. fallback_mt = fallbacks[migratetype][i];
  1714. if (fallback_mt == MIGRATE_TYPES)
  1715. break;
  1716. if (list_empty(&area->free_list[fallback_mt]))
  1717. continue;
  1718. if (can_steal_fallback(order, migratetype))
  1719. *can_steal = true;
  1720. if (!only_stealable)
  1721. return fallback_mt;
  1722. if (*can_steal)
  1723. return fallback_mt;
  1724. }
  1725. return -1;
  1726. }
  1727. /*
  1728. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1729. * there are no empty page blocks that contain a page with a suitable order
  1730. */
  1731. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1732. unsigned int alloc_order)
  1733. {
  1734. int mt;
  1735. unsigned long max_managed, flags;
  1736. /*
  1737. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1738. * Check is race-prone but harmless.
  1739. */
  1740. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1741. if (zone->nr_reserved_highatomic >= max_managed)
  1742. return;
  1743. spin_lock_irqsave(&zone->lock, flags);
  1744. /* Recheck the nr_reserved_highatomic limit under the lock */
  1745. if (zone->nr_reserved_highatomic >= max_managed)
  1746. goto out_unlock;
  1747. /* Yoink! */
  1748. mt = get_pageblock_migratetype(page);
  1749. if (mt != MIGRATE_HIGHATOMIC &&
  1750. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1751. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1752. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1753. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1754. }
  1755. out_unlock:
  1756. spin_unlock_irqrestore(&zone->lock, flags);
  1757. }
  1758. /*
  1759. * Used when an allocation is about to fail under memory pressure. This
  1760. * potentially hurts the reliability of high-order allocations when under
  1761. * intense memory pressure but failed atomic allocations should be easier
  1762. * to recover from than an OOM.
  1763. */
  1764. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1765. {
  1766. struct zonelist *zonelist = ac->zonelist;
  1767. unsigned long flags;
  1768. struct zoneref *z;
  1769. struct zone *zone;
  1770. struct page *page;
  1771. int order;
  1772. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1773. ac->nodemask) {
  1774. /* Preserve at least one pageblock */
  1775. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1776. continue;
  1777. spin_lock_irqsave(&zone->lock, flags);
  1778. for (order = 0; order < MAX_ORDER; order++) {
  1779. struct free_area *area = &(zone->free_area[order]);
  1780. page = list_first_entry_or_null(
  1781. &area->free_list[MIGRATE_HIGHATOMIC],
  1782. struct page, lru);
  1783. if (!page)
  1784. continue;
  1785. /*
  1786. * It should never happen but changes to locking could
  1787. * inadvertently allow a per-cpu drain to add pages
  1788. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1789. * and watch for underflows.
  1790. */
  1791. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1792. zone->nr_reserved_highatomic);
  1793. /*
  1794. * Convert to ac->migratetype and avoid the normal
  1795. * pageblock stealing heuristics. Minimally, the caller
  1796. * is doing the work and needs the pages. More
  1797. * importantly, if the block was always converted to
  1798. * MIGRATE_UNMOVABLE or another type then the number
  1799. * of pageblocks that cannot be completely freed
  1800. * may increase.
  1801. */
  1802. set_pageblock_migratetype(page, ac->migratetype);
  1803. move_freepages_block(zone, page, ac->migratetype);
  1804. spin_unlock_irqrestore(&zone->lock, flags);
  1805. return;
  1806. }
  1807. spin_unlock_irqrestore(&zone->lock, flags);
  1808. }
  1809. }
  1810. /* Remove an element from the buddy allocator from the fallback list */
  1811. static inline struct page *
  1812. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1813. {
  1814. struct free_area *area;
  1815. unsigned int current_order;
  1816. struct page *page;
  1817. int fallback_mt;
  1818. bool can_steal;
  1819. /* Find the largest possible block of pages in the other list */
  1820. for (current_order = MAX_ORDER-1;
  1821. current_order >= order && current_order <= MAX_ORDER-1;
  1822. --current_order) {
  1823. area = &(zone->free_area[current_order]);
  1824. fallback_mt = find_suitable_fallback(area, current_order,
  1825. start_migratetype, false, &can_steal);
  1826. if (fallback_mt == -1)
  1827. continue;
  1828. page = list_first_entry(&area->free_list[fallback_mt],
  1829. struct page, lru);
  1830. if (can_steal)
  1831. steal_suitable_fallback(zone, page, start_migratetype);
  1832. /* Remove the page from the freelists */
  1833. area->nr_free--;
  1834. list_del(&page->lru);
  1835. rmv_page_order(page);
  1836. expand(zone, page, order, current_order, area,
  1837. start_migratetype);
  1838. /*
  1839. * The pcppage_migratetype may differ from pageblock's
  1840. * migratetype depending on the decisions in
  1841. * find_suitable_fallback(). This is OK as long as it does not
  1842. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1843. * fallback only via special __rmqueue_cma_fallback() function
  1844. */
  1845. set_pcppage_migratetype(page, start_migratetype);
  1846. trace_mm_page_alloc_extfrag(page, order, current_order,
  1847. start_migratetype, fallback_mt);
  1848. return page;
  1849. }
  1850. return NULL;
  1851. }
  1852. /*
  1853. * Do the hard work of removing an element from the buddy allocator.
  1854. * Call me with the zone->lock already held.
  1855. */
  1856. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1857. int migratetype)
  1858. {
  1859. struct page *page;
  1860. page = __rmqueue_smallest(zone, order, migratetype);
  1861. if (unlikely(!page)) {
  1862. if (migratetype == MIGRATE_MOVABLE)
  1863. page = __rmqueue_cma_fallback(zone, order);
  1864. if (!page)
  1865. page = __rmqueue_fallback(zone, order, migratetype);
  1866. }
  1867. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1868. return page;
  1869. }
  1870. /*
  1871. * Obtain a specified number of elements from the buddy allocator, all under
  1872. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1873. * Returns the number of new pages which were placed at *list.
  1874. */
  1875. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1876. unsigned long count, struct list_head *list,
  1877. int migratetype, bool cold)
  1878. {
  1879. int i;
  1880. spin_lock(&zone->lock);
  1881. for (i = 0; i < count; ++i) {
  1882. struct page *page = __rmqueue(zone, order, migratetype);
  1883. if (unlikely(page == NULL))
  1884. break;
  1885. if (unlikely(check_pcp_refill(page)))
  1886. continue;
  1887. /*
  1888. * Split buddy pages returned by expand() are received here
  1889. * in physical page order. The page is added to the callers and
  1890. * list and the list head then moves forward. From the callers
  1891. * perspective, the linked list is ordered by page number in
  1892. * some conditions. This is useful for IO devices that can
  1893. * merge IO requests if the physical pages are ordered
  1894. * properly.
  1895. */
  1896. if (likely(!cold))
  1897. list_add(&page->lru, list);
  1898. else
  1899. list_add_tail(&page->lru, list);
  1900. list = &page->lru;
  1901. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1902. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1903. -(1 << order));
  1904. }
  1905. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1906. spin_unlock(&zone->lock);
  1907. return i;
  1908. }
  1909. #ifdef CONFIG_NUMA
  1910. /*
  1911. * Called from the vmstat counter updater to drain pagesets of this
  1912. * currently executing processor on remote nodes after they have
  1913. * expired.
  1914. *
  1915. * Note that this function must be called with the thread pinned to
  1916. * a single processor.
  1917. */
  1918. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1919. {
  1920. unsigned long flags;
  1921. int to_drain, batch;
  1922. local_irq_save(flags);
  1923. batch = READ_ONCE(pcp->batch);
  1924. to_drain = min(pcp->count, batch);
  1925. if (to_drain > 0) {
  1926. free_pcppages_bulk(zone, to_drain, pcp);
  1927. pcp->count -= to_drain;
  1928. }
  1929. local_irq_restore(flags);
  1930. }
  1931. #endif
  1932. /*
  1933. * Drain pcplists of the indicated processor and zone.
  1934. *
  1935. * The processor must either be the current processor and the
  1936. * thread pinned to the current processor or a processor that
  1937. * is not online.
  1938. */
  1939. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1940. {
  1941. unsigned long flags;
  1942. struct per_cpu_pageset *pset;
  1943. struct per_cpu_pages *pcp;
  1944. local_irq_save(flags);
  1945. pset = per_cpu_ptr(zone->pageset, cpu);
  1946. pcp = &pset->pcp;
  1947. if (pcp->count) {
  1948. free_pcppages_bulk(zone, pcp->count, pcp);
  1949. pcp->count = 0;
  1950. }
  1951. local_irq_restore(flags);
  1952. }
  1953. /*
  1954. * Drain pcplists of all zones on the indicated processor.
  1955. *
  1956. * The processor must either be the current processor and the
  1957. * thread pinned to the current processor or a processor that
  1958. * is not online.
  1959. */
  1960. static void drain_pages(unsigned int cpu)
  1961. {
  1962. struct zone *zone;
  1963. for_each_populated_zone(zone) {
  1964. drain_pages_zone(cpu, zone);
  1965. }
  1966. }
  1967. /*
  1968. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1969. *
  1970. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1971. * the single zone's pages.
  1972. */
  1973. void drain_local_pages(struct zone *zone)
  1974. {
  1975. int cpu = smp_processor_id();
  1976. if (zone)
  1977. drain_pages_zone(cpu, zone);
  1978. else
  1979. drain_pages(cpu);
  1980. }
  1981. /*
  1982. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1983. *
  1984. * When zone parameter is non-NULL, spill just the single zone's pages.
  1985. *
  1986. * Note that this code is protected against sending an IPI to an offline
  1987. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1988. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1989. * nothing keeps CPUs from showing up after we populated the cpumask and
  1990. * before the call to on_each_cpu_mask().
  1991. */
  1992. void drain_all_pages(struct zone *zone)
  1993. {
  1994. int cpu;
  1995. /*
  1996. * Allocate in the BSS so we wont require allocation in
  1997. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1998. */
  1999. static cpumask_t cpus_with_pcps;
  2000. /*
  2001. * We don't care about racing with CPU hotplug event
  2002. * as offline notification will cause the notified
  2003. * cpu to drain that CPU pcps and on_each_cpu_mask
  2004. * disables preemption as part of its processing
  2005. */
  2006. for_each_online_cpu(cpu) {
  2007. struct per_cpu_pageset *pcp;
  2008. struct zone *z;
  2009. bool has_pcps = false;
  2010. if (zone) {
  2011. pcp = per_cpu_ptr(zone->pageset, cpu);
  2012. if (pcp->pcp.count)
  2013. has_pcps = true;
  2014. } else {
  2015. for_each_populated_zone(z) {
  2016. pcp = per_cpu_ptr(z->pageset, cpu);
  2017. if (pcp->pcp.count) {
  2018. has_pcps = true;
  2019. break;
  2020. }
  2021. }
  2022. }
  2023. if (has_pcps)
  2024. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2025. else
  2026. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2027. }
  2028. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2029. zone, 1);
  2030. }
  2031. #ifdef CONFIG_HIBERNATION
  2032. void mark_free_pages(struct zone *zone)
  2033. {
  2034. unsigned long pfn, max_zone_pfn;
  2035. unsigned long flags;
  2036. unsigned int order, t;
  2037. struct page *page;
  2038. if (zone_is_empty(zone))
  2039. return;
  2040. spin_lock_irqsave(&zone->lock, flags);
  2041. max_zone_pfn = zone_end_pfn(zone);
  2042. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2043. if (pfn_valid(pfn)) {
  2044. page = pfn_to_page(pfn);
  2045. if (page_zone(page) != zone)
  2046. continue;
  2047. if (!swsusp_page_is_forbidden(page))
  2048. swsusp_unset_page_free(page);
  2049. }
  2050. for_each_migratetype_order(order, t) {
  2051. list_for_each_entry(page,
  2052. &zone->free_area[order].free_list[t], lru) {
  2053. unsigned long i;
  2054. pfn = page_to_pfn(page);
  2055. for (i = 0; i < (1UL << order); i++)
  2056. swsusp_set_page_free(pfn_to_page(pfn + i));
  2057. }
  2058. }
  2059. spin_unlock_irqrestore(&zone->lock, flags);
  2060. }
  2061. #endif /* CONFIG_PM */
  2062. /*
  2063. * Free a 0-order page
  2064. * cold == true ? free a cold page : free a hot page
  2065. */
  2066. void free_hot_cold_page(struct page *page, bool cold)
  2067. {
  2068. struct zone *zone = page_zone(page);
  2069. struct per_cpu_pages *pcp;
  2070. unsigned long flags;
  2071. unsigned long pfn = page_to_pfn(page);
  2072. int migratetype;
  2073. if (!free_pcp_prepare(page))
  2074. return;
  2075. migratetype = get_pfnblock_migratetype(page, pfn);
  2076. set_pcppage_migratetype(page, migratetype);
  2077. local_irq_save(flags);
  2078. __count_vm_event(PGFREE);
  2079. /*
  2080. * We only track unmovable, reclaimable and movable on pcp lists.
  2081. * Free ISOLATE pages back to the allocator because they are being
  2082. * offlined but treat RESERVE as movable pages so we can get those
  2083. * areas back if necessary. Otherwise, we may have to free
  2084. * excessively into the page allocator
  2085. */
  2086. if (migratetype >= MIGRATE_PCPTYPES) {
  2087. if (unlikely(is_migrate_isolate(migratetype))) {
  2088. free_one_page(zone, page, pfn, 0, migratetype);
  2089. goto out;
  2090. }
  2091. migratetype = MIGRATE_MOVABLE;
  2092. }
  2093. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2094. if (!cold)
  2095. list_add(&page->lru, &pcp->lists[migratetype]);
  2096. else
  2097. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2098. pcp->count++;
  2099. if (pcp->count >= pcp->high) {
  2100. unsigned long batch = READ_ONCE(pcp->batch);
  2101. free_pcppages_bulk(zone, batch, pcp);
  2102. pcp->count -= batch;
  2103. }
  2104. out:
  2105. local_irq_restore(flags);
  2106. }
  2107. /*
  2108. * Free a list of 0-order pages
  2109. */
  2110. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2111. {
  2112. struct page *page, *next;
  2113. list_for_each_entry_safe(page, next, list, lru) {
  2114. trace_mm_page_free_batched(page, cold);
  2115. free_hot_cold_page(page, cold);
  2116. }
  2117. }
  2118. /*
  2119. * split_page takes a non-compound higher-order page, and splits it into
  2120. * n (1<<order) sub-pages: page[0..n]
  2121. * Each sub-page must be freed individually.
  2122. *
  2123. * Note: this is probably too low level an operation for use in drivers.
  2124. * Please consult with lkml before using this in your driver.
  2125. */
  2126. void split_page(struct page *page, unsigned int order)
  2127. {
  2128. int i;
  2129. VM_BUG_ON_PAGE(PageCompound(page), page);
  2130. VM_BUG_ON_PAGE(!page_count(page), page);
  2131. #ifdef CONFIG_KMEMCHECK
  2132. /*
  2133. * Split shadow pages too, because free(page[0]) would
  2134. * otherwise free the whole shadow.
  2135. */
  2136. if (kmemcheck_page_is_tracked(page))
  2137. split_page(virt_to_page(page[0].shadow), order);
  2138. #endif
  2139. for (i = 1; i < (1 << order); i++)
  2140. set_page_refcounted(page + i);
  2141. split_page_owner(page, order);
  2142. }
  2143. EXPORT_SYMBOL_GPL(split_page);
  2144. int __isolate_free_page(struct page *page, unsigned int order)
  2145. {
  2146. unsigned long watermark;
  2147. struct zone *zone;
  2148. int mt;
  2149. BUG_ON(!PageBuddy(page));
  2150. zone = page_zone(page);
  2151. mt = get_pageblock_migratetype(page);
  2152. if (!is_migrate_isolate(mt)) {
  2153. /*
  2154. * Obey watermarks as if the page was being allocated. We can
  2155. * emulate a high-order watermark check with a raised order-0
  2156. * watermark, because we already know our high-order page
  2157. * exists.
  2158. */
  2159. watermark = min_wmark_pages(zone) + (1UL << order);
  2160. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2161. return 0;
  2162. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2163. }
  2164. /* Remove page from free list */
  2165. list_del(&page->lru);
  2166. zone->free_area[order].nr_free--;
  2167. rmv_page_order(page);
  2168. /*
  2169. * Set the pageblock if the isolated page is at least half of a
  2170. * pageblock
  2171. */
  2172. if (order >= pageblock_order - 1) {
  2173. struct page *endpage = page + (1 << order) - 1;
  2174. for (; page < endpage; page += pageblock_nr_pages) {
  2175. int mt = get_pageblock_migratetype(page);
  2176. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2177. set_pageblock_migratetype(page,
  2178. MIGRATE_MOVABLE);
  2179. }
  2180. }
  2181. return 1UL << order;
  2182. }
  2183. /*
  2184. * Update NUMA hit/miss statistics
  2185. *
  2186. * Must be called with interrupts disabled.
  2187. *
  2188. * When __GFP_OTHER_NODE is set assume the node of the preferred
  2189. * zone is the local node. This is useful for daemons who allocate
  2190. * memory on behalf of other processes.
  2191. */
  2192. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2193. gfp_t flags)
  2194. {
  2195. #ifdef CONFIG_NUMA
  2196. int local_nid = numa_node_id();
  2197. enum zone_stat_item local_stat = NUMA_LOCAL;
  2198. if (unlikely(flags & __GFP_OTHER_NODE)) {
  2199. local_stat = NUMA_OTHER;
  2200. local_nid = preferred_zone->node;
  2201. }
  2202. if (z->node == local_nid) {
  2203. __inc_zone_state(z, NUMA_HIT);
  2204. __inc_zone_state(z, local_stat);
  2205. } else {
  2206. __inc_zone_state(z, NUMA_MISS);
  2207. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2208. }
  2209. #endif
  2210. }
  2211. /*
  2212. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2213. */
  2214. static inline
  2215. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2216. struct zone *zone, unsigned int order,
  2217. gfp_t gfp_flags, unsigned int alloc_flags,
  2218. int migratetype)
  2219. {
  2220. unsigned long flags;
  2221. struct page *page;
  2222. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2223. if (likely(order == 0)) {
  2224. struct per_cpu_pages *pcp;
  2225. struct list_head *list;
  2226. local_irq_save(flags);
  2227. do {
  2228. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2229. list = &pcp->lists[migratetype];
  2230. if (list_empty(list)) {
  2231. pcp->count += rmqueue_bulk(zone, 0,
  2232. pcp->batch, list,
  2233. migratetype, cold);
  2234. if (unlikely(list_empty(list)))
  2235. goto failed;
  2236. }
  2237. if (cold)
  2238. page = list_last_entry(list, struct page, lru);
  2239. else
  2240. page = list_first_entry(list, struct page, lru);
  2241. list_del(&page->lru);
  2242. pcp->count--;
  2243. } while (check_new_pcp(page));
  2244. } else {
  2245. /*
  2246. * We most definitely don't want callers attempting to
  2247. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2248. */
  2249. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2250. spin_lock_irqsave(&zone->lock, flags);
  2251. do {
  2252. page = NULL;
  2253. if (alloc_flags & ALLOC_HARDER) {
  2254. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2255. if (page)
  2256. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2257. }
  2258. if (!page)
  2259. page = __rmqueue(zone, order, migratetype);
  2260. } while (page && check_new_pages(page, order));
  2261. spin_unlock(&zone->lock);
  2262. if (!page)
  2263. goto failed;
  2264. __mod_zone_freepage_state(zone, -(1 << order),
  2265. get_pcppage_migratetype(page));
  2266. }
  2267. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2268. zone_statistics(preferred_zone, zone, gfp_flags);
  2269. local_irq_restore(flags);
  2270. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2271. return page;
  2272. failed:
  2273. local_irq_restore(flags);
  2274. return NULL;
  2275. }
  2276. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2277. static struct {
  2278. struct fault_attr attr;
  2279. bool ignore_gfp_highmem;
  2280. bool ignore_gfp_reclaim;
  2281. u32 min_order;
  2282. } fail_page_alloc = {
  2283. .attr = FAULT_ATTR_INITIALIZER,
  2284. .ignore_gfp_reclaim = true,
  2285. .ignore_gfp_highmem = true,
  2286. .min_order = 1,
  2287. };
  2288. static int __init setup_fail_page_alloc(char *str)
  2289. {
  2290. return setup_fault_attr(&fail_page_alloc.attr, str);
  2291. }
  2292. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2293. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2294. {
  2295. if (order < fail_page_alloc.min_order)
  2296. return false;
  2297. if (gfp_mask & __GFP_NOFAIL)
  2298. return false;
  2299. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2300. return false;
  2301. if (fail_page_alloc.ignore_gfp_reclaim &&
  2302. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2303. return false;
  2304. return should_fail(&fail_page_alloc.attr, 1 << order);
  2305. }
  2306. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2307. static int __init fail_page_alloc_debugfs(void)
  2308. {
  2309. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2310. struct dentry *dir;
  2311. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2312. &fail_page_alloc.attr);
  2313. if (IS_ERR(dir))
  2314. return PTR_ERR(dir);
  2315. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2316. &fail_page_alloc.ignore_gfp_reclaim))
  2317. goto fail;
  2318. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2319. &fail_page_alloc.ignore_gfp_highmem))
  2320. goto fail;
  2321. if (!debugfs_create_u32("min-order", mode, dir,
  2322. &fail_page_alloc.min_order))
  2323. goto fail;
  2324. return 0;
  2325. fail:
  2326. debugfs_remove_recursive(dir);
  2327. return -ENOMEM;
  2328. }
  2329. late_initcall(fail_page_alloc_debugfs);
  2330. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2331. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2332. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2333. {
  2334. return false;
  2335. }
  2336. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2337. /*
  2338. * Return true if free base pages are above 'mark'. For high-order checks it
  2339. * will return true of the order-0 watermark is reached and there is at least
  2340. * one free page of a suitable size. Checking now avoids taking the zone lock
  2341. * to check in the allocation paths if no pages are free.
  2342. */
  2343. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2344. int classzone_idx, unsigned int alloc_flags,
  2345. long free_pages)
  2346. {
  2347. long min = mark;
  2348. int o;
  2349. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2350. /* free_pages may go negative - that's OK */
  2351. free_pages -= (1 << order) - 1;
  2352. if (alloc_flags & ALLOC_HIGH)
  2353. min -= min / 2;
  2354. /*
  2355. * If the caller does not have rights to ALLOC_HARDER then subtract
  2356. * the high-atomic reserves. This will over-estimate the size of the
  2357. * atomic reserve but it avoids a search.
  2358. */
  2359. if (likely(!alloc_harder))
  2360. free_pages -= z->nr_reserved_highatomic;
  2361. else
  2362. min -= min / 4;
  2363. #ifdef CONFIG_CMA
  2364. /* If allocation can't use CMA areas don't use free CMA pages */
  2365. if (!(alloc_flags & ALLOC_CMA))
  2366. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2367. #endif
  2368. /*
  2369. * Check watermarks for an order-0 allocation request. If these
  2370. * are not met, then a high-order request also cannot go ahead
  2371. * even if a suitable page happened to be free.
  2372. */
  2373. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2374. return false;
  2375. /* If this is an order-0 request then the watermark is fine */
  2376. if (!order)
  2377. return true;
  2378. /* For a high-order request, check at least one suitable page is free */
  2379. for (o = order; o < MAX_ORDER; o++) {
  2380. struct free_area *area = &z->free_area[o];
  2381. int mt;
  2382. if (!area->nr_free)
  2383. continue;
  2384. if (alloc_harder)
  2385. return true;
  2386. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2387. if (!list_empty(&area->free_list[mt]))
  2388. return true;
  2389. }
  2390. #ifdef CONFIG_CMA
  2391. if ((alloc_flags & ALLOC_CMA) &&
  2392. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2393. return true;
  2394. }
  2395. #endif
  2396. }
  2397. return false;
  2398. }
  2399. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2400. int classzone_idx, unsigned int alloc_flags)
  2401. {
  2402. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2403. zone_page_state(z, NR_FREE_PAGES));
  2404. }
  2405. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2406. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2407. {
  2408. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2409. long cma_pages = 0;
  2410. #ifdef CONFIG_CMA
  2411. /* If allocation can't use CMA areas don't use free CMA pages */
  2412. if (!(alloc_flags & ALLOC_CMA))
  2413. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2414. #endif
  2415. /*
  2416. * Fast check for order-0 only. If this fails then the reserves
  2417. * need to be calculated. There is a corner case where the check
  2418. * passes but only the high-order atomic reserve are free. If
  2419. * the caller is !atomic then it'll uselessly search the free
  2420. * list. That corner case is then slower but it is harmless.
  2421. */
  2422. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2423. return true;
  2424. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2425. free_pages);
  2426. }
  2427. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2428. unsigned long mark, int classzone_idx)
  2429. {
  2430. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2431. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2432. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2433. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2434. free_pages);
  2435. }
  2436. #ifdef CONFIG_NUMA
  2437. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2438. {
  2439. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2440. RECLAIM_DISTANCE;
  2441. }
  2442. #else /* CONFIG_NUMA */
  2443. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2444. {
  2445. return true;
  2446. }
  2447. #endif /* CONFIG_NUMA */
  2448. /*
  2449. * get_page_from_freelist goes through the zonelist trying to allocate
  2450. * a page.
  2451. */
  2452. static struct page *
  2453. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2454. const struct alloc_context *ac)
  2455. {
  2456. struct zoneref *z = ac->preferred_zoneref;
  2457. struct zone *zone;
  2458. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2459. /*
  2460. * Scan zonelist, looking for a zone with enough free.
  2461. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2462. */
  2463. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2464. ac->nodemask) {
  2465. struct page *page;
  2466. unsigned long mark;
  2467. if (cpusets_enabled() &&
  2468. (alloc_flags & ALLOC_CPUSET) &&
  2469. !__cpuset_zone_allowed(zone, gfp_mask))
  2470. continue;
  2471. /*
  2472. * When allocating a page cache page for writing, we
  2473. * want to get it from a node that is within its dirty
  2474. * limit, such that no single node holds more than its
  2475. * proportional share of globally allowed dirty pages.
  2476. * The dirty limits take into account the node's
  2477. * lowmem reserves and high watermark so that kswapd
  2478. * should be able to balance it without having to
  2479. * write pages from its LRU list.
  2480. *
  2481. * XXX: For now, allow allocations to potentially
  2482. * exceed the per-node dirty limit in the slowpath
  2483. * (spread_dirty_pages unset) before going into reclaim,
  2484. * which is important when on a NUMA setup the allowed
  2485. * nodes are together not big enough to reach the
  2486. * global limit. The proper fix for these situations
  2487. * will require awareness of nodes in the
  2488. * dirty-throttling and the flusher threads.
  2489. */
  2490. if (ac->spread_dirty_pages) {
  2491. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2492. continue;
  2493. if (!node_dirty_ok(zone->zone_pgdat)) {
  2494. last_pgdat_dirty_limit = zone->zone_pgdat;
  2495. continue;
  2496. }
  2497. }
  2498. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2499. if (!zone_watermark_fast(zone, order, mark,
  2500. ac_classzone_idx(ac), alloc_flags)) {
  2501. int ret;
  2502. /* Checked here to keep the fast path fast */
  2503. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2504. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2505. goto try_this_zone;
  2506. if (node_reclaim_mode == 0 ||
  2507. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2508. continue;
  2509. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2510. switch (ret) {
  2511. case NODE_RECLAIM_NOSCAN:
  2512. /* did not scan */
  2513. continue;
  2514. case NODE_RECLAIM_FULL:
  2515. /* scanned but unreclaimable */
  2516. continue;
  2517. default:
  2518. /* did we reclaim enough */
  2519. if (zone_watermark_ok(zone, order, mark,
  2520. ac_classzone_idx(ac), alloc_flags))
  2521. goto try_this_zone;
  2522. continue;
  2523. }
  2524. }
  2525. try_this_zone:
  2526. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2527. gfp_mask, alloc_flags, ac->migratetype);
  2528. if (page) {
  2529. prep_new_page(page, order, gfp_mask, alloc_flags);
  2530. /*
  2531. * If this is a high-order atomic allocation then check
  2532. * if the pageblock should be reserved for the future
  2533. */
  2534. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2535. reserve_highatomic_pageblock(page, zone, order);
  2536. return page;
  2537. }
  2538. }
  2539. return NULL;
  2540. }
  2541. /*
  2542. * Large machines with many possible nodes should not always dump per-node
  2543. * meminfo in irq context.
  2544. */
  2545. static inline bool should_suppress_show_mem(void)
  2546. {
  2547. bool ret = false;
  2548. #if NODES_SHIFT > 8
  2549. ret = in_interrupt();
  2550. #endif
  2551. return ret;
  2552. }
  2553. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2554. DEFAULT_RATELIMIT_INTERVAL,
  2555. DEFAULT_RATELIMIT_BURST);
  2556. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2557. {
  2558. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2559. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2560. debug_guardpage_minorder() > 0)
  2561. return;
  2562. /*
  2563. * This documents exceptions given to allocations in certain
  2564. * contexts that are allowed to allocate outside current's set
  2565. * of allowed nodes.
  2566. */
  2567. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2568. if (test_thread_flag(TIF_MEMDIE) ||
  2569. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2570. filter &= ~SHOW_MEM_FILTER_NODES;
  2571. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2572. filter &= ~SHOW_MEM_FILTER_NODES;
  2573. if (fmt) {
  2574. struct va_format vaf;
  2575. va_list args;
  2576. va_start(args, fmt);
  2577. vaf.fmt = fmt;
  2578. vaf.va = &args;
  2579. pr_warn("%pV", &vaf);
  2580. va_end(args);
  2581. }
  2582. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2583. current->comm, order, gfp_mask, &gfp_mask);
  2584. dump_stack();
  2585. if (!should_suppress_show_mem())
  2586. show_mem(filter);
  2587. }
  2588. static inline struct page *
  2589. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2590. const struct alloc_context *ac, unsigned long *did_some_progress)
  2591. {
  2592. struct oom_control oc = {
  2593. .zonelist = ac->zonelist,
  2594. .nodemask = ac->nodemask,
  2595. .memcg = NULL,
  2596. .gfp_mask = gfp_mask,
  2597. .order = order,
  2598. };
  2599. struct page *page;
  2600. *did_some_progress = 0;
  2601. /*
  2602. * Acquire the oom lock. If that fails, somebody else is
  2603. * making progress for us.
  2604. */
  2605. if (!mutex_trylock(&oom_lock)) {
  2606. *did_some_progress = 1;
  2607. schedule_timeout_uninterruptible(1);
  2608. return NULL;
  2609. }
  2610. /*
  2611. * Go through the zonelist yet one more time, keep very high watermark
  2612. * here, this is only to catch a parallel oom killing, we must fail if
  2613. * we're still under heavy pressure.
  2614. */
  2615. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2616. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2617. if (page)
  2618. goto out;
  2619. if (!(gfp_mask & __GFP_NOFAIL)) {
  2620. /* Coredumps can quickly deplete all memory reserves */
  2621. if (current->flags & PF_DUMPCORE)
  2622. goto out;
  2623. /* The OOM killer will not help higher order allocs */
  2624. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2625. goto out;
  2626. /* The OOM killer does not needlessly kill tasks for lowmem */
  2627. if (ac->high_zoneidx < ZONE_NORMAL)
  2628. goto out;
  2629. if (pm_suspended_storage())
  2630. goto out;
  2631. /*
  2632. * XXX: GFP_NOFS allocations should rather fail than rely on
  2633. * other request to make a forward progress.
  2634. * We are in an unfortunate situation where out_of_memory cannot
  2635. * do much for this context but let's try it to at least get
  2636. * access to memory reserved if the current task is killed (see
  2637. * out_of_memory). Once filesystems are ready to handle allocation
  2638. * failures more gracefully we should just bail out here.
  2639. */
  2640. /* The OOM killer may not free memory on a specific node */
  2641. if (gfp_mask & __GFP_THISNODE)
  2642. goto out;
  2643. }
  2644. /* Exhausted what can be done so it's blamo time */
  2645. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2646. *did_some_progress = 1;
  2647. if (gfp_mask & __GFP_NOFAIL) {
  2648. page = get_page_from_freelist(gfp_mask, order,
  2649. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2650. /*
  2651. * fallback to ignore cpuset restriction if our nodes
  2652. * are depleted
  2653. */
  2654. if (!page)
  2655. page = get_page_from_freelist(gfp_mask, order,
  2656. ALLOC_NO_WATERMARKS, ac);
  2657. }
  2658. }
  2659. out:
  2660. mutex_unlock(&oom_lock);
  2661. return page;
  2662. }
  2663. /*
  2664. * Maximum number of compaction retries wit a progress before OOM
  2665. * killer is consider as the only way to move forward.
  2666. */
  2667. #define MAX_COMPACT_RETRIES 16
  2668. #ifdef CONFIG_COMPACTION
  2669. /* Try memory compaction for high-order allocations before reclaim */
  2670. static struct page *
  2671. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2672. unsigned int alloc_flags, const struct alloc_context *ac,
  2673. enum compact_priority prio, enum compact_result *compact_result)
  2674. {
  2675. struct page *page;
  2676. if (!order)
  2677. return NULL;
  2678. current->flags |= PF_MEMALLOC;
  2679. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2680. prio);
  2681. current->flags &= ~PF_MEMALLOC;
  2682. if (*compact_result <= COMPACT_INACTIVE)
  2683. return NULL;
  2684. /*
  2685. * At least in one zone compaction wasn't deferred or skipped, so let's
  2686. * count a compaction stall
  2687. */
  2688. count_vm_event(COMPACTSTALL);
  2689. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2690. if (page) {
  2691. struct zone *zone = page_zone(page);
  2692. zone->compact_blockskip_flush = false;
  2693. compaction_defer_reset(zone, order, true);
  2694. count_vm_event(COMPACTSUCCESS);
  2695. return page;
  2696. }
  2697. /*
  2698. * It's bad if compaction run occurs and fails. The most likely reason
  2699. * is that pages exist, but not enough to satisfy watermarks.
  2700. */
  2701. count_vm_event(COMPACTFAIL);
  2702. cond_resched();
  2703. return NULL;
  2704. }
  2705. static inline bool
  2706. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2707. enum compact_result compact_result,
  2708. enum compact_priority *compact_priority,
  2709. int *compaction_retries)
  2710. {
  2711. int max_retries = MAX_COMPACT_RETRIES;
  2712. int min_priority;
  2713. if (!order)
  2714. return false;
  2715. if (compaction_made_progress(compact_result))
  2716. (*compaction_retries)++;
  2717. /*
  2718. * compaction considers all the zone as desperately out of memory
  2719. * so it doesn't really make much sense to retry except when the
  2720. * failure could be caused by insufficient priority
  2721. */
  2722. if (compaction_failed(compact_result))
  2723. goto check_priority;
  2724. /*
  2725. * make sure the compaction wasn't deferred or didn't bail out early
  2726. * due to locks contention before we declare that we should give up.
  2727. * But do not retry if the given zonelist is not suitable for
  2728. * compaction.
  2729. */
  2730. if (compaction_withdrawn(compact_result))
  2731. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2732. /*
  2733. * !costly requests are much more important than __GFP_REPEAT
  2734. * costly ones because they are de facto nofail and invoke OOM
  2735. * killer to move on while costly can fail and users are ready
  2736. * to cope with that. 1/4 retries is rather arbitrary but we
  2737. * would need much more detailed feedback from compaction to
  2738. * make a better decision.
  2739. */
  2740. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2741. max_retries /= 4;
  2742. if (*compaction_retries <= max_retries)
  2743. return true;
  2744. /*
  2745. * Make sure there are attempts at the highest priority if we exhausted
  2746. * all retries or failed at the lower priorities.
  2747. */
  2748. check_priority:
  2749. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  2750. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  2751. if (*compact_priority > min_priority) {
  2752. (*compact_priority)--;
  2753. *compaction_retries = 0;
  2754. return true;
  2755. }
  2756. return false;
  2757. }
  2758. #else
  2759. static inline struct page *
  2760. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2761. unsigned int alloc_flags, const struct alloc_context *ac,
  2762. enum compact_priority prio, enum compact_result *compact_result)
  2763. {
  2764. *compact_result = COMPACT_SKIPPED;
  2765. return NULL;
  2766. }
  2767. static inline bool
  2768. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2769. enum compact_result compact_result,
  2770. enum compact_priority *compact_priority,
  2771. int *compaction_retries)
  2772. {
  2773. struct zone *zone;
  2774. struct zoneref *z;
  2775. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2776. return false;
  2777. /*
  2778. * There are setups with compaction disabled which would prefer to loop
  2779. * inside the allocator rather than hit the oom killer prematurely.
  2780. * Let's give them a good hope and keep retrying while the order-0
  2781. * watermarks are OK.
  2782. */
  2783. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2784. ac->nodemask) {
  2785. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2786. ac_classzone_idx(ac), alloc_flags))
  2787. return true;
  2788. }
  2789. return false;
  2790. }
  2791. #endif /* CONFIG_COMPACTION */
  2792. /* Perform direct synchronous page reclaim */
  2793. static int
  2794. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2795. const struct alloc_context *ac)
  2796. {
  2797. struct reclaim_state reclaim_state;
  2798. int progress;
  2799. cond_resched();
  2800. /* We now go into synchronous reclaim */
  2801. cpuset_memory_pressure_bump();
  2802. current->flags |= PF_MEMALLOC;
  2803. lockdep_set_current_reclaim_state(gfp_mask);
  2804. reclaim_state.reclaimed_slab = 0;
  2805. current->reclaim_state = &reclaim_state;
  2806. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2807. ac->nodemask);
  2808. current->reclaim_state = NULL;
  2809. lockdep_clear_current_reclaim_state();
  2810. current->flags &= ~PF_MEMALLOC;
  2811. cond_resched();
  2812. return progress;
  2813. }
  2814. /* The really slow allocator path where we enter direct reclaim */
  2815. static inline struct page *
  2816. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2817. unsigned int alloc_flags, const struct alloc_context *ac,
  2818. unsigned long *did_some_progress)
  2819. {
  2820. struct page *page = NULL;
  2821. bool drained = false;
  2822. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2823. if (unlikely(!(*did_some_progress)))
  2824. return NULL;
  2825. retry:
  2826. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2827. /*
  2828. * If an allocation failed after direct reclaim, it could be because
  2829. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2830. * Shrink them them and try again
  2831. */
  2832. if (!page && !drained) {
  2833. unreserve_highatomic_pageblock(ac);
  2834. drain_all_pages(NULL);
  2835. drained = true;
  2836. goto retry;
  2837. }
  2838. return page;
  2839. }
  2840. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2841. {
  2842. struct zoneref *z;
  2843. struct zone *zone;
  2844. pg_data_t *last_pgdat = NULL;
  2845. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2846. ac->high_zoneidx, ac->nodemask) {
  2847. if (last_pgdat != zone->zone_pgdat)
  2848. wakeup_kswapd(zone, order, ac->high_zoneidx);
  2849. last_pgdat = zone->zone_pgdat;
  2850. }
  2851. }
  2852. static inline unsigned int
  2853. gfp_to_alloc_flags(gfp_t gfp_mask)
  2854. {
  2855. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2856. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2857. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2858. /*
  2859. * The caller may dip into page reserves a bit more if the caller
  2860. * cannot run direct reclaim, or if the caller has realtime scheduling
  2861. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2862. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2863. */
  2864. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2865. if (gfp_mask & __GFP_ATOMIC) {
  2866. /*
  2867. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2868. * if it can't schedule.
  2869. */
  2870. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2871. alloc_flags |= ALLOC_HARDER;
  2872. /*
  2873. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2874. * comment for __cpuset_node_allowed().
  2875. */
  2876. alloc_flags &= ~ALLOC_CPUSET;
  2877. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2878. alloc_flags |= ALLOC_HARDER;
  2879. #ifdef CONFIG_CMA
  2880. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2881. alloc_flags |= ALLOC_CMA;
  2882. #endif
  2883. return alloc_flags;
  2884. }
  2885. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2886. {
  2887. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  2888. return false;
  2889. if (gfp_mask & __GFP_MEMALLOC)
  2890. return true;
  2891. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2892. return true;
  2893. if (!in_interrupt() &&
  2894. ((current->flags & PF_MEMALLOC) ||
  2895. unlikely(test_thread_flag(TIF_MEMDIE))))
  2896. return true;
  2897. return false;
  2898. }
  2899. /*
  2900. * Maximum number of reclaim retries without any progress before OOM killer
  2901. * is consider as the only way to move forward.
  2902. */
  2903. #define MAX_RECLAIM_RETRIES 16
  2904. /*
  2905. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2906. * for the given allocation request.
  2907. * The reclaim feedback represented by did_some_progress (any progress during
  2908. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2909. * any progress in a row) is considered as well as the reclaimable pages on the
  2910. * applicable zone list (with a backoff mechanism which is a function of
  2911. * no_progress_loops).
  2912. *
  2913. * Returns true if a retry is viable or false to enter the oom path.
  2914. */
  2915. static inline bool
  2916. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2917. struct alloc_context *ac, int alloc_flags,
  2918. bool did_some_progress, int *no_progress_loops)
  2919. {
  2920. struct zone *zone;
  2921. struct zoneref *z;
  2922. /*
  2923. * Costly allocations might have made a progress but this doesn't mean
  2924. * their order will become available due to high fragmentation so
  2925. * always increment the no progress counter for them
  2926. */
  2927. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  2928. *no_progress_loops = 0;
  2929. else
  2930. (*no_progress_loops)++;
  2931. /*
  2932. * Make sure we converge to OOM if we cannot make any progress
  2933. * several times in the row.
  2934. */
  2935. if (*no_progress_loops > MAX_RECLAIM_RETRIES)
  2936. return false;
  2937. /*
  2938. * Keep reclaiming pages while there is a chance this will lead
  2939. * somewhere. If none of the target zones can satisfy our allocation
  2940. * request even if all reclaimable pages are considered then we are
  2941. * screwed and have to go OOM.
  2942. */
  2943. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2944. ac->nodemask) {
  2945. unsigned long available;
  2946. unsigned long reclaimable;
  2947. available = reclaimable = zone_reclaimable_pages(zone);
  2948. available -= DIV_ROUND_UP((*no_progress_loops) * available,
  2949. MAX_RECLAIM_RETRIES);
  2950. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  2951. /*
  2952. * Would the allocation succeed if we reclaimed the whole
  2953. * available?
  2954. */
  2955. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  2956. ac_classzone_idx(ac), alloc_flags, available)) {
  2957. /*
  2958. * If we didn't make any progress and have a lot of
  2959. * dirty + writeback pages then we should wait for
  2960. * an IO to complete to slow down the reclaim and
  2961. * prevent from pre mature OOM
  2962. */
  2963. if (!did_some_progress) {
  2964. unsigned long write_pending;
  2965. write_pending = zone_page_state_snapshot(zone,
  2966. NR_ZONE_WRITE_PENDING);
  2967. if (2 * write_pending > reclaimable) {
  2968. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2969. return true;
  2970. }
  2971. }
  2972. /*
  2973. * Memory allocation/reclaim might be called from a WQ
  2974. * context and the current implementation of the WQ
  2975. * concurrency control doesn't recognize that
  2976. * a particular WQ is congested if the worker thread is
  2977. * looping without ever sleeping. Therefore we have to
  2978. * do a short sleep here rather than calling
  2979. * cond_resched().
  2980. */
  2981. if (current->flags & PF_WQ_WORKER)
  2982. schedule_timeout_uninterruptible(1);
  2983. else
  2984. cond_resched();
  2985. return true;
  2986. }
  2987. }
  2988. return false;
  2989. }
  2990. static inline struct page *
  2991. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2992. struct alloc_context *ac)
  2993. {
  2994. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  2995. struct page *page = NULL;
  2996. unsigned int alloc_flags;
  2997. unsigned long did_some_progress;
  2998. enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
  2999. enum compact_result compact_result;
  3000. int compaction_retries = 0;
  3001. int no_progress_loops = 0;
  3002. /*
  3003. * In the slowpath, we sanity check order to avoid ever trying to
  3004. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3005. * be using allocators in order of preference for an area that is
  3006. * too large.
  3007. */
  3008. if (order >= MAX_ORDER) {
  3009. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3010. return NULL;
  3011. }
  3012. /*
  3013. * We also sanity check to catch abuse of atomic reserves being used by
  3014. * callers that are not in atomic context.
  3015. */
  3016. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3017. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3018. gfp_mask &= ~__GFP_ATOMIC;
  3019. /*
  3020. * The fast path uses conservative alloc_flags to succeed only until
  3021. * kswapd needs to be woken up, and to avoid the cost of setting up
  3022. * alloc_flags precisely. So we do that now.
  3023. */
  3024. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3025. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3026. wake_all_kswapds(order, ac);
  3027. /*
  3028. * The adjusted alloc_flags might result in immediate success, so try
  3029. * that first
  3030. */
  3031. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3032. if (page)
  3033. goto got_pg;
  3034. /*
  3035. * For costly allocations, try direct compaction first, as it's likely
  3036. * that we have enough base pages and don't need to reclaim. Don't try
  3037. * that for allocations that are allowed to ignore watermarks, as the
  3038. * ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3039. */
  3040. if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
  3041. !gfp_pfmemalloc_allowed(gfp_mask)) {
  3042. page = __alloc_pages_direct_compact(gfp_mask, order,
  3043. alloc_flags, ac,
  3044. INIT_COMPACT_PRIORITY,
  3045. &compact_result);
  3046. if (page)
  3047. goto got_pg;
  3048. /*
  3049. * Checks for costly allocations with __GFP_NORETRY, which
  3050. * includes THP page fault allocations
  3051. */
  3052. if (gfp_mask & __GFP_NORETRY) {
  3053. /*
  3054. * If compaction is deferred for high-order allocations,
  3055. * it is because sync compaction recently failed. If
  3056. * this is the case and the caller requested a THP
  3057. * allocation, we do not want to heavily disrupt the
  3058. * system, so we fail the allocation instead of entering
  3059. * direct reclaim.
  3060. */
  3061. if (compact_result == COMPACT_DEFERRED)
  3062. goto nopage;
  3063. /*
  3064. * Looks like reclaim/compaction is worth trying, but
  3065. * sync compaction could be very expensive, so keep
  3066. * using async compaction.
  3067. */
  3068. compact_priority = INIT_COMPACT_PRIORITY;
  3069. }
  3070. }
  3071. retry:
  3072. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3073. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3074. wake_all_kswapds(order, ac);
  3075. if (gfp_pfmemalloc_allowed(gfp_mask))
  3076. alloc_flags = ALLOC_NO_WATERMARKS;
  3077. /*
  3078. * Reset the zonelist iterators if memory policies can be ignored.
  3079. * These allocations are high priority and system rather than user
  3080. * orientated.
  3081. */
  3082. if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
  3083. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3084. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3085. ac->high_zoneidx, ac->nodemask);
  3086. }
  3087. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3088. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3089. if (page)
  3090. goto got_pg;
  3091. /* Caller is not willing to reclaim, we can't balance anything */
  3092. if (!can_direct_reclaim) {
  3093. /*
  3094. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3095. * of any new users that actually allow this type of allocation
  3096. * to fail.
  3097. */
  3098. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3099. goto nopage;
  3100. }
  3101. /* Avoid recursion of direct reclaim */
  3102. if (current->flags & PF_MEMALLOC) {
  3103. /*
  3104. * __GFP_NOFAIL request from this context is rather bizarre
  3105. * because we cannot reclaim anything and only can loop waiting
  3106. * for somebody to do a work for us.
  3107. */
  3108. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3109. cond_resched();
  3110. goto retry;
  3111. }
  3112. goto nopage;
  3113. }
  3114. /* Avoid allocations with no watermarks from looping endlessly */
  3115. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3116. goto nopage;
  3117. /* Try direct reclaim and then allocating */
  3118. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3119. &did_some_progress);
  3120. if (page)
  3121. goto got_pg;
  3122. /* Try direct compaction and then allocating */
  3123. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3124. compact_priority, &compact_result);
  3125. if (page)
  3126. goto got_pg;
  3127. /* Do not loop if specifically requested */
  3128. if (gfp_mask & __GFP_NORETRY)
  3129. goto nopage;
  3130. /*
  3131. * Do not retry costly high order allocations unless they are
  3132. * __GFP_REPEAT
  3133. */
  3134. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3135. goto nopage;
  3136. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3137. did_some_progress > 0, &no_progress_loops))
  3138. goto retry;
  3139. /*
  3140. * It doesn't make any sense to retry for the compaction if the order-0
  3141. * reclaim is not able to make any progress because the current
  3142. * implementation of the compaction depends on the sufficient amount
  3143. * of free memory (see __compaction_suitable)
  3144. */
  3145. if (did_some_progress > 0 &&
  3146. should_compact_retry(ac, order, alloc_flags,
  3147. compact_result, &compact_priority,
  3148. &compaction_retries))
  3149. goto retry;
  3150. /* Reclaim has failed us, start killing things */
  3151. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3152. if (page)
  3153. goto got_pg;
  3154. /* Retry as long as the OOM killer is making progress */
  3155. if (did_some_progress) {
  3156. no_progress_loops = 0;
  3157. goto retry;
  3158. }
  3159. nopage:
  3160. warn_alloc_failed(gfp_mask, order, NULL);
  3161. got_pg:
  3162. return page;
  3163. }
  3164. /*
  3165. * This is the 'heart' of the zoned buddy allocator.
  3166. */
  3167. struct page *
  3168. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3169. struct zonelist *zonelist, nodemask_t *nodemask)
  3170. {
  3171. struct page *page;
  3172. unsigned int cpuset_mems_cookie;
  3173. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3174. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3175. struct alloc_context ac = {
  3176. .high_zoneidx = gfp_zone(gfp_mask),
  3177. .zonelist = zonelist,
  3178. .nodemask = nodemask,
  3179. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3180. };
  3181. if (cpusets_enabled()) {
  3182. alloc_mask |= __GFP_HARDWALL;
  3183. alloc_flags |= ALLOC_CPUSET;
  3184. if (!ac.nodemask)
  3185. ac.nodemask = &cpuset_current_mems_allowed;
  3186. }
  3187. gfp_mask &= gfp_allowed_mask;
  3188. lockdep_trace_alloc(gfp_mask);
  3189. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3190. if (should_fail_alloc_page(gfp_mask, order))
  3191. return NULL;
  3192. /*
  3193. * Check the zones suitable for the gfp_mask contain at least one
  3194. * valid zone. It's possible to have an empty zonelist as a result
  3195. * of __GFP_THISNODE and a memoryless node
  3196. */
  3197. if (unlikely(!zonelist->_zonerefs->zone))
  3198. return NULL;
  3199. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3200. alloc_flags |= ALLOC_CMA;
  3201. retry_cpuset:
  3202. cpuset_mems_cookie = read_mems_allowed_begin();
  3203. /* Dirty zone balancing only done in the fast path */
  3204. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3205. /*
  3206. * The preferred zone is used for statistics but crucially it is
  3207. * also used as the starting point for the zonelist iterator. It
  3208. * may get reset for allocations that ignore memory policies.
  3209. */
  3210. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3211. ac.high_zoneidx, ac.nodemask);
  3212. if (!ac.preferred_zoneref) {
  3213. page = NULL;
  3214. goto no_zone;
  3215. }
  3216. /* First allocation attempt */
  3217. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3218. if (likely(page))
  3219. goto out;
  3220. /*
  3221. * Runtime PM, block IO and its error handling path can deadlock
  3222. * because I/O on the device might not complete.
  3223. */
  3224. alloc_mask = memalloc_noio_flags(gfp_mask);
  3225. ac.spread_dirty_pages = false;
  3226. /*
  3227. * Restore the original nodemask if it was potentially replaced with
  3228. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3229. */
  3230. if (cpusets_enabled())
  3231. ac.nodemask = nodemask;
  3232. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3233. no_zone:
  3234. /*
  3235. * When updating a task's mems_allowed, it is possible to race with
  3236. * parallel threads in such a way that an allocation can fail while
  3237. * the mask is being updated. If a page allocation is about to fail,
  3238. * check if the cpuset changed during allocation and if so, retry.
  3239. */
  3240. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
  3241. alloc_mask = gfp_mask;
  3242. goto retry_cpuset;
  3243. }
  3244. out:
  3245. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3246. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3247. __free_pages(page, order);
  3248. page = NULL;
  3249. }
  3250. if (kmemcheck_enabled && page)
  3251. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3252. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3253. return page;
  3254. }
  3255. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3256. /*
  3257. * Common helper functions.
  3258. */
  3259. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3260. {
  3261. struct page *page;
  3262. /*
  3263. * __get_free_pages() returns a 32-bit address, which cannot represent
  3264. * a highmem page
  3265. */
  3266. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3267. page = alloc_pages(gfp_mask, order);
  3268. if (!page)
  3269. return 0;
  3270. return (unsigned long) page_address(page);
  3271. }
  3272. EXPORT_SYMBOL(__get_free_pages);
  3273. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3274. {
  3275. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3276. }
  3277. EXPORT_SYMBOL(get_zeroed_page);
  3278. void __free_pages(struct page *page, unsigned int order)
  3279. {
  3280. if (put_page_testzero(page)) {
  3281. if (order == 0)
  3282. free_hot_cold_page(page, false);
  3283. else
  3284. __free_pages_ok(page, order);
  3285. }
  3286. }
  3287. EXPORT_SYMBOL(__free_pages);
  3288. void free_pages(unsigned long addr, unsigned int order)
  3289. {
  3290. if (addr != 0) {
  3291. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3292. __free_pages(virt_to_page((void *)addr), order);
  3293. }
  3294. }
  3295. EXPORT_SYMBOL(free_pages);
  3296. /*
  3297. * Page Fragment:
  3298. * An arbitrary-length arbitrary-offset area of memory which resides
  3299. * within a 0 or higher order page. Multiple fragments within that page
  3300. * are individually refcounted, in the page's reference counter.
  3301. *
  3302. * The page_frag functions below provide a simple allocation framework for
  3303. * page fragments. This is used by the network stack and network device
  3304. * drivers to provide a backing region of memory for use as either an
  3305. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3306. */
  3307. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3308. gfp_t gfp_mask)
  3309. {
  3310. struct page *page = NULL;
  3311. gfp_t gfp = gfp_mask;
  3312. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3313. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3314. __GFP_NOMEMALLOC;
  3315. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3316. PAGE_FRAG_CACHE_MAX_ORDER);
  3317. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3318. #endif
  3319. if (unlikely(!page))
  3320. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3321. nc->va = page ? page_address(page) : NULL;
  3322. return page;
  3323. }
  3324. void *__alloc_page_frag(struct page_frag_cache *nc,
  3325. unsigned int fragsz, gfp_t gfp_mask)
  3326. {
  3327. unsigned int size = PAGE_SIZE;
  3328. struct page *page;
  3329. int offset;
  3330. if (unlikely(!nc->va)) {
  3331. refill:
  3332. page = __page_frag_refill(nc, gfp_mask);
  3333. if (!page)
  3334. return NULL;
  3335. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3336. /* if size can vary use size else just use PAGE_SIZE */
  3337. size = nc->size;
  3338. #endif
  3339. /* Even if we own the page, we do not use atomic_set().
  3340. * This would break get_page_unless_zero() users.
  3341. */
  3342. page_ref_add(page, size - 1);
  3343. /* reset page count bias and offset to start of new frag */
  3344. nc->pfmemalloc = page_is_pfmemalloc(page);
  3345. nc->pagecnt_bias = size;
  3346. nc->offset = size;
  3347. }
  3348. offset = nc->offset - fragsz;
  3349. if (unlikely(offset < 0)) {
  3350. page = virt_to_page(nc->va);
  3351. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3352. goto refill;
  3353. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3354. /* if size can vary use size else just use PAGE_SIZE */
  3355. size = nc->size;
  3356. #endif
  3357. /* OK, page count is 0, we can safely set it */
  3358. set_page_count(page, size);
  3359. /* reset page count bias and offset to start of new frag */
  3360. nc->pagecnt_bias = size;
  3361. offset = size - fragsz;
  3362. }
  3363. nc->pagecnt_bias--;
  3364. nc->offset = offset;
  3365. return nc->va + offset;
  3366. }
  3367. EXPORT_SYMBOL(__alloc_page_frag);
  3368. /*
  3369. * Frees a page fragment allocated out of either a compound or order 0 page.
  3370. */
  3371. void __free_page_frag(void *addr)
  3372. {
  3373. struct page *page = virt_to_head_page(addr);
  3374. if (unlikely(put_page_testzero(page)))
  3375. __free_pages_ok(page, compound_order(page));
  3376. }
  3377. EXPORT_SYMBOL(__free_page_frag);
  3378. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3379. size_t size)
  3380. {
  3381. if (addr) {
  3382. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3383. unsigned long used = addr + PAGE_ALIGN(size);
  3384. split_page(virt_to_page((void *)addr), order);
  3385. while (used < alloc_end) {
  3386. free_page(used);
  3387. used += PAGE_SIZE;
  3388. }
  3389. }
  3390. return (void *)addr;
  3391. }
  3392. /**
  3393. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3394. * @size: the number of bytes to allocate
  3395. * @gfp_mask: GFP flags for the allocation
  3396. *
  3397. * This function is similar to alloc_pages(), except that it allocates the
  3398. * minimum number of pages to satisfy the request. alloc_pages() can only
  3399. * allocate memory in power-of-two pages.
  3400. *
  3401. * This function is also limited by MAX_ORDER.
  3402. *
  3403. * Memory allocated by this function must be released by free_pages_exact().
  3404. */
  3405. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3406. {
  3407. unsigned int order = get_order(size);
  3408. unsigned long addr;
  3409. addr = __get_free_pages(gfp_mask, order);
  3410. return make_alloc_exact(addr, order, size);
  3411. }
  3412. EXPORT_SYMBOL(alloc_pages_exact);
  3413. /**
  3414. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3415. * pages on a node.
  3416. * @nid: the preferred node ID where memory should be allocated
  3417. * @size: the number of bytes to allocate
  3418. * @gfp_mask: GFP flags for the allocation
  3419. *
  3420. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3421. * back.
  3422. */
  3423. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3424. {
  3425. unsigned int order = get_order(size);
  3426. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3427. if (!p)
  3428. return NULL;
  3429. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3430. }
  3431. /**
  3432. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3433. * @virt: the value returned by alloc_pages_exact.
  3434. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3435. *
  3436. * Release the memory allocated by a previous call to alloc_pages_exact.
  3437. */
  3438. void free_pages_exact(void *virt, size_t size)
  3439. {
  3440. unsigned long addr = (unsigned long)virt;
  3441. unsigned long end = addr + PAGE_ALIGN(size);
  3442. while (addr < end) {
  3443. free_page(addr);
  3444. addr += PAGE_SIZE;
  3445. }
  3446. }
  3447. EXPORT_SYMBOL(free_pages_exact);
  3448. /**
  3449. * nr_free_zone_pages - count number of pages beyond high watermark
  3450. * @offset: The zone index of the highest zone
  3451. *
  3452. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3453. * high watermark within all zones at or below a given zone index. For each
  3454. * zone, the number of pages is calculated as:
  3455. * managed_pages - high_pages
  3456. */
  3457. static unsigned long nr_free_zone_pages(int offset)
  3458. {
  3459. struct zoneref *z;
  3460. struct zone *zone;
  3461. /* Just pick one node, since fallback list is circular */
  3462. unsigned long sum = 0;
  3463. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3464. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3465. unsigned long size = zone->managed_pages;
  3466. unsigned long high = high_wmark_pages(zone);
  3467. if (size > high)
  3468. sum += size - high;
  3469. }
  3470. return sum;
  3471. }
  3472. /**
  3473. * nr_free_buffer_pages - count number of pages beyond high watermark
  3474. *
  3475. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3476. * watermark within ZONE_DMA and ZONE_NORMAL.
  3477. */
  3478. unsigned long nr_free_buffer_pages(void)
  3479. {
  3480. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3481. }
  3482. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3483. /**
  3484. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3485. *
  3486. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3487. * high watermark within all zones.
  3488. */
  3489. unsigned long nr_free_pagecache_pages(void)
  3490. {
  3491. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3492. }
  3493. static inline void show_node(struct zone *zone)
  3494. {
  3495. if (IS_ENABLED(CONFIG_NUMA))
  3496. printk("Node %d ", zone_to_nid(zone));
  3497. }
  3498. long si_mem_available(void)
  3499. {
  3500. long available;
  3501. unsigned long pagecache;
  3502. unsigned long wmark_low = 0;
  3503. unsigned long pages[NR_LRU_LISTS];
  3504. struct zone *zone;
  3505. int lru;
  3506. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3507. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3508. for_each_zone(zone)
  3509. wmark_low += zone->watermark[WMARK_LOW];
  3510. /*
  3511. * Estimate the amount of memory available for userspace allocations,
  3512. * without causing swapping.
  3513. */
  3514. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3515. /*
  3516. * Not all the page cache can be freed, otherwise the system will
  3517. * start swapping. Assume at least half of the page cache, or the
  3518. * low watermark worth of cache, needs to stay.
  3519. */
  3520. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3521. pagecache -= min(pagecache / 2, wmark_low);
  3522. available += pagecache;
  3523. /*
  3524. * Part of the reclaimable slab consists of items that are in use,
  3525. * and cannot be freed. Cap this estimate at the low watermark.
  3526. */
  3527. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3528. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3529. if (available < 0)
  3530. available = 0;
  3531. return available;
  3532. }
  3533. EXPORT_SYMBOL_GPL(si_mem_available);
  3534. void si_meminfo(struct sysinfo *val)
  3535. {
  3536. val->totalram = totalram_pages;
  3537. val->sharedram = global_node_page_state(NR_SHMEM);
  3538. val->freeram = global_page_state(NR_FREE_PAGES);
  3539. val->bufferram = nr_blockdev_pages();
  3540. val->totalhigh = totalhigh_pages;
  3541. val->freehigh = nr_free_highpages();
  3542. val->mem_unit = PAGE_SIZE;
  3543. }
  3544. EXPORT_SYMBOL(si_meminfo);
  3545. #ifdef CONFIG_NUMA
  3546. void si_meminfo_node(struct sysinfo *val, int nid)
  3547. {
  3548. int zone_type; /* needs to be signed */
  3549. unsigned long managed_pages = 0;
  3550. unsigned long managed_highpages = 0;
  3551. unsigned long free_highpages = 0;
  3552. pg_data_t *pgdat = NODE_DATA(nid);
  3553. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3554. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3555. val->totalram = managed_pages;
  3556. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3557. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3558. #ifdef CONFIG_HIGHMEM
  3559. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3560. struct zone *zone = &pgdat->node_zones[zone_type];
  3561. if (is_highmem(zone)) {
  3562. managed_highpages += zone->managed_pages;
  3563. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3564. }
  3565. }
  3566. val->totalhigh = managed_highpages;
  3567. val->freehigh = free_highpages;
  3568. #else
  3569. val->totalhigh = managed_highpages;
  3570. val->freehigh = free_highpages;
  3571. #endif
  3572. val->mem_unit = PAGE_SIZE;
  3573. }
  3574. #endif
  3575. /*
  3576. * Determine whether the node should be displayed or not, depending on whether
  3577. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3578. */
  3579. bool skip_free_areas_node(unsigned int flags, int nid)
  3580. {
  3581. bool ret = false;
  3582. unsigned int cpuset_mems_cookie;
  3583. if (!(flags & SHOW_MEM_FILTER_NODES))
  3584. goto out;
  3585. do {
  3586. cpuset_mems_cookie = read_mems_allowed_begin();
  3587. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3588. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3589. out:
  3590. return ret;
  3591. }
  3592. #define K(x) ((x) << (PAGE_SHIFT-10))
  3593. static void show_migration_types(unsigned char type)
  3594. {
  3595. static const char types[MIGRATE_TYPES] = {
  3596. [MIGRATE_UNMOVABLE] = 'U',
  3597. [MIGRATE_MOVABLE] = 'M',
  3598. [MIGRATE_RECLAIMABLE] = 'E',
  3599. [MIGRATE_HIGHATOMIC] = 'H',
  3600. #ifdef CONFIG_CMA
  3601. [MIGRATE_CMA] = 'C',
  3602. #endif
  3603. #ifdef CONFIG_MEMORY_ISOLATION
  3604. [MIGRATE_ISOLATE] = 'I',
  3605. #endif
  3606. };
  3607. char tmp[MIGRATE_TYPES + 1];
  3608. char *p = tmp;
  3609. int i;
  3610. for (i = 0; i < MIGRATE_TYPES; i++) {
  3611. if (type & (1 << i))
  3612. *p++ = types[i];
  3613. }
  3614. *p = '\0';
  3615. printk("(%s) ", tmp);
  3616. }
  3617. /*
  3618. * Show free area list (used inside shift_scroll-lock stuff)
  3619. * We also calculate the percentage fragmentation. We do this by counting the
  3620. * memory on each free list with the exception of the first item on the list.
  3621. *
  3622. * Bits in @filter:
  3623. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3624. * cpuset.
  3625. */
  3626. void show_free_areas(unsigned int filter)
  3627. {
  3628. unsigned long free_pcp = 0;
  3629. int cpu;
  3630. struct zone *zone;
  3631. pg_data_t *pgdat;
  3632. for_each_populated_zone(zone) {
  3633. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3634. continue;
  3635. for_each_online_cpu(cpu)
  3636. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3637. }
  3638. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3639. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3640. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3641. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3642. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3643. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3644. global_node_page_state(NR_ACTIVE_ANON),
  3645. global_node_page_state(NR_INACTIVE_ANON),
  3646. global_node_page_state(NR_ISOLATED_ANON),
  3647. global_node_page_state(NR_ACTIVE_FILE),
  3648. global_node_page_state(NR_INACTIVE_FILE),
  3649. global_node_page_state(NR_ISOLATED_FILE),
  3650. global_node_page_state(NR_UNEVICTABLE),
  3651. global_node_page_state(NR_FILE_DIRTY),
  3652. global_node_page_state(NR_WRITEBACK),
  3653. global_node_page_state(NR_UNSTABLE_NFS),
  3654. global_page_state(NR_SLAB_RECLAIMABLE),
  3655. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3656. global_node_page_state(NR_FILE_MAPPED),
  3657. global_node_page_state(NR_SHMEM),
  3658. global_page_state(NR_PAGETABLE),
  3659. global_page_state(NR_BOUNCE),
  3660. global_page_state(NR_FREE_PAGES),
  3661. free_pcp,
  3662. global_page_state(NR_FREE_CMA_PAGES));
  3663. for_each_online_pgdat(pgdat) {
  3664. printk("Node %d"
  3665. " active_anon:%lukB"
  3666. " inactive_anon:%lukB"
  3667. " active_file:%lukB"
  3668. " inactive_file:%lukB"
  3669. " unevictable:%lukB"
  3670. " isolated(anon):%lukB"
  3671. " isolated(file):%lukB"
  3672. " mapped:%lukB"
  3673. " dirty:%lukB"
  3674. " writeback:%lukB"
  3675. " shmem:%lukB"
  3676. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3677. " shmem_thp: %lukB"
  3678. " shmem_pmdmapped: %lukB"
  3679. " anon_thp: %lukB"
  3680. #endif
  3681. " writeback_tmp:%lukB"
  3682. " unstable:%lukB"
  3683. " pages_scanned:%lu"
  3684. " all_unreclaimable? %s"
  3685. "\n",
  3686. pgdat->node_id,
  3687. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  3688. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  3689. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  3690. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  3691. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  3692. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  3693. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  3694. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  3695. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  3696. K(node_page_state(pgdat, NR_WRITEBACK)),
  3697. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3698. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  3699. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  3700. * HPAGE_PMD_NR),
  3701. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  3702. #endif
  3703. K(node_page_state(pgdat, NR_SHMEM)),
  3704. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  3705. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  3706. node_page_state(pgdat, NR_PAGES_SCANNED),
  3707. !pgdat_reclaimable(pgdat) ? "yes" : "no");
  3708. }
  3709. for_each_populated_zone(zone) {
  3710. int i;
  3711. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3712. continue;
  3713. free_pcp = 0;
  3714. for_each_online_cpu(cpu)
  3715. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3716. show_node(zone);
  3717. printk("%s"
  3718. " free:%lukB"
  3719. " min:%lukB"
  3720. " low:%lukB"
  3721. " high:%lukB"
  3722. " active_anon:%lukB"
  3723. " inactive_anon:%lukB"
  3724. " active_file:%lukB"
  3725. " inactive_file:%lukB"
  3726. " unevictable:%lukB"
  3727. " writepending:%lukB"
  3728. " present:%lukB"
  3729. " managed:%lukB"
  3730. " mlocked:%lukB"
  3731. " slab_reclaimable:%lukB"
  3732. " slab_unreclaimable:%lukB"
  3733. " kernel_stack:%lukB"
  3734. " pagetables:%lukB"
  3735. " bounce:%lukB"
  3736. " free_pcp:%lukB"
  3737. " local_pcp:%ukB"
  3738. " free_cma:%lukB"
  3739. "\n",
  3740. zone->name,
  3741. K(zone_page_state(zone, NR_FREE_PAGES)),
  3742. K(min_wmark_pages(zone)),
  3743. K(low_wmark_pages(zone)),
  3744. K(high_wmark_pages(zone)),
  3745. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  3746. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  3747. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  3748. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  3749. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  3750. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  3751. K(zone->present_pages),
  3752. K(zone->managed_pages),
  3753. K(zone_page_state(zone, NR_MLOCK)),
  3754. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3755. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3756. zone_page_state(zone, NR_KERNEL_STACK_KB),
  3757. K(zone_page_state(zone, NR_PAGETABLE)),
  3758. K(zone_page_state(zone, NR_BOUNCE)),
  3759. K(free_pcp),
  3760. K(this_cpu_read(zone->pageset->pcp.count)),
  3761. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  3762. printk("lowmem_reserve[]:");
  3763. for (i = 0; i < MAX_NR_ZONES; i++)
  3764. printk(" %ld", zone->lowmem_reserve[i]);
  3765. printk("\n");
  3766. }
  3767. for_each_populated_zone(zone) {
  3768. unsigned int order;
  3769. unsigned long nr[MAX_ORDER], flags, total = 0;
  3770. unsigned char types[MAX_ORDER];
  3771. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3772. continue;
  3773. show_node(zone);
  3774. printk("%s: ", zone->name);
  3775. spin_lock_irqsave(&zone->lock, flags);
  3776. for (order = 0; order < MAX_ORDER; order++) {
  3777. struct free_area *area = &zone->free_area[order];
  3778. int type;
  3779. nr[order] = area->nr_free;
  3780. total += nr[order] << order;
  3781. types[order] = 0;
  3782. for (type = 0; type < MIGRATE_TYPES; type++) {
  3783. if (!list_empty(&area->free_list[type]))
  3784. types[order] |= 1 << type;
  3785. }
  3786. }
  3787. spin_unlock_irqrestore(&zone->lock, flags);
  3788. for (order = 0; order < MAX_ORDER; order++) {
  3789. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3790. if (nr[order])
  3791. show_migration_types(types[order]);
  3792. }
  3793. printk("= %lukB\n", K(total));
  3794. }
  3795. hugetlb_show_meminfo();
  3796. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  3797. show_swap_cache_info();
  3798. }
  3799. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3800. {
  3801. zoneref->zone = zone;
  3802. zoneref->zone_idx = zone_idx(zone);
  3803. }
  3804. /*
  3805. * Builds allocation fallback zone lists.
  3806. *
  3807. * Add all populated zones of a node to the zonelist.
  3808. */
  3809. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3810. int nr_zones)
  3811. {
  3812. struct zone *zone;
  3813. enum zone_type zone_type = MAX_NR_ZONES;
  3814. do {
  3815. zone_type--;
  3816. zone = pgdat->node_zones + zone_type;
  3817. if (managed_zone(zone)) {
  3818. zoneref_set_zone(zone,
  3819. &zonelist->_zonerefs[nr_zones++]);
  3820. check_highest_zone(zone_type);
  3821. }
  3822. } while (zone_type);
  3823. return nr_zones;
  3824. }
  3825. /*
  3826. * zonelist_order:
  3827. * 0 = automatic detection of better ordering.
  3828. * 1 = order by ([node] distance, -zonetype)
  3829. * 2 = order by (-zonetype, [node] distance)
  3830. *
  3831. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3832. * the same zonelist. So only NUMA can configure this param.
  3833. */
  3834. #define ZONELIST_ORDER_DEFAULT 0
  3835. #define ZONELIST_ORDER_NODE 1
  3836. #define ZONELIST_ORDER_ZONE 2
  3837. /* zonelist order in the kernel.
  3838. * set_zonelist_order() will set this to NODE or ZONE.
  3839. */
  3840. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3841. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3842. #ifdef CONFIG_NUMA
  3843. /* The value user specified ....changed by config */
  3844. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3845. /* string for sysctl */
  3846. #define NUMA_ZONELIST_ORDER_LEN 16
  3847. char numa_zonelist_order[16] = "default";
  3848. /*
  3849. * interface for configure zonelist ordering.
  3850. * command line option "numa_zonelist_order"
  3851. * = "[dD]efault - default, automatic configuration.
  3852. * = "[nN]ode - order by node locality, then by zone within node
  3853. * = "[zZ]one - order by zone, then by locality within zone
  3854. */
  3855. static int __parse_numa_zonelist_order(char *s)
  3856. {
  3857. if (*s == 'd' || *s == 'D') {
  3858. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3859. } else if (*s == 'n' || *s == 'N') {
  3860. user_zonelist_order = ZONELIST_ORDER_NODE;
  3861. } else if (*s == 'z' || *s == 'Z') {
  3862. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3863. } else {
  3864. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3865. return -EINVAL;
  3866. }
  3867. return 0;
  3868. }
  3869. static __init int setup_numa_zonelist_order(char *s)
  3870. {
  3871. int ret;
  3872. if (!s)
  3873. return 0;
  3874. ret = __parse_numa_zonelist_order(s);
  3875. if (ret == 0)
  3876. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3877. return ret;
  3878. }
  3879. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3880. /*
  3881. * sysctl handler for numa_zonelist_order
  3882. */
  3883. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3884. void __user *buffer, size_t *length,
  3885. loff_t *ppos)
  3886. {
  3887. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3888. int ret;
  3889. static DEFINE_MUTEX(zl_order_mutex);
  3890. mutex_lock(&zl_order_mutex);
  3891. if (write) {
  3892. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3893. ret = -EINVAL;
  3894. goto out;
  3895. }
  3896. strcpy(saved_string, (char *)table->data);
  3897. }
  3898. ret = proc_dostring(table, write, buffer, length, ppos);
  3899. if (ret)
  3900. goto out;
  3901. if (write) {
  3902. int oldval = user_zonelist_order;
  3903. ret = __parse_numa_zonelist_order((char *)table->data);
  3904. if (ret) {
  3905. /*
  3906. * bogus value. restore saved string
  3907. */
  3908. strncpy((char *)table->data, saved_string,
  3909. NUMA_ZONELIST_ORDER_LEN);
  3910. user_zonelist_order = oldval;
  3911. } else if (oldval != user_zonelist_order) {
  3912. mutex_lock(&zonelists_mutex);
  3913. build_all_zonelists(NULL, NULL);
  3914. mutex_unlock(&zonelists_mutex);
  3915. }
  3916. }
  3917. out:
  3918. mutex_unlock(&zl_order_mutex);
  3919. return ret;
  3920. }
  3921. #define MAX_NODE_LOAD (nr_online_nodes)
  3922. static int node_load[MAX_NUMNODES];
  3923. /**
  3924. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3925. * @node: node whose fallback list we're appending
  3926. * @used_node_mask: nodemask_t of already used nodes
  3927. *
  3928. * We use a number of factors to determine which is the next node that should
  3929. * appear on a given node's fallback list. The node should not have appeared
  3930. * already in @node's fallback list, and it should be the next closest node
  3931. * according to the distance array (which contains arbitrary distance values
  3932. * from each node to each node in the system), and should also prefer nodes
  3933. * with no CPUs, since presumably they'll have very little allocation pressure
  3934. * on them otherwise.
  3935. * It returns -1 if no node is found.
  3936. */
  3937. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3938. {
  3939. int n, val;
  3940. int min_val = INT_MAX;
  3941. int best_node = NUMA_NO_NODE;
  3942. const struct cpumask *tmp = cpumask_of_node(0);
  3943. /* Use the local node if we haven't already */
  3944. if (!node_isset(node, *used_node_mask)) {
  3945. node_set(node, *used_node_mask);
  3946. return node;
  3947. }
  3948. for_each_node_state(n, N_MEMORY) {
  3949. /* Don't want a node to appear more than once */
  3950. if (node_isset(n, *used_node_mask))
  3951. continue;
  3952. /* Use the distance array to find the distance */
  3953. val = node_distance(node, n);
  3954. /* Penalize nodes under us ("prefer the next node") */
  3955. val += (n < node);
  3956. /* Give preference to headless and unused nodes */
  3957. tmp = cpumask_of_node(n);
  3958. if (!cpumask_empty(tmp))
  3959. val += PENALTY_FOR_NODE_WITH_CPUS;
  3960. /* Slight preference for less loaded node */
  3961. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3962. val += node_load[n];
  3963. if (val < min_val) {
  3964. min_val = val;
  3965. best_node = n;
  3966. }
  3967. }
  3968. if (best_node >= 0)
  3969. node_set(best_node, *used_node_mask);
  3970. return best_node;
  3971. }
  3972. /*
  3973. * Build zonelists ordered by node and zones within node.
  3974. * This results in maximum locality--normal zone overflows into local
  3975. * DMA zone, if any--but risks exhausting DMA zone.
  3976. */
  3977. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3978. {
  3979. int j;
  3980. struct zonelist *zonelist;
  3981. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  3982. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3983. ;
  3984. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3985. zonelist->_zonerefs[j].zone = NULL;
  3986. zonelist->_zonerefs[j].zone_idx = 0;
  3987. }
  3988. /*
  3989. * Build gfp_thisnode zonelists
  3990. */
  3991. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3992. {
  3993. int j;
  3994. struct zonelist *zonelist;
  3995. zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
  3996. j = build_zonelists_node(pgdat, zonelist, 0);
  3997. zonelist->_zonerefs[j].zone = NULL;
  3998. zonelist->_zonerefs[j].zone_idx = 0;
  3999. }
  4000. /*
  4001. * Build zonelists ordered by zone and nodes within zones.
  4002. * This results in conserving DMA zone[s] until all Normal memory is
  4003. * exhausted, but results in overflowing to remote node while memory
  4004. * may still exist in local DMA zone.
  4005. */
  4006. static int node_order[MAX_NUMNODES];
  4007. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4008. {
  4009. int pos, j, node;
  4010. int zone_type; /* needs to be signed */
  4011. struct zone *z;
  4012. struct zonelist *zonelist;
  4013. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4014. pos = 0;
  4015. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4016. for (j = 0; j < nr_nodes; j++) {
  4017. node = node_order[j];
  4018. z = &NODE_DATA(node)->node_zones[zone_type];
  4019. if (managed_zone(z)) {
  4020. zoneref_set_zone(z,
  4021. &zonelist->_zonerefs[pos++]);
  4022. check_highest_zone(zone_type);
  4023. }
  4024. }
  4025. }
  4026. zonelist->_zonerefs[pos].zone = NULL;
  4027. zonelist->_zonerefs[pos].zone_idx = 0;
  4028. }
  4029. #if defined(CONFIG_64BIT)
  4030. /*
  4031. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4032. * penalty to every machine in case the specialised case applies. Default
  4033. * to Node-ordering on 64-bit NUMA machines
  4034. */
  4035. static int default_zonelist_order(void)
  4036. {
  4037. return ZONELIST_ORDER_NODE;
  4038. }
  4039. #else
  4040. /*
  4041. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4042. * by the kernel. If processes running on node 0 deplete the low memory zone
  4043. * then reclaim will occur more frequency increasing stalls and potentially
  4044. * be easier to OOM if a large percentage of the zone is under writeback or
  4045. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4046. * Hence, default to zone ordering on 32-bit.
  4047. */
  4048. static int default_zonelist_order(void)
  4049. {
  4050. return ZONELIST_ORDER_ZONE;
  4051. }
  4052. #endif /* CONFIG_64BIT */
  4053. static void set_zonelist_order(void)
  4054. {
  4055. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4056. current_zonelist_order = default_zonelist_order();
  4057. else
  4058. current_zonelist_order = user_zonelist_order;
  4059. }
  4060. static void build_zonelists(pg_data_t *pgdat)
  4061. {
  4062. int i, node, load;
  4063. nodemask_t used_mask;
  4064. int local_node, prev_node;
  4065. struct zonelist *zonelist;
  4066. unsigned int order = current_zonelist_order;
  4067. /* initialize zonelists */
  4068. for (i = 0; i < MAX_ZONELISTS; i++) {
  4069. zonelist = pgdat->node_zonelists + i;
  4070. zonelist->_zonerefs[0].zone = NULL;
  4071. zonelist->_zonerefs[0].zone_idx = 0;
  4072. }
  4073. /* NUMA-aware ordering of nodes */
  4074. local_node = pgdat->node_id;
  4075. load = nr_online_nodes;
  4076. prev_node = local_node;
  4077. nodes_clear(used_mask);
  4078. memset(node_order, 0, sizeof(node_order));
  4079. i = 0;
  4080. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4081. /*
  4082. * We don't want to pressure a particular node.
  4083. * So adding penalty to the first node in same
  4084. * distance group to make it round-robin.
  4085. */
  4086. if (node_distance(local_node, node) !=
  4087. node_distance(local_node, prev_node))
  4088. node_load[node] = load;
  4089. prev_node = node;
  4090. load--;
  4091. if (order == ZONELIST_ORDER_NODE)
  4092. build_zonelists_in_node_order(pgdat, node);
  4093. else
  4094. node_order[i++] = node; /* remember order */
  4095. }
  4096. if (order == ZONELIST_ORDER_ZONE) {
  4097. /* calculate node order -- i.e., DMA last! */
  4098. build_zonelists_in_zone_order(pgdat, i);
  4099. }
  4100. build_thisnode_zonelists(pgdat);
  4101. }
  4102. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4103. /*
  4104. * Return node id of node used for "local" allocations.
  4105. * I.e., first node id of first zone in arg node's generic zonelist.
  4106. * Used for initializing percpu 'numa_mem', which is used primarily
  4107. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4108. */
  4109. int local_memory_node(int node)
  4110. {
  4111. struct zoneref *z;
  4112. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4113. gfp_zone(GFP_KERNEL),
  4114. NULL);
  4115. return z->zone->node;
  4116. }
  4117. #endif
  4118. static void setup_min_unmapped_ratio(void);
  4119. static void setup_min_slab_ratio(void);
  4120. #else /* CONFIG_NUMA */
  4121. static void set_zonelist_order(void)
  4122. {
  4123. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4124. }
  4125. static void build_zonelists(pg_data_t *pgdat)
  4126. {
  4127. int node, local_node;
  4128. enum zone_type j;
  4129. struct zonelist *zonelist;
  4130. local_node = pgdat->node_id;
  4131. zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
  4132. j = build_zonelists_node(pgdat, zonelist, 0);
  4133. /*
  4134. * Now we build the zonelist so that it contains the zones
  4135. * of all the other nodes.
  4136. * We don't want to pressure a particular node, so when
  4137. * building the zones for node N, we make sure that the
  4138. * zones coming right after the local ones are those from
  4139. * node N+1 (modulo N)
  4140. */
  4141. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4142. if (!node_online(node))
  4143. continue;
  4144. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4145. }
  4146. for (node = 0; node < local_node; node++) {
  4147. if (!node_online(node))
  4148. continue;
  4149. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4150. }
  4151. zonelist->_zonerefs[j].zone = NULL;
  4152. zonelist->_zonerefs[j].zone_idx = 0;
  4153. }
  4154. #endif /* CONFIG_NUMA */
  4155. /*
  4156. * Boot pageset table. One per cpu which is going to be used for all
  4157. * zones and all nodes. The parameters will be set in such a way
  4158. * that an item put on a list will immediately be handed over to
  4159. * the buddy list. This is safe since pageset manipulation is done
  4160. * with interrupts disabled.
  4161. *
  4162. * The boot_pagesets must be kept even after bootup is complete for
  4163. * unused processors and/or zones. They do play a role for bootstrapping
  4164. * hotplugged processors.
  4165. *
  4166. * zoneinfo_show() and maybe other functions do
  4167. * not check if the processor is online before following the pageset pointer.
  4168. * Other parts of the kernel may not check if the zone is available.
  4169. */
  4170. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4171. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4172. static void setup_zone_pageset(struct zone *zone);
  4173. /*
  4174. * Global mutex to protect against size modification of zonelists
  4175. * as well as to serialize pageset setup for the new populated zone.
  4176. */
  4177. DEFINE_MUTEX(zonelists_mutex);
  4178. /* return values int ....just for stop_machine() */
  4179. static int __build_all_zonelists(void *data)
  4180. {
  4181. int nid;
  4182. int cpu;
  4183. pg_data_t *self = data;
  4184. #ifdef CONFIG_NUMA
  4185. memset(node_load, 0, sizeof(node_load));
  4186. #endif
  4187. if (self && !node_online(self->node_id)) {
  4188. build_zonelists(self);
  4189. }
  4190. for_each_online_node(nid) {
  4191. pg_data_t *pgdat = NODE_DATA(nid);
  4192. build_zonelists(pgdat);
  4193. }
  4194. /*
  4195. * Initialize the boot_pagesets that are going to be used
  4196. * for bootstrapping processors. The real pagesets for
  4197. * each zone will be allocated later when the per cpu
  4198. * allocator is available.
  4199. *
  4200. * boot_pagesets are used also for bootstrapping offline
  4201. * cpus if the system is already booted because the pagesets
  4202. * are needed to initialize allocators on a specific cpu too.
  4203. * F.e. the percpu allocator needs the page allocator which
  4204. * needs the percpu allocator in order to allocate its pagesets
  4205. * (a chicken-egg dilemma).
  4206. */
  4207. for_each_possible_cpu(cpu) {
  4208. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4209. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4210. /*
  4211. * We now know the "local memory node" for each node--
  4212. * i.e., the node of the first zone in the generic zonelist.
  4213. * Set up numa_mem percpu variable for on-line cpus. During
  4214. * boot, only the boot cpu should be on-line; we'll init the
  4215. * secondary cpus' numa_mem as they come on-line. During
  4216. * node/memory hotplug, we'll fixup all on-line cpus.
  4217. */
  4218. if (cpu_online(cpu))
  4219. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4220. #endif
  4221. }
  4222. return 0;
  4223. }
  4224. static noinline void __init
  4225. build_all_zonelists_init(void)
  4226. {
  4227. __build_all_zonelists(NULL);
  4228. mminit_verify_zonelist();
  4229. cpuset_init_current_mems_allowed();
  4230. }
  4231. /*
  4232. * Called with zonelists_mutex held always
  4233. * unless system_state == SYSTEM_BOOTING.
  4234. *
  4235. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4236. * [we're only called with non-NULL zone through __meminit paths] and
  4237. * (2) call of __init annotated helper build_all_zonelists_init
  4238. * [protected by SYSTEM_BOOTING].
  4239. */
  4240. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4241. {
  4242. set_zonelist_order();
  4243. if (system_state == SYSTEM_BOOTING) {
  4244. build_all_zonelists_init();
  4245. } else {
  4246. #ifdef CONFIG_MEMORY_HOTPLUG
  4247. if (zone)
  4248. setup_zone_pageset(zone);
  4249. #endif
  4250. /* we have to stop all cpus to guarantee there is no user
  4251. of zonelist */
  4252. stop_machine(__build_all_zonelists, pgdat, NULL);
  4253. /* cpuset refresh routine should be here */
  4254. }
  4255. vm_total_pages = nr_free_pagecache_pages();
  4256. /*
  4257. * Disable grouping by mobility if the number of pages in the
  4258. * system is too low to allow the mechanism to work. It would be
  4259. * more accurate, but expensive to check per-zone. This check is
  4260. * made on memory-hotadd so a system can start with mobility
  4261. * disabled and enable it later
  4262. */
  4263. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4264. page_group_by_mobility_disabled = 1;
  4265. else
  4266. page_group_by_mobility_disabled = 0;
  4267. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4268. nr_online_nodes,
  4269. zonelist_order_name[current_zonelist_order],
  4270. page_group_by_mobility_disabled ? "off" : "on",
  4271. vm_total_pages);
  4272. #ifdef CONFIG_NUMA
  4273. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4274. #endif
  4275. }
  4276. /*
  4277. * Helper functions to size the waitqueue hash table.
  4278. * Essentially these want to choose hash table sizes sufficiently
  4279. * large so that collisions trying to wait on pages are rare.
  4280. * But in fact, the number of active page waitqueues on typical
  4281. * systems is ridiculously low, less than 200. So this is even
  4282. * conservative, even though it seems large.
  4283. *
  4284. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  4285. * waitqueues, i.e. the size of the waitq table given the number of pages.
  4286. */
  4287. #define PAGES_PER_WAITQUEUE 256
  4288. #ifndef CONFIG_MEMORY_HOTPLUG
  4289. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4290. {
  4291. unsigned long size = 1;
  4292. pages /= PAGES_PER_WAITQUEUE;
  4293. while (size < pages)
  4294. size <<= 1;
  4295. /*
  4296. * Once we have dozens or even hundreds of threads sleeping
  4297. * on IO we've got bigger problems than wait queue collision.
  4298. * Limit the size of the wait table to a reasonable size.
  4299. */
  4300. size = min(size, 4096UL);
  4301. return max(size, 4UL);
  4302. }
  4303. #else
  4304. /*
  4305. * A zone's size might be changed by hot-add, so it is not possible to determine
  4306. * a suitable size for its wait_table. So we use the maximum size now.
  4307. *
  4308. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  4309. *
  4310. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  4311. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  4312. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  4313. *
  4314. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  4315. * or more by the traditional way. (See above). It equals:
  4316. *
  4317. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  4318. * ia64(16K page size) : = ( 8G + 4M)byte.
  4319. * powerpc (64K page size) : = (32G +16M)byte.
  4320. */
  4321. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4322. {
  4323. return 4096UL;
  4324. }
  4325. #endif
  4326. /*
  4327. * This is an integer logarithm so that shifts can be used later
  4328. * to extract the more random high bits from the multiplicative
  4329. * hash function before the remainder is taken.
  4330. */
  4331. static inline unsigned long wait_table_bits(unsigned long size)
  4332. {
  4333. return ffz(~size);
  4334. }
  4335. /*
  4336. * Initially all pages are reserved - free ones are freed
  4337. * up by free_all_bootmem() once the early boot process is
  4338. * done. Non-atomic initialization, single-pass.
  4339. */
  4340. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4341. unsigned long start_pfn, enum memmap_context context)
  4342. {
  4343. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4344. unsigned long end_pfn = start_pfn + size;
  4345. pg_data_t *pgdat = NODE_DATA(nid);
  4346. unsigned long pfn;
  4347. unsigned long nr_initialised = 0;
  4348. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4349. struct memblock_region *r = NULL, *tmp;
  4350. #endif
  4351. if (highest_memmap_pfn < end_pfn - 1)
  4352. highest_memmap_pfn = end_pfn - 1;
  4353. /*
  4354. * Honor reservation requested by the driver for this ZONE_DEVICE
  4355. * memory
  4356. */
  4357. if (altmap && start_pfn == altmap->base_pfn)
  4358. start_pfn += altmap->reserve;
  4359. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4360. /*
  4361. * There can be holes in boot-time mem_map[]s handed to this
  4362. * function. They do not exist on hotplugged memory.
  4363. */
  4364. if (context != MEMMAP_EARLY)
  4365. goto not_early;
  4366. if (!early_pfn_valid(pfn))
  4367. continue;
  4368. if (!early_pfn_in_nid(pfn, nid))
  4369. continue;
  4370. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4371. break;
  4372. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4373. /*
  4374. * Check given memblock attribute by firmware which can affect
  4375. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4376. * mirrored, it's an overlapped memmap init. skip it.
  4377. */
  4378. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4379. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4380. for_each_memblock(memory, tmp)
  4381. if (pfn < memblock_region_memory_end_pfn(tmp))
  4382. break;
  4383. r = tmp;
  4384. }
  4385. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4386. memblock_is_mirror(r)) {
  4387. /* already initialized as NORMAL */
  4388. pfn = memblock_region_memory_end_pfn(r);
  4389. continue;
  4390. }
  4391. }
  4392. #endif
  4393. not_early:
  4394. /*
  4395. * Mark the block movable so that blocks are reserved for
  4396. * movable at startup. This will force kernel allocations
  4397. * to reserve their blocks rather than leaking throughout
  4398. * the address space during boot when many long-lived
  4399. * kernel allocations are made.
  4400. *
  4401. * bitmap is created for zone's valid pfn range. but memmap
  4402. * can be created for invalid pages (for alignment)
  4403. * check here not to call set_pageblock_migratetype() against
  4404. * pfn out of zone.
  4405. */
  4406. if (!(pfn & (pageblock_nr_pages - 1))) {
  4407. struct page *page = pfn_to_page(pfn);
  4408. __init_single_page(page, pfn, zone, nid);
  4409. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4410. } else {
  4411. __init_single_pfn(pfn, zone, nid);
  4412. }
  4413. }
  4414. }
  4415. static void __meminit zone_init_free_lists(struct zone *zone)
  4416. {
  4417. unsigned int order, t;
  4418. for_each_migratetype_order(order, t) {
  4419. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4420. zone->free_area[order].nr_free = 0;
  4421. }
  4422. }
  4423. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4424. #define memmap_init(size, nid, zone, start_pfn) \
  4425. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4426. #endif
  4427. static int zone_batchsize(struct zone *zone)
  4428. {
  4429. #ifdef CONFIG_MMU
  4430. int batch;
  4431. /*
  4432. * The per-cpu-pages pools are set to around 1000th of the
  4433. * size of the zone. But no more than 1/2 of a meg.
  4434. *
  4435. * OK, so we don't know how big the cache is. So guess.
  4436. */
  4437. batch = zone->managed_pages / 1024;
  4438. if (batch * PAGE_SIZE > 512 * 1024)
  4439. batch = (512 * 1024) / PAGE_SIZE;
  4440. batch /= 4; /* We effectively *= 4 below */
  4441. if (batch < 1)
  4442. batch = 1;
  4443. /*
  4444. * Clamp the batch to a 2^n - 1 value. Having a power
  4445. * of 2 value was found to be more likely to have
  4446. * suboptimal cache aliasing properties in some cases.
  4447. *
  4448. * For example if 2 tasks are alternately allocating
  4449. * batches of pages, one task can end up with a lot
  4450. * of pages of one half of the possible page colors
  4451. * and the other with pages of the other colors.
  4452. */
  4453. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4454. return batch;
  4455. #else
  4456. /* The deferral and batching of frees should be suppressed under NOMMU
  4457. * conditions.
  4458. *
  4459. * The problem is that NOMMU needs to be able to allocate large chunks
  4460. * of contiguous memory as there's no hardware page translation to
  4461. * assemble apparent contiguous memory from discontiguous pages.
  4462. *
  4463. * Queueing large contiguous runs of pages for batching, however,
  4464. * causes the pages to actually be freed in smaller chunks. As there
  4465. * can be a significant delay between the individual batches being
  4466. * recycled, this leads to the once large chunks of space being
  4467. * fragmented and becoming unavailable for high-order allocations.
  4468. */
  4469. return 0;
  4470. #endif
  4471. }
  4472. /*
  4473. * pcp->high and pcp->batch values are related and dependent on one another:
  4474. * ->batch must never be higher then ->high.
  4475. * The following function updates them in a safe manner without read side
  4476. * locking.
  4477. *
  4478. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4479. * those fields changing asynchronously (acording the the above rule).
  4480. *
  4481. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4482. * outside of boot time (or some other assurance that no concurrent updaters
  4483. * exist).
  4484. */
  4485. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4486. unsigned long batch)
  4487. {
  4488. /* start with a fail safe value for batch */
  4489. pcp->batch = 1;
  4490. smp_wmb();
  4491. /* Update high, then batch, in order */
  4492. pcp->high = high;
  4493. smp_wmb();
  4494. pcp->batch = batch;
  4495. }
  4496. /* a companion to pageset_set_high() */
  4497. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4498. {
  4499. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4500. }
  4501. static void pageset_init(struct per_cpu_pageset *p)
  4502. {
  4503. struct per_cpu_pages *pcp;
  4504. int migratetype;
  4505. memset(p, 0, sizeof(*p));
  4506. pcp = &p->pcp;
  4507. pcp->count = 0;
  4508. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4509. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4510. }
  4511. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4512. {
  4513. pageset_init(p);
  4514. pageset_set_batch(p, batch);
  4515. }
  4516. /*
  4517. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4518. * to the value high for the pageset p.
  4519. */
  4520. static void pageset_set_high(struct per_cpu_pageset *p,
  4521. unsigned long high)
  4522. {
  4523. unsigned long batch = max(1UL, high / 4);
  4524. if ((high / 4) > (PAGE_SHIFT * 8))
  4525. batch = PAGE_SHIFT * 8;
  4526. pageset_update(&p->pcp, high, batch);
  4527. }
  4528. static void pageset_set_high_and_batch(struct zone *zone,
  4529. struct per_cpu_pageset *pcp)
  4530. {
  4531. if (percpu_pagelist_fraction)
  4532. pageset_set_high(pcp,
  4533. (zone->managed_pages /
  4534. percpu_pagelist_fraction));
  4535. else
  4536. pageset_set_batch(pcp, zone_batchsize(zone));
  4537. }
  4538. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4539. {
  4540. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4541. pageset_init(pcp);
  4542. pageset_set_high_and_batch(zone, pcp);
  4543. }
  4544. static void __meminit setup_zone_pageset(struct zone *zone)
  4545. {
  4546. int cpu;
  4547. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4548. for_each_possible_cpu(cpu)
  4549. zone_pageset_init(zone, cpu);
  4550. }
  4551. /*
  4552. * Allocate per cpu pagesets and initialize them.
  4553. * Before this call only boot pagesets were available.
  4554. */
  4555. void __init setup_per_cpu_pageset(void)
  4556. {
  4557. struct pglist_data *pgdat;
  4558. struct zone *zone;
  4559. for_each_populated_zone(zone)
  4560. setup_zone_pageset(zone);
  4561. for_each_online_pgdat(pgdat)
  4562. pgdat->per_cpu_nodestats =
  4563. alloc_percpu(struct per_cpu_nodestat);
  4564. }
  4565. static noinline __ref
  4566. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4567. {
  4568. int i;
  4569. size_t alloc_size;
  4570. /*
  4571. * The per-page waitqueue mechanism uses hashed waitqueues
  4572. * per zone.
  4573. */
  4574. zone->wait_table_hash_nr_entries =
  4575. wait_table_hash_nr_entries(zone_size_pages);
  4576. zone->wait_table_bits =
  4577. wait_table_bits(zone->wait_table_hash_nr_entries);
  4578. alloc_size = zone->wait_table_hash_nr_entries
  4579. * sizeof(wait_queue_head_t);
  4580. if (!slab_is_available()) {
  4581. zone->wait_table = (wait_queue_head_t *)
  4582. memblock_virt_alloc_node_nopanic(
  4583. alloc_size, zone->zone_pgdat->node_id);
  4584. } else {
  4585. /*
  4586. * This case means that a zone whose size was 0 gets new memory
  4587. * via memory hot-add.
  4588. * But it may be the case that a new node was hot-added. In
  4589. * this case vmalloc() will not be able to use this new node's
  4590. * memory - this wait_table must be initialized to use this new
  4591. * node itself as well.
  4592. * To use this new node's memory, further consideration will be
  4593. * necessary.
  4594. */
  4595. zone->wait_table = vmalloc(alloc_size);
  4596. }
  4597. if (!zone->wait_table)
  4598. return -ENOMEM;
  4599. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4600. init_waitqueue_head(zone->wait_table + i);
  4601. return 0;
  4602. }
  4603. static __meminit void zone_pcp_init(struct zone *zone)
  4604. {
  4605. /*
  4606. * per cpu subsystem is not up at this point. The following code
  4607. * relies on the ability of the linker to provide the
  4608. * offset of a (static) per cpu variable into the per cpu area.
  4609. */
  4610. zone->pageset = &boot_pageset;
  4611. if (populated_zone(zone))
  4612. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4613. zone->name, zone->present_pages,
  4614. zone_batchsize(zone));
  4615. }
  4616. int __meminit init_currently_empty_zone(struct zone *zone,
  4617. unsigned long zone_start_pfn,
  4618. unsigned long size)
  4619. {
  4620. struct pglist_data *pgdat = zone->zone_pgdat;
  4621. int ret;
  4622. ret = zone_wait_table_init(zone, size);
  4623. if (ret)
  4624. return ret;
  4625. pgdat->nr_zones = zone_idx(zone) + 1;
  4626. zone->zone_start_pfn = zone_start_pfn;
  4627. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4628. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4629. pgdat->node_id,
  4630. (unsigned long)zone_idx(zone),
  4631. zone_start_pfn, (zone_start_pfn + size));
  4632. zone_init_free_lists(zone);
  4633. return 0;
  4634. }
  4635. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4636. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4637. /*
  4638. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4639. */
  4640. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4641. struct mminit_pfnnid_cache *state)
  4642. {
  4643. unsigned long start_pfn, end_pfn;
  4644. int nid;
  4645. if (state->last_start <= pfn && pfn < state->last_end)
  4646. return state->last_nid;
  4647. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4648. if (nid != -1) {
  4649. state->last_start = start_pfn;
  4650. state->last_end = end_pfn;
  4651. state->last_nid = nid;
  4652. }
  4653. return nid;
  4654. }
  4655. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4656. /**
  4657. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4658. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4659. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4660. *
  4661. * If an architecture guarantees that all ranges registered contain no holes
  4662. * and may be freed, this this function may be used instead of calling
  4663. * memblock_free_early_nid() manually.
  4664. */
  4665. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4666. {
  4667. unsigned long start_pfn, end_pfn;
  4668. int i, this_nid;
  4669. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4670. start_pfn = min(start_pfn, max_low_pfn);
  4671. end_pfn = min(end_pfn, max_low_pfn);
  4672. if (start_pfn < end_pfn)
  4673. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4674. (end_pfn - start_pfn) << PAGE_SHIFT,
  4675. this_nid);
  4676. }
  4677. }
  4678. /**
  4679. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4680. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4681. *
  4682. * If an architecture guarantees that all ranges registered contain no holes and may
  4683. * be freed, this function may be used instead of calling memory_present() manually.
  4684. */
  4685. void __init sparse_memory_present_with_active_regions(int nid)
  4686. {
  4687. unsigned long start_pfn, end_pfn;
  4688. int i, this_nid;
  4689. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4690. memory_present(this_nid, start_pfn, end_pfn);
  4691. }
  4692. /**
  4693. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4694. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4695. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4696. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4697. *
  4698. * It returns the start and end page frame of a node based on information
  4699. * provided by memblock_set_node(). If called for a node
  4700. * with no available memory, a warning is printed and the start and end
  4701. * PFNs will be 0.
  4702. */
  4703. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4704. unsigned long *start_pfn, unsigned long *end_pfn)
  4705. {
  4706. unsigned long this_start_pfn, this_end_pfn;
  4707. int i;
  4708. *start_pfn = -1UL;
  4709. *end_pfn = 0;
  4710. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4711. *start_pfn = min(*start_pfn, this_start_pfn);
  4712. *end_pfn = max(*end_pfn, this_end_pfn);
  4713. }
  4714. if (*start_pfn == -1UL)
  4715. *start_pfn = 0;
  4716. }
  4717. /*
  4718. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4719. * assumption is made that zones within a node are ordered in monotonic
  4720. * increasing memory addresses so that the "highest" populated zone is used
  4721. */
  4722. static void __init find_usable_zone_for_movable(void)
  4723. {
  4724. int zone_index;
  4725. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4726. if (zone_index == ZONE_MOVABLE)
  4727. continue;
  4728. if (arch_zone_highest_possible_pfn[zone_index] >
  4729. arch_zone_lowest_possible_pfn[zone_index])
  4730. break;
  4731. }
  4732. VM_BUG_ON(zone_index == -1);
  4733. movable_zone = zone_index;
  4734. }
  4735. /*
  4736. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4737. * because it is sized independent of architecture. Unlike the other zones,
  4738. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4739. * in each node depending on the size of each node and how evenly kernelcore
  4740. * is distributed. This helper function adjusts the zone ranges
  4741. * provided by the architecture for a given node by using the end of the
  4742. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4743. * zones within a node are in order of monotonic increases memory addresses
  4744. */
  4745. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4746. unsigned long zone_type,
  4747. unsigned long node_start_pfn,
  4748. unsigned long node_end_pfn,
  4749. unsigned long *zone_start_pfn,
  4750. unsigned long *zone_end_pfn)
  4751. {
  4752. /* Only adjust if ZONE_MOVABLE is on this node */
  4753. if (zone_movable_pfn[nid]) {
  4754. /* Size ZONE_MOVABLE */
  4755. if (zone_type == ZONE_MOVABLE) {
  4756. *zone_start_pfn = zone_movable_pfn[nid];
  4757. *zone_end_pfn = min(node_end_pfn,
  4758. arch_zone_highest_possible_pfn[movable_zone]);
  4759. /* Adjust for ZONE_MOVABLE starting within this range */
  4760. } else if (!mirrored_kernelcore &&
  4761. *zone_start_pfn < zone_movable_pfn[nid] &&
  4762. *zone_end_pfn > zone_movable_pfn[nid]) {
  4763. *zone_end_pfn = zone_movable_pfn[nid];
  4764. /* Check if this whole range is within ZONE_MOVABLE */
  4765. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4766. *zone_start_pfn = *zone_end_pfn;
  4767. }
  4768. }
  4769. /*
  4770. * Return the number of pages a zone spans in a node, including holes
  4771. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4772. */
  4773. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4774. unsigned long zone_type,
  4775. unsigned long node_start_pfn,
  4776. unsigned long node_end_pfn,
  4777. unsigned long *zone_start_pfn,
  4778. unsigned long *zone_end_pfn,
  4779. unsigned long *ignored)
  4780. {
  4781. /* When hotadd a new node from cpu_up(), the node should be empty */
  4782. if (!node_start_pfn && !node_end_pfn)
  4783. return 0;
  4784. /* Get the start and end of the zone */
  4785. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4786. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4787. adjust_zone_range_for_zone_movable(nid, zone_type,
  4788. node_start_pfn, node_end_pfn,
  4789. zone_start_pfn, zone_end_pfn);
  4790. /* Check that this node has pages within the zone's required range */
  4791. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4792. return 0;
  4793. /* Move the zone boundaries inside the node if necessary */
  4794. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4795. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4796. /* Return the spanned pages */
  4797. return *zone_end_pfn - *zone_start_pfn;
  4798. }
  4799. /*
  4800. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4801. * then all holes in the requested range will be accounted for.
  4802. */
  4803. unsigned long __meminit __absent_pages_in_range(int nid,
  4804. unsigned long range_start_pfn,
  4805. unsigned long range_end_pfn)
  4806. {
  4807. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4808. unsigned long start_pfn, end_pfn;
  4809. int i;
  4810. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4811. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4812. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4813. nr_absent -= end_pfn - start_pfn;
  4814. }
  4815. return nr_absent;
  4816. }
  4817. /**
  4818. * absent_pages_in_range - Return number of page frames in holes within a range
  4819. * @start_pfn: The start PFN to start searching for holes
  4820. * @end_pfn: The end PFN to stop searching for holes
  4821. *
  4822. * It returns the number of pages frames in memory holes within a range.
  4823. */
  4824. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4825. unsigned long end_pfn)
  4826. {
  4827. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4828. }
  4829. /* Return the number of page frames in holes in a zone on a node */
  4830. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4831. unsigned long zone_type,
  4832. unsigned long node_start_pfn,
  4833. unsigned long node_end_pfn,
  4834. unsigned long *ignored)
  4835. {
  4836. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4837. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4838. unsigned long zone_start_pfn, zone_end_pfn;
  4839. unsigned long nr_absent;
  4840. /* When hotadd a new node from cpu_up(), the node should be empty */
  4841. if (!node_start_pfn && !node_end_pfn)
  4842. return 0;
  4843. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4844. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4845. adjust_zone_range_for_zone_movable(nid, zone_type,
  4846. node_start_pfn, node_end_pfn,
  4847. &zone_start_pfn, &zone_end_pfn);
  4848. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4849. /*
  4850. * ZONE_MOVABLE handling.
  4851. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4852. * and vice versa.
  4853. */
  4854. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  4855. unsigned long start_pfn, end_pfn;
  4856. struct memblock_region *r;
  4857. for_each_memblock(memory, r) {
  4858. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4859. zone_start_pfn, zone_end_pfn);
  4860. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4861. zone_start_pfn, zone_end_pfn);
  4862. if (zone_type == ZONE_MOVABLE &&
  4863. memblock_is_mirror(r))
  4864. nr_absent += end_pfn - start_pfn;
  4865. if (zone_type == ZONE_NORMAL &&
  4866. !memblock_is_mirror(r))
  4867. nr_absent += end_pfn - start_pfn;
  4868. }
  4869. }
  4870. return nr_absent;
  4871. }
  4872. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4873. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4874. unsigned long zone_type,
  4875. unsigned long node_start_pfn,
  4876. unsigned long node_end_pfn,
  4877. unsigned long *zone_start_pfn,
  4878. unsigned long *zone_end_pfn,
  4879. unsigned long *zones_size)
  4880. {
  4881. unsigned int zone;
  4882. *zone_start_pfn = node_start_pfn;
  4883. for (zone = 0; zone < zone_type; zone++)
  4884. *zone_start_pfn += zones_size[zone];
  4885. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4886. return zones_size[zone_type];
  4887. }
  4888. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4889. unsigned long zone_type,
  4890. unsigned long node_start_pfn,
  4891. unsigned long node_end_pfn,
  4892. unsigned long *zholes_size)
  4893. {
  4894. if (!zholes_size)
  4895. return 0;
  4896. return zholes_size[zone_type];
  4897. }
  4898. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4899. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4900. unsigned long node_start_pfn,
  4901. unsigned long node_end_pfn,
  4902. unsigned long *zones_size,
  4903. unsigned long *zholes_size)
  4904. {
  4905. unsigned long realtotalpages = 0, totalpages = 0;
  4906. enum zone_type i;
  4907. for (i = 0; i < MAX_NR_ZONES; i++) {
  4908. struct zone *zone = pgdat->node_zones + i;
  4909. unsigned long zone_start_pfn, zone_end_pfn;
  4910. unsigned long size, real_size;
  4911. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4912. node_start_pfn,
  4913. node_end_pfn,
  4914. &zone_start_pfn,
  4915. &zone_end_pfn,
  4916. zones_size);
  4917. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4918. node_start_pfn, node_end_pfn,
  4919. zholes_size);
  4920. if (size)
  4921. zone->zone_start_pfn = zone_start_pfn;
  4922. else
  4923. zone->zone_start_pfn = 0;
  4924. zone->spanned_pages = size;
  4925. zone->present_pages = real_size;
  4926. totalpages += size;
  4927. realtotalpages += real_size;
  4928. }
  4929. pgdat->node_spanned_pages = totalpages;
  4930. pgdat->node_present_pages = realtotalpages;
  4931. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4932. realtotalpages);
  4933. }
  4934. #ifndef CONFIG_SPARSEMEM
  4935. /*
  4936. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4937. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4938. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4939. * round what is now in bits to nearest long in bits, then return it in
  4940. * bytes.
  4941. */
  4942. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4943. {
  4944. unsigned long usemapsize;
  4945. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4946. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4947. usemapsize = usemapsize >> pageblock_order;
  4948. usemapsize *= NR_PAGEBLOCK_BITS;
  4949. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4950. return usemapsize / 8;
  4951. }
  4952. static void __init setup_usemap(struct pglist_data *pgdat,
  4953. struct zone *zone,
  4954. unsigned long zone_start_pfn,
  4955. unsigned long zonesize)
  4956. {
  4957. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4958. zone->pageblock_flags = NULL;
  4959. if (usemapsize)
  4960. zone->pageblock_flags =
  4961. memblock_virt_alloc_node_nopanic(usemapsize,
  4962. pgdat->node_id);
  4963. }
  4964. #else
  4965. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4966. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4967. #endif /* CONFIG_SPARSEMEM */
  4968. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4969. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4970. void __paginginit set_pageblock_order(void)
  4971. {
  4972. unsigned int order;
  4973. /* Check that pageblock_nr_pages has not already been setup */
  4974. if (pageblock_order)
  4975. return;
  4976. if (HPAGE_SHIFT > PAGE_SHIFT)
  4977. order = HUGETLB_PAGE_ORDER;
  4978. else
  4979. order = MAX_ORDER - 1;
  4980. /*
  4981. * Assume the largest contiguous order of interest is a huge page.
  4982. * This value may be variable depending on boot parameters on IA64 and
  4983. * powerpc.
  4984. */
  4985. pageblock_order = order;
  4986. }
  4987. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4988. /*
  4989. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4990. * is unused as pageblock_order is set at compile-time. See
  4991. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4992. * the kernel config
  4993. */
  4994. void __paginginit set_pageblock_order(void)
  4995. {
  4996. }
  4997. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4998. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4999. unsigned long present_pages)
  5000. {
  5001. unsigned long pages = spanned_pages;
  5002. /*
  5003. * Provide a more accurate estimation if there are holes within
  5004. * the zone and SPARSEMEM is in use. If there are holes within the
  5005. * zone, each populated memory region may cost us one or two extra
  5006. * memmap pages due to alignment because memmap pages for each
  5007. * populated regions may not naturally algined on page boundary.
  5008. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5009. */
  5010. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5011. IS_ENABLED(CONFIG_SPARSEMEM))
  5012. pages = present_pages;
  5013. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5014. }
  5015. /*
  5016. * Set up the zone data structures:
  5017. * - mark all pages reserved
  5018. * - mark all memory queues empty
  5019. * - clear the memory bitmaps
  5020. *
  5021. * NOTE: pgdat should get zeroed by caller.
  5022. */
  5023. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5024. {
  5025. enum zone_type j;
  5026. int nid = pgdat->node_id;
  5027. int ret;
  5028. pgdat_resize_init(pgdat);
  5029. #ifdef CONFIG_NUMA_BALANCING
  5030. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5031. pgdat->numabalancing_migrate_nr_pages = 0;
  5032. pgdat->numabalancing_migrate_next_window = jiffies;
  5033. #endif
  5034. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5035. spin_lock_init(&pgdat->split_queue_lock);
  5036. INIT_LIST_HEAD(&pgdat->split_queue);
  5037. pgdat->split_queue_len = 0;
  5038. #endif
  5039. init_waitqueue_head(&pgdat->kswapd_wait);
  5040. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5041. #ifdef CONFIG_COMPACTION
  5042. init_waitqueue_head(&pgdat->kcompactd_wait);
  5043. #endif
  5044. pgdat_page_ext_init(pgdat);
  5045. spin_lock_init(&pgdat->lru_lock);
  5046. lruvec_init(node_lruvec(pgdat));
  5047. for (j = 0; j < MAX_NR_ZONES; j++) {
  5048. struct zone *zone = pgdat->node_zones + j;
  5049. unsigned long size, realsize, freesize, memmap_pages;
  5050. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5051. size = zone->spanned_pages;
  5052. realsize = freesize = zone->present_pages;
  5053. /*
  5054. * Adjust freesize so that it accounts for how much memory
  5055. * is used by this zone for memmap. This affects the watermark
  5056. * and per-cpu initialisations
  5057. */
  5058. memmap_pages = calc_memmap_size(size, realsize);
  5059. if (!is_highmem_idx(j)) {
  5060. if (freesize >= memmap_pages) {
  5061. freesize -= memmap_pages;
  5062. if (memmap_pages)
  5063. printk(KERN_DEBUG
  5064. " %s zone: %lu pages used for memmap\n",
  5065. zone_names[j], memmap_pages);
  5066. } else
  5067. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5068. zone_names[j], memmap_pages, freesize);
  5069. }
  5070. /* Account for reserved pages */
  5071. if (j == 0 && freesize > dma_reserve) {
  5072. freesize -= dma_reserve;
  5073. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5074. zone_names[0], dma_reserve);
  5075. }
  5076. if (!is_highmem_idx(j))
  5077. nr_kernel_pages += freesize;
  5078. /* Charge for highmem memmap if there are enough kernel pages */
  5079. else if (nr_kernel_pages > memmap_pages * 2)
  5080. nr_kernel_pages -= memmap_pages;
  5081. nr_all_pages += freesize;
  5082. /*
  5083. * Set an approximate value for lowmem here, it will be adjusted
  5084. * when the bootmem allocator frees pages into the buddy system.
  5085. * And all highmem pages will be managed by the buddy system.
  5086. */
  5087. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5088. #ifdef CONFIG_NUMA
  5089. zone->node = nid;
  5090. #endif
  5091. zone->name = zone_names[j];
  5092. zone->zone_pgdat = pgdat;
  5093. spin_lock_init(&zone->lock);
  5094. zone_seqlock_init(zone);
  5095. zone_pcp_init(zone);
  5096. if (!size)
  5097. continue;
  5098. set_pageblock_order();
  5099. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5100. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5101. BUG_ON(ret);
  5102. memmap_init(size, nid, j, zone_start_pfn);
  5103. }
  5104. }
  5105. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5106. {
  5107. unsigned long __maybe_unused start = 0;
  5108. unsigned long __maybe_unused offset = 0;
  5109. /* Skip empty nodes */
  5110. if (!pgdat->node_spanned_pages)
  5111. return;
  5112. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5113. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5114. offset = pgdat->node_start_pfn - start;
  5115. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5116. if (!pgdat->node_mem_map) {
  5117. unsigned long size, end;
  5118. struct page *map;
  5119. /*
  5120. * The zone's endpoints aren't required to be MAX_ORDER
  5121. * aligned but the node_mem_map endpoints must be in order
  5122. * for the buddy allocator to function correctly.
  5123. */
  5124. end = pgdat_end_pfn(pgdat);
  5125. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5126. size = (end - start) * sizeof(struct page);
  5127. map = alloc_remap(pgdat->node_id, size);
  5128. if (!map)
  5129. map = memblock_virt_alloc_node_nopanic(size,
  5130. pgdat->node_id);
  5131. pgdat->node_mem_map = map + offset;
  5132. }
  5133. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5134. /*
  5135. * With no DISCONTIG, the global mem_map is just set as node 0's
  5136. */
  5137. if (pgdat == NODE_DATA(0)) {
  5138. mem_map = NODE_DATA(0)->node_mem_map;
  5139. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5140. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5141. mem_map -= offset;
  5142. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5143. }
  5144. #endif
  5145. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5146. }
  5147. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5148. unsigned long node_start_pfn, unsigned long *zholes_size)
  5149. {
  5150. pg_data_t *pgdat = NODE_DATA(nid);
  5151. unsigned long start_pfn = 0;
  5152. unsigned long end_pfn = 0;
  5153. /* pg_data_t should be reset to zero when it's allocated */
  5154. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5155. reset_deferred_meminit(pgdat);
  5156. pgdat->node_id = nid;
  5157. pgdat->node_start_pfn = node_start_pfn;
  5158. pgdat->per_cpu_nodestats = NULL;
  5159. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5160. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5161. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5162. (u64)start_pfn << PAGE_SHIFT,
  5163. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5164. #else
  5165. start_pfn = node_start_pfn;
  5166. #endif
  5167. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5168. zones_size, zholes_size);
  5169. alloc_node_mem_map(pgdat);
  5170. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5171. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5172. nid, (unsigned long)pgdat,
  5173. (unsigned long)pgdat->node_mem_map);
  5174. #endif
  5175. free_area_init_core(pgdat);
  5176. }
  5177. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5178. #if MAX_NUMNODES > 1
  5179. /*
  5180. * Figure out the number of possible node ids.
  5181. */
  5182. void __init setup_nr_node_ids(void)
  5183. {
  5184. unsigned int highest;
  5185. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5186. nr_node_ids = highest + 1;
  5187. }
  5188. #endif
  5189. /**
  5190. * node_map_pfn_alignment - determine the maximum internode alignment
  5191. *
  5192. * This function should be called after node map is populated and sorted.
  5193. * It calculates the maximum power of two alignment which can distinguish
  5194. * all the nodes.
  5195. *
  5196. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5197. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5198. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5199. * shifted, 1GiB is enough and this function will indicate so.
  5200. *
  5201. * This is used to test whether pfn -> nid mapping of the chosen memory
  5202. * model has fine enough granularity to avoid incorrect mapping for the
  5203. * populated node map.
  5204. *
  5205. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5206. * requirement (single node).
  5207. */
  5208. unsigned long __init node_map_pfn_alignment(void)
  5209. {
  5210. unsigned long accl_mask = 0, last_end = 0;
  5211. unsigned long start, end, mask;
  5212. int last_nid = -1;
  5213. int i, nid;
  5214. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5215. if (!start || last_nid < 0 || last_nid == nid) {
  5216. last_nid = nid;
  5217. last_end = end;
  5218. continue;
  5219. }
  5220. /*
  5221. * Start with a mask granular enough to pin-point to the
  5222. * start pfn and tick off bits one-by-one until it becomes
  5223. * too coarse to separate the current node from the last.
  5224. */
  5225. mask = ~((1 << __ffs(start)) - 1);
  5226. while (mask && last_end <= (start & (mask << 1)))
  5227. mask <<= 1;
  5228. /* accumulate all internode masks */
  5229. accl_mask |= mask;
  5230. }
  5231. /* convert mask to number of pages */
  5232. return ~accl_mask + 1;
  5233. }
  5234. /* Find the lowest pfn for a node */
  5235. static unsigned long __init find_min_pfn_for_node(int nid)
  5236. {
  5237. unsigned long min_pfn = ULONG_MAX;
  5238. unsigned long start_pfn;
  5239. int i;
  5240. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5241. min_pfn = min(min_pfn, start_pfn);
  5242. if (min_pfn == ULONG_MAX) {
  5243. pr_warn("Could not find start_pfn for node %d\n", nid);
  5244. return 0;
  5245. }
  5246. return min_pfn;
  5247. }
  5248. /**
  5249. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5250. *
  5251. * It returns the minimum PFN based on information provided via
  5252. * memblock_set_node().
  5253. */
  5254. unsigned long __init find_min_pfn_with_active_regions(void)
  5255. {
  5256. return find_min_pfn_for_node(MAX_NUMNODES);
  5257. }
  5258. /*
  5259. * early_calculate_totalpages()
  5260. * Sum pages in active regions for movable zone.
  5261. * Populate N_MEMORY for calculating usable_nodes.
  5262. */
  5263. static unsigned long __init early_calculate_totalpages(void)
  5264. {
  5265. unsigned long totalpages = 0;
  5266. unsigned long start_pfn, end_pfn;
  5267. int i, nid;
  5268. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5269. unsigned long pages = end_pfn - start_pfn;
  5270. totalpages += pages;
  5271. if (pages)
  5272. node_set_state(nid, N_MEMORY);
  5273. }
  5274. return totalpages;
  5275. }
  5276. /*
  5277. * Find the PFN the Movable zone begins in each node. Kernel memory
  5278. * is spread evenly between nodes as long as the nodes have enough
  5279. * memory. When they don't, some nodes will have more kernelcore than
  5280. * others
  5281. */
  5282. static void __init find_zone_movable_pfns_for_nodes(void)
  5283. {
  5284. int i, nid;
  5285. unsigned long usable_startpfn;
  5286. unsigned long kernelcore_node, kernelcore_remaining;
  5287. /* save the state before borrow the nodemask */
  5288. nodemask_t saved_node_state = node_states[N_MEMORY];
  5289. unsigned long totalpages = early_calculate_totalpages();
  5290. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5291. struct memblock_region *r;
  5292. /* Need to find movable_zone earlier when movable_node is specified. */
  5293. find_usable_zone_for_movable();
  5294. /*
  5295. * If movable_node is specified, ignore kernelcore and movablecore
  5296. * options.
  5297. */
  5298. if (movable_node_is_enabled()) {
  5299. for_each_memblock(memory, r) {
  5300. if (!memblock_is_hotpluggable(r))
  5301. continue;
  5302. nid = r->nid;
  5303. usable_startpfn = PFN_DOWN(r->base);
  5304. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5305. min(usable_startpfn, zone_movable_pfn[nid]) :
  5306. usable_startpfn;
  5307. }
  5308. goto out2;
  5309. }
  5310. /*
  5311. * If kernelcore=mirror is specified, ignore movablecore option
  5312. */
  5313. if (mirrored_kernelcore) {
  5314. bool mem_below_4gb_not_mirrored = false;
  5315. for_each_memblock(memory, r) {
  5316. if (memblock_is_mirror(r))
  5317. continue;
  5318. nid = r->nid;
  5319. usable_startpfn = memblock_region_memory_base_pfn(r);
  5320. if (usable_startpfn < 0x100000) {
  5321. mem_below_4gb_not_mirrored = true;
  5322. continue;
  5323. }
  5324. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5325. min(usable_startpfn, zone_movable_pfn[nid]) :
  5326. usable_startpfn;
  5327. }
  5328. if (mem_below_4gb_not_mirrored)
  5329. pr_warn("This configuration results in unmirrored kernel memory.");
  5330. goto out2;
  5331. }
  5332. /*
  5333. * If movablecore=nn[KMG] was specified, calculate what size of
  5334. * kernelcore that corresponds so that memory usable for
  5335. * any allocation type is evenly spread. If both kernelcore
  5336. * and movablecore are specified, then the value of kernelcore
  5337. * will be used for required_kernelcore if it's greater than
  5338. * what movablecore would have allowed.
  5339. */
  5340. if (required_movablecore) {
  5341. unsigned long corepages;
  5342. /*
  5343. * Round-up so that ZONE_MOVABLE is at least as large as what
  5344. * was requested by the user
  5345. */
  5346. required_movablecore =
  5347. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5348. required_movablecore = min(totalpages, required_movablecore);
  5349. corepages = totalpages - required_movablecore;
  5350. required_kernelcore = max(required_kernelcore, corepages);
  5351. }
  5352. /*
  5353. * If kernelcore was not specified or kernelcore size is larger
  5354. * than totalpages, there is no ZONE_MOVABLE.
  5355. */
  5356. if (!required_kernelcore || required_kernelcore >= totalpages)
  5357. goto out;
  5358. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5359. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5360. restart:
  5361. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5362. kernelcore_node = required_kernelcore / usable_nodes;
  5363. for_each_node_state(nid, N_MEMORY) {
  5364. unsigned long start_pfn, end_pfn;
  5365. /*
  5366. * Recalculate kernelcore_node if the division per node
  5367. * now exceeds what is necessary to satisfy the requested
  5368. * amount of memory for the kernel
  5369. */
  5370. if (required_kernelcore < kernelcore_node)
  5371. kernelcore_node = required_kernelcore / usable_nodes;
  5372. /*
  5373. * As the map is walked, we track how much memory is usable
  5374. * by the kernel using kernelcore_remaining. When it is
  5375. * 0, the rest of the node is usable by ZONE_MOVABLE
  5376. */
  5377. kernelcore_remaining = kernelcore_node;
  5378. /* Go through each range of PFNs within this node */
  5379. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5380. unsigned long size_pages;
  5381. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5382. if (start_pfn >= end_pfn)
  5383. continue;
  5384. /* Account for what is only usable for kernelcore */
  5385. if (start_pfn < usable_startpfn) {
  5386. unsigned long kernel_pages;
  5387. kernel_pages = min(end_pfn, usable_startpfn)
  5388. - start_pfn;
  5389. kernelcore_remaining -= min(kernel_pages,
  5390. kernelcore_remaining);
  5391. required_kernelcore -= min(kernel_pages,
  5392. required_kernelcore);
  5393. /* Continue if range is now fully accounted */
  5394. if (end_pfn <= usable_startpfn) {
  5395. /*
  5396. * Push zone_movable_pfn to the end so
  5397. * that if we have to rebalance
  5398. * kernelcore across nodes, we will
  5399. * not double account here
  5400. */
  5401. zone_movable_pfn[nid] = end_pfn;
  5402. continue;
  5403. }
  5404. start_pfn = usable_startpfn;
  5405. }
  5406. /*
  5407. * The usable PFN range for ZONE_MOVABLE is from
  5408. * start_pfn->end_pfn. Calculate size_pages as the
  5409. * number of pages used as kernelcore
  5410. */
  5411. size_pages = end_pfn - start_pfn;
  5412. if (size_pages > kernelcore_remaining)
  5413. size_pages = kernelcore_remaining;
  5414. zone_movable_pfn[nid] = start_pfn + size_pages;
  5415. /*
  5416. * Some kernelcore has been met, update counts and
  5417. * break if the kernelcore for this node has been
  5418. * satisfied
  5419. */
  5420. required_kernelcore -= min(required_kernelcore,
  5421. size_pages);
  5422. kernelcore_remaining -= size_pages;
  5423. if (!kernelcore_remaining)
  5424. break;
  5425. }
  5426. }
  5427. /*
  5428. * If there is still required_kernelcore, we do another pass with one
  5429. * less node in the count. This will push zone_movable_pfn[nid] further
  5430. * along on the nodes that still have memory until kernelcore is
  5431. * satisfied
  5432. */
  5433. usable_nodes--;
  5434. if (usable_nodes && required_kernelcore > usable_nodes)
  5435. goto restart;
  5436. out2:
  5437. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5438. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5439. zone_movable_pfn[nid] =
  5440. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5441. out:
  5442. /* restore the node_state */
  5443. node_states[N_MEMORY] = saved_node_state;
  5444. }
  5445. /* Any regular or high memory on that node ? */
  5446. static void check_for_memory(pg_data_t *pgdat, int nid)
  5447. {
  5448. enum zone_type zone_type;
  5449. if (N_MEMORY == N_NORMAL_MEMORY)
  5450. return;
  5451. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5452. struct zone *zone = &pgdat->node_zones[zone_type];
  5453. if (populated_zone(zone)) {
  5454. node_set_state(nid, N_HIGH_MEMORY);
  5455. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5456. zone_type <= ZONE_NORMAL)
  5457. node_set_state(nid, N_NORMAL_MEMORY);
  5458. break;
  5459. }
  5460. }
  5461. }
  5462. /**
  5463. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5464. * @max_zone_pfn: an array of max PFNs for each zone
  5465. *
  5466. * This will call free_area_init_node() for each active node in the system.
  5467. * Using the page ranges provided by memblock_set_node(), the size of each
  5468. * zone in each node and their holes is calculated. If the maximum PFN
  5469. * between two adjacent zones match, it is assumed that the zone is empty.
  5470. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5471. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5472. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5473. * at arch_max_dma_pfn.
  5474. */
  5475. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5476. {
  5477. unsigned long start_pfn, end_pfn;
  5478. int i, nid;
  5479. /* Record where the zone boundaries are */
  5480. memset(arch_zone_lowest_possible_pfn, 0,
  5481. sizeof(arch_zone_lowest_possible_pfn));
  5482. memset(arch_zone_highest_possible_pfn, 0,
  5483. sizeof(arch_zone_highest_possible_pfn));
  5484. start_pfn = find_min_pfn_with_active_regions();
  5485. for (i = 0; i < MAX_NR_ZONES; i++) {
  5486. if (i == ZONE_MOVABLE)
  5487. continue;
  5488. end_pfn = max(max_zone_pfn[i], start_pfn);
  5489. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5490. arch_zone_highest_possible_pfn[i] = end_pfn;
  5491. start_pfn = end_pfn;
  5492. }
  5493. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5494. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5495. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5496. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5497. find_zone_movable_pfns_for_nodes();
  5498. /* Print out the zone ranges */
  5499. pr_info("Zone ranges:\n");
  5500. for (i = 0; i < MAX_NR_ZONES; i++) {
  5501. if (i == ZONE_MOVABLE)
  5502. continue;
  5503. pr_info(" %-8s ", zone_names[i]);
  5504. if (arch_zone_lowest_possible_pfn[i] ==
  5505. arch_zone_highest_possible_pfn[i])
  5506. pr_cont("empty\n");
  5507. else
  5508. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5509. (u64)arch_zone_lowest_possible_pfn[i]
  5510. << PAGE_SHIFT,
  5511. ((u64)arch_zone_highest_possible_pfn[i]
  5512. << PAGE_SHIFT) - 1);
  5513. }
  5514. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5515. pr_info("Movable zone start for each node\n");
  5516. for (i = 0; i < MAX_NUMNODES; i++) {
  5517. if (zone_movable_pfn[i])
  5518. pr_info(" Node %d: %#018Lx\n", i,
  5519. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5520. }
  5521. /* Print out the early node map */
  5522. pr_info("Early memory node ranges\n");
  5523. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5524. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5525. (u64)start_pfn << PAGE_SHIFT,
  5526. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5527. /* Initialise every node */
  5528. mminit_verify_pageflags_layout();
  5529. setup_nr_node_ids();
  5530. for_each_online_node(nid) {
  5531. pg_data_t *pgdat = NODE_DATA(nid);
  5532. free_area_init_node(nid, NULL,
  5533. find_min_pfn_for_node(nid), NULL);
  5534. /* Any memory on that node */
  5535. if (pgdat->node_present_pages)
  5536. node_set_state(nid, N_MEMORY);
  5537. check_for_memory(pgdat, nid);
  5538. }
  5539. }
  5540. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5541. {
  5542. unsigned long long coremem;
  5543. if (!p)
  5544. return -EINVAL;
  5545. coremem = memparse(p, &p);
  5546. *core = coremem >> PAGE_SHIFT;
  5547. /* Paranoid check that UL is enough for the coremem value */
  5548. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5549. return 0;
  5550. }
  5551. /*
  5552. * kernelcore=size sets the amount of memory for use for allocations that
  5553. * cannot be reclaimed or migrated.
  5554. */
  5555. static int __init cmdline_parse_kernelcore(char *p)
  5556. {
  5557. /* parse kernelcore=mirror */
  5558. if (parse_option_str(p, "mirror")) {
  5559. mirrored_kernelcore = true;
  5560. return 0;
  5561. }
  5562. return cmdline_parse_core(p, &required_kernelcore);
  5563. }
  5564. /*
  5565. * movablecore=size sets the amount of memory for use for allocations that
  5566. * can be reclaimed or migrated.
  5567. */
  5568. static int __init cmdline_parse_movablecore(char *p)
  5569. {
  5570. return cmdline_parse_core(p, &required_movablecore);
  5571. }
  5572. early_param("kernelcore", cmdline_parse_kernelcore);
  5573. early_param("movablecore", cmdline_parse_movablecore);
  5574. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5575. void adjust_managed_page_count(struct page *page, long count)
  5576. {
  5577. spin_lock(&managed_page_count_lock);
  5578. page_zone(page)->managed_pages += count;
  5579. totalram_pages += count;
  5580. #ifdef CONFIG_HIGHMEM
  5581. if (PageHighMem(page))
  5582. totalhigh_pages += count;
  5583. #endif
  5584. spin_unlock(&managed_page_count_lock);
  5585. }
  5586. EXPORT_SYMBOL(adjust_managed_page_count);
  5587. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5588. {
  5589. void *pos;
  5590. unsigned long pages = 0;
  5591. start = (void *)PAGE_ALIGN((unsigned long)start);
  5592. end = (void *)((unsigned long)end & PAGE_MASK);
  5593. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5594. if ((unsigned int)poison <= 0xFF)
  5595. memset(pos, poison, PAGE_SIZE);
  5596. free_reserved_page(virt_to_page(pos));
  5597. }
  5598. if (pages && s)
  5599. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5600. s, pages << (PAGE_SHIFT - 10), start, end);
  5601. return pages;
  5602. }
  5603. EXPORT_SYMBOL(free_reserved_area);
  5604. #ifdef CONFIG_HIGHMEM
  5605. void free_highmem_page(struct page *page)
  5606. {
  5607. __free_reserved_page(page);
  5608. totalram_pages++;
  5609. page_zone(page)->managed_pages++;
  5610. totalhigh_pages++;
  5611. }
  5612. #endif
  5613. void __init mem_init_print_info(const char *str)
  5614. {
  5615. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5616. unsigned long init_code_size, init_data_size;
  5617. physpages = get_num_physpages();
  5618. codesize = _etext - _stext;
  5619. datasize = _edata - _sdata;
  5620. rosize = __end_rodata - __start_rodata;
  5621. bss_size = __bss_stop - __bss_start;
  5622. init_data_size = __init_end - __init_begin;
  5623. init_code_size = _einittext - _sinittext;
  5624. /*
  5625. * Detect special cases and adjust section sizes accordingly:
  5626. * 1) .init.* may be embedded into .data sections
  5627. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5628. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5629. * 3) .rodata.* may be embedded into .text or .data sections.
  5630. */
  5631. #define adj_init_size(start, end, size, pos, adj) \
  5632. do { \
  5633. if (start <= pos && pos < end && size > adj) \
  5634. size -= adj; \
  5635. } while (0)
  5636. adj_init_size(__init_begin, __init_end, init_data_size,
  5637. _sinittext, init_code_size);
  5638. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5639. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5640. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5641. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5642. #undef adj_init_size
  5643. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5644. #ifdef CONFIG_HIGHMEM
  5645. ", %luK highmem"
  5646. #endif
  5647. "%s%s)\n",
  5648. nr_free_pages() << (PAGE_SHIFT - 10),
  5649. physpages << (PAGE_SHIFT - 10),
  5650. codesize >> 10, datasize >> 10, rosize >> 10,
  5651. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5652. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5653. totalcma_pages << (PAGE_SHIFT - 10),
  5654. #ifdef CONFIG_HIGHMEM
  5655. totalhigh_pages << (PAGE_SHIFT - 10),
  5656. #endif
  5657. str ? ", " : "", str ? str : "");
  5658. }
  5659. /**
  5660. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5661. * @new_dma_reserve: The number of pages to mark reserved
  5662. *
  5663. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5664. * In the DMA zone, a significant percentage may be consumed by kernel image
  5665. * and other unfreeable allocations which can skew the watermarks badly. This
  5666. * function may optionally be used to account for unfreeable pages in the
  5667. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5668. * smaller per-cpu batchsize.
  5669. */
  5670. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5671. {
  5672. dma_reserve = new_dma_reserve;
  5673. }
  5674. void __init free_area_init(unsigned long *zones_size)
  5675. {
  5676. free_area_init_node(0, zones_size,
  5677. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5678. }
  5679. static int page_alloc_cpu_notify(struct notifier_block *self,
  5680. unsigned long action, void *hcpu)
  5681. {
  5682. int cpu = (unsigned long)hcpu;
  5683. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5684. lru_add_drain_cpu(cpu);
  5685. drain_pages(cpu);
  5686. /*
  5687. * Spill the event counters of the dead processor
  5688. * into the current processors event counters.
  5689. * This artificially elevates the count of the current
  5690. * processor.
  5691. */
  5692. vm_events_fold_cpu(cpu);
  5693. /*
  5694. * Zero the differential counters of the dead processor
  5695. * so that the vm statistics are consistent.
  5696. *
  5697. * This is only okay since the processor is dead and cannot
  5698. * race with what we are doing.
  5699. */
  5700. cpu_vm_stats_fold(cpu);
  5701. }
  5702. return NOTIFY_OK;
  5703. }
  5704. void __init page_alloc_init(void)
  5705. {
  5706. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5707. }
  5708. /*
  5709. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5710. * or min_free_kbytes changes.
  5711. */
  5712. static void calculate_totalreserve_pages(void)
  5713. {
  5714. struct pglist_data *pgdat;
  5715. unsigned long reserve_pages = 0;
  5716. enum zone_type i, j;
  5717. for_each_online_pgdat(pgdat) {
  5718. pgdat->totalreserve_pages = 0;
  5719. for (i = 0; i < MAX_NR_ZONES; i++) {
  5720. struct zone *zone = pgdat->node_zones + i;
  5721. long max = 0;
  5722. /* Find valid and maximum lowmem_reserve in the zone */
  5723. for (j = i; j < MAX_NR_ZONES; j++) {
  5724. if (zone->lowmem_reserve[j] > max)
  5725. max = zone->lowmem_reserve[j];
  5726. }
  5727. /* we treat the high watermark as reserved pages. */
  5728. max += high_wmark_pages(zone);
  5729. if (max > zone->managed_pages)
  5730. max = zone->managed_pages;
  5731. pgdat->totalreserve_pages += max;
  5732. reserve_pages += max;
  5733. }
  5734. }
  5735. totalreserve_pages = reserve_pages;
  5736. }
  5737. /*
  5738. * setup_per_zone_lowmem_reserve - called whenever
  5739. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5740. * has a correct pages reserved value, so an adequate number of
  5741. * pages are left in the zone after a successful __alloc_pages().
  5742. */
  5743. static void setup_per_zone_lowmem_reserve(void)
  5744. {
  5745. struct pglist_data *pgdat;
  5746. enum zone_type j, idx;
  5747. for_each_online_pgdat(pgdat) {
  5748. for (j = 0; j < MAX_NR_ZONES; j++) {
  5749. struct zone *zone = pgdat->node_zones + j;
  5750. unsigned long managed_pages = zone->managed_pages;
  5751. zone->lowmem_reserve[j] = 0;
  5752. idx = j;
  5753. while (idx) {
  5754. struct zone *lower_zone;
  5755. idx--;
  5756. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5757. sysctl_lowmem_reserve_ratio[idx] = 1;
  5758. lower_zone = pgdat->node_zones + idx;
  5759. lower_zone->lowmem_reserve[j] = managed_pages /
  5760. sysctl_lowmem_reserve_ratio[idx];
  5761. managed_pages += lower_zone->managed_pages;
  5762. }
  5763. }
  5764. }
  5765. /* update totalreserve_pages */
  5766. calculate_totalreserve_pages();
  5767. }
  5768. static void __setup_per_zone_wmarks(void)
  5769. {
  5770. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5771. unsigned long lowmem_pages = 0;
  5772. struct zone *zone;
  5773. unsigned long flags;
  5774. /* Calculate total number of !ZONE_HIGHMEM pages */
  5775. for_each_zone(zone) {
  5776. if (!is_highmem(zone))
  5777. lowmem_pages += zone->managed_pages;
  5778. }
  5779. for_each_zone(zone) {
  5780. u64 tmp;
  5781. spin_lock_irqsave(&zone->lock, flags);
  5782. tmp = (u64)pages_min * zone->managed_pages;
  5783. do_div(tmp, lowmem_pages);
  5784. if (is_highmem(zone)) {
  5785. /*
  5786. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5787. * need highmem pages, so cap pages_min to a small
  5788. * value here.
  5789. *
  5790. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5791. * deltas control asynch page reclaim, and so should
  5792. * not be capped for highmem.
  5793. */
  5794. unsigned long min_pages;
  5795. min_pages = zone->managed_pages / 1024;
  5796. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5797. zone->watermark[WMARK_MIN] = min_pages;
  5798. } else {
  5799. /*
  5800. * If it's a lowmem zone, reserve a number of pages
  5801. * proportionate to the zone's size.
  5802. */
  5803. zone->watermark[WMARK_MIN] = tmp;
  5804. }
  5805. /*
  5806. * Set the kswapd watermarks distance according to the
  5807. * scale factor in proportion to available memory, but
  5808. * ensure a minimum size on small systems.
  5809. */
  5810. tmp = max_t(u64, tmp >> 2,
  5811. mult_frac(zone->managed_pages,
  5812. watermark_scale_factor, 10000));
  5813. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5814. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5815. spin_unlock_irqrestore(&zone->lock, flags);
  5816. }
  5817. /* update totalreserve_pages */
  5818. calculate_totalreserve_pages();
  5819. }
  5820. /**
  5821. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5822. * or when memory is hot-{added|removed}
  5823. *
  5824. * Ensures that the watermark[min,low,high] values for each zone are set
  5825. * correctly with respect to min_free_kbytes.
  5826. */
  5827. void setup_per_zone_wmarks(void)
  5828. {
  5829. mutex_lock(&zonelists_mutex);
  5830. __setup_per_zone_wmarks();
  5831. mutex_unlock(&zonelists_mutex);
  5832. }
  5833. /*
  5834. * Initialise min_free_kbytes.
  5835. *
  5836. * For small machines we want it small (128k min). For large machines
  5837. * we want it large (64MB max). But it is not linear, because network
  5838. * bandwidth does not increase linearly with machine size. We use
  5839. *
  5840. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5841. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5842. *
  5843. * which yields
  5844. *
  5845. * 16MB: 512k
  5846. * 32MB: 724k
  5847. * 64MB: 1024k
  5848. * 128MB: 1448k
  5849. * 256MB: 2048k
  5850. * 512MB: 2896k
  5851. * 1024MB: 4096k
  5852. * 2048MB: 5792k
  5853. * 4096MB: 8192k
  5854. * 8192MB: 11584k
  5855. * 16384MB: 16384k
  5856. */
  5857. int __meminit init_per_zone_wmark_min(void)
  5858. {
  5859. unsigned long lowmem_kbytes;
  5860. int new_min_free_kbytes;
  5861. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5862. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5863. if (new_min_free_kbytes > user_min_free_kbytes) {
  5864. min_free_kbytes = new_min_free_kbytes;
  5865. if (min_free_kbytes < 128)
  5866. min_free_kbytes = 128;
  5867. if (min_free_kbytes > 65536)
  5868. min_free_kbytes = 65536;
  5869. } else {
  5870. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5871. new_min_free_kbytes, user_min_free_kbytes);
  5872. }
  5873. setup_per_zone_wmarks();
  5874. refresh_zone_stat_thresholds();
  5875. setup_per_zone_lowmem_reserve();
  5876. #ifdef CONFIG_NUMA
  5877. setup_min_unmapped_ratio();
  5878. setup_min_slab_ratio();
  5879. #endif
  5880. return 0;
  5881. }
  5882. core_initcall(init_per_zone_wmark_min)
  5883. /*
  5884. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5885. * that we can call two helper functions whenever min_free_kbytes
  5886. * changes.
  5887. */
  5888. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5889. void __user *buffer, size_t *length, loff_t *ppos)
  5890. {
  5891. int rc;
  5892. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5893. if (rc)
  5894. return rc;
  5895. if (write) {
  5896. user_min_free_kbytes = min_free_kbytes;
  5897. setup_per_zone_wmarks();
  5898. }
  5899. return 0;
  5900. }
  5901. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5902. void __user *buffer, size_t *length, loff_t *ppos)
  5903. {
  5904. int rc;
  5905. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5906. if (rc)
  5907. return rc;
  5908. if (write)
  5909. setup_per_zone_wmarks();
  5910. return 0;
  5911. }
  5912. #ifdef CONFIG_NUMA
  5913. static void setup_min_unmapped_ratio(void)
  5914. {
  5915. pg_data_t *pgdat;
  5916. struct zone *zone;
  5917. for_each_online_pgdat(pgdat)
  5918. pgdat->min_unmapped_pages = 0;
  5919. for_each_zone(zone)
  5920. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  5921. sysctl_min_unmapped_ratio) / 100;
  5922. }
  5923. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5924. void __user *buffer, size_t *length, loff_t *ppos)
  5925. {
  5926. int rc;
  5927. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5928. if (rc)
  5929. return rc;
  5930. setup_min_unmapped_ratio();
  5931. return 0;
  5932. }
  5933. static void setup_min_slab_ratio(void)
  5934. {
  5935. pg_data_t *pgdat;
  5936. struct zone *zone;
  5937. for_each_online_pgdat(pgdat)
  5938. pgdat->min_slab_pages = 0;
  5939. for_each_zone(zone)
  5940. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  5941. sysctl_min_slab_ratio) / 100;
  5942. }
  5943. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5944. void __user *buffer, size_t *length, loff_t *ppos)
  5945. {
  5946. int rc;
  5947. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5948. if (rc)
  5949. return rc;
  5950. setup_min_slab_ratio();
  5951. return 0;
  5952. }
  5953. #endif
  5954. /*
  5955. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5956. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5957. * whenever sysctl_lowmem_reserve_ratio changes.
  5958. *
  5959. * The reserve ratio obviously has absolutely no relation with the
  5960. * minimum watermarks. The lowmem reserve ratio can only make sense
  5961. * if in function of the boot time zone sizes.
  5962. */
  5963. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5964. void __user *buffer, size_t *length, loff_t *ppos)
  5965. {
  5966. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5967. setup_per_zone_lowmem_reserve();
  5968. return 0;
  5969. }
  5970. /*
  5971. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5972. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5973. * pagelist can have before it gets flushed back to buddy allocator.
  5974. */
  5975. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5976. void __user *buffer, size_t *length, loff_t *ppos)
  5977. {
  5978. struct zone *zone;
  5979. int old_percpu_pagelist_fraction;
  5980. int ret;
  5981. mutex_lock(&pcp_batch_high_lock);
  5982. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5983. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5984. if (!write || ret < 0)
  5985. goto out;
  5986. /* Sanity checking to avoid pcp imbalance */
  5987. if (percpu_pagelist_fraction &&
  5988. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5989. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5990. ret = -EINVAL;
  5991. goto out;
  5992. }
  5993. /* No change? */
  5994. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5995. goto out;
  5996. for_each_populated_zone(zone) {
  5997. unsigned int cpu;
  5998. for_each_possible_cpu(cpu)
  5999. pageset_set_high_and_batch(zone,
  6000. per_cpu_ptr(zone->pageset, cpu));
  6001. }
  6002. out:
  6003. mutex_unlock(&pcp_batch_high_lock);
  6004. return ret;
  6005. }
  6006. #ifdef CONFIG_NUMA
  6007. int hashdist = HASHDIST_DEFAULT;
  6008. static int __init set_hashdist(char *str)
  6009. {
  6010. if (!str)
  6011. return 0;
  6012. hashdist = simple_strtoul(str, &str, 0);
  6013. return 1;
  6014. }
  6015. __setup("hashdist=", set_hashdist);
  6016. #endif
  6017. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6018. /*
  6019. * Returns the number of pages that arch has reserved but
  6020. * is not known to alloc_large_system_hash().
  6021. */
  6022. static unsigned long __init arch_reserved_kernel_pages(void)
  6023. {
  6024. return 0;
  6025. }
  6026. #endif
  6027. /*
  6028. * allocate a large system hash table from bootmem
  6029. * - it is assumed that the hash table must contain an exact power-of-2
  6030. * quantity of entries
  6031. * - limit is the number of hash buckets, not the total allocation size
  6032. */
  6033. void *__init alloc_large_system_hash(const char *tablename,
  6034. unsigned long bucketsize,
  6035. unsigned long numentries,
  6036. int scale,
  6037. int flags,
  6038. unsigned int *_hash_shift,
  6039. unsigned int *_hash_mask,
  6040. unsigned long low_limit,
  6041. unsigned long high_limit)
  6042. {
  6043. unsigned long long max = high_limit;
  6044. unsigned long log2qty, size;
  6045. void *table = NULL;
  6046. /* allow the kernel cmdline to have a say */
  6047. if (!numentries) {
  6048. /* round applicable memory size up to nearest megabyte */
  6049. numentries = nr_kernel_pages;
  6050. numentries -= arch_reserved_kernel_pages();
  6051. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6052. if (PAGE_SHIFT < 20)
  6053. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6054. /* limit to 1 bucket per 2^scale bytes of low memory */
  6055. if (scale > PAGE_SHIFT)
  6056. numentries >>= (scale - PAGE_SHIFT);
  6057. else
  6058. numentries <<= (PAGE_SHIFT - scale);
  6059. /* Make sure we've got at least a 0-order allocation.. */
  6060. if (unlikely(flags & HASH_SMALL)) {
  6061. /* Makes no sense without HASH_EARLY */
  6062. WARN_ON(!(flags & HASH_EARLY));
  6063. if (!(numentries >> *_hash_shift)) {
  6064. numentries = 1UL << *_hash_shift;
  6065. BUG_ON(!numentries);
  6066. }
  6067. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6068. numentries = PAGE_SIZE / bucketsize;
  6069. }
  6070. numentries = roundup_pow_of_two(numentries);
  6071. /* limit allocation size to 1/16 total memory by default */
  6072. if (max == 0) {
  6073. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6074. do_div(max, bucketsize);
  6075. }
  6076. max = min(max, 0x80000000ULL);
  6077. if (numentries < low_limit)
  6078. numentries = low_limit;
  6079. if (numentries > max)
  6080. numentries = max;
  6081. log2qty = ilog2(numentries);
  6082. do {
  6083. size = bucketsize << log2qty;
  6084. if (flags & HASH_EARLY)
  6085. table = memblock_virt_alloc_nopanic(size, 0);
  6086. else if (hashdist)
  6087. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6088. else {
  6089. /*
  6090. * If bucketsize is not a power-of-two, we may free
  6091. * some pages at the end of hash table which
  6092. * alloc_pages_exact() automatically does
  6093. */
  6094. if (get_order(size) < MAX_ORDER) {
  6095. table = alloc_pages_exact(size, GFP_ATOMIC);
  6096. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6097. }
  6098. }
  6099. } while (!table && size > PAGE_SIZE && --log2qty);
  6100. if (!table)
  6101. panic("Failed to allocate %s hash table\n", tablename);
  6102. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6103. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6104. if (_hash_shift)
  6105. *_hash_shift = log2qty;
  6106. if (_hash_mask)
  6107. *_hash_mask = (1 << log2qty) - 1;
  6108. return table;
  6109. }
  6110. /*
  6111. * This function checks whether pageblock includes unmovable pages or not.
  6112. * If @count is not zero, it is okay to include less @count unmovable pages
  6113. *
  6114. * PageLRU check without isolation or lru_lock could race so that
  6115. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6116. * expect this function should be exact.
  6117. */
  6118. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6119. bool skip_hwpoisoned_pages)
  6120. {
  6121. unsigned long pfn, iter, found;
  6122. int mt;
  6123. /*
  6124. * For avoiding noise data, lru_add_drain_all() should be called
  6125. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6126. */
  6127. if (zone_idx(zone) == ZONE_MOVABLE)
  6128. return false;
  6129. mt = get_pageblock_migratetype(page);
  6130. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6131. return false;
  6132. pfn = page_to_pfn(page);
  6133. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6134. unsigned long check = pfn + iter;
  6135. if (!pfn_valid_within(check))
  6136. continue;
  6137. page = pfn_to_page(check);
  6138. /*
  6139. * Hugepages are not in LRU lists, but they're movable.
  6140. * We need not scan over tail pages bacause we don't
  6141. * handle each tail page individually in migration.
  6142. */
  6143. if (PageHuge(page)) {
  6144. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6145. continue;
  6146. }
  6147. /*
  6148. * We can't use page_count without pin a page
  6149. * because another CPU can free compound page.
  6150. * This check already skips compound tails of THP
  6151. * because their page->_refcount is zero at all time.
  6152. */
  6153. if (!page_ref_count(page)) {
  6154. if (PageBuddy(page))
  6155. iter += (1 << page_order(page)) - 1;
  6156. continue;
  6157. }
  6158. /*
  6159. * The HWPoisoned page may be not in buddy system, and
  6160. * page_count() is not 0.
  6161. */
  6162. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6163. continue;
  6164. if (!PageLRU(page))
  6165. found++;
  6166. /*
  6167. * If there are RECLAIMABLE pages, we need to check
  6168. * it. But now, memory offline itself doesn't call
  6169. * shrink_node_slabs() and it still to be fixed.
  6170. */
  6171. /*
  6172. * If the page is not RAM, page_count()should be 0.
  6173. * we don't need more check. This is an _used_ not-movable page.
  6174. *
  6175. * The problematic thing here is PG_reserved pages. PG_reserved
  6176. * is set to both of a memory hole page and a _used_ kernel
  6177. * page at boot.
  6178. */
  6179. if (found > count)
  6180. return true;
  6181. }
  6182. return false;
  6183. }
  6184. bool is_pageblock_removable_nolock(struct page *page)
  6185. {
  6186. struct zone *zone;
  6187. unsigned long pfn;
  6188. /*
  6189. * We have to be careful here because we are iterating over memory
  6190. * sections which are not zone aware so we might end up outside of
  6191. * the zone but still within the section.
  6192. * We have to take care about the node as well. If the node is offline
  6193. * its NODE_DATA will be NULL - see page_zone.
  6194. */
  6195. if (!node_online(page_to_nid(page)))
  6196. return false;
  6197. zone = page_zone(page);
  6198. pfn = page_to_pfn(page);
  6199. if (!zone_spans_pfn(zone, pfn))
  6200. return false;
  6201. return !has_unmovable_pages(zone, page, 0, true);
  6202. }
  6203. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6204. static unsigned long pfn_max_align_down(unsigned long pfn)
  6205. {
  6206. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6207. pageblock_nr_pages) - 1);
  6208. }
  6209. static unsigned long pfn_max_align_up(unsigned long pfn)
  6210. {
  6211. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6212. pageblock_nr_pages));
  6213. }
  6214. /* [start, end) must belong to a single zone. */
  6215. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6216. unsigned long start, unsigned long end)
  6217. {
  6218. /* This function is based on compact_zone() from compaction.c. */
  6219. unsigned long nr_reclaimed;
  6220. unsigned long pfn = start;
  6221. unsigned int tries = 0;
  6222. int ret = 0;
  6223. migrate_prep();
  6224. while (pfn < end || !list_empty(&cc->migratepages)) {
  6225. if (fatal_signal_pending(current)) {
  6226. ret = -EINTR;
  6227. break;
  6228. }
  6229. if (list_empty(&cc->migratepages)) {
  6230. cc->nr_migratepages = 0;
  6231. pfn = isolate_migratepages_range(cc, pfn, end);
  6232. if (!pfn) {
  6233. ret = -EINTR;
  6234. break;
  6235. }
  6236. tries = 0;
  6237. } else if (++tries == 5) {
  6238. ret = ret < 0 ? ret : -EBUSY;
  6239. break;
  6240. }
  6241. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6242. &cc->migratepages);
  6243. cc->nr_migratepages -= nr_reclaimed;
  6244. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6245. NULL, 0, cc->mode, MR_CMA);
  6246. }
  6247. if (ret < 0) {
  6248. putback_movable_pages(&cc->migratepages);
  6249. return ret;
  6250. }
  6251. return 0;
  6252. }
  6253. /**
  6254. * alloc_contig_range() -- tries to allocate given range of pages
  6255. * @start: start PFN to allocate
  6256. * @end: one-past-the-last PFN to allocate
  6257. * @migratetype: migratetype of the underlaying pageblocks (either
  6258. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6259. * in range must have the same migratetype and it must
  6260. * be either of the two.
  6261. *
  6262. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6263. * aligned, however it's the caller's responsibility to guarantee that
  6264. * we are the only thread that changes migrate type of pageblocks the
  6265. * pages fall in.
  6266. *
  6267. * The PFN range must belong to a single zone.
  6268. *
  6269. * Returns zero on success or negative error code. On success all
  6270. * pages which PFN is in [start, end) are allocated for the caller and
  6271. * need to be freed with free_contig_range().
  6272. */
  6273. int alloc_contig_range(unsigned long start, unsigned long end,
  6274. unsigned migratetype)
  6275. {
  6276. unsigned long outer_start, outer_end;
  6277. unsigned int order;
  6278. int ret = 0;
  6279. struct compact_control cc = {
  6280. .nr_migratepages = 0,
  6281. .order = -1,
  6282. .zone = page_zone(pfn_to_page(start)),
  6283. .mode = MIGRATE_SYNC,
  6284. .ignore_skip_hint = true,
  6285. };
  6286. INIT_LIST_HEAD(&cc.migratepages);
  6287. /*
  6288. * What we do here is we mark all pageblocks in range as
  6289. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6290. * have different sizes, and due to the way page allocator
  6291. * work, we align the range to biggest of the two pages so
  6292. * that page allocator won't try to merge buddies from
  6293. * different pageblocks and change MIGRATE_ISOLATE to some
  6294. * other migration type.
  6295. *
  6296. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6297. * migrate the pages from an unaligned range (ie. pages that
  6298. * we are interested in). This will put all the pages in
  6299. * range back to page allocator as MIGRATE_ISOLATE.
  6300. *
  6301. * When this is done, we take the pages in range from page
  6302. * allocator removing them from the buddy system. This way
  6303. * page allocator will never consider using them.
  6304. *
  6305. * This lets us mark the pageblocks back as
  6306. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6307. * aligned range but not in the unaligned, original range are
  6308. * put back to page allocator so that buddy can use them.
  6309. */
  6310. ret = start_isolate_page_range(pfn_max_align_down(start),
  6311. pfn_max_align_up(end), migratetype,
  6312. false);
  6313. if (ret)
  6314. return ret;
  6315. /*
  6316. * In case of -EBUSY, we'd like to know which page causes problem.
  6317. * So, just fall through. We will check it in test_pages_isolated().
  6318. */
  6319. ret = __alloc_contig_migrate_range(&cc, start, end);
  6320. if (ret && ret != -EBUSY)
  6321. goto done;
  6322. /*
  6323. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6324. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6325. * more, all pages in [start, end) are free in page allocator.
  6326. * What we are going to do is to allocate all pages from
  6327. * [start, end) (that is remove them from page allocator).
  6328. *
  6329. * The only problem is that pages at the beginning and at the
  6330. * end of interesting range may be not aligned with pages that
  6331. * page allocator holds, ie. they can be part of higher order
  6332. * pages. Because of this, we reserve the bigger range and
  6333. * once this is done free the pages we are not interested in.
  6334. *
  6335. * We don't have to hold zone->lock here because the pages are
  6336. * isolated thus they won't get removed from buddy.
  6337. */
  6338. lru_add_drain_all();
  6339. drain_all_pages(cc.zone);
  6340. order = 0;
  6341. outer_start = start;
  6342. while (!PageBuddy(pfn_to_page(outer_start))) {
  6343. if (++order >= MAX_ORDER) {
  6344. outer_start = start;
  6345. break;
  6346. }
  6347. outer_start &= ~0UL << order;
  6348. }
  6349. if (outer_start != start) {
  6350. order = page_order(pfn_to_page(outer_start));
  6351. /*
  6352. * outer_start page could be small order buddy page and
  6353. * it doesn't include start page. Adjust outer_start
  6354. * in this case to report failed page properly
  6355. * on tracepoint in test_pages_isolated()
  6356. */
  6357. if (outer_start + (1UL << order) <= start)
  6358. outer_start = start;
  6359. }
  6360. /* Make sure the range is really isolated. */
  6361. if (test_pages_isolated(outer_start, end, false)) {
  6362. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6363. __func__, outer_start, end);
  6364. ret = -EBUSY;
  6365. goto done;
  6366. }
  6367. /* Grab isolated pages from freelists. */
  6368. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6369. if (!outer_end) {
  6370. ret = -EBUSY;
  6371. goto done;
  6372. }
  6373. /* Free head and tail (if any) */
  6374. if (start != outer_start)
  6375. free_contig_range(outer_start, start - outer_start);
  6376. if (end != outer_end)
  6377. free_contig_range(end, outer_end - end);
  6378. done:
  6379. undo_isolate_page_range(pfn_max_align_down(start),
  6380. pfn_max_align_up(end), migratetype);
  6381. return ret;
  6382. }
  6383. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6384. {
  6385. unsigned int count = 0;
  6386. for (; nr_pages--; pfn++) {
  6387. struct page *page = pfn_to_page(pfn);
  6388. count += page_count(page) != 1;
  6389. __free_page(page);
  6390. }
  6391. WARN(count != 0, "%d pages are still in use!\n", count);
  6392. }
  6393. #endif
  6394. #ifdef CONFIG_MEMORY_HOTPLUG
  6395. /*
  6396. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6397. * page high values need to be recalulated.
  6398. */
  6399. void __meminit zone_pcp_update(struct zone *zone)
  6400. {
  6401. unsigned cpu;
  6402. mutex_lock(&pcp_batch_high_lock);
  6403. for_each_possible_cpu(cpu)
  6404. pageset_set_high_and_batch(zone,
  6405. per_cpu_ptr(zone->pageset, cpu));
  6406. mutex_unlock(&pcp_batch_high_lock);
  6407. }
  6408. #endif
  6409. void zone_pcp_reset(struct zone *zone)
  6410. {
  6411. unsigned long flags;
  6412. int cpu;
  6413. struct per_cpu_pageset *pset;
  6414. /* avoid races with drain_pages() */
  6415. local_irq_save(flags);
  6416. if (zone->pageset != &boot_pageset) {
  6417. for_each_online_cpu(cpu) {
  6418. pset = per_cpu_ptr(zone->pageset, cpu);
  6419. drain_zonestat(zone, pset);
  6420. }
  6421. free_percpu(zone->pageset);
  6422. zone->pageset = &boot_pageset;
  6423. }
  6424. local_irq_restore(flags);
  6425. }
  6426. #ifdef CONFIG_MEMORY_HOTREMOVE
  6427. /*
  6428. * All pages in the range must be in a single zone and isolated
  6429. * before calling this.
  6430. */
  6431. void
  6432. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6433. {
  6434. struct page *page;
  6435. struct zone *zone;
  6436. unsigned int order, i;
  6437. unsigned long pfn;
  6438. unsigned long flags;
  6439. /* find the first valid pfn */
  6440. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6441. if (pfn_valid(pfn))
  6442. break;
  6443. if (pfn == end_pfn)
  6444. return;
  6445. zone = page_zone(pfn_to_page(pfn));
  6446. spin_lock_irqsave(&zone->lock, flags);
  6447. pfn = start_pfn;
  6448. while (pfn < end_pfn) {
  6449. if (!pfn_valid(pfn)) {
  6450. pfn++;
  6451. continue;
  6452. }
  6453. page = pfn_to_page(pfn);
  6454. /*
  6455. * The HWPoisoned page may be not in buddy system, and
  6456. * page_count() is not 0.
  6457. */
  6458. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6459. pfn++;
  6460. SetPageReserved(page);
  6461. continue;
  6462. }
  6463. BUG_ON(page_count(page));
  6464. BUG_ON(!PageBuddy(page));
  6465. order = page_order(page);
  6466. #ifdef CONFIG_DEBUG_VM
  6467. pr_info("remove from free list %lx %d %lx\n",
  6468. pfn, 1 << order, end_pfn);
  6469. #endif
  6470. list_del(&page->lru);
  6471. rmv_page_order(page);
  6472. zone->free_area[order].nr_free--;
  6473. for (i = 0; i < (1 << order); i++)
  6474. SetPageReserved((page+i));
  6475. pfn += (1 << order);
  6476. }
  6477. spin_unlock_irqrestore(&zone->lock, flags);
  6478. }
  6479. #endif
  6480. bool is_free_buddy_page(struct page *page)
  6481. {
  6482. struct zone *zone = page_zone(page);
  6483. unsigned long pfn = page_to_pfn(page);
  6484. unsigned long flags;
  6485. unsigned int order;
  6486. spin_lock_irqsave(&zone->lock, flags);
  6487. for (order = 0; order < MAX_ORDER; order++) {
  6488. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6489. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6490. break;
  6491. }
  6492. spin_unlock_irqrestore(&zone->lock, flags);
  6493. return order < MAX_ORDER;
  6494. }