core.c 192 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. #ifdef smp_mb__before_atomic
  89. void __smp_mb__before_atomic(void)
  90. {
  91. smp_mb__before_atomic();
  92. }
  93. EXPORT_SYMBOL(__smp_mb__before_atomic);
  94. #endif
  95. #ifdef smp_mb__after_atomic
  96. void __smp_mb__after_atomic(void)
  97. {
  98. smp_mb__after_atomic();
  99. }
  100. EXPORT_SYMBOL(__smp_mb__after_atomic);
  101. #endif
  102. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  103. {
  104. unsigned long delta;
  105. ktime_t soft, hard, now;
  106. for (;;) {
  107. if (hrtimer_active(period_timer))
  108. break;
  109. now = hrtimer_cb_get_time(period_timer);
  110. hrtimer_forward(period_timer, now, period);
  111. soft = hrtimer_get_softexpires(period_timer);
  112. hard = hrtimer_get_expires(period_timer);
  113. delta = ktime_to_ns(ktime_sub(hard, soft));
  114. __hrtimer_start_range_ns(period_timer, soft, delta,
  115. HRTIMER_MODE_ABS_PINNED, 0);
  116. }
  117. }
  118. DEFINE_MUTEX(sched_domains_mutex);
  119. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  120. static void update_rq_clock_task(struct rq *rq, s64 delta);
  121. void update_rq_clock(struct rq *rq)
  122. {
  123. s64 delta;
  124. if (rq->skip_clock_update > 0)
  125. return;
  126. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  127. if (delta < 0)
  128. return;
  129. rq->clock += delta;
  130. update_rq_clock_task(rq, delta);
  131. }
  132. /*
  133. * Debugging: various feature bits
  134. */
  135. #define SCHED_FEAT(name, enabled) \
  136. (1UL << __SCHED_FEAT_##name) * enabled |
  137. const_debug unsigned int sysctl_sched_features =
  138. #include "features.h"
  139. 0;
  140. #undef SCHED_FEAT
  141. #ifdef CONFIG_SCHED_DEBUG
  142. #define SCHED_FEAT(name, enabled) \
  143. #name ,
  144. static const char * const sched_feat_names[] = {
  145. #include "features.h"
  146. };
  147. #undef SCHED_FEAT
  148. static int sched_feat_show(struct seq_file *m, void *v)
  149. {
  150. int i;
  151. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  152. if (!(sysctl_sched_features & (1UL << i)))
  153. seq_puts(m, "NO_");
  154. seq_printf(m, "%s ", sched_feat_names[i]);
  155. }
  156. seq_puts(m, "\n");
  157. return 0;
  158. }
  159. #ifdef HAVE_JUMP_LABEL
  160. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  161. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  162. #define SCHED_FEAT(name, enabled) \
  163. jump_label_key__##enabled ,
  164. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  165. #include "features.h"
  166. };
  167. #undef SCHED_FEAT
  168. static void sched_feat_disable(int i)
  169. {
  170. if (static_key_enabled(&sched_feat_keys[i]))
  171. static_key_slow_dec(&sched_feat_keys[i]);
  172. }
  173. static void sched_feat_enable(int i)
  174. {
  175. if (!static_key_enabled(&sched_feat_keys[i]))
  176. static_key_slow_inc(&sched_feat_keys[i]);
  177. }
  178. #else
  179. static void sched_feat_disable(int i) { };
  180. static void sched_feat_enable(int i) { };
  181. #endif /* HAVE_JUMP_LABEL */
  182. static int sched_feat_set(char *cmp)
  183. {
  184. int i;
  185. int neg = 0;
  186. if (strncmp(cmp, "NO_", 3) == 0) {
  187. neg = 1;
  188. cmp += 3;
  189. }
  190. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  191. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  192. if (neg) {
  193. sysctl_sched_features &= ~(1UL << i);
  194. sched_feat_disable(i);
  195. } else {
  196. sysctl_sched_features |= (1UL << i);
  197. sched_feat_enable(i);
  198. }
  199. break;
  200. }
  201. }
  202. return i;
  203. }
  204. static ssize_t
  205. sched_feat_write(struct file *filp, const char __user *ubuf,
  206. size_t cnt, loff_t *ppos)
  207. {
  208. char buf[64];
  209. char *cmp;
  210. int i;
  211. struct inode *inode;
  212. if (cnt > 63)
  213. cnt = 63;
  214. if (copy_from_user(&buf, ubuf, cnt))
  215. return -EFAULT;
  216. buf[cnt] = 0;
  217. cmp = strstrip(buf);
  218. /* Ensure the static_key remains in a consistent state */
  219. inode = file_inode(filp);
  220. mutex_lock(&inode->i_mutex);
  221. i = sched_feat_set(cmp);
  222. mutex_unlock(&inode->i_mutex);
  223. if (i == __SCHED_FEAT_NR)
  224. return -EINVAL;
  225. *ppos += cnt;
  226. return cnt;
  227. }
  228. static int sched_feat_open(struct inode *inode, struct file *filp)
  229. {
  230. return single_open(filp, sched_feat_show, NULL);
  231. }
  232. static const struct file_operations sched_feat_fops = {
  233. .open = sched_feat_open,
  234. .write = sched_feat_write,
  235. .read = seq_read,
  236. .llseek = seq_lseek,
  237. .release = single_release,
  238. };
  239. static __init int sched_init_debug(void)
  240. {
  241. debugfs_create_file("sched_features", 0644, NULL, NULL,
  242. &sched_feat_fops);
  243. return 0;
  244. }
  245. late_initcall(sched_init_debug);
  246. #endif /* CONFIG_SCHED_DEBUG */
  247. /*
  248. * Number of tasks to iterate in a single balance run.
  249. * Limited because this is done with IRQs disabled.
  250. */
  251. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  252. /*
  253. * period over which we average the RT time consumption, measured
  254. * in ms.
  255. *
  256. * default: 1s
  257. */
  258. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  259. /*
  260. * period over which we measure -rt task cpu usage in us.
  261. * default: 1s
  262. */
  263. unsigned int sysctl_sched_rt_period = 1000000;
  264. __read_mostly int scheduler_running;
  265. /*
  266. * part of the period that we allow rt tasks to run in us.
  267. * default: 0.95s
  268. */
  269. int sysctl_sched_rt_runtime = 950000;
  270. /*
  271. * __task_rq_lock - lock the rq @p resides on.
  272. */
  273. static inline struct rq *__task_rq_lock(struct task_struct *p)
  274. __acquires(rq->lock)
  275. {
  276. struct rq *rq;
  277. lockdep_assert_held(&p->pi_lock);
  278. for (;;) {
  279. rq = task_rq(p);
  280. raw_spin_lock(&rq->lock);
  281. if (likely(rq == task_rq(p)))
  282. return rq;
  283. raw_spin_unlock(&rq->lock);
  284. }
  285. }
  286. /*
  287. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  288. */
  289. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  290. __acquires(p->pi_lock)
  291. __acquires(rq->lock)
  292. {
  293. struct rq *rq;
  294. for (;;) {
  295. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  296. rq = task_rq(p);
  297. raw_spin_lock(&rq->lock);
  298. if (likely(rq == task_rq(p)))
  299. return rq;
  300. raw_spin_unlock(&rq->lock);
  301. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  302. }
  303. }
  304. static void __task_rq_unlock(struct rq *rq)
  305. __releases(rq->lock)
  306. {
  307. raw_spin_unlock(&rq->lock);
  308. }
  309. static inline void
  310. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  311. __releases(rq->lock)
  312. __releases(p->pi_lock)
  313. {
  314. raw_spin_unlock(&rq->lock);
  315. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  316. }
  317. /*
  318. * this_rq_lock - lock this runqueue and disable interrupts.
  319. */
  320. static struct rq *this_rq_lock(void)
  321. __acquires(rq->lock)
  322. {
  323. struct rq *rq;
  324. local_irq_disable();
  325. rq = this_rq();
  326. raw_spin_lock(&rq->lock);
  327. return rq;
  328. }
  329. #ifdef CONFIG_SCHED_HRTICK
  330. /*
  331. * Use HR-timers to deliver accurate preemption points.
  332. */
  333. static void hrtick_clear(struct rq *rq)
  334. {
  335. if (hrtimer_active(&rq->hrtick_timer))
  336. hrtimer_cancel(&rq->hrtick_timer);
  337. }
  338. /*
  339. * High-resolution timer tick.
  340. * Runs from hardirq context with interrupts disabled.
  341. */
  342. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  343. {
  344. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  345. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  346. raw_spin_lock(&rq->lock);
  347. update_rq_clock(rq);
  348. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  349. raw_spin_unlock(&rq->lock);
  350. return HRTIMER_NORESTART;
  351. }
  352. #ifdef CONFIG_SMP
  353. static int __hrtick_restart(struct rq *rq)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = hrtimer_get_softexpires(timer);
  357. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  358. }
  359. /*
  360. * called from hardirq (IPI) context
  361. */
  362. static void __hrtick_start(void *arg)
  363. {
  364. struct rq *rq = arg;
  365. raw_spin_lock(&rq->lock);
  366. __hrtick_restart(rq);
  367. rq->hrtick_csd_pending = 0;
  368. raw_spin_unlock(&rq->lock);
  369. }
  370. /*
  371. * Called to set the hrtick timer state.
  372. *
  373. * called with rq->lock held and irqs disabled
  374. */
  375. void hrtick_start(struct rq *rq, u64 delay)
  376. {
  377. struct hrtimer *timer = &rq->hrtick_timer;
  378. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  379. hrtimer_set_expires(timer, time);
  380. if (rq == this_rq()) {
  381. __hrtick_restart(rq);
  382. } else if (!rq->hrtick_csd_pending) {
  383. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  384. rq->hrtick_csd_pending = 1;
  385. }
  386. }
  387. static int
  388. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  389. {
  390. int cpu = (int)(long)hcpu;
  391. switch (action) {
  392. case CPU_UP_CANCELED:
  393. case CPU_UP_CANCELED_FROZEN:
  394. case CPU_DOWN_PREPARE:
  395. case CPU_DOWN_PREPARE_FROZEN:
  396. case CPU_DEAD:
  397. case CPU_DEAD_FROZEN:
  398. hrtick_clear(cpu_rq(cpu));
  399. return NOTIFY_OK;
  400. }
  401. return NOTIFY_DONE;
  402. }
  403. static __init void init_hrtick(void)
  404. {
  405. hotcpu_notifier(hotplug_hrtick, 0);
  406. }
  407. #else
  408. /*
  409. * Called to set the hrtick timer state.
  410. *
  411. * called with rq->lock held and irqs disabled
  412. */
  413. void hrtick_start(struct rq *rq, u64 delay)
  414. {
  415. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  416. HRTIMER_MODE_REL_PINNED, 0);
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SMP */
  422. static void init_rq_hrtick(struct rq *rq)
  423. {
  424. #ifdef CONFIG_SMP
  425. rq->hrtick_csd_pending = 0;
  426. rq->hrtick_csd.flags = 0;
  427. rq->hrtick_csd.func = __hrtick_start;
  428. rq->hrtick_csd.info = rq;
  429. #endif
  430. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  431. rq->hrtick_timer.function = hrtick;
  432. }
  433. #else /* CONFIG_SCHED_HRTICK */
  434. static inline void hrtick_clear(struct rq *rq)
  435. {
  436. }
  437. static inline void init_rq_hrtick(struct rq *rq)
  438. {
  439. }
  440. static inline void init_hrtick(void)
  441. {
  442. }
  443. #endif /* CONFIG_SCHED_HRTICK */
  444. /*
  445. * cmpxchg based fetch_or, macro so it works for different integer types
  446. */
  447. #define fetch_or(ptr, val) \
  448. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  449. for (;;) { \
  450. __old = cmpxchg((ptr), __val, __val | (val)); \
  451. if (__old == __val) \
  452. break; \
  453. __val = __old; \
  454. } \
  455. __old; \
  456. })
  457. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  458. /*
  459. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  460. * this avoids any races wrt polling state changes and thereby avoids
  461. * spurious IPIs.
  462. */
  463. static bool set_nr_and_not_polling(struct task_struct *p)
  464. {
  465. struct thread_info *ti = task_thread_info(p);
  466. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  467. }
  468. /*
  469. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  470. *
  471. * If this returns true, then the idle task promises to call
  472. * sched_ttwu_pending() and reschedule soon.
  473. */
  474. static bool set_nr_if_polling(struct task_struct *p)
  475. {
  476. struct thread_info *ti = task_thread_info(p);
  477. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  478. for (;;) {
  479. if (!(val & _TIF_POLLING_NRFLAG))
  480. return false;
  481. if (val & _TIF_NEED_RESCHED)
  482. return true;
  483. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  484. if (old == val)
  485. break;
  486. val = old;
  487. }
  488. return true;
  489. }
  490. #else
  491. static bool set_nr_and_not_polling(struct task_struct *p)
  492. {
  493. set_tsk_need_resched(p);
  494. return true;
  495. }
  496. #ifdef CONFIG_SMP
  497. static bool set_nr_if_polling(struct task_struct *p)
  498. {
  499. return false;
  500. }
  501. #endif
  502. #endif
  503. /*
  504. * resched_curr - mark rq's current task 'to be rescheduled now'.
  505. *
  506. * On UP this means the setting of the need_resched flag, on SMP it
  507. * might also involve a cross-CPU call to trigger the scheduler on
  508. * the target CPU.
  509. */
  510. void resched_curr(struct rq *rq)
  511. {
  512. struct task_struct *curr = rq->curr;
  513. int cpu;
  514. lockdep_assert_held(&rq->lock);
  515. if (test_tsk_need_resched(curr))
  516. return;
  517. cpu = cpu_of(rq);
  518. if (cpu == smp_processor_id()) {
  519. set_tsk_need_resched(curr);
  520. set_preempt_need_resched();
  521. return;
  522. }
  523. if (set_nr_and_not_polling(curr))
  524. smp_send_reschedule(cpu);
  525. else
  526. trace_sched_wake_idle_without_ipi(cpu);
  527. }
  528. void resched_cpu(int cpu)
  529. {
  530. struct rq *rq = cpu_rq(cpu);
  531. unsigned long flags;
  532. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  533. return;
  534. resched_curr(rq);
  535. raw_spin_unlock_irqrestore(&rq->lock, flags);
  536. }
  537. #ifdef CONFIG_SMP
  538. #ifdef CONFIG_NO_HZ_COMMON
  539. /*
  540. * In the semi idle case, use the nearest busy cpu for migrating timers
  541. * from an idle cpu. This is good for power-savings.
  542. *
  543. * We don't do similar optimization for completely idle system, as
  544. * selecting an idle cpu will add more delays to the timers than intended
  545. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  546. */
  547. int get_nohz_timer_target(int pinned)
  548. {
  549. int cpu = smp_processor_id();
  550. int i;
  551. struct sched_domain *sd;
  552. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  553. return cpu;
  554. rcu_read_lock();
  555. for_each_domain(cpu, sd) {
  556. for_each_cpu(i, sched_domain_span(sd)) {
  557. if (!idle_cpu(i)) {
  558. cpu = i;
  559. goto unlock;
  560. }
  561. }
  562. }
  563. unlock:
  564. rcu_read_unlock();
  565. return cpu;
  566. }
  567. /*
  568. * When add_timer_on() enqueues a timer into the timer wheel of an
  569. * idle CPU then this timer might expire before the next timer event
  570. * which is scheduled to wake up that CPU. In case of a completely
  571. * idle system the next event might even be infinite time into the
  572. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  573. * leaves the inner idle loop so the newly added timer is taken into
  574. * account when the CPU goes back to idle and evaluates the timer
  575. * wheel for the next timer event.
  576. */
  577. static void wake_up_idle_cpu(int cpu)
  578. {
  579. struct rq *rq = cpu_rq(cpu);
  580. if (cpu == smp_processor_id())
  581. return;
  582. if (set_nr_and_not_polling(rq->idle))
  583. smp_send_reschedule(cpu);
  584. else
  585. trace_sched_wake_idle_without_ipi(cpu);
  586. }
  587. static bool wake_up_full_nohz_cpu(int cpu)
  588. {
  589. /*
  590. * We just need the target to call irq_exit() and re-evaluate
  591. * the next tick. The nohz full kick at least implies that.
  592. * If needed we can still optimize that later with an
  593. * empty IRQ.
  594. */
  595. if (tick_nohz_full_cpu(cpu)) {
  596. if (cpu != smp_processor_id() ||
  597. tick_nohz_tick_stopped())
  598. tick_nohz_full_kick_cpu(cpu);
  599. return true;
  600. }
  601. return false;
  602. }
  603. void wake_up_nohz_cpu(int cpu)
  604. {
  605. if (!wake_up_full_nohz_cpu(cpu))
  606. wake_up_idle_cpu(cpu);
  607. }
  608. static inline bool got_nohz_idle_kick(void)
  609. {
  610. int cpu = smp_processor_id();
  611. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  612. return false;
  613. if (idle_cpu(cpu) && !need_resched())
  614. return true;
  615. /*
  616. * We can't run Idle Load Balance on this CPU for this time so we
  617. * cancel it and clear NOHZ_BALANCE_KICK
  618. */
  619. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  620. return false;
  621. }
  622. #else /* CONFIG_NO_HZ_COMMON */
  623. static inline bool got_nohz_idle_kick(void)
  624. {
  625. return false;
  626. }
  627. #endif /* CONFIG_NO_HZ_COMMON */
  628. #ifdef CONFIG_NO_HZ_FULL
  629. bool sched_can_stop_tick(void)
  630. {
  631. /*
  632. * More than one running task need preemption.
  633. * nr_running update is assumed to be visible
  634. * after IPI is sent from wakers.
  635. */
  636. if (this_rq()->nr_running > 1)
  637. return false;
  638. return true;
  639. }
  640. #endif /* CONFIG_NO_HZ_FULL */
  641. void sched_avg_update(struct rq *rq)
  642. {
  643. s64 period = sched_avg_period();
  644. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  645. /*
  646. * Inline assembly required to prevent the compiler
  647. * optimising this loop into a divmod call.
  648. * See __iter_div_u64_rem() for another example of this.
  649. */
  650. asm("" : "+rm" (rq->age_stamp));
  651. rq->age_stamp += period;
  652. rq->rt_avg /= 2;
  653. }
  654. }
  655. #endif /* CONFIG_SMP */
  656. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  657. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  658. /*
  659. * Iterate task_group tree rooted at *from, calling @down when first entering a
  660. * node and @up when leaving it for the final time.
  661. *
  662. * Caller must hold rcu_lock or sufficient equivalent.
  663. */
  664. int walk_tg_tree_from(struct task_group *from,
  665. tg_visitor down, tg_visitor up, void *data)
  666. {
  667. struct task_group *parent, *child;
  668. int ret;
  669. parent = from;
  670. down:
  671. ret = (*down)(parent, data);
  672. if (ret)
  673. goto out;
  674. list_for_each_entry_rcu(child, &parent->children, siblings) {
  675. parent = child;
  676. goto down;
  677. up:
  678. continue;
  679. }
  680. ret = (*up)(parent, data);
  681. if (ret || parent == from)
  682. goto out;
  683. child = parent;
  684. parent = parent->parent;
  685. if (parent)
  686. goto up;
  687. out:
  688. return ret;
  689. }
  690. int tg_nop(struct task_group *tg, void *data)
  691. {
  692. return 0;
  693. }
  694. #endif
  695. static void set_load_weight(struct task_struct *p)
  696. {
  697. int prio = p->static_prio - MAX_RT_PRIO;
  698. struct load_weight *load = &p->se.load;
  699. /*
  700. * SCHED_IDLE tasks get minimal weight:
  701. */
  702. if (p->policy == SCHED_IDLE) {
  703. load->weight = scale_load(WEIGHT_IDLEPRIO);
  704. load->inv_weight = WMULT_IDLEPRIO;
  705. return;
  706. }
  707. load->weight = scale_load(prio_to_weight[prio]);
  708. load->inv_weight = prio_to_wmult[prio];
  709. }
  710. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  711. {
  712. update_rq_clock(rq);
  713. sched_info_queued(rq, p);
  714. p->sched_class->enqueue_task(rq, p, flags);
  715. }
  716. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  717. {
  718. update_rq_clock(rq);
  719. sched_info_dequeued(rq, p);
  720. p->sched_class->dequeue_task(rq, p, flags);
  721. }
  722. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  723. {
  724. if (task_contributes_to_load(p))
  725. rq->nr_uninterruptible--;
  726. enqueue_task(rq, p, flags);
  727. }
  728. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  729. {
  730. if (task_contributes_to_load(p))
  731. rq->nr_uninterruptible++;
  732. dequeue_task(rq, p, flags);
  733. }
  734. static void update_rq_clock_task(struct rq *rq, s64 delta)
  735. {
  736. /*
  737. * In theory, the compile should just see 0 here, and optimize out the call
  738. * to sched_rt_avg_update. But I don't trust it...
  739. */
  740. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  741. s64 steal = 0, irq_delta = 0;
  742. #endif
  743. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  744. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  745. /*
  746. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  747. * this case when a previous update_rq_clock() happened inside a
  748. * {soft,}irq region.
  749. *
  750. * When this happens, we stop ->clock_task and only update the
  751. * prev_irq_time stamp to account for the part that fit, so that a next
  752. * update will consume the rest. This ensures ->clock_task is
  753. * monotonic.
  754. *
  755. * It does however cause some slight miss-attribution of {soft,}irq
  756. * time, a more accurate solution would be to update the irq_time using
  757. * the current rq->clock timestamp, except that would require using
  758. * atomic ops.
  759. */
  760. if (irq_delta > delta)
  761. irq_delta = delta;
  762. rq->prev_irq_time += irq_delta;
  763. delta -= irq_delta;
  764. #endif
  765. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  766. if (static_key_false((&paravirt_steal_rq_enabled))) {
  767. steal = paravirt_steal_clock(cpu_of(rq));
  768. steal -= rq->prev_steal_time_rq;
  769. if (unlikely(steal > delta))
  770. steal = delta;
  771. rq->prev_steal_time_rq += steal;
  772. delta -= steal;
  773. }
  774. #endif
  775. rq->clock_task += delta;
  776. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  777. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  778. sched_rt_avg_update(rq, irq_delta + steal);
  779. #endif
  780. }
  781. void sched_set_stop_task(int cpu, struct task_struct *stop)
  782. {
  783. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  784. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  785. if (stop) {
  786. /*
  787. * Make it appear like a SCHED_FIFO task, its something
  788. * userspace knows about and won't get confused about.
  789. *
  790. * Also, it will make PI more or less work without too
  791. * much confusion -- but then, stop work should not
  792. * rely on PI working anyway.
  793. */
  794. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  795. stop->sched_class = &stop_sched_class;
  796. }
  797. cpu_rq(cpu)->stop = stop;
  798. if (old_stop) {
  799. /*
  800. * Reset it back to a normal scheduling class so that
  801. * it can die in pieces.
  802. */
  803. old_stop->sched_class = &rt_sched_class;
  804. }
  805. }
  806. /*
  807. * __normal_prio - return the priority that is based on the static prio
  808. */
  809. static inline int __normal_prio(struct task_struct *p)
  810. {
  811. return p->static_prio;
  812. }
  813. /*
  814. * Calculate the expected normal priority: i.e. priority
  815. * without taking RT-inheritance into account. Might be
  816. * boosted by interactivity modifiers. Changes upon fork,
  817. * setprio syscalls, and whenever the interactivity
  818. * estimator recalculates.
  819. */
  820. static inline int normal_prio(struct task_struct *p)
  821. {
  822. int prio;
  823. if (task_has_dl_policy(p))
  824. prio = MAX_DL_PRIO-1;
  825. else if (task_has_rt_policy(p))
  826. prio = MAX_RT_PRIO-1 - p->rt_priority;
  827. else
  828. prio = __normal_prio(p);
  829. return prio;
  830. }
  831. /*
  832. * Calculate the current priority, i.e. the priority
  833. * taken into account by the scheduler. This value might
  834. * be boosted by RT tasks, or might be boosted by
  835. * interactivity modifiers. Will be RT if the task got
  836. * RT-boosted. If not then it returns p->normal_prio.
  837. */
  838. static int effective_prio(struct task_struct *p)
  839. {
  840. p->normal_prio = normal_prio(p);
  841. /*
  842. * If we are RT tasks or we were boosted to RT priority,
  843. * keep the priority unchanged. Otherwise, update priority
  844. * to the normal priority:
  845. */
  846. if (!rt_prio(p->prio))
  847. return p->normal_prio;
  848. return p->prio;
  849. }
  850. /**
  851. * task_curr - is this task currently executing on a CPU?
  852. * @p: the task in question.
  853. *
  854. * Return: 1 if the task is currently executing. 0 otherwise.
  855. */
  856. inline int task_curr(const struct task_struct *p)
  857. {
  858. return cpu_curr(task_cpu(p)) == p;
  859. }
  860. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  861. const struct sched_class *prev_class,
  862. int oldprio)
  863. {
  864. if (prev_class != p->sched_class) {
  865. if (prev_class->switched_from)
  866. prev_class->switched_from(rq, p);
  867. p->sched_class->switched_to(rq, p);
  868. } else if (oldprio != p->prio || dl_task(p))
  869. p->sched_class->prio_changed(rq, p, oldprio);
  870. }
  871. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  872. {
  873. const struct sched_class *class;
  874. if (p->sched_class == rq->curr->sched_class) {
  875. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  876. } else {
  877. for_each_class(class) {
  878. if (class == rq->curr->sched_class)
  879. break;
  880. if (class == p->sched_class) {
  881. resched_curr(rq);
  882. break;
  883. }
  884. }
  885. }
  886. /*
  887. * A queue event has occurred, and we're going to schedule. In
  888. * this case, we can save a useless back to back clock update.
  889. */
  890. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  891. rq->skip_clock_update = 1;
  892. }
  893. #ifdef CONFIG_SMP
  894. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  895. {
  896. #ifdef CONFIG_SCHED_DEBUG
  897. /*
  898. * We should never call set_task_cpu() on a blocked task,
  899. * ttwu() will sort out the placement.
  900. */
  901. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  902. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  903. #ifdef CONFIG_LOCKDEP
  904. /*
  905. * The caller should hold either p->pi_lock or rq->lock, when changing
  906. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  907. *
  908. * sched_move_task() holds both and thus holding either pins the cgroup,
  909. * see task_group().
  910. *
  911. * Furthermore, all task_rq users should acquire both locks, see
  912. * task_rq_lock().
  913. */
  914. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  915. lockdep_is_held(&task_rq(p)->lock)));
  916. #endif
  917. #endif
  918. trace_sched_migrate_task(p, new_cpu);
  919. if (task_cpu(p) != new_cpu) {
  920. if (p->sched_class->migrate_task_rq)
  921. p->sched_class->migrate_task_rq(p, new_cpu);
  922. p->se.nr_migrations++;
  923. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  924. }
  925. __set_task_cpu(p, new_cpu);
  926. }
  927. static void __migrate_swap_task(struct task_struct *p, int cpu)
  928. {
  929. if (p->on_rq) {
  930. struct rq *src_rq, *dst_rq;
  931. src_rq = task_rq(p);
  932. dst_rq = cpu_rq(cpu);
  933. deactivate_task(src_rq, p, 0);
  934. set_task_cpu(p, cpu);
  935. activate_task(dst_rq, p, 0);
  936. check_preempt_curr(dst_rq, p, 0);
  937. } else {
  938. /*
  939. * Task isn't running anymore; make it appear like we migrated
  940. * it before it went to sleep. This means on wakeup we make the
  941. * previous cpu our targer instead of where it really is.
  942. */
  943. p->wake_cpu = cpu;
  944. }
  945. }
  946. struct migration_swap_arg {
  947. struct task_struct *src_task, *dst_task;
  948. int src_cpu, dst_cpu;
  949. };
  950. static int migrate_swap_stop(void *data)
  951. {
  952. struct migration_swap_arg *arg = data;
  953. struct rq *src_rq, *dst_rq;
  954. int ret = -EAGAIN;
  955. src_rq = cpu_rq(arg->src_cpu);
  956. dst_rq = cpu_rq(arg->dst_cpu);
  957. double_raw_lock(&arg->src_task->pi_lock,
  958. &arg->dst_task->pi_lock);
  959. double_rq_lock(src_rq, dst_rq);
  960. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  961. goto unlock;
  962. if (task_cpu(arg->src_task) != arg->src_cpu)
  963. goto unlock;
  964. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  965. goto unlock;
  966. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  967. goto unlock;
  968. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  969. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  970. ret = 0;
  971. unlock:
  972. double_rq_unlock(src_rq, dst_rq);
  973. raw_spin_unlock(&arg->dst_task->pi_lock);
  974. raw_spin_unlock(&arg->src_task->pi_lock);
  975. return ret;
  976. }
  977. /*
  978. * Cross migrate two tasks
  979. */
  980. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  981. {
  982. struct migration_swap_arg arg;
  983. int ret = -EINVAL;
  984. arg = (struct migration_swap_arg){
  985. .src_task = cur,
  986. .src_cpu = task_cpu(cur),
  987. .dst_task = p,
  988. .dst_cpu = task_cpu(p),
  989. };
  990. if (arg.src_cpu == arg.dst_cpu)
  991. goto out;
  992. /*
  993. * These three tests are all lockless; this is OK since all of them
  994. * will be re-checked with proper locks held further down the line.
  995. */
  996. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  997. goto out;
  998. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  999. goto out;
  1000. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1001. goto out;
  1002. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1003. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1004. out:
  1005. return ret;
  1006. }
  1007. struct migration_arg {
  1008. struct task_struct *task;
  1009. int dest_cpu;
  1010. };
  1011. static int migration_cpu_stop(void *data);
  1012. /*
  1013. * wait_task_inactive - wait for a thread to unschedule.
  1014. *
  1015. * If @match_state is nonzero, it's the @p->state value just checked and
  1016. * not expected to change. If it changes, i.e. @p might have woken up,
  1017. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1018. * we return a positive number (its total switch count). If a second call
  1019. * a short while later returns the same number, the caller can be sure that
  1020. * @p has remained unscheduled the whole time.
  1021. *
  1022. * The caller must ensure that the task *will* unschedule sometime soon,
  1023. * else this function might spin for a *long* time. This function can't
  1024. * be called with interrupts off, or it may introduce deadlock with
  1025. * smp_call_function() if an IPI is sent by the same process we are
  1026. * waiting to become inactive.
  1027. */
  1028. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1029. {
  1030. unsigned long flags;
  1031. int running, on_rq;
  1032. unsigned long ncsw;
  1033. struct rq *rq;
  1034. for (;;) {
  1035. /*
  1036. * We do the initial early heuristics without holding
  1037. * any task-queue locks at all. We'll only try to get
  1038. * the runqueue lock when things look like they will
  1039. * work out!
  1040. */
  1041. rq = task_rq(p);
  1042. /*
  1043. * If the task is actively running on another CPU
  1044. * still, just relax and busy-wait without holding
  1045. * any locks.
  1046. *
  1047. * NOTE! Since we don't hold any locks, it's not
  1048. * even sure that "rq" stays as the right runqueue!
  1049. * But we don't care, since "task_running()" will
  1050. * return false if the runqueue has changed and p
  1051. * is actually now running somewhere else!
  1052. */
  1053. while (task_running(rq, p)) {
  1054. if (match_state && unlikely(p->state != match_state))
  1055. return 0;
  1056. cpu_relax();
  1057. }
  1058. /*
  1059. * Ok, time to look more closely! We need the rq
  1060. * lock now, to be *sure*. If we're wrong, we'll
  1061. * just go back and repeat.
  1062. */
  1063. rq = task_rq_lock(p, &flags);
  1064. trace_sched_wait_task(p);
  1065. running = task_running(rq, p);
  1066. on_rq = p->on_rq;
  1067. ncsw = 0;
  1068. if (!match_state || p->state == match_state)
  1069. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1070. task_rq_unlock(rq, p, &flags);
  1071. /*
  1072. * If it changed from the expected state, bail out now.
  1073. */
  1074. if (unlikely(!ncsw))
  1075. break;
  1076. /*
  1077. * Was it really running after all now that we
  1078. * checked with the proper locks actually held?
  1079. *
  1080. * Oops. Go back and try again..
  1081. */
  1082. if (unlikely(running)) {
  1083. cpu_relax();
  1084. continue;
  1085. }
  1086. /*
  1087. * It's not enough that it's not actively running,
  1088. * it must be off the runqueue _entirely_, and not
  1089. * preempted!
  1090. *
  1091. * So if it was still runnable (but just not actively
  1092. * running right now), it's preempted, and we should
  1093. * yield - it could be a while.
  1094. */
  1095. if (unlikely(on_rq)) {
  1096. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1097. set_current_state(TASK_UNINTERRUPTIBLE);
  1098. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1099. continue;
  1100. }
  1101. /*
  1102. * Ahh, all good. It wasn't running, and it wasn't
  1103. * runnable, which means that it will never become
  1104. * running in the future either. We're all done!
  1105. */
  1106. break;
  1107. }
  1108. return ncsw;
  1109. }
  1110. /***
  1111. * kick_process - kick a running thread to enter/exit the kernel
  1112. * @p: the to-be-kicked thread
  1113. *
  1114. * Cause a process which is running on another CPU to enter
  1115. * kernel-mode, without any delay. (to get signals handled.)
  1116. *
  1117. * NOTE: this function doesn't have to take the runqueue lock,
  1118. * because all it wants to ensure is that the remote task enters
  1119. * the kernel. If the IPI races and the task has been migrated
  1120. * to another CPU then no harm is done and the purpose has been
  1121. * achieved as well.
  1122. */
  1123. void kick_process(struct task_struct *p)
  1124. {
  1125. int cpu;
  1126. preempt_disable();
  1127. cpu = task_cpu(p);
  1128. if ((cpu != smp_processor_id()) && task_curr(p))
  1129. smp_send_reschedule(cpu);
  1130. preempt_enable();
  1131. }
  1132. EXPORT_SYMBOL_GPL(kick_process);
  1133. #endif /* CONFIG_SMP */
  1134. #ifdef CONFIG_SMP
  1135. /*
  1136. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1137. */
  1138. static int select_fallback_rq(int cpu, struct task_struct *p)
  1139. {
  1140. int nid = cpu_to_node(cpu);
  1141. const struct cpumask *nodemask = NULL;
  1142. enum { cpuset, possible, fail } state = cpuset;
  1143. int dest_cpu;
  1144. /*
  1145. * If the node that the cpu is on has been offlined, cpu_to_node()
  1146. * will return -1. There is no cpu on the node, and we should
  1147. * select the cpu on the other node.
  1148. */
  1149. if (nid != -1) {
  1150. nodemask = cpumask_of_node(nid);
  1151. /* Look for allowed, online CPU in same node. */
  1152. for_each_cpu(dest_cpu, nodemask) {
  1153. if (!cpu_online(dest_cpu))
  1154. continue;
  1155. if (!cpu_active(dest_cpu))
  1156. continue;
  1157. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1158. return dest_cpu;
  1159. }
  1160. }
  1161. for (;;) {
  1162. /* Any allowed, online CPU? */
  1163. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1164. if (!cpu_online(dest_cpu))
  1165. continue;
  1166. if (!cpu_active(dest_cpu))
  1167. continue;
  1168. goto out;
  1169. }
  1170. switch (state) {
  1171. case cpuset:
  1172. /* No more Mr. Nice Guy. */
  1173. cpuset_cpus_allowed_fallback(p);
  1174. state = possible;
  1175. break;
  1176. case possible:
  1177. do_set_cpus_allowed(p, cpu_possible_mask);
  1178. state = fail;
  1179. break;
  1180. case fail:
  1181. BUG();
  1182. break;
  1183. }
  1184. }
  1185. out:
  1186. if (state != cpuset) {
  1187. /*
  1188. * Don't tell them about moving exiting tasks or
  1189. * kernel threads (both mm NULL), since they never
  1190. * leave kernel.
  1191. */
  1192. if (p->mm && printk_ratelimit()) {
  1193. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1194. task_pid_nr(p), p->comm, cpu);
  1195. }
  1196. }
  1197. return dest_cpu;
  1198. }
  1199. /*
  1200. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1201. */
  1202. static inline
  1203. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1204. {
  1205. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1206. /*
  1207. * In order not to call set_task_cpu() on a blocking task we need
  1208. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1209. * cpu.
  1210. *
  1211. * Since this is common to all placement strategies, this lives here.
  1212. *
  1213. * [ this allows ->select_task() to simply return task_cpu(p) and
  1214. * not worry about this generic constraint ]
  1215. */
  1216. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1217. !cpu_online(cpu)))
  1218. cpu = select_fallback_rq(task_cpu(p), p);
  1219. return cpu;
  1220. }
  1221. static void update_avg(u64 *avg, u64 sample)
  1222. {
  1223. s64 diff = sample - *avg;
  1224. *avg += diff >> 3;
  1225. }
  1226. #endif
  1227. static void
  1228. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1229. {
  1230. #ifdef CONFIG_SCHEDSTATS
  1231. struct rq *rq = this_rq();
  1232. #ifdef CONFIG_SMP
  1233. int this_cpu = smp_processor_id();
  1234. if (cpu == this_cpu) {
  1235. schedstat_inc(rq, ttwu_local);
  1236. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1237. } else {
  1238. struct sched_domain *sd;
  1239. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1240. rcu_read_lock();
  1241. for_each_domain(this_cpu, sd) {
  1242. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1243. schedstat_inc(sd, ttwu_wake_remote);
  1244. break;
  1245. }
  1246. }
  1247. rcu_read_unlock();
  1248. }
  1249. if (wake_flags & WF_MIGRATED)
  1250. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1251. #endif /* CONFIG_SMP */
  1252. schedstat_inc(rq, ttwu_count);
  1253. schedstat_inc(p, se.statistics.nr_wakeups);
  1254. if (wake_flags & WF_SYNC)
  1255. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1256. #endif /* CONFIG_SCHEDSTATS */
  1257. }
  1258. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1259. {
  1260. activate_task(rq, p, en_flags);
  1261. p->on_rq = 1;
  1262. /* if a worker is waking up, notify workqueue */
  1263. if (p->flags & PF_WQ_WORKER)
  1264. wq_worker_waking_up(p, cpu_of(rq));
  1265. }
  1266. /*
  1267. * Mark the task runnable and perform wakeup-preemption.
  1268. */
  1269. static void
  1270. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1271. {
  1272. check_preempt_curr(rq, p, wake_flags);
  1273. trace_sched_wakeup(p, true);
  1274. p->state = TASK_RUNNING;
  1275. #ifdef CONFIG_SMP
  1276. if (p->sched_class->task_woken)
  1277. p->sched_class->task_woken(rq, p);
  1278. if (rq->idle_stamp) {
  1279. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1280. u64 max = 2*rq->max_idle_balance_cost;
  1281. update_avg(&rq->avg_idle, delta);
  1282. if (rq->avg_idle > max)
  1283. rq->avg_idle = max;
  1284. rq->idle_stamp = 0;
  1285. }
  1286. #endif
  1287. }
  1288. static void
  1289. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1290. {
  1291. #ifdef CONFIG_SMP
  1292. if (p->sched_contributes_to_load)
  1293. rq->nr_uninterruptible--;
  1294. #endif
  1295. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1296. ttwu_do_wakeup(rq, p, wake_flags);
  1297. }
  1298. /*
  1299. * Called in case the task @p isn't fully descheduled from its runqueue,
  1300. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1301. * since all we need to do is flip p->state to TASK_RUNNING, since
  1302. * the task is still ->on_rq.
  1303. */
  1304. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1305. {
  1306. struct rq *rq;
  1307. int ret = 0;
  1308. rq = __task_rq_lock(p);
  1309. if (p->on_rq) {
  1310. /* check_preempt_curr() may use rq clock */
  1311. update_rq_clock(rq);
  1312. ttwu_do_wakeup(rq, p, wake_flags);
  1313. ret = 1;
  1314. }
  1315. __task_rq_unlock(rq);
  1316. return ret;
  1317. }
  1318. #ifdef CONFIG_SMP
  1319. void sched_ttwu_pending(void)
  1320. {
  1321. struct rq *rq = this_rq();
  1322. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1323. struct task_struct *p;
  1324. unsigned long flags;
  1325. if (!llist)
  1326. return;
  1327. raw_spin_lock_irqsave(&rq->lock, flags);
  1328. while (llist) {
  1329. p = llist_entry(llist, struct task_struct, wake_entry);
  1330. llist = llist_next(llist);
  1331. ttwu_do_activate(rq, p, 0);
  1332. }
  1333. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1334. }
  1335. void scheduler_ipi(void)
  1336. {
  1337. /*
  1338. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1339. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1340. * this IPI.
  1341. */
  1342. preempt_fold_need_resched();
  1343. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1344. return;
  1345. /*
  1346. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1347. * traditionally all their work was done from the interrupt return
  1348. * path. Now that we actually do some work, we need to make sure
  1349. * we do call them.
  1350. *
  1351. * Some archs already do call them, luckily irq_enter/exit nest
  1352. * properly.
  1353. *
  1354. * Arguably we should visit all archs and update all handlers,
  1355. * however a fair share of IPIs are still resched only so this would
  1356. * somewhat pessimize the simple resched case.
  1357. */
  1358. irq_enter();
  1359. sched_ttwu_pending();
  1360. /*
  1361. * Check if someone kicked us for doing the nohz idle load balance.
  1362. */
  1363. if (unlikely(got_nohz_idle_kick())) {
  1364. this_rq()->idle_balance = 1;
  1365. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1366. }
  1367. irq_exit();
  1368. }
  1369. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1370. {
  1371. struct rq *rq = cpu_rq(cpu);
  1372. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1373. if (!set_nr_if_polling(rq->idle))
  1374. smp_send_reschedule(cpu);
  1375. else
  1376. trace_sched_wake_idle_without_ipi(cpu);
  1377. }
  1378. }
  1379. bool cpus_share_cache(int this_cpu, int that_cpu)
  1380. {
  1381. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1382. }
  1383. #endif /* CONFIG_SMP */
  1384. static void ttwu_queue(struct task_struct *p, int cpu)
  1385. {
  1386. struct rq *rq = cpu_rq(cpu);
  1387. #if defined(CONFIG_SMP)
  1388. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1389. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1390. ttwu_queue_remote(p, cpu);
  1391. return;
  1392. }
  1393. #endif
  1394. raw_spin_lock(&rq->lock);
  1395. ttwu_do_activate(rq, p, 0);
  1396. raw_spin_unlock(&rq->lock);
  1397. }
  1398. /**
  1399. * try_to_wake_up - wake up a thread
  1400. * @p: the thread to be awakened
  1401. * @state: the mask of task states that can be woken
  1402. * @wake_flags: wake modifier flags (WF_*)
  1403. *
  1404. * Put it on the run-queue if it's not already there. The "current"
  1405. * thread is always on the run-queue (except when the actual
  1406. * re-schedule is in progress), and as such you're allowed to do
  1407. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1408. * runnable without the overhead of this.
  1409. *
  1410. * Return: %true if @p was woken up, %false if it was already running.
  1411. * or @state didn't match @p's state.
  1412. */
  1413. static int
  1414. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1415. {
  1416. unsigned long flags;
  1417. int cpu, success = 0;
  1418. /*
  1419. * If we are going to wake up a thread waiting for CONDITION we
  1420. * need to ensure that CONDITION=1 done by the caller can not be
  1421. * reordered with p->state check below. This pairs with mb() in
  1422. * set_current_state() the waiting thread does.
  1423. */
  1424. smp_mb__before_spinlock();
  1425. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1426. if (!(p->state & state))
  1427. goto out;
  1428. success = 1; /* we're going to change ->state */
  1429. cpu = task_cpu(p);
  1430. if (p->on_rq && ttwu_remote(p, wake_flags))
  1431. goto stat;
  1432. #ifdef CONFIG_SMP
  1433. /*
  1434. * If the owning (remote) cpu is still in the middle of schedule() with
  1435. * this task as prev, wait until its done referencing the task.
  1436. */
  1437. while (p->on_cpu)
  1438. cpu_relax();
  1439. /*
  1440. * Pairs with the smp_wmb() in finish_lock_switch().
  1441. */
  1442. smp_rmb();
  1443. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1444. p->state = TASK_WAKING;
  1445. if (p->sched_class->task_waking)
  1446. p->sched_class->task_waking(p);
  1447. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1448. if (task_cpu(p) != cpu) {
  1449. wake_flags |= WF_MIGRATED;
  1450. set_task_cpu(p, cpu);
  1451. }
  1452. #endif /* CONFIG_SMP */
  1453. ttwu_queue(p, cpu);
  1454. stat:
  1455. ttwu_stat(p, cpu, wake_flags);
  1456. out:
  1457. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1458. return success;
  1459. }
  1460. /**
  1461. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1462. * @p: the thread to be awakened
  1463. *
  1464. * Put @p on the run-queue if it's not already there. The caller must
  1465. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1466. * the current task.
  1467. */
  1468. static void try_to_wake_up_local(struct task_struct *p)
  1469. {
  1470. struct rq *rq = task_rq(p);
  1471. if (WARN_ON_ONCE(rq != this_rq()) ||
  1472. WARN_ON_ONCE(p == current))
  1473. return;
  1474. lockdep_assert_held(&rq->lock);
  1475. if (!raw_spin_trylock(&p->pi_lock)) {
  1476. raw_spin_unlock(&rq->lock);
  1477. raw_spin_lock(&p->pi_lock);
  1478. raw_spin_lock(&rq->lock);
  1479. }
  1480. if (!(p->state & TASK_NORMAL))
  1481. goto out;
  1482. if (!p->on_rq)
  1483. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1484. ttwu_do_wakeup(rq, p, 0);
  1485. ttwu_stat(p, smp_processor_id(), 0);
  1486. out:
  1487. raw_spin_unlock(&p->pi_lock);
  1488. }
  1489. /**
  1490. * wake_up_process - Wake up a specific process
  1491. * @p: The process to be woken up.
  1492. *
  1493. * Attempt to wake up the nominated process and move it to the set of runnable
  1494. * processes.
  1495. *
  1496. * Return: 1 if the process was woken up, 0 if it was already running.
  1497. *
  1498. * It may be assumed that this function implies a write memory barrier before
  1499. * changing the task state if and only if any tasks are woken up.
  1500. */
  1501. int wake_up_process(struct task_struct *p)
  1502. {
  1503. WARN_ON(task_is_stopped_or_traced(p));
  1504. return try_to_wake_up(p, TASK_NORMAL, 0);
  1505. }
  1506. EXPORT_SYMBOL(wake_up_process);
  1507. int wake_up_state(struct task_struct *p, unsigned int state)
  1508. {
  1509. return try_to_wake_up(p, state, 0);
  1510. }
  1511. /*
  1512. * Perform scheduler related setup for a newly forked process p.
  1513. * p is forked by current.
  1514. *
  1515. * __sched_fork() is basic setup used by init_idle() too:
  1516. */
  1517. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1518. {
  1519. p->on_rq = 0;
  1520. p->se.on_rq = 0;
  1521. p->se.exec_start = 0;
  1522. p->se.sum_exec_runtime = 0;
  1523. p->se.prev_sum_exec_runtime = 0;
  1524. p->se.nr_migrations = 0;
  1525. p->se.vruntime = 0;
  1526. INIT_LIST_HEAD(&p->se.group_node);
  1527. #ifdef CONFIG_SCHEDSTATS
  1528. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1529. #endif
  1530. RB_CLEAR_NODE(&p->dl.rb_node);
  1531. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1532. p->dl.dl_runtime = p->dl.runtime = 0;
  1533. p->dl.dl_deadline = p->dl.deadline = 0;
  1534. p->dl.dl_period = 0;
  1535. p->dl.flags = 0;
  1536. INIT_LIST_HEAD(&p->rt.run_list);
  1537. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1538. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1539. #endif
  1540. #ifdef CONFIG_NUMA_BALANCING
  1541. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1542. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1543. p->mm->numa_scan_seq = 0;
  1544. }
  1545. if (clone_flags & CLONE_VM)
  1546. p->numa_preferred_nid = current->numa_preferred_nid;
  1547. else
  1548. p->numa_preferred_nid = -1;
  1549. p->node_stamp = 0ULL;
  1550. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1551. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1552. p->numa_work.next = &p->numa_work;
  1553. p->numa_faults_memory = NULL;
  1554. p->numa_faults_buffer_memory = NULL;
  1555. p->last_task_numa_placement = 0;
  1556. p->last_sum_exec_runtime = 0;
  1557. INIT_LIST_HEAD(&p->numa_entry);
  1558. p->numa_group = NULL;
  1559. #endif /* CONFIG_NUMA_BALANCING */
  1560. }
  1561. #ifdef CONFIG_NUMA_BALANCING
  1562. #ifdef CONFIG_SCHED_DEBUG
  1563. void set_numabalancing_state(bool enabled)
  1564. {
  1565. if (enabled)
  1566. sched_feat_set("NUMA");
  1567. else
  1568. sched_feat_set("NO_NUMA");
  1569. }
  1570. #else
  1571. __read_mostly bool numabalancing_enabled;
  1572. void set_numabalancing_state(bool enabled)
  1573. {
  1574. numabalancing_enabled = enabled;
  1575. }
  1576. #endif /* CONFIG_SCHED_DEBUG */
  1577. #ifdef CONFIG_PROC_SYSCTL
  1578. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1579. void __user *buffer, size_t *lenp, loff_t *ppos)
  1580. {
  1581. struct ctl_table t;
  1582. int err;
  1583. int state = numabalancing_enabled;
  1584. if (write && !capable(CAP_SYS_ADMIN))
  1585. return -EPERM;
  1586. t = *table;
  1587. t.data = &state;
  1588. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1589. if (err < 0)
  1590. return err;
  1591. if (write)
  1592. set_numabalancing_state(state);
  1593. return err;
  1594. }
  1595. #endif
  1596. #endif
  1597. /*
  1598. * fork()/clone()-time setup:
  1599. */
  1600. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1601. {
  1602. unsigned long flags;
  1603. int cpu = get_cpu();
  1604. __sched_fork(clone_flags, p);
  1605. /*
  1606. * We mark the process as running here. This guarantees that
  1607. * nobody will actually run it, and a signal or other external
  1608. * event cannot wake it up and insert it on the runqueue either.
  1609. */
  1610. p->state = TASK_RUNNING;
  1611. /*
  1612. * Make sure we do not leak PI boosting priority to the child.
  1613. */
  1614. p->prio = current->normal_prio;
  1615. /*
  1616. * Revert to default priority/policy on fork if requested.
  1617. */
  1618. if (unlikely(p->sched_reset_on_fork)) {
  1619. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1620. p->policy = SCHED_NORMAL;
  1621. p->static_prio = NICE_TO_PRIO(0);
  1622. p->rt_priority = 0;
  1623. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1624. p->static_prio = NICE_TO_PRIO(0);
  1625. p->prio = p->normal_prio = __normal_prio(p);
  1626. set_load_weight(p);
  1627. /*
  1628. * We don't need the reset flag anymore after the fork. It has
  1629. * fulfilled its duty:
  1630. */
  1631. p->sched_reset_on_fork = 0;
  1632. }
  1633. if (dl_prio(p->prio)) {
  1634. put_cpu();
  1635. return -EAGAIN;
  1636. } else if (rt_prio(p->prio)) {
  1637. p->sched_class = &rt_sched_class;
  1638. } else {
  1639. p->sched_class = &fair_sched_class;
  1640. }
  1641. if (p->sched_class->task_fork)
  1642. p->sched_class->task_fork(p);
  1643. /*
  1644. * The child is not yet in the pid-hash so no cgroup attach races,
  1645. * and the cgroup is pinned to this child due to cgroup_fork()
  1646. * is ran before sched_fork().
  1647. *
  1648. * Silence PROVE_RCU.
  1649. */
  1650. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1651. set_task_cpu(p, cpu);
  1652. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1653. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1654. if (likely(sched_info_on()))
  1655. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1656. #endif
  1657. #if defined(CONFIG_SMP)
  1658. p->on_cpu = 0;
  1659. #endif
  1660. init_task_preempt_count(p);
  1661. #ifdef CONFIG_SMP
  1662. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1663. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1664. #endif
  1665. put_cpu();
  1666. return 0;
  1667. }
  1668. unsigned long to_ratio(u64 period, u64 runtime)
  1669. {
  1670. if (runtime == RUNTIME_INF)
  1671. return 1ULL << 20;
  1672. /*
  1673. * Doing this here saves a lot of checks in all
  1674. * the calling paths, and returning zero seems
  1675. * safe for them anyway.
  1676. */
  1677. if (period == 0)
  1678. return 0;
  1679. return div64_u64(runtime << 20, period);
  1680. }
  1681. #ifdef CONFIG_SMP
  1682. inline struct dl_bw *dl_bw_of(int i)
  1683. {
  1684. return &cpu_rq(i)->rd->dl_bw;
  1685. }
  1686. static inline int dl_bw_cpus(int i)
  1687. {
  1688. struct root_domain *rd = cpu_rq(i)->rd;
  1689. int cpus = 0;
  1690. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1691. cpus++;
  1692. return cpus;
  1693. }
  1694. #else
  1695. inline struct dl_bw *dl_bw_of(int i)
  1696. {
  1697. return &cpu_rq(i)->dl.dl_bw;
  1698. }
  1699. static inline int dl_bw_cpus(int i)
  1700. {
  1701. return 1;
  1702. }
  1703. #endif
  1704. static inline
  1705. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1706. {
  1707. dl_b->total_bw -= tsk_bw;
  1708. }
  1709. static inline
  1710. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1711. {
  1712. dl_b->total_bw += tsk_bw;
  1713. }
  1714. static inline
  1715. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1716. {
  1717. return dl_b->bw != -1 &&
  1718. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1719. }
  1720. /*
  1721. * We must be sure that accepting a new task (or allowing changing the
  1722. * parameters of an existing one) is consistent with the bandwidth
  1723. * constraints. If yes, this function also accordingly updates the currently
  1724. * allocated bandwidth to reflect the new situation.
  1725. *
  1726. * This function is called while holding p's rq->lock.
  1727. */
  1728. static int dl_overflow(struct task_struct *p, int policy,
  1729. const struct sched_attr *attr)
  1730. {
  1731. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1732. u64 period = attr->sched_period ?: attr->sched_deadline;
  1733. u64 runtime = attr->sched_runtime;
  1734. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1735. int cpus, err = -1;
  1736. if (new_bw == p->dl.dl_bw)
  1737. return 0;
  1738. /*
  1739. * Either if a task, enters, leave, or stays -deadline but changes
  1740. * its parameters, we may need to update accordingly the total
  1741. * allocated bandwidth of the container.
  1742. */
  1743. raw_spin_lock(&dl_b->lock);
  1744. cpus = dl_bw_cpus(task_cpu(p));
  1745. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1746. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1747. __dl_add(dl_b, new_bw);
  1748. err = 0;
  1749. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1750. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1751. __dl_clear(dl_b, p->dl.dl_bw);
  1752. __dl_add(dl_b, new_bw);
  1753. err = 0;
  1754. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1755. __dl_clear(dl_b, p->dl.dl_bw);
  1756. err = 0;
  1757. }
  1758. raw_spin_unlock(&dl_b->lock);
  1759. return err;
  1760. }
  1761. extern void init_dl_bw(struct dl_bw *dl_b);
  1762. /*
  1763. * wake_up_new_task - wake up a newly created task for the first time.
  1764. *
  1765. * This function will do some initial scheduler statistics housekeeping
  1766. * that must be done for every newly created context, then puts the task
  1767. * on the runqueue and wakes it.
  1768. */
  1769. void wake_up_new_task(struct task_struct *p)
  1770. {
  1771. unsigned long flags;
  1772. struct rq *rq;
  1773. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1774. #ifdef CONFIG_SMP
  1775. /*
  1776. * Fork balancing, do it here and not earlier because:
  1777. * - cpus_allowed can change in the fork path
  1778. * - any previously selected cpu might disappear through hotplug
  1779. */
  1780. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1781. #endif
  1782. /* Initialize new task's runnable average */
  1783. init_task_runnable_average(p);
  1784. rq = __task_rq_lock(p);
  1785. activate_task(rq, p, 0);
  1786. p->on_rq = 1;
  1787. trace_sched_wakeup_new(p, true);
  1788. check_preempt_curr(rq, p, WF_FORK);
  1789. #ifdef CONFIG_SMP
  1790. if (p->sched_class->task_woken)
  1791. p->sched_class->task_woken(rq, p);
  1792. #endif
  1793. task_rq_unlock(rq, p, &flags);
  1794. }
  1795. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1796. /**
  1797. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1798. * @notifier: notifier struct to register
  1799. */
  1800. void preempt_notifier_register(struct preempt_notifier *notifier)
  1801. {
  1802. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1803. }
  1804. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1805. /**
  1806. * preempt_notifier_unregister - no longer interested in preemption notifications
  1807. * @notifier: notifier struct to unregister
  1808. *
  1809. * This is safe to call from within a preemption notifier.
  1810. */
  1811. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1812. {
  1813. hlist_del(&notifier->link);
  1814. }
  1815. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1816. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1817. {
  1818. struct preempt_notifier *notifier;
  1819. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1820. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1821. }
  1822. static void
  1823. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1824. struct task_struct *next)
  1825. {
  1826. struct preempt_notifier *notifier;
  1827. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1828. notifier->ops->sched_out(notifier, next);
  1829. }
  1830. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1831. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1832. {
  1833. }
  1834. static void
  1835. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1836. struct task_struct *next)
  1837. {
  1838. }
  1839. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1840. /**
  1841. * prepare_task_switch - prepare to switch tasks
  1842. * @rq: the runqueue preparing to switch
  1843. * @prev: the current task that is being switched out
  1844. * @next: the task we are going to switch to.
  1845. *
  1846. * This is called with the rq lock held and interrupts off. It must
  1847. * be paired with a subsequent finish_task_switch after the context
  1848. * switch.
  1849. *
  1850. * prepare_task_switch sets up locking and calls architecture specific
  1851. * hooks.
  1852. */
  1853. static inline void
  1854. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1855. struct task_struct *next)
  1856. {
  1857. trace_sched_switch(prev, next);
  1858. sched_info_switch(rq, prev, next);
  1859. perf_event_task_sched_out(prev, next);
  1860. fire_sched_out_preempt_notifiers(prev, next);
  1861. prepare_lock_switch(rq, next);
  1862. prepare_arch_switch(next);
  1863. }
  1864. /**
  1865. * finish_task_switch - clean up after a task-switch
  1866. * @rq: runqueue associated with task-switch
  1867. * @prev: the thread we just switched away from.
  1868. *
  1869. * finish_task_switch must be called after the context switch, paired
  1870. * with a prepare_task_switch call before the context switch.
  1871. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1872. * and do any other architecture-specific cleanup actions.
  1873. *
  1874. * Note that we may have delayed dropping an mm in context_switch(). If
  1875. * so, we finish that here outside of the runqueue lock. (Doing it
  1876. * with the lock held can cause deadlocks; see schedule() for
  1877. * details.)
  1878. */
  1879. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1880. __releases(rq->lock)
  1881. {
  1882. struct mm_struct *mm = rq->prev_mm;
  1883. long prev_state;
  1884. rq->prev_mm = NULL;
  1885. /*
  1886. * A task struct has one reference for the use as "current".
  1887. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1888. * schedule one last time. The schedule call will never return, and
  1889. * the scheduled task must drop that reference.
  1890. * The test for TASK_DEAD must occur while the runqueue locks are
  1891. * still held, otherwise prev could be scheduled on another cpu, die
  1892. * there before we look at prev->state, and then the reference would
  1893. * be dropped twice.
  1894. * Manfred Spraul <manfred@colorfullife.com>
  1895. */
  1896. prev_state = prev->state;
  1897. vtime_task_switch(prev);
  1898. finish_arch_switch(prev);
  1899. perf_event_task_sched_in(prev, current);
  1900. finish_lock_switch(rq, prev);
  1901. finish_arch_post_lock_switch();
  1902. fire_sched_in_preempt_notifiers(current);
  1903. if (mm)
  1904. mmdrop(mm);
  1905. if (unlikely(prev_state == TASK_DEAD)) {
  1906. if (prev->sched_class->task_dead)
  1907. prev->sched_class->task_dead(prev);
  1908. /*
  1909. * Remove function-return probe instances associated with this
  1910. * task and put them back on the free list.
  1911. */
  1912. kprobe_flush_task(prev);
  1913. put_task_struct(prev);
  1914. }
  1915. tick_nohz_task_switch(current);
  1916. }
  1917. #ifdef CONFIG_SMP
  1918. /* rq->lock is NOT held, but preemption is disabled */
  1919. static inline void post_schedule(struct rq *rq)
  1920. {
  1921. if (rq->post_schedule) {
  1922. unsigned long flags;
  1923. raw_spin_lock_irqsave(&rq->lock, flags);
  1924. if (rq->curr->sched_class->post_schedule)
  1925. rq->curr->sched_class->post_schedule(rq);
  1926. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1927. rq->post_schedule = 0;
  1928. }
  1929. }
  1930. #else
  1931. static inline void post_schedule(struct rq *rq)
  1932. {
  1933. }
  1934. #endif
  1935. /**
  1936. * schedule_tail - first thing a freshly forked thread must call.
  1937. * @prev: the thread we just switched away from.
  1938. */
  1939. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1940. __releases(rq->lock)
  1941. {
  1942. struct rq *rq = this_rq();
  1943. finish_task_switch(rq, prev);
  1944. /*
  1945. * FIXME: do we need to worry about rq being invalidated by the
  1946. * task_switch?
  1947. */
  1948. post_schedule(rq);
  1949. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1950. /* In this case, finish_task_switch does not reenable preemption */
  1951. preempt_enable();
  1952. #endif
  1953. if (current->set_child_tid)
  1954. put_user(task_pid_vnr(current), current->set_child_tid);
  1955. }
  1956. /*
  1957. * context_switch - switch to the new MM and the new
  1958. * thread's register state.
  1959. */
  1960. static inline void
  1961. context_switch(struct rq *rq, struct task_struct *prev,
  1962. struct task_struct *next)
  1963. {
  1964. struct mm_struct *mm, *oldmm;
  1965. prepare_task_switch(rq, prev, next);
  1966. mm = next->mm;
  1967. oldmm = prev->active_mm;
  1968. /*
  1969. * For paravirt, this is coupled with an exit in switch_to to
  1970. * combine the page table reload and the switch backend into
  1971. * one hypercall.
  1972. */
  1973. arch_start_context_switch(prev);
  1974. if (!mm) {
  1975. next->active_mm = oldmm;
  1976. atomic_inc(&oldmm->mm_count);
  1977. enter_lazy_tlb(oldmm, next);
  1978. } else
  1979. switch_mm(oldmm, mm, next);
  1980. if (!prev->mm) {
  1981. prev->active_mm = NULL;
  1982. rq->prev_mm = oldmm;
  1983. }
  1984. /*
  1985. * Since the runqueue lock will be released by the next
  1986. * task (which is an invalid locking op but in the case
  1987. * of the scheduler it's an obvious special-case), so we
  1988. * do an early lockdep release here:
  1989. */
  1990. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1991. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1992. #endif
  1993. context_tracking_task_switch(prev, next);
  1994. /* Here we just switch the register state and the stack. */
  1995. switch_to(prev, next, prev);
  1996. barrier();
  1997. /*
  1998. * this_rq must be evaluated again because prev may have moved
  1999. * CPUs since it called schedule(), thus the 'rq' on its stack
  2000. * frame will be invalid.
  2001. */
  2002. finish_task_switch(this_rq(), prev);
  2003. }
  2004. /*
  2005. * nr_running and nr_context_switches:
  2006. *
  2007. * externally visible scheduler statistics: current number of runnable
  2008. * threads, total number of context switches performed since bootup.
  2009. */
  2010. unsigned long nr_running(void)
  2011. {
  2012. unsigned long i, sum = 0;
  2013. for_each_online_cpu(i)
  2014. sum += cpu_rq(i)->nr_running;
  2015. return sum;
  2016. }
  2017. unsigned long long nr_context_switches(void)
  2018. {
  2019. int i;
  2020. unsigned long long sum = 0;
  2021. for_each_possible_cpu(i)
  2022. sum += cpu_rq(i)->nr_switches;
  2023. return sum;
  2024. }
  2025. unsigned long nr_iowait(void)
  2026. {
  2027. unsigned long i, sum = 0;
  2028. for_each_possible_cpu(i)
  2029. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2030. return sum;
  2031. }
  2032. unsigned long nr_iowait_cpu(int cpu)
  2033. {
  2034. struct rq *this = cpu_rq(cpu);
  2035. return atomic_read(&this->nr_iowait);
  2036. }
  2037. #ifdef CONFIG_SMP
  2038. /*
  2039. * sched_exec - execve() is a valuable balancing opportunity, because at
  2040. * this point the task has the smallest effective memory and cache footprint.
  2041. */
  2042. void sched_exec(void)
  2043. {
  2044. struct task_struct *p = current;
  2045. unsigned long flags;
  2046. int dest_cpu;
  2047. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2048. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2049. if (dest_cpu == smp_processor_id())
  2050. goto unlock;
  2051. if (likely(cpu_active(dest_cpu))) {
  2052. struct migration_arg arg = { p, dest_cpu };
  2053. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2054. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2055. return;
  2056. }
  2057. unlock:
  2058. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2059. }
  2060. #endif
  2061. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2062. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2063. EXPORT_PER_CPU_SYMBOL(kstat);
  2064. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2065. /*
  2066. * Return any ns on the sched_clock that have not yet been accounted in
  2067. * @p in case that task is currently running.
  2068. *
  2069. * Called with task_rq_lock() held on @rq.
  2070. */
  2071. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2072. {
  2073. u64 ns = 0;
  2074. /*
  2075. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2076. * project cycles that may never be accounted to this
  2077. * thread, breaking clock_gettime().
  2078. */
  2079. if (task_current(rq, p) && p->on_rq) {
  2080. update_rq_clock(rq);
  2081. ns = rq_clock_task(rq) - p->se.exec_start;
  2082. if ((s64)ns < 0)
  2083. ns = 0;
  2084. }
  2085. return ns;
  2086. }
  2087. unsigned long long task_delta_exec(struct task_struct *p)
  2088. {
  2089. unsigned long flags;
  2090. struct rq *rq;
  2091. u64 ns = 0;
  2092. rq = task_rq_lock(p, &flags);
  2093. ns = do_task_delta_exec(p, rq);
  2094. task_rq_unlock(rq, p, &flags);
  2095. return ns;
  2096. }
  2097. /*
  2098. * Return accounted runtime for the task.
  2099. * In case the task is currently running, return the runtime plus current's
  2100. * pending runtime that have not been accounted yet.
  2101. */
  2102. unsigned long long task_sched_runtime(struct task_struct *p)
  2103. {
  2104. unsigned long flags;
  2105. struct rq *rq;
  2106. u64 ns = 0;
  2107. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2108. /*
  2109. * 64-bit doesn't need locks to atomically read a 64bit value.
  2110. * So we have a optimization chance when the task's delta_exec is 0.
  2111. * Reading ->on_cpu is racy, but this is ok.
  2112. *
  2113. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2114. * If we race with it entering cpu, unaccounted time is 0. This is
  2115. * indistinguishable from the read occurring a few cycles earlier.
  2116. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2117. * been accounted, so we're correct here as well.
  2118. */
  2119. if (!p->on_cpu || !p->on_rq)
  2120. return p->se.sum_exec_runtime;
  2121. #endif
  2122. rq = task_rq_lock(p, &flags);
  2123. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2124. task_rq_unlock(rq, p, &flags);
  2125. return ns;
  2126. }
  2127. /*
  2128. * This function gets called by the timer code, with HZ frequency.
  2129. * We call it with interrupts disabled.
  2130. */
  2131. void scheduler_tick(void)
  2132. {
  2133. int cpu = smp_processor_id();
  2134. struct rq *rq = cpu_rq(cpu);
  2135. struct task_struct *curr = rq->curr;
  2136. sched_clock_tick();
  2137. raw_spin_lock(&rq->lock);
  2138. update_rq_clock(rq);
  2139. curr->sched_class->task_tick(rq, curr, 0);
  2140. update_cpu_load_active(rq);
  2141. raw_spin_unlock(&rq->lock);
  2142. perf_event_task_tick();
  2143. #ifdef CONFIG_SMP
  2144. rq->idle_balance = idle_cpu(cpu);
  2145. trigger_load_balance(rq);
  2146. #endif
  2147. rq_last_tick_reset(rq);
  2148. }
  2149. #ifdef CONFIG_NO_HZ_FULL
  2150. /**
  2151. * scheduler_tick_max_deferment
  2152. *
  2153. * Keep at least one tick per second when a single
  2154. * active task is running because the scheduler doesn't
  2155. * yet completely support full dynticks environment.
  2156. *
  2157. * This makes sure that uptime, CFS vruntime, load
  2158. * balancing, etc... continue to move forward, even
  2159. * with a very low granularity.
  2160. *
  2161. * Return: Maximum deferment in nanoseconds.
  2162. */
  2163. u64 scheduler_tick_max_deferment(void)
  2164. {
  2165. struct rq *rq = this_rq();
  2166. unsigned long next, now = ACCESS_ONCE(jiffies);
  2167. next = rq->last_sched_tick + HZ;
  2168. if (time_before_eq(next, now))
  2169. return 0;
  2170. return jiffies_to_nsecs(next - now);
  2171. }
  2172. #endif
  2173. notrace unsigned long get_parent_ip(unsigned long addr)
  2174. {
  2175. if (in_lock_functions(addr)) {
  2176. addr = CALLER_ADDR2;
  2177. if (in_lock_functions(addr))
  2178. addr = CALLER_ADDR3;
  2179. }
  2180. return addr;
  2181. }
  2182. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2183. defined(CONFIG_PREEMPT_TRACER))
  2184. void preempt_count_add(int val)
  2185. {
  2186. #ifdef CONFIG_DEBUG_PREEMPT
  2187. /*
  2188. * Underflow?
  2189. */
  2190. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2191. return;
  2192. #endif
  2193. __preempt_count_add(val);
  2194. #ifdef CONFIG_DEBUG_PREEMPT
  2195. /*
  2196. * Spinlock count overflowing soon?
  2197. */
  2198. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2199. PREEMPT_MASK - 10);
  2200. #endif
  2201. if (preempt_count() == val) {
  2202. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2203. #ifdef CONFIG_DEBUG_PREEMPT
  2204. current->preempt_disable_ip = ip;
  2205. #endif
  2206. trace_preempt_off(CALLER_ADDR0, ip);
  2207. }
  2208. }
  2209. EXPORT_SYMBOL(preempt_count_add);
  2210. NOKPROBE_SYMBOL(preempt_count_add);
  2211. void preempt_count_sub(int val)
  2212. {
  2213. #ifdef CONFIG_DEBUG_PREEMPT
  2214. /*
  2215. * Underflow?
  2216. */
  2217. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2218. return;
  2219. /*
  2220. * Is the spinlock portion underflowing?
  2221. */
  2222. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2223. !(preempt_count() & PREEMPT_MASK)))
  2224. return;
  2225. #endif
  2226. if (preempt_count() == val)
  2227. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2228. __preempt_count_sub(val);
  2229. }
  2230. EXPORT_SYMBOL(preempt_count_sub);
  2231. NOKPROBE_SYMBOL(preempt_count_sub);
  2232. #endif
  2233. /*
  2234. * Print scheduling while atomic bug:
  2235. */
  2236. static noinline void __schedule_bug(struct task_struct *prev)
  2237. {
  2238. if (oops_in_progress)
  2239. return;
  2240. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2241. prev->comm, prev->pid, preempt_count());
  2242. debug_show_held_locks(prev);
  2243. print_modules();
  2244. if (irqs_disabled())
  2245. print_irqtrace_events(prev);
  2246. #ifdef CONFIG_DEBUG_PREEMPT
  2247. if (in_atomic_preempt_off()) {
  2248. pr_err("Preemption disabled at:");
  2249. print_ip_sym(current->preempt_disable_ip);
  2250. pr_cont("\n");
  2251. }
  2252. #endif
  2253. dump_stack();
  2254. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2255. }
  2256. /*
  2257. * Various schedule()-time debugging checks and statistics:
  2258. */
  2259. static inline void schedule_debug(struct task_struct *prev)
  2260. {
  2261. /*
  2262. * Test if we are atomic. Since do_exit() needs to call into
  2263. * schedule() atomically, we ignore that path. Otherwise whine
  2264. * if we are scheduling when we should not.
  2265. */
  2266. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2267. __schedule_bug(prev);
  2268. rcu_sleep_check();
  2269. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2270. schedstat_inc(this_rq(), sched_count);
  2271. }
  2272. /*
  2273. * Pick up the highest-prio task:
  2274. */
  2275. static inline struct task_struct *
  2276. pick_next_task(struct rq *rq, struct task_struct *prev)
  2277. {
  2278. const struct sched_class *class = &fair_sched_class;
  2279. struct task_struct *p;
  2280. /*
  2281. * Optimization: we know that if all tasks are in
  2282. * the fair class we can call that function directly:
  2283. */
  2284. if (likely(prev->sched_class == class &&
  2285. rq->nr_running == rq->cfs.h_nr_running)) {
  2286. p = fair_sched_class.pick_next_task(rq, prev);
  2287. if (unlikely(p == RETRY_TASK))
  2288. goto again;
  2289. /* assumes fair_sched_class->next == idle_sched_class */
  2290. if (unlikely(!p))
  2291. p = idle_sched_class.pick_next_task(rq, prev);
  2292. return p;
  2293. }
  2294. again:
  2295. for_each_class(class) {
  2296. p = class->pick_next_task(rq, prev);
  2297. if (p) {
  2298. if (unlikely(p == RETRY_TASK))
  2299. goto again;
  2300. return p;
  2301. }
  2302. }
  2303. BUG(); /* the idle class will always have a runnable task */
  2304. }
  2305. /*
  2306. * __schedule() is the main scheduler function.
  2307. *
  2308. * The main means of driving the scheduler and thus entering this function are:
  2309. *
  2310. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2311. *
  2312. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2313. * paths. For example, see arch/x86/entry_64.S.
  2314. *
  2315. * To drive preemption between tasks, the scheduler sets the flag in timer
  2316. * interrupt handler scheduler_tick().
  2317. *
  2318. * 3. Wakeups don't really cause entry into schedule(). They add a
  2319. * task to the run-queue and that's it.
  2320. *
  2321. * Now, if the new task added to the run-queue preempts the current
  2322. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2323. * called on the nearest possible occasion:
  2324. *
  2325. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2326. *
  2327. * - in syscall or exception context, at the next outmost
  2328. * preempt_enable(). (this might be as soon as the wake_up()'s
  2329. * spin_unlock()!)
  2330. *
  2331. * - in IRQ context, return from interrupt-handler to
  2332. * preemptible context
  2333. *
  2334. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2335. * then at the next:
  2336. *
  2337. * - cond_resched() call
  2338. * - explicit schedule() call
  2339. * - return from syscall or exception to user-space
  2340. * - return from interrupt-handler to user-space
  2341. */
  2342. static void __sched __schedule(void)
  2343. {
  2344. struct task_struct *prev, *next;
  2345. unsigned long *switch_count;
  2346. struct rq *rq;
  2347. int cpu;
  2348. need_resched:
  2349. preempt_disable();
  2350. cpu = smp_processor_id();
  2351. rq = cpu_rq(cpu);
  2352. rcu_note_context_switch(cpu);
  2353. prev = rq->curr;
  2354. schedule_debug(prev);
  2355. if (sched_feat(HRTICK))
  2356. hrtick_clear(rq);
  2357. /*
  2358. * Make sure that signal_pending_state()->signal_pending() below
  2359. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2360. * done by the caller to avoid the race with signal_wake_up().
  2361. */
  2362. smp_mb__before_spinlock();
  2363. raw_spin_lock_irq(&rq->lock);
  2364. switch_count = &prev->nivcsw;
  2365. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2366. if (unlikely(signal_pending_state(prev->state, prev))) {
  2367. prev->state = TASK_RUNNING;
  2368. } else {
  2369. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2370. prev->on_rq = 0;
  2371. /*
  2372. * If a worker went to sleep, notify and ask workqueue
  2373. * whether it wants to wake up a task to maintain
  2374. * concurrency.
  2375. */
  2376. if (prev->flags & PF_WQ_WORKER) {
  2377. struct task_struct *to_wakeup;
  2378. to_wakeup = wq_worker_sleeping(prev, cpu);
  2379. if (to_wakeup)
  2380. try_to_wake_up_local(to_wakeup);
  2381. }
  2382. }
  2383. switch_count = &prev->nvcsw;
  2384. }
  2385. if (prev->on_rq || rq->skip_clock_update < 0)
  2386. update_rq_clock(rq);
  2387. next = pick_next_task(rq, prev);
  2388. clear_tsk_need_resched(prev);
  2389. clear_preempt_need_resched();
  2390. rq->skip_clock_update = 0;
  2391. if (likely(prev != next)) {
  2392. rq->nr_switches++;
  2393. rq->curr = next;
  2394. ++*switch_count;
  2395. context_switch(rq, prev, next); /* unlocks the rq */
  2396. /*
  2397. * The context switch have flipped the stack from under us
  2398. * and restored the local variables which were saved when
  2399. * this task called schedule() in the past. prev == current
  2400. * is still correct, but it can be moved to another cpu/rq.
  2401. */
  2402. cpu = smp_processor_id();
  2403. rq = cpu_rq(cpu);
  2404. } else
  2405. raw_spin_unlock_irq(&rq->lock);
  2406. post_schedule(rq);
  2407. sched_preempt_enable_no_resched();
  2408. if (need_resched())
  2409. goto need_resched;
  2410. }
  2411. static inline void sched_submit_work(struct task_struct *tsk)
  2412. {
  2413. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2414. return;
  2415. /*
  2416. * If we are going to sleep and we have plugged IO queued,
  2417. * make sure to submit it to avoid deadlocks.
  2418. */
  2419. if (blk_needs_flush_plug(tsk))
  2420. blk_schedule_flush_plug(tsk);
  2421. }
  2422. asmlinkage __visible void __sched schedule(void)
  2423. {
  2424. struct task_struct *tsk = current;
  2425. sched_submit_work(tsk);
  2426. __schedule();
  2427. }
  2428. EXPORT_SYMBOL(schedule);
  2429. #ifdef CONFIG_CONTEXT_TRACKING
  2430. asmlinkage __visible void __sched schedule_user(void)
  2431. {
  2432. /*
  2433. * If we come here after a random call to set_need_resched(),
  2434. * or we have been woken up remotely but the IPI has not yet arrived,
  2435. * we haven't yet exited the RCU idle mode. Do it here manually until
  2436. * we find a better solution.
  2437. */
  2438. user_exit();
  2439. schedule();
  2440. user_enter();
  2441. }
  2442. #endif
  2443. /**
  2444. * schedule_preempt_disabled - called with preemption disabled
  2445. *
  2446. * Returns with preemption disabled. Note: preempt_count must be 1
  2447. */
  2448. void __sched schedule_preempt_disabled(void)
  2449. {
  2450. sched_preempt_enable_no_resched();
  2451. schedule();
  2452. preempt_disable();
  2453. }
  2454. #ifdef CONFIG_PREEMPT
  2455. /*
  2456. * this is the entry point to schedule() from in-kernel preemption
  2457. * off of preempt_enable. Kernel preemptions off return from interrupt
  2458. * occur there and call schedule directly.
  2459. */
  2460. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2461. {
  2462. /*
  2463. * If there is a non-zero preempt_count or interrupts are disabled,
  2464. * we do not want to preempt the current task. Just return..
  2465. */
  2466. if (likely(!preemptible()))
  2467. return;
  2468. do {
  2469. __preempt_count_add(PREEMPT_ACTIVE);
  2470. __schedule();
  2471. __preempt_count_sub(PREEMPT_ACTIVE);
  2472. /*
  2473. * Check again in case we missed a preemption opportunity
  2474. * between schedule and now.
  2475. */
  2476. barrier();
  2477. } while (need_resched());
  2478. }
  2479. NOKPROBE_SYMBOL(preempt_schedule);
  2480. EXPORT_SYMBOL(preempt_schedule);
  2481. #endif /* CONFIG_PREEMPT */
  2482. /*
  2483. * this is the entry point to schedule() from kernel preemption
  2484. * off of irq context.
  2485. * Note, that this is called and return with irqs disabled. This will
  2486. * protect us against recursive calling from irq.
  2487. */
  2488. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2489. {
  2490. enum ctx_state prev_state;
  2491. /* Catch callers which need to be fixed */
  2492. BUG_ON(preempt_count() || !irqs_disabled());
  2493. prev_state = exception_enter();
  2494. do {
  2495. __preempt_count_add(PREEMPT_ACTIVE);
  2496. local_irq_enable();
  2497. __schedule();
  2498. local_irq_disable();
  2499. __preempt_count_sub(PREEMPT_ACTIVE);
  2500. /*
  2501. * Check again in case we missed a preemption opportunity
  2502. * between schedule and now.
  2503. */
  2504. barrier();
  2505. } while (need_resched());
  2506. exception_exit(prev_state);
  2507. }
  2508. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2509. void *key)
  2510. {
  2511. return try_to_wake_up(curr->private, mode, wake_flags);
  2512. }
  2513. EXPORT_SYMBOL(default_wake_function);
  2514. #ifdef CONFIG_RT_MUTEXES
  2515. /*
  2516. * rt_mutex_setprio - set the current priority of a task
  2517. * @p: task
  2518. * @prio: prio value (kernel-internal form)
  2519. *
  2520. * This function changes the 'effective' priority of a task. It does
  2521. * not touch ->normal_prio like __setscheduler().
  2522. *
  2523. * Used by the rt_mutex code to implement priority inheritance
  2524. * logic. Call site only calls if the priority of the task changed.
  2525. */
  2526. void rt_mutex_setprio(struct task_struct *p, int prio)
  2527. {
  2528. int oldprio, on_rq, running, enqueue_flag = 0;
  2529. struct rq *rq;
  2530. const struct sched_class *prev_class;
  2531. BUG_ON(prio > MAX_PRIO);
  2532. rq = __task_rq_lock(p);
  2533. /*
  2534. * Idle task boosting is a nono in general. There is one
  2535. * exception, when PREEMPT_RT and NOHZ is active:
  2536. *
  2537. * The idle task calls get_next_timer_interrupt() and holds
  2538. * the timer wheel base->lock on the CPU and another CPU wants
  2539. * to access the timer (probably to cancel it). We can safely
  2540. * ignore the boosting request, as the idle CPU runs this code
  2541. * with interrupts disabled and will complete the lock
  2542. * protected section without being interrupted. So there is no
  2543. * real need to boost.
  2544. */
  2545. if (unlikely(p == rq->idle)) {
  2546. WARN_ON(p != rq->curr);
  2547. WARN_ON(p->pi_blocked_on);
  2548. goto out_unlock;
  2549. }
  2550. trace_sched_pi_setprio(p, prio);
  2551. oldprio = p->prio;
  2552. prev_class = p->sched_class;
  2553. on_rq = p->on_rq;
  2554. running = task_current(rq, p);
  2555. if (on_rq)
  2556. dequeue_task(rq, p, 0);
  2557. if (running)
  2558. p->sched_class->put_prev_task(rq, p);
  2559. /*
  2560. * Boosting condition are:
  2561. * 1. -rt task is running and holds mutex A
  2562. * --> -dl task blocks on mutex A
  2563. *
  2564. * 2. -dl task is running and holds mutex A
  2565. * --> -dl task blocks on mutex A and could preempt the
  2566. * running task
  2567. */
  2568. if (dl_prio(prio)) {
  2569. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2570. if (!dl_prio(p->normal_prio) ||
  2571. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2572. p->dl.dl_boosted = 1;
  2573. p->dl.dl_throttled = 0;
  2574. enqueue_flag = ENQUEUE_REPLENISH;
  2575. } else
  2576. p->dl.dl_boosted = 0;
  2577. p->sched_class = &dl_sched_class;
  2578. } else if (rt_prio(prio)) {
  2579. if (dl_prio(oldprio))
  2580. p->dl.dl_boosted = 0;
  2581. if (oldprio < prio)
  2582. enqueue_flag = ENQUEUE_HEAD;
  2583. p->sched_class = &rt_sched_class;
  2584. } else {
  2585. if (dl_prio(oldprio))
  2586. p->dl.dl_boosted = 0;
  2587. p->sched_class = &fair_sched_class;
  2588. }
  2589. p->prio = prio;
  2590. if (running)
  2591. p->sched_class->set_curr_task(rq);
  2592. if (on_rq)
  2593. enqueue_task(rq, p, enqueue_flag);
  2594. check_class_changed(rq, p, prev_class, oldprio);
  2595. out_unlock:
  2596. __task_rq_unlock(rq);
  2597. }
  2598. #endif
  2599. void set_user_nice(struct task_struct *p, long nice)
  2600. {
  2601. int old_prio, delta, on_rq;
  2602. unsigned long flags;
  2603. struct rq *rq;
  2604. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2605. return;
  2606. /*
  2607. * We have to be careful, if called from sys_setpriority(),
  2608. * the task might be in the middle of scheduling on another CPU.
  2609. */
  2610. rq = task_rq_lock(p, &flags);
  2611. /*
  2612. * The RT priorities are set via sched_setscheduler(), but we still
  2613. * allow the 'normal' nice value to be set - but as expected
  2614. * it wont have any effect on scheduling until the task is
  2615. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2616. */
  2617. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2618. p->static_prio = NICE_TO_PRIO(nice);
  2619. goto out_unlock;
  2620. }
  2621. on_rq = p->on_rq;
  2622. if (on_rq)
  2623. dequeue_task(rq, p, 0);
  2624. p->static_prio = NICE_TO_PRIO(nice);
  2625. set_load_weight(p);
  2626. old_prio = p->prio;
  2627. p->prio = effective_prio(p);
  2628. delta = p->prio - old_prio;
  2629. if (on_rq) {
  2630. enqueue_task(rq, p, 0);
  2631. /*
  2632. * If the task increased its priority or is running and
  2633. * lowered its priority, then reschedule its CPU:
  2634. */
  2635. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2636. resched_curr(rq);
  2637. }
  2638. out_unlock:
  2639. task_rq_unlock(rq, p, &flags);
  2640. }
  2641. EXPORT_SYMBOL(set_user_nice);
  2642. /*
  2643. * can_nice - check if a task can reduce its nice value
  2644. * @p: task
  2645. * @nice: nice value
  2646. */
  2647. int can_nice(const struct task_struct *p, const int nice)
  2648. {
  2649. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2650. int nice_rlim = nice_to_rlimit(nice);
  2651. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2652. capable(CAP_SYS_NICE));
  2653. }
  2654. #ifdef __ARCH_WANT_SYS_NICE
  2655. /*
  2656. * sys_nice - change the priority of the current process.
  2657. * @increment: priority increment
  2658. *
  2659. * sys_setpriority is a more generic, but much slower function that
  2660. * does similar things.
  2661. */
  2662. SYSCALL_DEFINE1(nice, int, increment)
  2663. {
  2664. long nice, retval;
  2665. /*
  2666. * Setpriority might change our priority at the same moment.
  2667. * We don't have to worry. Conceptually one call occurs first
  2668. * and we have a single winner.
  2669. */
  2670. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2671. nice = task_nice(current) + increment;
  2672. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2673. if (increment < 0 && !can_nice(current, nice))
  2674. return -EPERM;
  2675. retval = security_task_setnice(current, nice);
  2676. if (retval)
  2677. return retval;
  2678. set_user_nice(current, nice);
  2679. return 0;
  2680. }
  2681. #endif
  2682. /**
  2683. * task_prio - return the priority value of a given task.
  2684. * @p: the task in question.
  2685. *
  2686. * Return: The priority value as seen by users in /proc.
  2687. * RT tasks are offset by -200. Normal tasks are centered
  2688. * around 0, value goes from -16 to +15.
  2689. */
  2690. int task_prio(const struct task_struct *p)
  2691. {
  2692. return p->prio - MAX_RT_PRIO;
  2693. }
  2694. /**
  2695. * idle_cpu - is a given cpu idle currently?
  2696. * @cpu: the processor in question.
  2697. *
  2698. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2699. */
  2700. int idle_cpu(int cpu)
  2701. {
  2702. struct rq *rq = cpu_rq(cpu);
  2703. if (rq->curr != rq->idle)
  2704. return 0;
  2705. if (rq->nr_running)
  2706. return 0;
  2707. #ifdef CONFIG_SMP
  2708. if (!llist_empty(&rq->wake_list))
  2709. return 0;
  2710. #endif
  2711. return 1;
  2712. }
  2713. /**
  2714. * idle_task - return the idle task for a given cpu.
  2715. * @cpu: the processor in question.
  2716. *
  2717. * Return: The idle task for the cpu @cpu.
  2718. */
  2719. struct task_struct *idle_task(int cpu)
  2720. {
  2721. return cpu_rq(cpu)->idle;
  2722. }
  2723. /**
  2724. * find_process_by_pid - find a process with a matching PID value.
  2725. * @pid: the pid in question.
  2726. *
  2727. * The task of @pid, if found. %NULL otherwise.
  2728. */
  2729. static struct task_struct *find_process_by_pid(pid_t pid)
  2730. {
  2731. return pid ? find_task_by_vpid(pid) : current;
  2732. }
  2733. /*
  2734. * This function initializes the sched_dl_entity of a newly becoming
  2735. * SCHED_DEADLINE task.
  2736. *
  2737. * Only the static values are considered here, the actual runtime and the
  2738. * absolute deadline will be properly calculated when the task is enqueued
  2739. * for the first time with its new policy.
  2740. */
  2741. static void
  2742. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2743. {
  2744. struct sched_dl_entity *dl_se = &p->dl;
  2745. init_dl_task_timer(dl_se);
  2746. dl_se->dl_runtime = attr->sched_runtime;
  2747. dl_se->dl_deadline = attr->sched_deadline;
  2748. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2749. dl_se->flags = attr->sched_flags;
  2750. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2751. dl_se->dl_throttled = 0;
  2752. dl_se->dl_new = 1;
  2753. dl_se->dl_yielded = 0;
  2754. }
  2755. /*
  2756. * sched_setparam() passes in -1 for its policy, to let the functions
  2757. * it calls know not to change it.
  2758. */
  2759. #define SETPARAM_POLICY -1
  2760. static void __setscheduler_params(struct task_struct *p,
  2761. const struct sched_attr *attr)
  2762. {
  2763. int policy = attr->sched_policy;
  2764. if (policy == SETPARAM_POLICY)
  2765. policy = p->policy;
  2766. p->policy = policy;
  2767. if (dl_policy(policy))
  2768. __setparam_dl(p, attr);
  2769. else if (fair_policy(policy))
  2770. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2771. /*
  2772. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2773. * !rt_policy. Always setting this ensures that things like
  2774. * getparam()/getattr() don't report silly values for !rt tasks.
  2775. */
  2776. p->rt_priority = attr->sched_priority;
  2777. p->normal_prio = normal_prio(p);
  2778. set_load_weight(p);
  2779. }
  2780. /* Actually do priority change: must hold pi & rq lock. */
  2781. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2782. const struct sched_attr *attr)
  2783. {
  2784. __setscheduler_params(p, attr);
  2785. /*
  2786. * If we get here, there was no pi waiters boosting the
  2787. * task. It is safe to use the normal prio.
  2788. */
  2789. p->prio = normal_prio(p);
  2790. if (dl_prio(p->prio))
  2791. p->sched_class = &dl_sched_class;
  2792. else if (rt_prio(p->prio))
  2793. p->sched_class = &rt_sched_class;
  2794. else
  2795. p->sched_class = &fair_sched_class;
  2796. }
  2797. static void
  2798. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2799. {
  2800. struct sched_dl_entity *dl_se = &p->dl;
  2801. attr->sched_priority = p->rt_priority;
  2802. attr->sched_runtime = dl_se->dl_runtime;
  2803. attr->sched_deadline = dl_se->dl_deadline;
  2804. attr->sched_period = dl_se->dl_period;
  2805. attr->sched_flags = dl_se->flags;
  2806. }
  2807. /*
  2808. * This function validates the new parameters of a -deadline task.
  2809. * We ask for the deadline not being zero, and greater or equal
  2810. * than the runtime, as well as the period of being zero or
  2811. * greater than deadline. Furthermore, we have to be sure that
  2812. * user parameters are above the internal resolution of 1us (we
  2813. * check sched_runtime only since it is always the smaller one) and
  2814. * below 2^63 ns (we have to check both sched_deadline and
  2815. * sched_period, as the latter can be zero).
  2816. */
  2817. static bool
  2818. __checkparam_dl(const struct sched_attr *attr)
  2819. {
  2820. /* deadline != 0 */
  2821. if (attr->sched_deadline == 0)
  2822. return false;
  2823. /*
  2824. * Since we truncate DL_SCALE bits, make sure we're at least
  2825. * that big.
  2826. */
  2827. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2828. return false;
  2829. /*
  2830. * Since we use the MSB for wrap-around and sign issues, make
  2831. * sure it's not set (mind that period can be equal to zero).
  2832. */
  2833. if (attr->sched_deadline & (1ULL << 63) ||
  2834. attr->sched_period & (1ULL << 63))
  2835. return false;
  2836. /* runtime <= deadline <= period (if period != 0) */
  2837. if ((attr->sched_period != 0 &&
  2838. attr->sched_period < attr->sched_deadline) ||
  2839. attr->sched_deadline < attr->sched_runtime)
  2840. return false;
  2841. return true;
  2842. }
  2843. /*
  2844. * check the target process has a UID that matches the current process's
  2845. */
  2846. static bool check_same_owner(struct task_struct *p)
  2847. {
  2848. const struct cred *cred = current_cred(), *pcred;
  2849. bool match;
  2850. rcu_read_lock();
  2851. pcred = __task_cred(p);
  2852. match = (uid_eq(cred->euid, pcred->euid) ||
  2853. uid_eq(cred->euid, pcred->uid));
  2854. rcu_read_unlock();
  2855. return match;
  2856. }
  2857. static int __sched_setscheduler(struct task_struct *p,
  2858. const struct sched_attr *attr,
  2859. bool user)
  2860. {
  2861. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2862. MAX_RT_PRIO - 1 - attr->sched_priority;
  2863. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2864. int policy = attr->sched_policy;
  2865. unsigned long flags;
  2866. const struct sched_class *prev_class;
  2867. struct rq *rq;
  2868. int reset_on_fork;
  2869. /* may grab non-irq protected spin_locks */
  2870. BUG_ON(in_interrupt());
  2871. recheck:
  2872. /* double check policy once rq lock held */
  2873. if (policy < 0) {
  2874. reset_on_fork = p->sched_reset_on_fork;
  2875. policy = oldpolicy = p->policy;
  2876. } else {
  2877. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2878. if (policy != SCHED_DEADLINE &&
  2879. policy != SCHED_FIFO && policy != SCHED_RR &&
  2880. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2881. policy != SCHED_IDLE)
  2882. return -EINVAL;
  2883. }
  2884. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2885. return -EINVAL;
  2886. /*
  2887. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2888. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2889. * SCHED_BATCH and SCHED_IDLE is 0.
  2890. */
  2891. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2892. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2893. return -EINVAL;
  2894. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2895. (rt_policy(policy) != (attr->sched_priority != 0)))
  2896. return -EINVAL;
  2897. /*
  2898. * Allow unprivileged RT tasks to decrease priority:
  2899. */
  2900. if (user && !capable(CAP_SYS_NICE)) {
  2901. if (fair_policy(policy)) {
  2902. if (attr->sched_nice < task_nice(p) &&
  2903. !can_nice(p, attr->sched_nice))
  2904. return -EPERM;
  2905. }
  2906. if (rt_policy(policy)) {
  2907. unsigned long rlim_rtprio =
  2908. task_rlimit(p, RLIMIT_RTPRIO);
  2909. /* can't set/change the rt policy */
  2910. if (policy != p->policy && !rlim_rtprio)
  2911. return -EPERM;
  2912. /* can't increase priority */
  2913. if (attr->sched_priority > p->rt_priority &&
  2914. attr->sched_priority > rlim_rtprio)
  2915. return -EPERM;
  2916. }
  2917. /*
  2918. * Can't set/change SCHED_DEADLINE policy at all for now
  2919. * (safest behavior); in the future we would like to allow
  2920. * unprivileged DL tasks to increase their relative deadline
  2921. * or reduce their runtime (both ways reducing utilization)
  2922. */
  2923. if (dl_policy(policy))
  2924. return -EPERM;
  2925. /*
  2926. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2927. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2928. */
  2929. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2930. if (!can_nice(p, task_nice(p)))
  2931. return -EPERM;
  2932. }
  2933. /* can't change other user's priorities */
  2934. if (!check_same_owner(p))
  2935. return -EPERM;
  2936. /* Normal users shall not reset the sched_reset_on_fork flag */
  2937. if (p->sched_reset_on_fork && !reset_on_fork)
  2938. return -EPERM;
  2939. }
  2940. if (user) {
  2941. retval = security_task_setscheduler(p);
  2942. if (retval)
  2943. return retval;
  2944. }
  2945. /*
  2946. * make sure no PI-waiters arrive (or leave) while we are
  2947. * changing the priority of the task:
  2948. *
  2949. * To be able to change p->policy safely, the appropriate
  2950. * runqueue lock must be held.
  2951. */
  2952. rq = task_rq_lock(p, &flags);
  2953. /*
  2954. * Changing the policy of the stop threads its a very bad idea
  2955. */
  2956. if (p == rq->stop) {
  2957. task_rq_unlock(rq, p, &flags);
  2958. return -EINVAL;
  2959. }
  2960. /*
  2961. * If not changing anything there's no need to proceed further,
  2962. * but store a possible modification of reset_on_fork.
  2963. */
  2964. if (unlikely(policy == p->policy)) {
  2965. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  2966. goto change;
  2967. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2968. goto change;
  2969. if (dl_policy(policy))
  2970. goto change;
  2971. p->sched_reset_on_fork = reset_on_fork;
  2972. task_rq_unlock(rq, p, &flags);
  2973. return 0;
  2974. }
  2975. change:
  2976. if (user) {
  2977. #ifdef CONFIG_RT_GROUP_SCHED
  2978. /*
  2979. * Do not allow realtime tasks into groups that have no runtime
  2980. * assigned.
  2981. */
  2982. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2983. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2984. !task_group_is_autogroup(task_group(p))) {
  2985. task_rq_unlock(rq, p, &flags);
  2986. return -EPERM;
  2987. }
  2988. #endif
  2989. #ifdef CONFIG_SMP
  2990. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2991. cpumask_t *span = rq->rd->span;
  2992. /*
  2993. * Don't allow tasks with an affinity mask smaller than
  2994. * the entire root_domain to become SCHED_DEADLINE. We
  2995. * will also fail if there's no bandwidth available.
  2996. */
  2997. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2998. rq->rd->dl_bw.bw == 0) {
  2999. task_rq_unlock(rq, p, &flags);
  3000. return -EPERM;
  3001. }
  3002. }
  3003. #endif
  3004. }
  3005. /* recheck policy now with rq lock held */
  3006. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3007. policy = oldpolicy = -1;
  3008. task_rq_unlock(rq, p, &flags);
  3009. goto recheck;
  3010. }
  3011. /*
  3012. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3013. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3014. * is available.
  3015. */
  3016. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3017. task_rq_unlock(rq, p, &flags);
  3018. return -EBUSY;
  3019. }
  3020. p->sched_reset_on_fork = reset_on_fork;
  3021. oldprio = p->prio;
  3022. /*
  3023. * Special case for priority boosted tasks.
  3024. *
  3025. * If the new priority is lower or equal (user space view)
  3026. * than the current (boosted) priority, we just store the new
  3027. * normal parameters and do not touch the scheduler class and
  3028. * the runqueue. This will be done when the task deboost
  3029. * itself.
  3030. */
  3031. if (rt_mutex_check_prio(p, newprio)) {
  3032. __setscheduler_params(p, attr);
  3033. task_rq_unlock(rq, p, &flags);
  3034. return 0;
  3035. }
  3036. on_rq = p->on_rq;
  3037. running = task_current(rq, p);
  3038. if (on_rq)
  3039. dequeue_task(rq, p, 0);
  3040. if (running)
  3041. p->sched_class->put_prev_task(rq, p);
  3042. prev_class = p->sched_class;
  3043. __setscheduler(rq, p, attr);
  3044. if (running)
  3045. p->sched_class->set_curr_task(rq);
  3046. if (on_rq) {
  3047. /*
  3048. * We enqueue to tail when the priority of a task is
  3049. * increased (user space view).
  3050. */
  3051. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3052. }
  3053. check_class_changed(rq, p, prev_class, oldprio);
  3054. task_rq_unlock(rq, p, &flags);
  3055. rt_mutex_adjust_pi(p);
  3056. return 0;
  3057. }
  3058. static int _sched_setscheduler(struct task_struct *p, int policy,
  3059. const struct sched_param *param, bool check)
  3060. {
  3061. struct sched_attr attr = {
  3062. .sched_policy = policy,
  3063. .sched_priority = param->sched_priority,
  3064. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3065. };
  3066. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3067. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3068. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3069. policy &= ~SCHED_RESET_ON_FORK;
  3070. attr.sched_policy = policy;
  3071. }
  3072. return __sched_setscheduler(p, &attr, check);
  3073. }
  3074. /**
  3075. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3076. * @p: the task in question.
  3077. * @policy: new policy.
  3078. * @param: structure containing the new RT priority.
  3079. *
  3080. * Return: 0 on success. An error code otherwise.
  3081. *
  3082. * NOTE that the task may be already dead.
  3083. */
  3084. int sched_setscheduler(struct task_struct *p, int policy,
  3085. const struct sched_param *param)
  3086. {
  3087. return _sched_setscheduler(p, policy, param, true);
  3088. }
  3089. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3090. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3091. {
  3092. return __sched_setscheduler(p, attr, true);
  3093. }
  3094. EXPORT_SYMBOL_GPL(sched_setattr);
  3095. /**
  3096. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3097. * @p: the task in question.
  3098. * @policy: new policy.
  3099. * @param: structure containing the new RT priority.
  3100. *
  3101. * Just like sched_setscheduler, only don't bother checking if the
  3102. * current context has permission. For example, this is needed in
  3103. * stop_machine(): we create temporary high priority worker threads,
  3104. * but our caller might not have that capability.
  3105. *
  3106. * Return: 0 on success. An error code otherwise.
  3107. */
  3108. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3109. const struct sched_param *param)
  3110. {
  3111. return _sched_setscheduler(p, policy, param, false);
  3112. }
  3113. static int
  3114. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3115. {
  3116. struct sched_param lparam;
  3117. struct task_struct *p;
  3118. int retval;
  3119. if (!param || pid < 0)
  3120. return -EINVAL;
  3121. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3122. return -EFAULT;
  3123. rcu_read_lock();
  3124. retval = -ESRCH;
  3125. p = find_process_by_pid(pid);
  3126. if (p != NULL)
  3127. retval = sched_setscheduler(p, policy, &lparam);
  3128. rcu_read_unlock();
  3129. return retval;
  3130. }
  3131. /*
  3132. * Mimics kernel/events/core.c perf_copy_attr().
  3133. */
  3134. static int sched_copy_attr(struct sched_attr __user *uattr,
  3135. struct sched_attr *attr)
  3136. {
  3137. u32 size;
  3138. int ret;
  3139. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3140. return -EFAULT;
  3141. /*
  3142. * zero the full structure, so that a short copy will be nice.
  3143. */
  3144. memset(attr, 0, sizeof(*attr));
  3145. ret = get_user(size, &uattr->size);
  3146. if (ret)
  3147. return ret;
  3148. if (size > PAGE_SIZE) /* silly large */
  3149. goto err_size;
  3150. if (!size) /* abi compat */
  3151. size = SCHED_ATTR_SIZE_VER0;
  3152. if (size < SCHED_ATTR_SIZE_VER0)
  3153. goto err_size;
  3154. /*
  3155. * If we're handed a bigger struct than we know of,
  3156. * ensure all the unknown bits are 0 - i.e. new
  3157. * user-space does not rely on any kernel feature
  3158. * extensions we dont know about yet.
  3159. */
  3160. if (size > sizeof(*attr)) {
  3161. unsigned char __user *addr;
  3162. unsigned char __user *end;
  3163. unsigned char val;
  3164. addr = (void __user *)uattr + sizeof(*attr);
  3165. end = (void __user *)uattr + size;
  3166. for (; addr < end; addr++) {
  3167. ret = get_user(val, addr);
  3168. if (ret)
  3169. return ret;
  3170. if (val)
  3171. goto err_size;
  3172. }
  3173. size = sizeof(*attr);
  3174. }
  3175. ret = copy_from_user(attr, uattr, size);
  3176. if (ret)
  3177. return -EFAULT;
  3178. /*
  3179. * XXX: do we want to be lenient like existing syscalls; or do we want
  3180. * to be strict and return an error on out-of-bounds values?
  3181. */
  3182. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3183. return 0;
  3184. err_size:
  3185. put_user(sizeof(*attr), &uattr->size);
  3186. return -E2BIG;
  3187. }
  3188. /**
  3189. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3190. * @pid: the pid in question.
  3191. * @policy: new policy.
  3192. * @param: structure containing the new RT priority.
  3193. *
  3194. * Return: 0 on success. An error code otherwise.
  3195. */
  3196. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3197. struct sched_param __user *, param)
  3198. {
  3199. /* negative values for policy are not valid */
  3200. if (policy < 0)
  3201. return -EINVAL;
  3202. return do_sched_setscheduler(pid, policy, param);
  3203. }
  3204. /**
  3205. * sys_sched_setparam - set/change the RT priority of a thread
  3206. * @pid: the pid in question.
  3207. * @param: structure containing the new RT priority.
  3208. *
  3209. * Return: 0 on success. An error code otherwise.
  3210. */
  3211. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3212. {
  3213. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3214. }
  3215. /**
  3216. * sys_sched_setattr - same as above, but with extended sched_attr
  3217. * @pid: the pid in question.
  3218. * @uattr: structure containing the extended parameters.
  3219. * @flags: for future extension.
  3220. */
  3221. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3222. unsigned int, flags)
  3223. {
  3224. struct sched_attr attr;
  3225. struct task_struct *p;
  3226. int retval;
  3227. if (!uattr || pid < 0 || flags)
  3228. return -EINVAL;
  3229. retval = sched_copy_attr(uattr, &attr);
  3230. if (retval)
  3231. return retval;
  3232. if ((int)attr.sched_policy < 0)
  3233. return -EINVAL;
  3234. rcu_read_lock();
  3235. retval = -ESRCH;
  3236. p = find_process_by_pid(pid);
  3237. if (p != NULL)
  3238. retval = sched_setattr(p, &attr);
  3239. rcu_read_unlock();
  3240. return retval;
  3241. }
  3242. /**
  3243. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3244. * @pid: the pid in question.
  3245. *
  3246. * Return: On success, the policy of the thread. Otherwise, a negative error
  3247. * code.
  3248. */
  3249. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3250. {
  3251. struct task_struct *p;
  3252. int retval;
  3253. if (pid < 0)
  3254. return -EINVAL;
  3255. retval = -ESRCH;
  3256. rcu_read_lock();
  3257. p = find_process_by_pid(pid);
  3258. if (p) {
  3259. retval = security_task_getscheduler(p);
  3260. if (!retval)
  3261. retval = p->policy
  3262. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3263. }
  3264. rcu_read_unlock();
  3265. return retval;
  3266. }
  3267. /**
  3268. * sys_sched_getparam - get the RT priority of a thread
  3269. * @pid: the pid in question.
  3270. * @param: structure containing the RT priority.
  3271. *
  3272. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3273. * code.
  3274. */
  3275. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3276. {
  3277. struct sched_param lp = { .sched_priority = 0 };
  3278. struct task_struct *p;
  3279. int retval;
  3280. if (!param || pid < 0)
  3281. return -EINVAL;
  3282. rcu_read_lock();
  3283. p = find_process_by_pid(pid);
  3284. retval = -ESRCH;
  3285. if (!p)
  3286. goto out_unlock;
  3287. retval = security_task_getscheduler(p);
  3288. if (retval)
  3289. goto out_unlock;
  3290. if (task_has_rt_policy(p))
  3291. lp.sched_priority = p->rt_priority;
  3292. rcu_read_unlock();
  3293. /*
  3294. * This one might sleep, we cannot do it with a spinlock held ...
  3295. */
  3296. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3297. return retval;
  3298. out_unlock:
  3299. rcu_read_unlock();
  3300. return retval;
  3301. }
  3302. static int sched_read_attr(struct sched_attr __user *uattr,
  3303. struct sched_attr *attr,
  3304. unsigned int usize)
  3305. {
  3306. int ret;
  3307. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3308. return -EFAULT;
  3309. /*
  3310. * If we're handed a smaller struct than we know of,
  3311. * ensure all the unknown bits are 0 - i.e. old
  3312. * user-space does not get uncomplete information.
  3313. */
  3314. if (usize < sizeof(*attr)) {
  3315. unsigned char *addr;
  3316. unsigned char *end;
  3317. addr = (void *)attr + usize;
  3318. end = (void *)attr + sizeof(*attr);
  3319. for (; addr < end; addr++) {
  3320. if (*addr)
  3321. return -EFBIG;
  3322. }
  3323. attr->size = usize;
  3324. }
  3325. ret = copy_to_user(uattr, attr, attr->size);
  3326. if (ret)
  3327. return -EFAULT;
  3328. return 0;
  3329. }
  3330. /**
  3331. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3332. * @pid: the pid in question.
  3333. * @uattr: structure containing the extended parameters.
  3334. * @size: sizeof(attr) for fwd/bwd comp.
  3335. * @flags: for future extension.
  3336. */
  3337. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3338. unsigned int, size, unsigned int, flags)
  3339. {
  3340. struct sched_attr attr = {
  3341. .size = sizeof(struct sched_attr),
  3342. };
  3343. struct task_struct *p;
  3344. int retval;
  3345. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3346. size < SCHED_ATTR_SIZE_VER0 || flags)
  3347. return -EINVAL;
  3348. rcu_read_lock();
  3349. p = find_process_by_pid(pid);
  3350. retval = -ESRCH;
  3351. if (!p)
  3352. goto out_unlock;
  3353. retval = security_task_getscheduler(p);
  3354. if (retval)
  3355. goto out_unlock;
  3356. attr.sched_policy = p->policy;
  3357. if (p->sched_reset_on_fork)
  3358. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3359. if (task_has_dl_policy(p))
  3360. __getparam_dl(p, &attr);
  3361. else if (task_has_rt_policy(p))
  3362. attr.sched_priority = p->rt_priority;
  3363. else
  3364. attr.sched_nice = task_nice(p);
  3365. rcu_read_unlock();
  3366. retval = sched_read_attr(uattr, &attr, size);
  3367. return retval;
  3368. out_unlock:
  3369. rcu_read_unlock();
  3370. return retval;
  3371. }
  3372. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3373. {
  3374. cpumask_var_t cpus_allowed, new_mask;
  3375. struct task_struct *p;
  3376. int retval;
  3377. rcu_read_lock();
  3378. p = find_process_by_pid(pid);
  3379. if (!p) {
  3380. rcu_read_unlock();
  3381. return -ESRCH;
  3382. }
  3383. /* Prevent p going away */
  3384. get_task_struct(p);
  3385. rcu_read_unlock();
  3386. if (p->flags & PF_NO_SETAFFINITY) {
  3387. retval = -EINVAL;
  3388. goto out_put_task;
  3389. }
  3390. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3391. retval = -ENOMEM;
  3392. goto out_put_task;
  3393. }
  3394. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3395. retval = -ENOMEM;
  3396. goto out_free_cpus_allowed;
  3397. }
  3398. retval = -EPERM;
  3399. if (!check_same_owner(p)) {
  3400. rcu_read_lock();
  3401. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3402. rcu_read_unlock();
  3403. goto out_unlock;
  3404. }
  3405. rcu_read_unlock();
  3406. }
  3407. retval = security_task_setscheduler(p);
  3408. if (retval)
  3409. goto out_unlock;
  3410. cpuset_cpus_allowed(p, cpus_allowed);
  3411. cpumask_and(new_mask, in_mask, cpus_allowed);
  3412. /*
  3413. * Since bandwidth control happens on root_domain basis,
  3414. * if admission test is enabled, we only admit -deadline
  3415. * tasks allowed to run on all the CPUs in the task's
  3416. * root_domain.
  3417. */
  3418. #ifdef CONFIG_SMP
  3419. if (task_has_dl_policy(p)) {
  3420. const struct cpumask *span = task_rq(p)->rd->span;
  3421. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3422. retval = -EBUSY;
  3423. goto out_unlock;
  3424. }
  3425. }
  3426. #endif
  3427. again:
  3428. retval = set_cpus_allowed_ptr(p, new_mask);
  3429. if (!retval) {
  3430. cpuset_cpus_allowed(p, cpus_allowed);
  3431. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3432. /*
  3433. * We must have raced with a concurrent cpuset
  3434. * update. Just reset the cpus_allowed to the
  3435. * cpuset's cpus_allowed
  3436. */
  3437. cpumask_copy(new_mask, cpus_allowed);
  3438. goto again;
  3439. }
  3440. }
  3441. out_unlock:
  3442. free_cpumask_var(new_mask);
  3443. out_free_cpus_allowed:
  3444. free_cpumask_var(cpus_allowed);
  3445. out_put_task:
  3446. put_task_struct(p);
  3447. return retval;
  3448. }
  3449. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3450. struct cpumask *new_mask)
  3451. {
  3452. if (len < cpumask_size())
  3453. cpumask_clear(new_mask);
  3454. else if (len > cpumask_size())
  3455. len = cpumask_size();
  3456. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3457. }
  3458. /**
  3459. * sys_sched_setaffinity - set the cpu affinity of a process
  3460. * @pid: pid of the process
  3461. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3462. * @user_mask_ptr: user-space pointer to the new cpu mask
  3463. *
  3464. * Return: 0 on success. An error code otherwise.
  3465. */
  3466. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3467. unsigned long __user *, user_mask_ptr)
  3468. {
  3469. cpumask_var_t new_mask;
  3470. int retval;
  3471. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3472. return -ENOMEM;
  3473. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3474. if (retval == 0)
  3475. retval = sched_setaffinity(pid, new_mask);
  3476. free_cpumask_var(new_mask);
  3477. return retval;
  3478. }
  3479. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3480. {
  3481. struct task_struct *p;
  3482. unsigned long flags;
  3483. int retval;
  3484. rcu_read_lock();
  3485. retval = -ESRCH;
  3486. p = find_process_by_pid(pid);
  3487. if (!p)
  3488. goto out_unlock;
  3489. retval = security_task_getscheduler(p);
  3490. if (retval)
  3491. goto out_unlock;
  3492. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3493. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3494. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3495. out_unlock:
  3496. rcu_read_unlock();
  3497. return retval;
  3498. }
  3499. /**
  3500. * sys_sched_getaffinity - get the cpu affinity of a process
  3501. * @pid: pid of the process
  3502. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3503. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3504. *
  3505. * Return: 0 on success. An error code otherwise.
  3506. */
  3507. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3508. unsigned long __user *, user_mask_ptr)
  3509. {
  3510. int ret;
  3511. cpumask_var_t mask;
  3512. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3513. return -EINVAL;
  3514. if (len & (sizeof(unsigned long)-1))
  3515. return -EINVAL;
  3516. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3517. return -ENOMEM;
  3518. ret = sched_getaffinity(pid, mask);
  3519. if (ret == 0) {
  3520. size_t retlen = min_t(size_t, len, cpumask_size());
  3521. if (copy_to_user(user_mask_ptr, mask, retlen))
  3522. ret = -EFAULT;
  3523. else
  3524. ret = retlen;
  3525. }
  3526. free_cpumask_var(mask);
  3527. return ret;
  3528. }
  3529. /**
  3530. * sys_sched_yield - yield the current processor to other threads.
  3531. *
  3532. * This function yields the current CPU to other tasks. If there are no
  3533. * other threads running on this CPU then this function will return.
  3534. *
  3535. * Return: 0.
  3536. */
  3537. SYSCALL_DEFINE0(sched_yield)
  3538. {
  3539. struct rq *rq = this_rq_lock();
  3540. schedstat_inc(rq, yld_count);
  3541. current->sched_class->yield_task(rq);
  3542. /*
  3543. * Since we are going to call schedule() anyway, there's
  3544. * no need to preempt or enable interrupts:
  3545. */
  3546. __release(rq->lock);
  3547. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3548. do_raw_spin_unlock(&rq->lock);
  3549. sched_preempt_enable_no_resched();
  3550. schedule();
  3551. return 0;
  3552. }
  3553. static void __cond_resched(void)
  3554. {
  3555. __preempt_count_add(PREEMPT_ACTIVE);
  3556. __schedule();
  3557. __preempt_count_sub(PREEMPT_ACTIVE);
  3558. }
  3559. int __sched _cond_resched(void)
  3560. {
  3561. if (should_resched()) {
  3562. __cond_resched();
  3563. return 1;
  3564. }
  3565. return 0;
  3566. }
  3567. EXPORT_SYMBOL(_cond_resched);
  3568. /*
  3569. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3570. * call schedule, and on return reacquire the lock.
  3571. *
  3572. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3573. * operations here to prevent schedule() from being called twice (once via
  3574. * spin_unlock(), once by hand).
  3575. */
  3576. int __cond_resched_lock(spinlock_t *lock)
  3577. {
  3578. int resched = should_resched();
  3579. int ret = 0;
  3580. lockdep_assert_held(lock);
  3581. if (spin_needbreak(lock) || resched) {
  3582. spin_unlock(lock);
  3583. if (resched)
  3584. __cond_resched();
  3585. else
  3586. cpu_relax();
  3587. ret = 1;
  3588. spin_lock(lock);
  3589. }
  3590. return ret;
  3591. }
  3592. EXPORT_SYMBOL(__cond_resched_lock);
  3593. int __sched __cond_resched_softirq(void)
  3594. {
  3595. BUG_ON(!in_softirq());
  3596. if (should_resched()) {
  3597. local_bh_enable();
  3598. __cond_resched();
  3599. local_bh_disable();
  3600. return 1;
  3601. }
  3602. return 0;
  3603. }
  3604. EXPORT_SYMBOL(__cond_resched_softirq);
  3605. /**
  3606. * yield - yield the current processor to other threads.
  3607. *
  3608. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3609. *
  3610. * The scheduler is at all times free to pick the calling task as the most
  3611. * eligible task to run, if removing the yield() call from your code breaks
  3612. * it, its already broken.
  3613. *
  3614. * Typical broken usage is:
  3615. *
  3616. * while (!event)
  3617. * yield();
  3618. *
  3619. * where one assumes that yield() will let 'the other' process run that will
  3620. * make event true. If the current task is a SCHED_FIFO task that will never
  3621. * happen. Never use yield() as a progress guarantee!!
  3622. *
  3623. * If you want to use yield() to wait for something, use wait_event().
  3624. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3625. * If you still want to use yield(), do not!
  3626. */
  3627. void __sched yield(void)
  3628. {
  3629. set_current_state(TASK_RUNNING);
  3630. sys_sched_yield();
  3631. }
  3632. EXPORT_SYMBOL(yield);
  3633. /**
  3634. * yield_to - yield the current processor to another thread in
  3635. * your thread group, or accelerate that thread toward the
  3636. * processor it's on.
  3637. * @p: target task
  3638. * @preempt: whether task preemption is allowed or not
  3639. *
  3640. * It's the caller's job to ensure that the target task struct
  3641. * can't go away on us before we can do any checks.
  3642. *
  3643. * Return:
  3644. * true (>0) if we indeed boosted the target task.
  3645. * false (0) if we failed to boost the target.
  3646. * -ESRCH if there's no task to yield to.
  3647. */
  3648. int __sched yield_to(struct task_struct *p, bool preempt)
  3649. {
  3650. struct task_struct *curr = current;
  3651. struct rq *rq, *p_rq;
  3652. unsigned long flags;
  3653. int yielded = 0;
  3654. local_irq_save(flags);
  3655. rq = this_rq();
  3656. again:
  3657. p_rq = task_rq(p);
  3658. /*
  3659. * If we're the only runnable task on the rq and target rq also
  3660. * has only one task, there's absolutely no point in yielding.
  3661. */
  3662. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3663. yielded = -ESRCH;
  3664. goto out_irq;
  3665. }
  3666. double_rq_lock(rq, p_rq);
  3667. if (task_rq(p) != p_rq) {
  3668. double_rq_unlock(rq, p_rq);
  3669. goto again;
  3670. }
  3671. if (!curr->sched_class->yield_to_task)
  3672. goto out_unlock;
  3673. if (curr->sched_class != p->sched_class)
  3674. goto out_unlock;
  3675. if (task_running(p_rq, p) || p->state)
  3676. goto out_unlock;
  3677. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3678. if (yielded) {
  3679. schedstat_inc(rq, yld_count);
  3680. /*
  3681. * Make p's CPU reschedule; pick_next_entity takes care of
  3682. * fairness.
  3683. */
  3684. if (preempt && rq != p_rq)
  3685. resched_curr(p_rq);
  3686. }
  3687. out_unlock:
  3688. double_rq_unlock(rq, p_rq);
  3689. out_irq:
  3690. local_irq_restore(flags);
  3691. if (yielded > 0)
  3692. schedule();
  3693. return yielded;
  3694. }
  3695. EXPORT_SYMBOL_GPL(yield_to);
  3696. /*
  3697. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3698. * that process accounting knows that this is a task in IO wait state.
  3699. */
  3700. void __sched io_schedule(void)
  3701. {
  3702. struct rq *rq = raw_rq();
  3703. delayacct_blkio_start();
  3704. atomic_inc(&rq->nr_iowait);
  3705. blk_flush_plug(current);
  3706. current->in_iowait = 1;
  3707. schedule();
  3708. current->in_iowait = 0;
  3709. atomic_dec(&rq->nr_iowait);
  3710. delayacct_blkio_end();
  3711. }
  3712. EXPORT_SYMBOL(io_schedule);
  3713. long __sched io_schedule_timeout(long timeout)
  3714. {
  3715. struct rq *rq = raw_rq();
  3716. long ret;
  3717. delayacct_blkio_start();
  3718. atomic_inc(&rq->nr_iowait);
  3719. blk_flush_plug(current);
  3720. current->in_iowait = 1;
  3721. ret = schedule_timeout(timeout);
  3722. current->in_iowait = 0;
  3723. atomic_dec(&rq->nr_iowait);
  3724. delayacct_blkio_end();
  3725. return ret;
  3726. }
  3727. /**
  3728. * sys_sched_get_priority_max - return maximum RT priority.
  3729. * @policy: scheduling class.
  3730. *
  3731. * Return: On success, this syscall returns the maximum
  3732. * rt_priority that can be used by a given scheduling class.
  3733. * On failure, a negative error code is returned.
  3734. */
  3735. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3736. {
  3737. int ret = -EINVAL;
  3738. switch (policy) {
  3739. case SCHED_FIFO:
  3740. case SCHED_RR:
  3741. ret = MAX_USER_RT_PRIO-1;
  3742. break;
  3743. case SCHED_DEADLINE:
  3744. case SCHED_NORMAL:
  3745. case SCHED_BATCH:
  3746. case SCHED_IDLE:
  3747. ret = 0;
  3748. break;
  3749. }
  3750. return ret;
  3751. }
  3752. /**
  3753. * sys_sched_get_priority_min - return minimum RT priority.
  3754. * @policy: scheduling class.
  3755. *
  3756. * Return: On success, this syscall returns the minimum
  3757. * rt_priority that can be used by a given scheduling class.
  3758. * On failure, a negative error code is returned.
  3759. */
  3760. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3761. {
  3762. int ret = -EINVAL;
  3763. switch (policy) {
  3764. case SCHED_FIFO:
  3765. case SCHED_RR:
  3766. ret = 1;
  3767. break;
  3768. case SCHED_DEADLINE:
  3769. case SCHED_NORMAL:
  3770. case SCHED_BATCH:
  3771. case SCHED_IDLE:
  3772. ret = 0;
  3773. }
  3774. return ret;
  3775. }
  3776. /**
  3777. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3778. * @pid: pid of the process.
  3779. * @interval: userspace pointer to the timeslice value.
  3780. *
  3781. * this syscall writes the default timeslice value of a given process
  3782. * into the user-space timespec buffer. A value of '0' means infinity.
  3783. *
  3784. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3785. * an error code.
  3786. */
  3787. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3788. struct timespec __user *, interval)
  3789. {
  3790. struct task_struct *p;
  3791. unsigned int time_slice;
  3792. unsigned long flags;
  3793. struct rq *rq;
  3794. int retval;
  3795. struct timespec t;
  3796. if (pid < 0)
  3797. return -EINVAL;
  3798. retval = -ESRCH;
  3799. rcu_read_lock();
  3800. p = find_process_by_pid(pid);
  3801. if (!p)
  3802. goto out_unlock;
  3803. retval = security_task_getscheduler(p);
  3804. if (retval)
  3805. goto out_unlock;
  3806. rq = task_rq_lock(p, &flags);
  3807. time_slice = 0;
  3808. if (p->sched_class->get_rr_interval)
  3809. time_slice = p->sched_class->get_rr_interval(rq, p);
  3810. task_rq_unlock(rq, p, &flags);
  3811. rcu_read_unlock();
  3812. jiffies_to_timespec(time_slice, &t);
  3813. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3814. return retval;
  3815. out_unlock:
  3816. rcu_read_unlock();
  3817. return retval;
  3818. }
  3819. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3820. void sched_show_task(struct task_struct *p)
  3821. {
  3822. unsigned long free = 0;
  3823. int ppid;
  3824. unsigned state;
  3825. state = p->state ? __ffs(p->state) + 1 : 0;
  3826. printk(KERN_INFO "%-15.15s %c", p->comm,
  3827. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3828. #if BITS_PER_LONG == 32
  3829. if (state == TASK_RUNNING)
  3830. printk(KERN_CONT " running ");
  3831. else
  3832. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3833. #else
  3834. if (state == TASK_RUNNING)
  3835. printk(KERN_CONT " running task ");
  3836. else
  3837. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3838. #endif
  3839. #ifdef CONFIG_DEBUG_STACK_USAGE
  3840. free = stack_not_used(p);
  3841. #endif
  3842. rcu_read_lock();
  3843. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3844. rcu_read_unlock();
  3845. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3846. task_pid_nr(p), ppid,
  3847. (unsigned long)task_thread_info(p)->flags);
  3848. print_worker_info(KERN_INFO, p);
  3849. show_stack(p, NULL);
  3850. }
  3851. void show_state_filter(unsigned long state_filter)
  3852. {
  3853. struct task_struct *g, *p;
  3854. #if BITS_PER_LONG == 32
  3855. printk(KERN_INFO
  3856. " task PC stack pid father\n");
  3857. #else
  3858. printk(KERN_INFO
  3859. " task PC stack pid father\n");
  3860. #endif
  3861. rcu_read_lock();
  3862. do_each_thread(g, p) {
  3863. /*
  3864. * reset the NMI-timeout, listing all files on a slow
  3865. * console might take a lot of time:
  3866. */
  3867. touch_nmi_watchdog();
  3868. if (!state_filter || (p->state & state_filter))
  3869. sched_show_task(p);
  3870. } while_each_thread(g, p);
  3871. touch_all_softlockup_watchdogs();
  3872. #ifdef CONFIG_SCHED_DEBUG
  3873. sysrq_sched_debug_show();
  3874. #endif
  3875. rcu_read_unlock();
  3876. /*
  3877. * Only show locks if all tasks are dumped:
  3878. */
  3879. if (!state_filter)
  3880. debug_show_all_locks();
  3881. }
  3882. void init_idle_bootup_task(struct task_struct *idle)
  3883. {
  3884. idle->sched_class = &idle_sched_class;
  3885. }
  3886. /**
  3887. * init_idle - set up an idle thread for a given CPU
  3888. * @idle: task in question
  3889. * @cpu: cpu the idle task belongs to
  3890. *
  3891. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3892. * flag, to make booting more robust.
  3893. */
  3894. void init_idle(struct task_struct *idle, int cpu)
  3895. {
  3896. struct rq *rq = cpu_rq(cpu);
  3897. unsigned long flags;
  3898. raw_spin_lock_irqsave(&rq->lock, flags);
  3899. __sched_fork(0, idle);
  3900. idle->state = TASK_RUNNING;
  3901. idle->se.exec_start = sched_clock();
  3902. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3903. /*
  3904. * We're having a chicken and egg problem, even though we are
  3905. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3906. * lockdep check in task_group() will fail.
  3907. *
  3908. * Similar case to sched_fork(). / Alternatively we could
  3909. * use task_rq_lock() here and obtain the other rq->lock.
  3910. *
  3911. * Silence PROVE_RCU
  3912. */
  3913. rcu_read_lock();
  3914. __set_task_cpu(idle, cpu);
  3915. rcu_read_unlock();
  3916. rq->curr = rq->idle = idle;
  3917. idle->on_rq = 1;
  3918. #if defined(CONFIG_SMP)
  3919. idle->on_cpu = 1;
  3920. #endif
  3921. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3922. /* Set the preempt count _outside_ the spinlocks! */
  3923. init_idle_preempt_count(idle, cpu);
  3924. /*
  3925. * The idle tasks have their own, simple scheduling class:
  3926. */
  3927. idle->sched_class = &idle_sched_class;
  3928. ftrace_graph_init_idle_task(idle, cpu);
  3929. vtime_init_idle(idle, cpu);
  3930. #if defined(CONFIG_SMP)
  3931. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3932. #endif
  3933. }
  3934. #ifdef CONFIG_SMP
  3935. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3936. {
  3937. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3938. p->sched_class->set_cpus_allowed(p, new_mask);
  3939. cpumask_copy(&p->cpus_allowed, new_mask);
  3940. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3941. }
  3942. /*
  3943. * This is how migration works:
  3944. *
  3945. * 1) we invoke migration_cpu_stop() on the target CPU using
  3946. * stop_one_cpu().
  3947. * 2) stopper starts to run (implicitly forcing the migrated thread
  3948. * off the CPU)
  3949. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3950. * 4) if it's in the wrong runqueue then the migration thread removes
  3951. * it and puts it into the right queue.
  3952. * 5) stopper completes and stop_one_cpu() returns and the migration
  3953. * is done.
  3954. */
  3955. /*
  3956. * Change a given task's CPU affinity. Migrate the thread to a
  3957. * proper CPU and schedule it away if the CPU it's executing on
  3958. * is removed from the allowed bitmask.
  3959. *
  3960. * NOTE: the caller must have a valid reference to the task, the
  3961. * task must not exit() & deallocate itself prematurely. The
  3962. * call is not atomic; no spinlocks may be held.
  3963. */
  3964. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3965. {
  3966. unsigned long flags;
  3967. struct rq *rq;
  3968. unsigned int dest_cpu;
  3969. int ret = 0;
  3970. rq = task_rq_lock(p, &flags);
  3971. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3972. goto out;
  3973. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3974. ret = -EINVAL;
  3975. goto out;
  3976. }
  3977. do_set_cpus_allowed(p, new_mask);
  3978. /* Can the task run on the task's current CPU? If so, we're done */
  3979. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3980. goto out;
  3981. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3982. if (p->on_rq) {
  3983. struct migration_arg arg = { p, dest_cpu };
  3984. /* Need help from migration thread: drop lock and wait. */
  3985. task_rq_unlock(rq, p, &flags);
  3986. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3987. tlb_migrate_finish(p->mm);
  3988. return 0;
  3989. }
  3990. out:
  3991. task_rq_unlock(rq, p, &flags);
  3992. return ret;
  3993. }
  3994. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3995. /*
  3996. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3997. * this because either it can't run here any more (set_cpus_allowed()
  3998. * away from this CPU, or CPU going down), or because we're
  3999. * attempting to rebalance this task on exec (sched_exec).
  4000. *
  4001. * So we race with normal scheduler movements, but that's OK, as long
  4002. * as the task is no longer on this CPU.
  4003. *
  4004. * Returns non-zero if task was successfully migrated.
  4005. */
  4006. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4007. {
  4008. struct rq *rq_dest, *rq_src;
  4009. int ret = 0;
  4010. if (unlikely(!cpu_active(dest_cpu)))
  4011. return ret;
  4012. rq_src = cpu_rq(src_cpu);
  4013. rq_dest = cpu_rq(dest_cpu);
  4014. raw_spin_lock(&p->pi_lock);
  4015. double_rq_lock(rq_src, rq_dest);
  4016. /* Already moved. */
  4017. if (task_cpu(p) != src_cpu)
  4018. goto done;
  4019. /* Affinity changed (again). */
  4020. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4021. goto fail;
  4022. /*
  4023. * If we're not on a rq, the next wake-up will ensure we're
  4024. * placed properly.
  4025. */
  4026. if (p->on_rq) {
  4027. dequeue_task(rq_src, p, 0);
  4028. set_task_cpu(p, dest_cpu);
  4029. enqueue_task(rq_dest, p, 0);
  4030. check_preempt_curr(rq_dest, p, 0);
  4031. }
  4032. done:
  4033. ret = 1;
  4034. fail:
  4035. double_rq_unlock(rq_src, rq_dest);
  4036. raw_spin_unlock(&p->pi_lock);
  4037. return ret;
  4038. }
  4039. #ifdef CONFIG_NUMA_BALANCING
  4040. /* Migrate current task p to target_cpu */
  4041. int migrate_task_to(struct task_struct *p, int target_cpu)
  4042. {
  4043. struct migration_arg arg = { p, target_cpu };
  4044. int curr_cpu = task_cpu(p);
  4045. if (curr_cpu == target_cpu)
  4046. return 0;
  4047. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4048. return -EINVAL;
  4049. /* TODO: This is not properly updating schedstats */
  4050. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4051. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4052. }
  4053. /*
  4054. * Requeue a task on a given node and accurately track the number of NUMA
  4055. * tasks on the runqueues
  4056. */
  4057. void sched_setnuma(struct task_struct *p, int nid)
  4058. {
  4059. struct rq *rq;
  4060. unsigned long flags;
  4061. bool on_rq, running;
  4062. rq = task_rq_lock(p, &flags);
  4063. on_rq = p->on_rq;
  4064. running = task_current(rq, p);
  4065. if (on_rq)
  4066. dequeue_task(rq, p, 0);
  4067. if (running)
  4068. p->sched_class->put_prev_task(rq, p);
  4069. p->numa_preferred_nid = nid;
  4070. if (running)
  4071. p->sched_class->set_curr_task(rq);
  4072. if (on_rq)
  4073. enqueue_task(rq, p, 0);
  4074. task_rq_unlock(rq, p, &flags);
  4075. }
  4076. #endif
  4077. /*
  4078. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4079. * and performs thread migration by bumping thread off CPU then
  4080. * 'pushing' onto another runqueue.
  4081. */
  4082. static int migration_cpu_stop(void *data)
  4083. {
  4084. struct migration_arg *arg = data;
  4085. /*
  4086. * The original target cpu might have gone down and we might
  4087. * be on another cpu but it doesn't matter.
  4088. */
  4089. local_irq_disable();
  4090. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4091. local_irq_enable();
  4092. return 0;
  4093. }
  4094. #ifdef CONFIG_HOTPLUG_CPU
  4095. /*
  4096. * Ensures that the idle task is using init_mm right before its cpu goes
  4097. * offline.
  4098. */
  4099. void idle_task_exit(void)
  4100. {
  4101. struct mm_struct *mm = current->active_mm;
  4102. BUG_ON(cpu_online(smp_processor_id()));
  4103. if (mm != &init_mm) {
  4104. switch_mm(mm, &init_mm, current);
  4105. finish_arch_post_lock_switch();
  4106. }
  4107. mmdrop(mm);
  4108. }
  4109. /*
  4110. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4111. * we might have. Assumes we're called after migrate_tasks() so that the
  4112. * nr_active count is stable.
  4113. *
  4114. * Also see the comment "Global load-average calculations".
  4115. */
  4116. static void calc_load_migrate(struct rq *rq)
  4117. {
  4118. long delta = calc_load_fold_active(rq);
  4119. if (delta)
  4120. atomic_long_add(delta, &calc_load_tasks);
  4121. }
  4122. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4123. {
  4124. }
  4125. static const struct sched_class fake_sched_class = {
  4126. .put_prev_task = put_prev_task_fake,
  4127. };
  4128. static struct task_struct fake_task = {
  4129. /*
  4130. * Avoid pull_{rt,dl}_task()
  4131. */
  4132. .prio = MAX_PRIO + 1,
  4133. .sched_class = &fake_sched_class,
  4134. };
  4135. /*
  4136. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4137. * try_to_wake_up()->select_task_rq().
  4138. *
  4139. * Called with rq->lock held even though we'er in stop_machine() and
  4140. * there's no concurrency possible, we hold the required locks anyway
  4141. * because of lock validation efforts.
  4142. */
  4143. static void migrate_tasks(unsigned int dead_cpu)
  4144. {
  4145. struct rq *rq = cpu_rq(dead_cpu);
  4146. struct task_struct *next, *stop = rq->stop;
  4147. int dest_cpu;
  4148. /*
  4149. * Fudge the rq selection such that the below task selection loop
  4150. * doesn't get stuck on the currently eligible stop task.
  4151. *
  4152. * We're currently inside stop_machine() and the rq is either stuck
  4153. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4154. * either way we should never end up calling schedule() until we're
  4155. * done here.
  4156. */
  4157. rq->stop = NULL;
  4158. /*
  4159. * put_prev_task() and pick_next_task() sched
  4160. * class method both need to have an up-to-date
  4161. * value of rq->clock[_task]
  4162. */
  4163. update_rq_clock(rq);
  4164. for ( ; ; ) {
  4165. /*
  4166. * There's this thread running, bail when that's the only
  4167. * remaining thread.
  4168. */
  4169. if (rq->nr_running == 1)
  4170. break;
  4171. next = pick_next_task(rq, &fake_task);
  4172. BUG_ON(!next);
  4173. next->sched_class->put_prev_task(rq, next);
  4174. /* Find suitable destination for @next, with force if needed. */
  4175. dest_cpu = select_fallback_rq(dead_cpu, next);
  4176. raw_spin_unlock(&rq->lock);
  4177. __migrate_task(next, dead_cpu, dest_cpu);
  4178. raw_spin_lock(&rq->lock);
  4179. }
  4180. rq->stop = stop;
  4181. }
  4182. #endif /* CONFIG_HOTPLUG_CPU */
  4183. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4184. static struct ctl_table sd_ctl_dir[] = {
  4185. {
  4186. .procname = "sched_domain",
  4187. .mode = 0555,
  4188. },
  4189. {}
  4190. };
  4191. static struct ctl_table sd_ctl_root[] = {
  4192. {
  4193. .procname = "kernel",
  4194. .mode = 0555,
  4195. .child = sd_ctl_dir,
  4196. },
  4197. {}
  4198. };
  4199. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4200. {
  4201. struct ctl_table *entry =
  4202. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4203. return entry;
  4204. }
  4205. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4206. {
  4207. struct ctl_table *entry;
  4208. /*
  4209. * In the intermediate directories, both the child directory and
  4210. * procname are dynamically allocated and could fail but the mode
  4211. * will always be set. In the lowest directory the names are
  4212. * static strings and all have proc handlers.
  4213. */
  4214. for (entry = *tablep; entry->mode; entry++) {
  4215. if (entry->child)
  4216. sd_free_ctl_entry(&entry->child);
  4217. if (entry->proc_handler == NULL)
  4218. kfree(entry->procname);
  4219. }
  4220. kfree(*tablep);
  4221. *tablep = NULL;
  4222. }
  4223. static int min_load_idx = 0;
  4224. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4225. static void
  4226. set_table_entry(struct ctl_table *entry,
  4227. const char *procname, void *data, int maxlen,
  4228. umode_t mode, proc_handler *proc_handler,
  4229. bool load_idx)
  4230. {
  4231. entry->procname = procname;
  4232. entry->data = data;
  4233. entry->maxlen = maxlen;
  4234. entry->mode = mode;
  4235. entry->proc_handler = proc_handler;
  4236. if (load_idx) {
  4237. entry->extra1 = &min_load_idx;
  4238. entry->extra2 = &max_load_idx;
  4239. }
  4240. }
  4241. static struct ctl_table *
  4242. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4243. {
  4244. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4245. if (table == NULL)
  4246. return NULL;
  4247. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4248. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4249. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4250. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4251. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4252. sizeof(int), 0644, proc_dointvec_minmax, true);
  4253. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4254. sizeof(int), 0644, proc_dointvec_minmax, true);
  4255. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4256. sizeof(int), 0644, proc_dointvec_minmax, true);
  4257. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4258. sizeof(int), 0644, proc_dointvec_minmax, true);
  4259. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4260. sizeof(int), 0644, proc_dointvec_minmax, true);
  4261. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4262. sizeof(int), 0644, proc_dointvec_minmax, false);
  4263. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4264. sizeof(int), 0644, proc_dointvec_minmax, false);
  4265. set_table_entry(&table[9], "cache_nice_tries",
  4266. &sd->cache_nice_tries,
  4267. sizeof(int), 0644, proc_dointvec_minmax, false);
  4268. set_table_entry(&table[10], "flags", &sd->flags,
  4269. sizeof(int), 0644, proc_dointvec_minmax, false);
  4270. set_table_entry(&table[11], "max_newidle_lb_cost",
  4271. &sd->max_newidle_lb_cost,
  4272. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4273. set_table_entry(&table[12], "name", sd->name,
  4274. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4275. /* &table[13] is terminator */
  4276. return table;
  4277. }
  4278. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4279. {
  4280. struct ctl_table *entry, *table;
  4281. struct sched_domain *sd;
  4282. int domain_num = 0, i;
  4283. char buf[32];
  4284. for_each_domain(cpu, sd)
  4285. domain_num++;
  4286. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4287. if (table == NULL)
  4288. return NULL;
  4289. i = 0;
  4290. for_each_domain(cpu, sd) {
  4291. snprintf(buf, 32, "domain%d", i);
  4292. entry->procname = kstrdup(buf, GFP_KERNEL);
  4293. entry->mode = 0555;
  4294. entry->child = sd_alloc_ctl_domain_table(sd);
  4295. entry++;
  4296. i++;
  4297. }
  4298. return table;
  4299. }
  4300. static struct ctl_table_header *sd_sysctl_header;
  4301. static void register_sched_domain_sysctl(void)
  4302. {
  4303. int i, cpu_num = num_possible_cpus();
  4304. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4305. char buf[32];
  4306. WARN_ON(sd_ctl_dir[0].child);
  4307. sd_ctl_dir[0].child = entry;
  4308. if (entry == NULL)
  4309. return;
  4310. for_each_possible_cpu(i) {
  4311. snprintf(buf, 32, "cpu%d", i);
  4312. entry->procname = kstrdup(buf, GFP_KERNEL);
  4313. entry->mode = 0555;
  4314. entry->child = sd_alloc_ctl_cpu_table(i);
  4315. entry++;
  4316. }
  4317. WARN_ON(sd_sysctl_header);
  4318. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4319. }
  4320. /* may be called multiple times per register */
  4321. static void unregister_sched_domain_sysctl(void)
  4322. {
  4323. if (sd_sysctl_header)
  4324. unregister_sysctl_table(sd_sysctl_header);
  4325. sd_sysctl_header = NULL;
  4326. if (sd_ctl_dir[0].child)
  4327. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4328. }
  4329. #else
  4330. static void register_sched_domain_sysctl(void)
  4331. {
  4332. }
  4333. static void unregister_sched_domain_sysctl(void)
  4334. {
  4335. }
  4336. #endif
  4337. static void set_rq_online(struct rq *rq)
  4338. {
  4339. if (!rq->online) {
  4340. const struct sched_class *class;
  4341. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4342. rq->online = 1;
  4343. for_each_class(class) {
  4344. if (class->rq_online)
  4345. class->rq_online(rq);
  4346. }
  4347. }
  4348. }
  4349. static void set_rq_offline(struct rq *rq)
  4350. {
  4351. if (rq->online) {
  4352. const struct sched_class *class;
  4353. for_each_class(class) {
  4354. if (class->rq_offline)
  4355. class->rq_offline(rq);
  4356. }
  4357. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4358. rq->online = 0;
  4359. }
  4360. }
  4361. /*
  4362. * migration_call - callback that gets triggered when a CPU is added.
  4363. * Here we can start up the necessary migration thread for the new CPU.
  4364. */
  4365. static int
  4366. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4367. {
  4368. int cpu = (long)hcpu;
  4369. unsigned long flags;
  4370. struct rq *rq = cpu_rq(cpu);
  4371. switch (action & ~CPU_TASKS_FROZEN) {
  4372. case CPU_UP_PREPARE:
  4373. rq->calc_load_update = calc_load_update;
  4374. break;
  4375. case CPU_ONLINE:
  4376. /* Update our root-domain */
  4377. raw_spin_lock_irqsave(&rq->lock, flags);
  4378. if (rq->rd) {
  4379. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4380. set_rq_online(rq);
  4381. }
  4382. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4383. break;
  4384. #ifdef CONFIG_HOTPLUG_CPU
  4385. case CPU_DYING:
  4386. sched_ttwu_pending();
  4387. /* Update our root-domain */
  4388. raw_spin_lock_irqsave(&rq->lock, flags);
  4389. if (rq->rd) {
  4390. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4391. set_rq_offline(rq);
  4392. }
  4393. migrate_tasks(cpu);
  4394. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4395. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4396. break;
  4397. case CPU_DEAD:
  4398. calc_load_migrate(rq);
  4399. break;
  4400. #endif
  4401. }
  4402. update_max_interval();
  4403. return NOTIFY_OK;
  4404. }
  4405. /*
  4406. * Register at high priority so that task migration (migrate_all_tasks)
  4407. * happens before everything else. This has to be lower priority than
  4408. * the notifier in the perf_event subsystem, though.
  4409. */
  4410. static struct notifier_block migration_notifier = {
  4411. .notifier_call = migration_call,
  4412. .priority = CPU_PRI_MIGRATION,
  4413. };
  4414. static void __cpuinit set_cpu_rq_start_time(void)
  4415. {
  4416. int cpu = smp_processor_id();
  4417. struct rq *rq = cpu_rq(cpu);
  4418. rq->age_stamp = sched_clock_cpu(cpu);
  4419. }
  4420. static int sched_cpu_active(struct notifier_block *nfb,
  4421. unsigned long action, void *hcpu)
  4422. {
  4423. switch (action & ~CPU_TASKS_FROZEN) {
  4424. case CPU_STARTING:
  4425. set_cpu_rq_start_time();
  4426. return NOTIFY_OK;
  4427. case CPU_DOWN_FAILED:
  4428. set_cpu_active((long)hcpu, true);
  4429. return NOTIFY_OK;
  4430. default:
  4431. return NOTIFY_DONE;
  4432. }
  4433. }
  4434. static int sched_cpu_inactive(struct notifier_block *nfb,
  4435. unsigned long action, void *hcpu)
  4436. {
  4437. unsigned long flags;
  4438. long cpu = (long)hcpu;
  4439. switch (action & ~CPU_TASKS_FROZEN) {
  4440. case CPU_DOWN_PREPARE:
  4441. set_cpu_active(cpu, false);
  4442. /* explicitly allow suspend */
  4443. if (!(action & CPU_TASKS_FROZEN)) {
  4444. struct dl_bw *dl_b = dl_bw_of(cpu);
  4445. bool overflow;
  4446. int cpus;
  4447. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4448. cpus = dl_bw_cpus(cpu);
  4449. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4450. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4451. if (overflow)
  4452. return notifier_from_errno(-EBUSY);
  4453. }
  4454. return NOTIFY_OK;
  4455. }
  4456. return NOTIFY_DONE;
  4457. }
  4458. static int __init migration_init(void)
  4459. {
  4460. void *cpu = (void *)(long)smp_processor_id();
  4461. int err;
  4462. /* Initialize migration for the boot CPU */
  4463. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4464. BUG_ON(err == NOTIFY_BAD);
  4465. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4466. register_cpu_notifier(&migration_notifier);
  4467. /* Register cpu active notifiers */
  4468. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4469. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4470. return 0;
  4471. }
  4472. early_initcall(migration_init);
  4473. #endif
  4474. #ifdef CONFIG_SMP
  4475. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4476. #ifdef CONFIG_SCHED_DEBUG
  4477. static __read_mostly int sched_debug_enabled;
  4478. static int __init sched_debug_setup(char *str)
  4479. {
  4480. sched_debug_enabled = 1;
  4481. return 0;
  4482. }
  4483. early_param("sched_debug", sched_debug_setup);
  4484. static inline bool sched_debug(void)
  4485. {
  4486. return sched_debug_enabled;
  4487. }
  4488. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4489. struct cpumask *groupmask)
  4490. {
  4491. struct sched_group *group = sd->groups;
  4492. char str[256];
  4493. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4494. cpumask_clear(groupmask);
  4495. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4496. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4497. printk("does not load-balance\n");
  4498. if (sd->parent)
  4499. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4500. " has parent");
  4501. return -1;
  4502. }
  4503. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4504. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4505. printk(KERN_ERR "ERROR: domain->span does not contain "
  4506. "CPU%d\n", cpu);
  4507. }
  4508. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4509. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4510. " CPU%d\n", cpu);
  4511. }
  4512. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4513. do {
  4514. if (!group) {
  4515. printk("\n");
  4516. printk(KERN_ERR "ERROR: group is NULL\n");
  4517. break;
  4518. }
  4519. /*
  4520. * Even though we initialize ->capacity to something semi-sane,
  4521. * we leave capacity_orig unset. This allows us to detect if
  4522. * domain iteration is still funny without causing /0 traps.
  4523. */
  4524. if (!group->sgc->capacity_orig) {
  4525. printk(KERN_CONT "\n");
  4526. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4527. break;
  4528. }
  4529. if (!cpumask_weight(sched_group_cpus(group))) {
  4530. printk(KERN_CONT "\n");
  4531. printk(KERN_ERR "ERROR: empty group\n");
  4532. break;
  4533. }
  4534. if (!(sd->flags & SD_OVERLAP) &&
  4535. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4536. printk(KERN_CONT "\n");
  4537. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4538. break;
  4539. }
  4540. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4541. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4542. printk(KERN_CONT " %s", str);
  4543. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4544. printk(KERN_CONT " (cpu_capacity = %d)",
  4545. group->sgc->capacity);
  4546. }
  4547. group = group->next;
  4548. } while (group != sd->groups);
  4549. printk(KERN_CONT "\n");
  4550. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4551. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4552. if (sd->parent &&
  4553. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4554. printk(KERN_ERR "ERROR: parent span is not a superset "
  4555. "of domain->span\n");
  4556. return 0;
  4557. }
  4558. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4559. {
  4560. int level = 0;
  4561. if (!sched_debug_enabled)
  4562. return;
  4563. if (!sd) {
  4564. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4565. return;
  4566. }
  4567. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4568. for (;;) {
  4569. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4570. break;
  4571. level++;
  4572. sd = sd->parent;
  4573. if (!sd)
  4574. break;
  4575. }
  4576. }
  4577. #else /* !CONFIG_SCHED_DEBUG */
  4578. # define sched_domain_debug(sd, cpu) do { } while (0)
  4579. static inline bool sched_debug(void)
  4580. {
  4581. return false;
  4582. }
  4583. #endif /* CONFIG_SCHED_DEBUG */
  4584. static int sd_degenerate(struct sched_domain *sd)
  4585. {
  4586. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4587. return 1;
  4588. /* Following flags need at least 2 groups */
  4589. if (sd->flags & (SD_LOAD_BALANCE |
  4590. SD_BALANCE_NEWIDLE |
  4591. SD_BALANCE_FORK |
  4592. SD_BALANCE_EXEC |
  4593. SD_SHARE_CPUCAPACITY |
  4594. SD_SHARE_PKG_RESOURCES |
  4595. SD_SHARE_POWERDOMAIN)) {
  4596. if (sd->groups != sd->groups->next)
  4597. return 0;
  4598. }
  4599. /* Following flags don't use groups */
  4600. if (sd->flags & (SD_WAKE_AFFINE))
  4601. return 0;
  4602. return 1;
  4603. }
  4604. static int
  4605. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4606. {
  4607. unsigned long cflags = sd->flags, pflags = parent->flags;
  4608. if (sd_degenerate(parent))
  4609. return 1;
  4610. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4611. return 0;
  4612. /* Flags needing groups don't count if only 1 group in parent */
  4613. if (parent->groups == parent->groups->next) {
  4614. pflags &= ~(SD_LOAD_BALANCE |
  4615. SD_BALANCE_NEWIDLE |
  4616. SD_BALANCE_FORK |
  4617. SD_BALANCE_EXEC |
  4618. SD_SHARE_CPUCAPACITY |
  4619. SD_SHARE_PKG_RESOURCES |
  4620. SD_PREFER_SIBLING |
  4621. SD_SHARE_POWERDOMAIN);
  4622. if (nr_node_ids == 1)
  4623. pflags &= ~SD_SERIALIZE;
  4624. }
  4625. if (~cflags & pflags)
  4626. return 0;
  4627. return 1;
  4628. }
  4629. static void free_rootdomain(struct rcu_head *rcu)
  4630. {
  4631. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4632. cpupri_cleanup(&rd->cpupri);
  4633. cpudl_cleanup(&rd->cpudl);
  4634. free_cpumask_var(rd->dlo_mask);
  4635. free_cpumask_var(rd->rto_mask);
  4636. free_cpumask_var(rd->online);
  4637. free_cpumask_var(rd->span);
  4638. kfree(rd);
  4639. }
  4640. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4641. {
  4642. struct root_domain *old_rd = NULL;
  4643. unsigned long flags;
  4644. raw_spin_lock_irqsave(&rq->lock, flags);
  4645. if (rq->rd) {
  4646. old_rd = rq->rd;
  4647. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4648. set_rq_offline(rq);
  4649. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4650. /*
  4651. * If we dont want to free the old_rd yet then
  4652. * set old_rd to NULL to skip the freeing later
  4653. * in this function:
  4654. */
  4655. if (!atomic_dec_and_test(&old_rd->refcount))
  4656. old_rd = NULL;
  4657. }
  4658. atomic_inc(&rd->refcount);
  4659. rq->rd = rd;
  4660. cpumask_set_cpu(rq->cpu, rd->span);
  4661. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4662. set_rq_online(rq);
  4663. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4664. if (old_rd)
  4665. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4666. }
  4667. static int init_rootdomain(struct root_domain *rd)
  4668. {
  4669. memset(rd, 0, sizeof(*rd));
  4670. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4671. goto out;
  4672. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4673. goto free_span;
  4674. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4675. goto free_online;
  4676. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4677. goto free_dlo_mask;
  4678. init_dl_bw(&rd->dl_bw);
  4679. if (cpudl_init(&rd->cpudl) != 0)
  4680. goto free_dlo_mask;
  4681. if (cpupri_init(&rd->cpupri) != 0)
  4682. goto free_rto_mask;
  4683. return 0;
  4684. free_rto_mask:
  4685. free_cpumask_var(rd->rto_mask);
  4686. free_dlo_mask:
  4687. free_cpumask_var(rd->dlo_mask);
  4688. free_online:
  4689. free_cpumask_var(rd->online);
  4690. free_span:
  4691. free_cpumask_var(rd->span);
  4692. out:
  4693. return -ENOMEM;
  4694. }
  4695. /*
  4696. * By default the system creates a single root-domain with all cpus as
  4697. * members (mimicking the global state we have today).
  4698. */
  4699. struct root_domain def_root_domain;
  4700. static void init_defrootdomain(void)
  4701. {
  4702. init_rootdomain(&def_root_domain);
  4703. atomic_set(&def_root_domain.refcount, 1);
  4704. }
  4705. static struct root_domain *alloc_rootdomain(void)
  4706. {
  4707. struct root_domain *rd;
  4708. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4709. if (!rd)
  4710. return NULL;
  4711. if (init_rootdomain(rd) != 0) {
  4712. kfree(rd);
  4713. return NULL;
  4714. }
  4715. return rd;
  4716. }
  4717. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4718. {
  4719. struct sched_group *tmp, *first;
  4720. if (!sg)
  4721. return;
  4722. first = sg;
  4723. do {
  4724. tmp = sg->next;
  4725. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4726. kfree(sg->sgc);
  4727. kfree(sg);
  4728. sg = tmp;
  4729. } while (sg != first);
  4730. }
  4731. static void free_sched_domain(struct rcu_head *rcu)
  4732. {
  4733. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4734. /*
  4735. * If its an overlapping domain it has private groups, iterate and
  4736. * nuke them all.
  4737. */
  4738. if (sd->flags & SD_OVERLAP) {
  4739. free_sched_groups(sd->groups, 1);
  4740. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4741. kfree(sd->groups->sgc);
  4742. kfree(sd->groups);
  4743. }
  4744. kfree(sd);
  4745. }
  4746. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4747. {
  4748. call_rcu(&sd->rcu, free_sched_domain);
  4749. }
  4750. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4751. {
  4752. for (; sd; sd = sd->parent)
  4753. destroy_sched_domain(sd, cpu);
  4754. }
  4755. /*
  4756. * Keep a special pointer to the highest sched_domain that has
  4757. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4758. * allows us to avoid some pointer chasing select_idle_sibling().
  4759. *
  4760. * Also keep a unique ID per domain (we use the first cpu number in
  4761. * the cpumask of the domain), this allows us to quickly tell if
  4762. * two cpus are in the same cache domain, see cpus_share_cache().
  4763. */
  4764. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4765. DEFINE_PER_CPU(int, sd_llc_size);
  4766. DEFINE_PER_CPU(int, sd_llc_id);
  4767. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4768. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4769. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4770. static void update_top_cache_domain(int cpu)
  4771. {
  4772. struct sched_domain *sd;
  4773. struct sched_domain *busy_sd = NULL;
  4774. int id = cpu;
  4775. int size = 1;
  4776. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4777. if (sd) {
  4778. id = cpumask_first(sched_domain_span(sd));
  4779. size = cpumask_weight(sched_domain_span(sd));
  4780. busy_sd = sd->parent; /* sd_busy */
  4781. }
  4782. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4783. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4784. per_cpu(sd_llc_size, cpu) = size;
  4785. per_cpu(sd_llc_id, cpu) = id;
  4786. sd = lowest_flag_domain(cpu, SD_NUMA);
  4787. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4788. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4789. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4790. }
  4791. /*
  4792. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4793. * hold the hotplug lock.
  4794. */
  4795. static void
  4796. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4797. {
  4798. struct rq *rq = cpu_rq(cpu);
  4799. struct sched_domain *tmp;
  4800. /* Remove the sched domains which do not contribute to scheduling. */
  4801. for (tmp = sd; tmp; ) {
  4802. struct sched_domain *parent = tmp->parent;
  4803. if (!parent)
  4804. break;
  4805. if (sd_parent_degenerate(tmp, parent)) {
  4806. tmp->parent = parent->parent;
  4807. if (parent->parent)
  4808. parent->parent->child = tmp;
  4809. /*
  4810. * Transfer SD_PREFER_SIBLING down in case of a
  4811. * degenerate parent; the spans match for this
  4812. * so the property transfers.
  4813. */
  4814. if (parent->flags & SD_PREFER_SIBLING)
  4815. tmp->flags |= SD_PREFER_SIBLING;
  4816. destroy_sched_domain(parent, cpu);
  4817. } else
  4818. tmp = tmp->parent;
  4819. }
  4820. if (sd && sd_degenerate(sd)) {
  4821. tmp = sd;
  4822. sd = sd->parent;
  4823. destroy_sched_domain(tmp, cpu);
  4824. if (sd)
  4825. sd->child = NULL;
  4826. }
  4827. sched_domain_debug(sd, cpu);
  4828. rq_attach_root(rq, rd);
  4829. tmp = rq->sd;
  4830. rcu_assign_pointer(rq->sd, sd);
  4831. destroy_sched_domains(tmp, cpu);
  4832. update_top_cache_domain(cpu);
  4833. }
  4834. /* cpus with isolated domains */
  4835. static cpumask_var_t cpu_isolated_map;
  4836. /* Setup the mask of cpus configured for isolated domains */
  4837. static int __init isolated_cpu_setup(char *str)
  4838. {
  4839. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4840. cpulist_parse(str, cpu_isolated_map);
  4841. return 1;
  4842. }
  4843. __setup("isolcpus=", isolated_cpu_setup);
  4844. struct s_data {
  4845. struct sched_domain ** __percpu sd;
  4846. struct root_domain *rd;
  4847. };
  4848. enum s_alloc {
  4849. sa_rootdomain,
  4850. sa_sd,
  4851. sa_sd_storage,
  4852. sa_none,
  4853. };
  4854. /*
  4855. * Build an iteration mask that can exclude certain CPUs from the upwards
  4856. * domain traversal.
  4857. *
  4858. * Asymmetric node setups can result in situations where the domain tree is of
  4859. * unequal depth, make sure to skip domains that already cover the entire
  4860. * range.
  4861. *
  4862. * In that case build_sched_domains() will have terminated the iteration early
  4863. * and our sibling sd spans will be empty. Domains should always include the
  4864. * cpu they're built on, so check that.
  4865. *
  4866. */
  4867. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4868. {
  4869. const struct cpumask *span = sched_domain_span(sd);
  4870. struct sd_data *sdd = sd->private;
  4871. struct sched_domain *sibling;
  4872. int i;
  4873. for_each_cpu(i, span) {
  4874. sibling = *per_cpu_ptr(sdd->sd, i);
  4875. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4876. continue;
  4877. cpumask_set_cpu(i, sched_group_mask(sg));
  4878. }
  4879. }
  4880. /*
  4881. * Return the canonical balance cpu for this group, this is the first cpu
  4882. * of this group that's also in the iteration mask.
  4883. */
  4884. int group_balance_cpu(struct sched_group *sg)
  4885. {
  4886. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4887. }
  4888. static int
  4889. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4890. {
  4891. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4892. const struct cpumask *span = sched_domain_span(sd);
  4893. struct cpumask *covered = sched_domains_tmpmask;
  4894. struct sd_data *sdd = sd->private;
  4895. struct sched_domain *child;
  4896. int i;
  4897. cpumask_clear(covered);
  4898. for_each_cpu(i, span) {
  4899. struct cpumask *sg_span;
  4900. if (cpumask_test_cpu(i, covered))
  4901. continue;
  4902. child = *per_cpu_ptr(sdd->sd, i);
  4903. /* See the comment near build_group_mask(). */
  4904. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4905. continue;
  4906. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4907. GFP_KERNEL, cpu_to_node(cpu));
  4908. if (!sg)
  4909. goto fail;
  4910. sg_span = sched_group_cpus(sg);
  4911. if (child->child) {
  4912. child = child->child;
  4913. cpumask_copy(sg_span, sched_domain_span(child));
  4914. } else
  4915. cpumask_set_cpu(i, sg_span);
  4916. cpumask_or(covered, covered, sg_span);
  4917. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  4918. if (atomic_inc_return(&sg->sgc->ref) == 1)
  4919. build_group_mask(sd, sg);
  4920. /*
  4921. * Initialize sgc->capacity such that even if we mess up the
  4922. * domains and no possible iteration will get us here, we won't
  4923. * die on a /0 trap.
  4924. */
  4925. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  4926. sg->sgc->capacity_orig = sg->sgc->capacity;
  4927. /*
  4928. * Make sure the first group of this domain contains the
  4929. * canonical balance cpu. Otherwise the sched_domain iteration
  4930. * breaks. See update_sg_lb_stats().
  4931. */
  4932. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4933. group_balance_cpu(sg) == cpu)
  4934. groups = sg;
  4935. if (!first)
  4936. first = sg;
  4937. if (last)
  4938. last->next = sg;
  4939. last = sg;
  4940. last->next = first;
  4941. }
  4942. sd->groups = groups;
  4943. return 0;
  4944. fail:
  4945. free_sched_groups(first, 0);
  4946. return -ENOMEM;
  4947. }
  4948. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4949. {
  4950. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4951. struct sched_domain *child = sd->child;
  4952. if (child)
  4953. cpu = cpumask_first(sched_domain_span(child));
  4954. if (sg) {
  4955. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4956. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  4957. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  4958. }
  4959. return cpu;
  4960. }
  4961. /*
  4962. * build_sched_groups will build a circular linked list of the groups
  4963. * covered by the given span, and will set each group's ->cpumask correctly,
  4964. * and ->cpu_capacity to 0.
  4965. *
  4966. * Assumes the sched_domain tree is fully constructed
  4967. */
  4968. static int
  4969. build_sched_groups(struct sched_domain *sd, int cpu)
  4970. {
  4971. struct sched_group *first = NULL, *last = NULL;
  4972. struct sd_data *sdd = sd->private;
  4973. const struct cpumask *span = sched_domain_span(sd);
  4974. struct cpumask *covered;
  4975. int i;
  4976. get_group(cpu, sdd, &sd->groups);
  4977. atomic_inc(&sd->groups->ref);
  4978. if (cpu != cpumask_first(span))
  4979. return 0;
  4980. lockdep_assert_held(&sched_domains_mutex);
  4981. covered = sched_domains_tmpmask;
  4982. cpumask_clear(covered);
  4983. for_each_cpu(i, span) {
  4984. struct sched_group *sg;
  4985. int group, j;
  4986. if (cpumask_test_cpu(i, covered))
  4987. continue;
  4988. group = get_group(i, sdd, &sg);
  4989. cpumask_setall(sched_group_mask(sg));
  4990. for_each_cpu(j, span) {
  4991. if (get_group(j, sdd, NULL) != group)
  4992. continue;
  4993. cpumask_set_cpu(j, covered);
  4994. cpumask_set_cpu(j, sched_group_cpus(sg));
  4995. }
  4996. if (!first)
  4997. first = sg;
  4998. if (last)
  4999. last->next = sg;
  5000. last = sg;
  5001. }
  5002. last->next = first;
  5003. return 0;
  5004. }
  5005. /*
  5006. * Initialize sched groups cpu_capacity.
  5007. *
  5008. * cpu_capacity indicates the capacity of sched group, which is used while
  5009. * distributing the load between different sched groups in a sched domain.
  5010. * Typically cpu_capacity for all the groups in a sched domain will be same
  5011. * unless there are asymmetries in the topology. If there are asymmetries,
  5012. * group having more cpu_capacity will pickup more load compared to the
  5013. * group having less cpu_capacity.
  5014. */
  5015. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5016. {
  5017. struct sched_group *sg = sd->groups;
  5018. WARN_ON(!sg);
  5019. do {
  5020. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5021. sg = sg->next;
  5022. } while (sg != sd->groups);
  5023. if (cpu != group_balance_cpu(sg))
  5024. return;
  5025. update_group_capacity(sd, cpu);
  5026. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5027. }
  5028. /*
  5029. * Initializers for schedule domains
  5030. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5031. */
  5032. static int default_relax_domain_level = -1;
  5033. int sched_domain_level_max;
  5034. static int __init setup_relax_domain_level(char *str)
  5035. {
  5036. if (kstrtoint(str, 0, &default_relax_domain_level))
  5037. pr_warn("Unable to set relax_domain_level\n");
  5038. return 1;
  5039. }
  5040. __setup("relax_domain_level=", setup_relax_domain_level);
  5041. static void set_domain_attribute(struct sched_domain *sd,
  5042. struct sched_domain_attr *attr)
  5043. {
  5044. int request;
  5045. if (!attr || attr->relax_domain_level < 0) {
  5046. if (default_relax_domain_level < 0)
  5047. return;
  5048. else
  5049. request = default_relax_domain_level;
  5050. } else
  5051. request = attr->relax_domain_level;
  5052. if (request < sd->level) {
  5053. /* turn off idle balance on this domain */
  5054. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5055. } else {
  5056. /* turn on idle balance on this domain */
  5057. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5058. }
  5059. }
  5060. static void __sdt_free(const struct cpumask *cpu_map);
  5061. static int __sdt_alloc(const struct cpumask *cpu_map);
  5062. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5063. const struct cpumask *cpu_map)
  5064. {
  5065. switch (what) {
  5066. case sa_rootdomain:
  5067. if (!atomic_read(&d->rd->refcount))
  5068. free_rootdomain(&d->rd->rcu); /* fall through */
  5069. case sa_sd:
  5070. free_percpu(d->sd); /* fall through */
  5071. case sa_sd_storage:
  5072. __sdt_free(cpu_map); /* fall through */
  5073. case sa_none:
  5074. break;
  5075. }
  5076. }
  5077. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5078. const struct cpumask *cpu_map)
  5079. {
  5080. memset(d, 0, sizeof(*d));
  5081. if (__sdt_alloc(cpu_map))
  5082. return sa_sd_storage;
  5083. d->sd = alloc_percpu(struct sched_domain *);
  5084. if (!d->sd)
  5085. return sa_sd_storage;
  5086. d->rd = alloc_rootdomain();
  5087. if (!d->rd)
  5088. return sa_sd;
  5089. return sa_rootdomain;
  5090. }
  5091. /*
  5092. * NULL the sd_data elements we've used to build the sched_domain and
  5093. * sched_group structure so that the subsequent __free_domain_allocs()
  5094. * will not free the data we're using.
  5095. */
  5096. static void claim_allocations(int cpu, struct sched_domain *sd)
  5097. {
  5098. struct sd_data *sdd = sd->private;
  5099. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5100. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5101. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5102. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5103. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5104. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5105. }
  5106. #ifdef CONFIG_NUMA
  5107. static int sched_domains_numa_levels;
  5108. static int *sched_domains_numa_distance;
  5109. static struct cpumask ***sched_domains_numa_masks;
  5110. static int sched_domains_curr_level;
  5111. #endif
  5112. /*
  5113. * SD_flags allowed in topology descriptions.
  5114. *
  5115. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5116. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5117. * SD_NUMA - describes NUMA topologies
  5118. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5119. *
  5120. * Odd one out:
  5121. * SD_ASYM_PACKING - describes SMT quirks
  5122. */
  5123. #define TOPOLOGY_SD_FLAGS \
  5124. (SD_SHARE_CPUCAPACITY | \
  5125. SD_SHARE_PKG_RESOURCES | \
  5126. SD_NUMA | \
  5127. SD_ASYM_PACKING | \
  5128. SD_SHARE_POWERDOMAIN)
  5129. static struct sched_domain *
  5130. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5131. {
  5132. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5133. int sd_weight, sd_flags = 0;
  5134. #ifdef CONFIG_NUMA
  5135. /*
  5136. * Ugly hack to pass state to sd_numa_mask()...
  5137. */
  5138. sched_domains_curr_level = tl->numa_level;
  5139. #endif
  5140. sd_weight = cpumask_weight(tl->mask(cpu));
  5141. if (tl->sd_flags)
  5142. sd_flags = (*tl->sd_flags)();
  5143. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5144. "wrong sd_flags in topology description\n"))
  5145. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5146. *sd = (struct sched_domain){
  5147. .min_interval = sd_weight,
  5148. .max_interval = 2*sd_weight,
  5149. .busy_factor = 32,
  5150. .imbalance_pct = 125,
  5151. .cache_nice_tries = 0,
  5152. .busy_idx = 0,
  5153. .idle_idx = 0,
  5154. .newidle_idx = 0,
  5155. .wake_idx = 0,
  5156. .forkexec_idx = 0,
  5157. .flags = 1*SD_LOAD_BALANCE
  5158. | 1*SD_BALANCE_NEWIDLE
  5159. | 1*SD_BALANCE_EXEC
  5160. | 1*SD_BALANCE_FORK
  5161. | 0*SD_BALANCE_WAKE
  5162. | 1*SD_WAKE_AFFINE
  5163. | 0*SD_SHARE_CPUCAPACITY
  5164. | 0*SD_SHARE_PKG_RESOURCES
  5165. | 0*SD_SERIALIZE
  5166. | 0*SD_PREFER_SIBLING
  5167. | 0*SD_NUMA
  5168. | sd_flags
  5169. ,
  5170. .last_balance = jiffies,
  5171. .balance_interval = sd_weight,
  5172. .smt_gain = 0,
  5173. .max_newidle_lb_cost = 0,
  5174. .next_decay_max_lb_cost = jiffies,
  5175. #ifdef CONFIG_SCHED_DEBUG
  5176. .name = tl->name,
  5177. #endif
  5178. };
  5179. /*
  5180. * Convert topological properties into behaviour.
  5181. */
  5182. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5183. sd->imbalance_pct = 110;
  5184. sd->smt_gain = 1178; /* ~15% */
  5185. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5186. sd->imbalance_pct = 117;
  5187. sd->cache_nice_tries = 1;
  5188. sd->busy_idx = 2;
  5189. #ifdef CONFIG_NUMA
  5190. } else if (sd->flags & SD_NUMA) {
  5191. sd->cache_nice_tries = 2;
  5192. sd->busy_idx = 3;
  5193. sd->idle_idx = 2;
  5194. sd->flags |= SD_SERIALIZE;
  5195. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5196. sd->flags &= ~(SD_BALANCE_EXEC |
  5197. SD_BALANCE_FORK |
  5198. SD_WAKE_AFFINE);
  5199. }
  5200. #endif
  5201. } else {
  5202. sd->flags |= SD_PREFER_SIBLING;
  5203. sd->cache_nice_tries = 1;
  5204. sd->busy_idx = 2;
  5205. sd->idle_idx = 1;
  5206. }
  5207. sd->private = &tl->data;
  5208. return sd;
  5209. }
  5210. /*
  5211. * Topology list, bottom-up.
  5212. */
  5213. static struct sched_domain_topology_level default_topology[] = {
  5214. #ifdef CONFIG_SCHED_SMT
  5215. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5216. #endif
  5217. #ifdef CONFIG_SCHED_MC
  5218. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5219. #endif
  5220. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5221. { NULL, },
  5222. };
  5223. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5224. #define for_each_sd_topology(tl) \
  5225. for (tl = sched_domain_topology; tl->mask; tl++)
  5226. void set_sched_topology(struct sched_domain_topology_level *tl)
  5227. {
  5228. sched_domain_topology = tl;
  5229. }
  5230. #ifdef CONFIG_NUMA
  5231. static const struct cpumask *sd_numa_mask(int cpu)
  5232. {
  5233. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5234. }
  5235. static void sched_numa_warn(const char *str)
  5236. {
  5237. static int done = false;
  5238. int i,j;
  5239. if (done)
  5240. return;
  5241. done = true;
  5242. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5243. for (i = 0; i < nr_node_ids; i++) {
  5244. printk(KERN_WARNING " ");
  5245. for (j = 0; j < nr_node_ids; j++)
  5246. printk(KERN_CONT "%02d ", node_distance(i,j));
  5247. printk(KERN_CONT "\n");
  5248. }
  5249. printk(KERN_WARNING "\n");
  5250. }
  5251. static bool find_numa_distance(int distance)
  5252. {
  5253. int i;
  5254. if (distance == node_distance(0, 0))
  5255. return true;
  5256. for (i = 0; i < sched_domains_numa_levels; i++) {
  5257. if (sched_domains_numa_distance[i] == distance)
  5258. return true;
  5259. }
  5260. return false;
  5261. }
  5262. static void sched_init_numa(void)
  5263. {
  5264. int next_distance, curr_distance = node_distance(0, 0);
  5265. struct sched_domain_topology_level *tl;
  5266. int level = 0;
  5267. int i, j, k;
  5268. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5269. if (!sched_domains_numa_distance)
  5270. return;
  5271. /*
  5272. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5273. * unique distances in the node_distance() table.
  5274. *
  5275. * Assumes node_distance(0,j) includes all distances in
  5276. * node_distance(i,j) in order to avoid cubic time.
  5277. */
  5278. next_distance = curr_distance;
  5279. for (i = 0; i < nr_node_ids; i++) {
  5280. for (j = 0; j < nr_node_ids; j++) {
  5281. for (k = 0; k < nr_node_ids; k++) {
  5282. int distance = node_distance(i, k);
  5283. if (distance > curr_distance &&
  5284. (distance < next_distance ||
  5285. next_distance == curr_distance))
  5286. next_distance = distance;
  5287. /*
  5288. * While not a strong assumption it would be nice to know
  5289. * about cases where if node A is connected to B, B is not
  5290. * equally connected to A.
  5291. */
  5292. if (sched_debug() && node_distance(k, i) != distance)
  5293. sched_numa_warn("Node-distance not symmetric");
  5294. if (sched_debug() && i && !find_numa_distance(distance))
  5295. sched_numa_warn("Node-0 not representative");
  5296. }
  5297. if (next_distance != curr_distance) {
  5298. sched_domains_numa_distance[level++] = next_distance;
  5299. sched_domains_numa_levels = level;
  5300. curr_distance = next_distance;
  5301. } else break;
  5302. }
  5303. /*
  5304. * In case of sched_debug() we verify the above assumption.
  5305. */
  5306. if (!sched_debug())
  5307. break;
  5308. }
  5309. /*
  5310. * 'level' contains the number of unique distances, excluding the
  5311. * identity distance node_distance(i,i).
  5312. *
  5313. * The sched_domains_numa_distance[] array includes the actual distance
  5314. * numbers.
  5315. */
  5316. /*
  5317. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5318. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5319. * the array will contain less then 'level' members. This could be
  5320. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5321. * in other functions.
  5322. *
  5323. * We reset it to 'level' at the end of this function.
  5324. */
  5325. sched_domains_numa_levels = 0;
  5326. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5327. if (!sched_domains_numa_masks)
  5328. return;
  5329. /*
  5330. * Now for each level, construct a mask per node which contains all
  5331. * cpus of nodes that are that many hops away from us.
  5332. */
  5333. for (i = 0; i < level; i++) {
  5334. sched_domains_numa_masks[i] =
  5335. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5336. if (!sched_domains_numa_masks[i])
  5337. return;
  5338. for (j = 0; j < nr_node_ids; j++) {
  5339. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5340. if (!mask)
  5341. return;
  5342. sched_domains_numa_masks[i][j] = mask;
  5343. for (k = 0; k < nr_node_ids; k++) {
  5344. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5345. continue;
  5346. cpumask_or(mask, mask, cpumask_of_node(k));
  5347. }
  5348. }
  5349. }
  5350. /* Compute default topology size */
  5351. for (i = 0; sched_domain_topology[i].mask; i++);
  5352. tl = kzalloc((i + level + 1) *
  5353. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5354. if (!tl)
  5355. return;
  5356. /*
  5357. * Copy the default topology bits..
  5358. */
  5359. for (i = 0; sched_domain_topology[i].mask; i++)
  5360. tl[i] = sched_domain_topology[i];
  5361. /*
  5362. * .. and append 'j' levels of NUMA goodness.
  5363. */
  5364. for (j = 0; j < level; i++, j++) {
  5365. tl[i] = (struct sched_domain_topology_level){
  5366. .mask = sd_numa_mask,
  5367. .sd_flags = cpu_numa_flags,
  5368. .flags = SDTL_OVERLAP,
  5369. .numa_level = j,
  5370. SD_INIT_NAME(NUMA)
  5371. };
  5372. }
  5373. sched_domain_topology = tl;
  5374. sched_domains_numa_levels = level;
  5375. }
  5376. static void sched_domains_numa_masks_set(int cpu)
  5377. {
  5378. int i, j;
  5379. int node = cpu_to_node(cpu);
  5380. for (i = 0; i < sched_domains_numa_levels; i++) {
  5381. for (j = 0; j < nr_node_ids; j++) {
  5382. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5383. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5384. }
  5385. }
  5386. }
  5387. static void sched_domains_numa_masks_clear(int cpu)
  5388. {
  5389. int i, j;
  5390. for (i = 0; i < sched_domains_numa_levels; i++) {
  5391. for (j = 0; j < nr_node_ids; j++)
  5392. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5393. }
  5394. }
  5395. /*
  5396. * Update sched_domains_numa_masks[level][node] array when new cpus
  5397. * are onlined.
  5398. */
  5399. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5400. unsigned long action,
  5401. void *hcpu)
  5402. {
  5403. int cpu = (long)hcpu;
  5404. switch (action & ~CPU_TASKS_FROZEN) {
  5405. case CPU_ONLINE:
  5406. sched_domains_numa_masks_set(cpu);
  5407. break;
  5408. case CPU_DEAD:
  5409. sched_domains_numa_masks_clear(cpu);
  5410. break;
  5411. default:
  5412. return NOTIFY_DONE;
  5413. }
  5414. return NOTIFY_OK;
  5415. }
  5416. #else
  5417. static inline void sched_init_numa(void)
  5418. {
  5419. }
  5420. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5421. unsigned long action,
  5422. void *hcpu)
  5423. {
  5424. return 0;
  5425. }
  5426. #endif /* CONFIG_NUMA */
  5427. static int __sdt_alloc(const struct cpumask *cpu_map)
  5428. {
  5429. struct sched_domain_topology_level *tl;
  5430. int j;
  5431. for_each_sd_topology(tl) {
  5432. struct sd_data *sdd = &tl->data;
  5433. sdd->sd = alloc_percpu(struct sched_domain *);
  5434. if (!sdd->sd)
  5435. return -ENOMEM;
  5436. sdd->sg = alloc_percpu(struct sched_group *);
  5437. if (!sdd->sg)
  5438. return -ENOMEM;
  5439. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5440. if (!sdd->sgc)
  5441. return -ENOMEM;
  5442. for_each_cpu(j, cpu_map) {
  5443. struct sched_domain *sd;
  5444. struct sched_group *sg;
  5445. struct sched_group_capacity *sgc;
  5446. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5447. GFP_KERNEL, cpu_to_node(j));
  5448. if (!sd)
  5449. return -ENOMEM;
  5450. *per_cpu_ptr(sdd->sd, j) = sd;
  5451. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5452. GFP_KERNEL, cpu_to_node(j));
  5453. if (!sg)
  5454. return -ENOMEM;
  5455. sg->next = sg;
  5456. *per_cpu_ptr(sdd->sg, j) = sg;
  5457. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5458. GFP_KERNEL, cpu_to_node(j));
  5459. if (!sgc)
  5460. return -ENOMEM;
  5461. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5462. }
  5463. }
  5464. return 0;
  5465. }
  5466. static void __sdt_free(const struct cpumask *cpu_map)
  5467. {
  5468. struct sched_domain_topology_level *tl;
  5469. int j;
  5470. for_each_sd_topology(tl) {
  5471. struct sd_data *sdd = &tl->data;
  5472. for_each_cpu(j, cpu_map) {
  5473. struct sched_domain *sd;
  5474. if (sdd->sd) {
  5475. sd = *per_cpu_ptr(sdd->sd, j);
  5476. if (sd && (sd->flags & SD_OVERLAP))
  5477. free_sched_groups(sd->groups, 0);
  5478. kfree(*per_cpu_ptr(sdd->sd, j));
  5479. }
  5480. if (sdd->sg)
  5481. kfree(*per_cpu_ptr(sdd->sg, j));
  5482. if (sdd->sgc)
  5483. kfree(*per_cpu_ptr(sdd->sgc, j));
  5484. }
  5485. free_percpu(sdd->sd);
  5486. sdd->sd = NULL;
  5487. free_percpu(sdd->sg);
  5488. sdd->sg = NULL;
  5489. free_percpu(sdd->sgc);
  5490. sdd->sgc = NULL;
  5491. }
  5492. }
  5493. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5494. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5495. struct sched_domain *child, int cpu)
  5496. {
  5497. struct sched_domain *sd = sd_init(tl, cpu);
  5498. if (!sd)
  5499. return child;
  5500. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5501. if (child) {
  5502. sd->level = child->level + 1;
  5503. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5504. child->parent = sd;
  5505. sd->child = child;
  5506. if (!cpumask_subset(sched_domain_span(child),
  5507. sched_domain_span(sd))) {
  5508. pr_err("BUG: arch topology borken\n");
  5509. #ifdef CONFIG_SCHED_DEBUG
  5510. pr_err(" the %s domain not a subset of the %s domain\n",
  5511. child->name, sd->name);
  5512. #endif
  5513. /* Fixup, ensure @sd has at least @child cpus. */
  5514. cpumask_or(sched_domain_span(sd),
  5515. sched_domain_span(sd),
  5516. sched_domain_span(child));
  5517. }
  5518. }
  5519. set_domain_attribute(sd, attr);
  5520. return sd;
  5521. }
  5522. /*
  5523. * Build sched domains for a given set of cpus and attach the sched domains
  5524. * to the individual cpus
  5525. */
  5526. static int build_sched_domains(const struct cpumask *cpu_map,
  5527. struct sched_domain_attr *attr)
  5528. {
  5529. enum s_alloc alloc_state;
  5530. struct sched_domain *sd;
  5531. struct s_data d;
  5532. int i, ret = -ENOMEM;
  5533. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5534. if (alloc_state != sa_rootdomain)
  5535. goto error;
  5536. /* Set up domains for cpus specified by the cpu_map. */
  5537. for_each_cpu(i, cpu_map) {
  5538. struct sched_domain_topology_level *tl;
  5539. sd = NULL;
  5540. for_each_sd_topology(tl) {
  5541. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5542. if (tl == sched_domain_topology)
  5543. *per_cpu_ptr(d.sd, i) = sd;
  5544. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5545. sd->flags |= SD_OVERLAP;
  5546. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5547. break;
  5548. }
  5549. }
  5550. /* Build the groups for the domains */
  5551. for_each_cpu(i, cpu_map) {
  5552. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5553. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5554. if (sd->flags & SD_OVERLAP) {
  5555. if (build_overlap_sched_groups(sd, i))
  5556. goto error;
  5557. } else {
  5558. if (build_sched_groups(sd, i))
  5559. goto error;
  5560. }
  5561. }
  5562. }
  5563. /* Calculate CPU capacity for physical packages and nodes */
  5564. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5565. if (!cpumask_test_cpu(i, cpu_map))
  5566. continue;
  5567. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5568. claim_allocations(i, sd);
  5569. init_sched_groups_capacity(i, sd);
  5570. }
  5571. }
  5572. /* Attach the domains */
  5573. rcu_read_lock();
  5574. for_each_cpu(i, cpu_map) {
  5575. sd = *per_cpu_ptr(d.sd, i);
  5576. cpu_attach_domain(sd, d.rd, i);
  5577. }
  5578. rcu_read_unlock();
  5579. ret = 0;
  5580. error:
  5581. __free_domain_allocs(&d, alloc_state, cpu_map);
  5582. return ret;
  5583. }
  5584. static cpumask_var_t *doms_cur; /* current sched domains */
  5585. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5586. static struct sched_domain_attr *dattr_cur;
  5587. /* attribues of custom domains in 'doms_cur' */
  5588. /*
  5589. * Special case: If a kmalloc of a doms_cur partition (array of
  5590. * cpumask) fails, then fallback to a single sched domain,
  5591. * as determined by the single cpumask fallback_doms.
  5592. */
  5593. static cpumask_var_t fallback_doms;
  5594. /*
  5595. * arch_update_cpu_topology lets virtualized architectures update the
  5596. * cpu core maps. It is supposed to return 1 if the topology changed
  5597. * or 0 if it stayed the same.
  5598. */
  5599. int __weak arch_update_cpu_topology(void)
  5600. {
  5601. return 0;
  5602. }
  5603. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5604. {
  5605. int i;
  5606. cpumask_var_t *doms;
  5607. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5608. if (!doms)
  5609. return NULL;
  5610. for (i = 0; i < ndoms; i++) {
  5611. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5612. free_sched_domains(doms, i);
  5613. return NULL;
  5614. }
  5615. }
  5616. return doms;
  5617. }
  5618. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5619. {
  5620. unsigned int i;
  5621. for (i = 0; i < ndoms; i++)
  5622. free_cpumask_var(doms[i]);
  5623. kfree(doms);
  5624. }
  5625. /*
  5626. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5627. * For now this just excludes isolated cpus, but could be used to
  5628. * exclude other special cases in the future.
  5629. */
  5630. static int init_sched_domains(const struct cpumask *cpu_map)
  5631. {
  5632. int err;
  5633. arch_update_cpu_topology();
  5634. ndoms_cur = 1;
  5635. doms_cur = alloc_sched_domains(ndoms_cur);
  5636. if (!doms_cur)
  5637. doms_cur = &fallback_doms;
  5638. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5639. err = build_sched_domains(doms_cur[0], NULL);
  5640. register_sched_domain_sysctl();
  5641. return err;
  5642. }
  5643. /*
  5644. * Detach sched domains from a group of cpus specified in cpu_map
  5645. * These cpus will now be attached to the NULL domain
  5646. */
  5647. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5648. {
  5649. int i;
  5650. rcu_read_lock();
  5651. for_each_cpu(i, cpu_map)
  5652. cpu_attach_domain(NULL, &def_root_domain, i);
  5653. rcu_read_unlock();
  5654. }
  5655. /* handle null as "default" */
  5656. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5657. struct sched_domain_attr *new, int idx_new)
  5658. {
  5659. struct sched_domain_attr tmp;
  5660. /* fast path */
  5661. if (!new && !cur)
  5662. return 1;
  5663. tmp = SD_ATTR_INIT;
  5664. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5665. new ? (new + idx_new) : &tmp,
  5666. sizeof(struct sched_domain_attr));
  5667. }
  5668. /*
  5669. * Partition sched domains as specified by the 'ndoms_new'
  5670. * cpumasks in the array doms_new[] of cpumasks. This compares
  5671. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5672. * It destroys each deleted domain and builds each new domain.
  5673. *
  5674. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5675. * The masks don't intersect (don't overlap.) We should setup one
  5676. * sched domain for each mask. CPUs not in any of the cpumasks will
  5677. * not be load balanced. If the same cpumask appears both in the
  5678. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5679. * it as it is.
  5680. *
  5681. * The passed in 'doms_new' should be allocated using
  5682. * alloc_sched_domains. This routine takes ownership of it and will
  5683. * free_sched_domains it when done with it. If the caller failed the
  5684. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5685. * and partition_sched_domains() will fallback to the single partition
  5686. * 'fallback_doms', it also forces the domains to be rebuilt.
  5687. *
  5688. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5689. * ndoms_new == 0 is a special case for destroying existing domains,
  5690. * and it will not create the default domain.
  5691. *
  5692. * Call with hotplug lock held
  5693. */
  5694. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5695. struct sched_domain_attr *dattr_new)
  5696. {
  5697. int i, j, n;
  5698. int new_topology;
  5699. mutex_lock(&sched_domains_mutex);
  5700. /* always unregister in case we don't destroy any domains */
  5701. unregister_sched_domain_sysctl();
  5702. /* Let architecture update cpu core mappings. */
  5703. new_topology = arch_update_cpu_topology();
  5704. n = doms_new ? ndoms_new : 0;
  5705. /* Destroy deleted domains */
  5706. for (i = 0; i < ndoms_cur; i++) {
  5707. for (j = 0; j < n && !new_topology; j++) {
  5708. if (cpumask_equal(doms_cur[i], doms_new[j])
  5709. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5710. goto match1;
  5711. }
  5712. /* no match - a current sched domain not in new doms_new[] */
  5713. detach_destroy_domains(doms_cur[i]);
  5714. match1:
  5715. ;
  5716. }
  5717. n = ndoms_cur;
  5718. if (doms_new == NULL) {
  5719. n = 0;
  5720. doms_new = &fallback_doms;
  5721. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5722. WARN_ON_ONCE(dattr_new);
  5723. }
  5724. /* Build new domains */
  5725. for (i = 0; i < ndoms_new; i++) {
  5726. for (j = 0; j < n && !new_topology; j++) {
  5727. if (cpumask_equal(doms_new[i], doms_cur[j])
  5728. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5729. goto match2;
  5730. }
  5731. /* no match - add a new doms_new */
  5732. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5733. match2:
  5734. ;
  5735. }
  5736. /* Remember the new sched domains */
  5737. if (doms_cur != &fallback_doms)
  5738. free_sched_domains(doms_cur, ndoms_cur);
  5739. kfree(dattr_cur); /* kfree(NULL) is safe */
  5740. doms_cur = doms_new;
  5741. dattr_cur = dattr_new;
  5742. ndoms_cur = ndoms_new;
  5743. register_sched_domain_sysctl();
  5744. mutex_unlock(&sched_domains_mutex);
  5745. }
  5746. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5747. /*
  5748. * Update cpusets according to cpu_active mask. If cpusets are
  5749. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5750. * around partition_sched_domains().
  5751. *
  5752. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5753. * want to restore it back to its original state upon resume anyway.
  5754. */
  5755. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5756. void *hcpu)
  5757. {
  5758. switch (action) {
  5759. case CPU_ONLINE_FROZEN:
  5760. case CPU_DOWN_FAILED_FROZEN:
  5761. /*
  5762. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5763. * resume sequence. As long as this is not the last online
  5764. * operation in the resume sequence, just build a single sched
  5765. * domain, ignoring cpusets.
  5766. */
  5767. num_cpus_frozen--;
  5768. if (likely(num_cpus_frozen)) {
  5769. partition_sched_domains(1, NULL, NULL);
  5770. break;
  5771. }
  5772. /*
  5773. * This is the last CPU online operation. So fall through and
  5774. * restore the original sched domains by considering the
  5775. * cpuset configurations.
  5776. */
  5777. case CPU_ONLINE:
  5778. case CPU_DOWN_FAILED:
  5779. cpuset_update_active_cpus(true);
  5780. break;
  5781. default:
  5782. return NOTIFY_DONE;
  5783. }
  5784. return NOTIFY_OK;
  5785. }
  5786. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5787. void *hcpu)
  5788. {
  5789. switch (action) {
  5790. case CPU_DOWN_PREPARE:
  5791. cpuset_update_active_cpus(false);
  5792. break;
  5793. case CPU_DOWN_PREPARE_FROZEN:
  5794. num_cpus_frozen++;
  5795. partition_sched_domains(1, NULL, NULL);
  5796. break;
  5797. default:
  5798. return NOTIFY_DONE;
  5799. }
  5800. return NOTIFY_OK;
  5801. }
  5802. void __init sched_init_smp(void)
  5803. {
  5804. cpumask_var_t non_isolated_cpus;
  5805. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5806. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5807. sched_init_numa();
  5808. /*
  5809. * There's no userspace yet to cause hotplug operations; hence all the
  5810. * cpu masks are stable and all blatant races in the below code cannot
  5811. * happen.
  5812. */
  5813. mutex_lock(&sched_domains_mutex);
  5814. init_sched_domains(cpu_active_mask);
  5815. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5816. if (cpumask_empty(non_isolated_cpus))
  5817. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5818. mutex_unlock(&sched_domains_mutex);
  5819. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5820. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5821. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5822. init_hrtick();
  5823. /* Move init over to a non-isolated CPU */
  5824. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5825. BUG();
  5826. sched_init_granularity();
  5827. free_cpumask_var(non_isolated_cpus);
  5828. init_sched_rt_class();
  5829. init_sched_dl_class();
  5830. }
  5831. #else
  5832. void __init sched_init_smp(void)
  5833. {
  5834. sched_init_granularity();
  5835. }
  5836. #endif /* CONFIG_SMP */
  5837. const_debug unsigned int sysctl_timer_migration = 1;
  5838. int in_sched_functions(unsigned long addr)
  5839. {
  5840. return in_lock_functions(addr) ||
  5841. (addr >= (unsigned long)__sched_text_start
  5842. && addr < (unsigned long)__sched_text_end);
  5843. }
  5844. #ifdef CONFIG_CGROUP_SCHED
  5845. /*
  5846. * Default task group.
  5847. * Every task in system belongs to this group at bootup.
  5848. */
  5849. struct task_group root_task_group;
  5850. LIST_HEAD(task_groups);
  5851. #endif
  5852. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5853. void __init sched_init(void)
  5854. {
  5855. int i, j;
  5856. unsigned long alloc_size = 0, ptr;
  5857. #ifdef CONFIG_FAIR_GROUP_SCHED
  5858. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5859. #endif
  5860. #ifdef CONFIG_RT_GROUP_SCHED
  5861. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5862. #endif
  5863. #ifdef CONFIG_CPUMASK_OFFSTACK
  5864. alloc_size += num_possible_cpus() * cpumask_size();
  5865. #endif
  5866. if (alloc_size) {
  5867. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5868. #ifdef CONFIG_FAIR_GROUP_SCHED
  5869. root_task_group.se = (struct sched_entity **)ptr;
  5870. ptr += nr_cpu_ids * sizeof(void **);
  5871. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5872. ptr += nr_cpu_ids * sizeof(void **);
  5873. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5874. #ifdef CONFIG_RT_GROUP_SCHED
  5875. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5876. ptr += nr_cpu_ids * sizeof(void **);
  5877. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5878. ptr += nr_cpu_ids * sizeof(void **);
  5879. #endif /* CONFIG_RT_GROUP_SCHED */
  5880. #ifdef CONFIG_CPUMASK_OFFSTACK
  5881. for_each_possible_cpu(i) {
  5882. per_cpu(load_balance_mask, i) = (void *)ptr;
  5883. ptr += cpumask_size();
  5884. }
  5885. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5886. }
  5887. init_rt_bandwidth(&def_rt_bandwidth,
  5888. global_rt_period(), global_rt_runtime());
  5889. init_dl_bandwidth(&def_dl_bandwidth,
  5890. global_rt_period(), global_rt_runtime());
  5891. #ifdef CONFIG_SMP
  5892. init_defrootdomain();
  5893. #endif
  5894. #ifdef CONFIG_RT_GROUP_SCHED
  5895. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5896. global_rt_period(), global_rt_runtime());
  5897. #endif /* CONFIG_RT_GROUP_SCHED */
  5898. #ifdef CONFIG_CGROUP_SCHED
  5899. list_add(&root_task_group.list, &task_groups);
  5900. INIT_LIST_HEAD(&root_task_group.children);
  5901. INIT_LIST_HEAD(&root_task_group.siblings);
  5902. autogroup_init(&init_task);
  5903. #endif /* CONFIG_CGROUP_SCHED */
  5904. for_each_possible_cpu(i) {
  5905. struct rq *rq;
  5906. rq = cpu_rq(i);
  5907. raw_spin_lock_init(&rq->lock);
  5908. rq->nr_running = 0;
  5909. rq->calc_load_active = 0;
  5910. rq->calc_load_update = jiffies + LOAD_FREQ;
  5911. init_cfs_rq(&rq->cfs);
  5912. init_rt_rq(&rq->rt, rq);
  5913. init_dl_rq(&rq->dl, rq);
  5914. #ifdef CONFIG_FAIR_GROUP_SCHED
  5915. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5916. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5917. /*
  5918. * How much cpu bandwidth does root_task_group get?
  5919. *
  5920. * In case of task-groups formed thr' the cgroup filesystem, it
  5921. * gets 100% of the cpu resources in the system. This overall
  5922. * system cpu resource is divided among the tasks of
  5923. * root_task_group and its child task-groups in a fair manner,
  5924. * based on each entity's (task or task-group's) weight
  5925. * (se->load.weight).
  5926. *
  5927. * In other words, if root_task_group has 10 tasks of weight
  5928. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5929. * then A0's share of the cpu resource is:
  5930. *
  5931. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5932. *
  5933. * We achieve this by letting root_task_group's tasks sit
  5934. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5935. */
  5936. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5937. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5938. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5939. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5940. #ifdef CONFIG_RT_GROUP_SCHED
  5941. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5942. #endif
  5943. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5944. rq->cpu_load[j] = 0;
  5945. rq->last_load_update_tick = jiffies;
  5946. #ifdef CONFIG_SMP
  5947. rq->sd = NULL;
  5948. rq->rd = NULL;
  5949. rq->cpu_capacity = SCHED_CAPACITY_SCALE;
  5950. rq->post_schedule = 0;
  5951. rq->active_balance = 0;
  5952. rq->next_balance = jiffies;
  5953. rq->push_cpu = 0;
  5954. rq->cpu = i;
  5955. rq->online = 0;
  5956. rq->idle_stamp = 0;
  5957. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5958. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5959. INIT_LIST_HEAD(&rq->cfs_tasks);
  5960. rq_attach_root(rq, &def_root_domain);
  5961. #ifdef CONFIG_NO_HZ_COMMON
  5962. rq->nohz_flags = 0;
  5963. #endif
  5964. #ifdef CONFIG_NO_HZ_FULL
  5965. rq->last_sched_tick = 0;
  5966. #endif
  5967. #endif
  5968. init_rq_hrtick(rq);
  5969. atomic_set(&rq->nr_iowait, 0);
  5970. }
  5971. set_load_weight(&init_task);
  5972. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5973. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5974. #endif
  5975. /*
  5976. * The boot idle thread does lazy MMU switching as well:
  5977. */
  5978. atomic_inc(&init_mm.mm_count);
  5979. enter_lazy_tlb(&init_mm, current);
  5980. /*
  5981. * Make us the idle thread. Technically, schedule() should not be
  5982. * called from this thread, however somewhere below it might be,
  5983. * but because we are the idle thread, we just pick up running again
  5984. * when this runqueue becomes "idle".
  5985. */
  5986. init_idle(current, smp_processor_id());
  5987. calc_load_update = jiffies + LOAD_FREQ;
  5988. /*
  5989. * During early bootup we pretend to be a normal task:
  5990. */
  5991. current->sched_class = &fair_sched_class;
  5992. #ifdef CONFIG_SMP
  5993. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5994. /* May be allocated at isolcpus cmdline parse time */
  5995. if (cpu_isolated_map == NULL)
  5996. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5997. idle_thread_set_boot_cpu();
  5998. set_cpu_rq_start_time();
  5999. #endif
  6000. init_sched_fair_class();
  6001. scheduler_running = 1;
  6002. }
  6003. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6004. static inline int preempt_count_equals(int preempt_offset)
  6005. {
  6006. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6007. return (nested == preempt_offset);
  6008. }
  6009. void __might_sleep(const char *file, int line, int preempt_offset)
  6010. {
  6011. static unsigned long prev_jiffy; /* ratelimiting */
  6012. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6013. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6014. !is_idle_task(current)) ||
  6015. system_state != SYSTEM_RUNNING || oops_in_progress)
  6016. return;
  6017. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6018. return;
  6019. prev_jiffy = jiffies;
  6020. printk(KERN_ERR
  6021. "BUG: sleeping function called from invalid context at %s:%d\n",
  6022. file, line);
  6023. printk(KERN_ERR
  6024. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6025. in_atomic(), irqs_disabled(),
  6026. current->pid, current->comm);
  6027. debug_show_held_locks(current);
  6028. if (irqs_disabled())
  6029. print_irqtrace_events(current);
  6030. #ifdef CONFIG_DEBUG_PREEMPT
  6031. if (!preempt_count_equals(preempt_offset)) {
  6032. pr_err("Preemption disabled at:");
  6033. print_ip_sym(current->preempt_disable_ip);
  6034. pr_cont("\n");
  6035. }
  6036. #endif
  6037. dump_stack();
  6038. }
  6039. EXPORT_SYMBOL(__might_sleep);
  6040. #endif
  6041. #ifdef CONFIG_MAGIC_SYSRQ
  6042. static void normalize_task(struct rq *rq, struct task_struct *p)
  6043. {
  6044. const struct sched_class *prev_class = p->sched_class;
  6045. struct sched_attr attr = {
  6046. .sched_policy = SCHED_NORMAL,
  6047. };
  6048. int old_prio = p->prio;
  6049. int on_rq;
  6050. on_rq = p->on_rq;
  6051. if (on_rq)
  6052. dequeue_task(rq, p, 0);
  6053. __setscheduler(rq, p, &attr);
  6054. if (on_rq) {
  6055. enqueue_task(rq, p, 0);
  6056. resched_curr(rq);
  6057. }
  6058. check_class_changed(rq, p, prev_class, old_prio);
  6059. }
  6060. void normalize_rt_tasks(void)
  6061. {
  6062. struct task_struct *g, *p;
  6063. unsigned long flags;
  6064. struct rq *rq;
  6065. read_lock_irqsave(&tasklist_lock, flags);
  6066. do_each_thread(g, p) {
  6067. /*
  6068. * Only normalize user tasks:
  6069. */
  6070. if (!p->mm)
  6071. continue;
  6072. p->se.exec_start = 0;
  6073. #ifdef CONFIG_SCHEDSTATS
  6074. p->se.statistics.wait_start = 0;
  6075. p->se.statistics.sleep_start = 0;
  6076. p->se.statistics.block_start = 0;
  6077. #endif
  6078. if (!dl_task(p) && !rt_task(p)) {
  6079. /*
  6080. * Renice negative nice level userspace
  6081. * tasks back to 0:
  6082. */
  6083. if (task_nice(p) < 0 && p->mm)
  6084. set_user_nice(p, 0);
  6085. continue;
  6086. }
  6087. raw_spin_lock(&p->pi_lock);
  6088. rq = __task_rq_lock(p);
  6089. normalize_task(rq, p);
  6090. __task_rq_unlock(rq);
  6091. raw_spin_unlock(&p->pi_lock);
  6092. } while_each_thread(g, p);
  6093. read_unlock_irqrestore(&tasklist_lock, flags);
  6094. }
  6095. #endif /* CONFIG_MAGIC_SYSRQ */
  6096. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6097. /*
  6098. * These functions are only useful for the IA64 MCA handling, or kdb.
  6099. *
  6100. * They can only be called when the whole system has been
  6101. * stopped - every CPU needs to be quiescent, and no scheduling
  6102. * activity can take place. Using them for anything else would
  6103. * be a serious bug, and as a result, they aren't even visible
  6104. * under any other configuration.
  6105. */
  6106. /**
  6107. * curr_task - return the current task for a given cpu.
  6108. * @cpu: the processor in question.
  6109. *
  6110. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6111. *
  6112. * Return: The current task for @cpu.
  6113. */
  6114. struct task_struct *curr_task(int cpu)
  6115. {
  6116. return cpu_curr(cpu);
  6117. }
  6118. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6119. #ifdef CONFIG_IA64
  6120. /**
  6121. * set_curr_task - set the current task for a given cpu.
  6122. * @cpu: the processor in question.
  6123. * @p: the task pointer to set.
  6124. *
  6125. * Description: This function must only be used when non-maskable interrupts
  6126. * are serviced on a separate stack. It allows the architecture to switch the
  6127. * notion of the current task on a cpu in a non-blocking manner. This function
  6128. * must be called with all CPU's synchronized, and interrupts disabled, the
  6129. * and caller must save the original value of the current task (see
  6130. * curr_task() above) and restore that value before reenabling interrupts and
  6131. * re-starting the system.
  6132. *
  6133. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6134. */
  6135. void set_curr_task(int cpu, struct task_struct *p)
  6136. {
  6137. cpu_curr(cpu) = p;
  6138. }
  6139. #endif
  6140. #ifdef CONFIG_CGROUP_SCHED
  6141. /* task_group_lock serializes the addition/removal of task groups */
  6142. static DEFINE_SPINLOCK(task_group_lock);
  6143. static void free_sched_group(struct task_group *tg)
  6144. {
  6145. free_fair_sched_group(tg);
  6146. free_rt_sched_group(tg);
  6147. autogroup_free(tg);
  6148. kfree(tg);
  6149. }
  6150. /* allocate runqueue etc for a new task group */
  6151. struct task_group *sched_create_group(struct task_group *parent)
  6152. {
  6153. struct task_group *tg;
  6154. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6155. if (!tg)
  6156. return ERR_PTR(-ENOMEM);
  6157. if (!alloc_fair_sched_group(tg, parent))
  6158. goto err;
  6159. if (!alloc_rt_sched_group(tg, parent))
  6160. goto err;
  6161. return tg;
  6162. err:
  6163. free_sched_group(tg);
  6164. return ERR_PTR(-ENOMEM);
  6165. }
  6166. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6167. {
  6168. unsigned long flags;
  6169. spin_lock_irqsave(&task_group_lock, flags);
  6170. list_add_rcu(&tg->list, &task_groups);
  6171. WARN_ON(!parent); /* root should already exist */
  6172. tg->parent = parent;
  6173. INIT_LIST_HEAD(&tg->children);
  6174. list_add_rcu(&tg->siblings, &parent->children);
  6175. spin_unlock_irqrestore(&task_group_lock, flags);
  6176. }
  6177. /* rcu callback to free various structures associated with a task group */
  6178. static void free_sched_group_rcu(struct rcu_head *rhp)
  6179. {
  6180. /* now it should be safe to free those cfs_rqs */
  6181. free_sched_group(container_of(rhp, struct task_group, rcu));
  6182. }
  6183. /* Destroy runqueue etc associated with a task group */
  6184. void sched_destroy_group(struct task_group *tg)
  6185. {
  6186. /* wait for possible concurrent references to cfs_rqs complete */
  6187. call_rcu(&tg->rcu, free_sched_group_rcu);
  6188. }
  6189. void sched_offline_group(struct task_group *tg)
  6190. {
  6191. unsigned long flags;
  6192. int i;
  6193. /* end participation in shares distribution */
  6194. for_each_possible_cpu(i)
  6195. unregister_fair_sched_group(tg, i);
  6196. spin_lock_irqsave(&task_group_lock, flags);
  6197. list_del_rcu(&tg->list);
  6198. list_del_rcu(&tg->siblings);
  6199. spin_unlock_irqrestore(&task_group_lock, flags);
  6200. }
  6201. /* change task's runqueue when it moves between groups.
  6202. * The caller of this function should have put the task in its new group
  6203. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6204. * reflect its new group.
  6205. */
  6206. void sched_move_task(struct task_struct *tsk)
  6207. {
  6208. struct task_group *tg;
  6209. int on_rq, running;
  6210. unsigned long flags;
  6211. struct rq *rq;
  6212. rq = task_rq_lock(tsk, &flags);
  6213. running = task_current(rq, tsk);
  6214. on_rq = tsk->on_rq;
  6215. if (on_rq)
  6216. dequeue_task(rq, tsk, 0);
  6217. if (unlikely(running))
  6218. tsk->sched_class->put_prev_task(rq, tsk);
  6219. tg = container_of(task_css_check(tsk, cpu_cgrp_id,
  6220. lockdep_is_held(&tsk->sighand->siglock)),
  6221. struct task_group, css);
  6222. tg = autogroup_task_group(tsk, tg);
  6223. tsk->sched_task_group = tg;
  6224. #ifdef CONFIG_FAIR_GROUP_SCHED
  6225. if (tsk->sched_class->task_move_group)
  6226. tsk->sched_class->task_move_group(tsk, on_rq);
  6227. else
  6228. #endif
  6229. set_task_rq(tsk, task_cpu(tsk));
  6230. if (unlikely(running))
  6231. tsk->sched_class->set_curr_task(rq);
  6232. if (on_rq)
  6233. enqueue_task(rq, tsk, 0);
  6234. task_rq_unlock(rq, tsk, &flags);
  6235. }
  6236. #endif /* CONFIG_CGROUP_SCHED */
  6237. #ifdef CONFIG_RT_GROUP_SCHED
  6238. /*
  6239. * Ensure that the real time constraints are schedulable.
  6240. */
  6241. static DEFINE_MUTEX(rt_constraints_mutex);
  6242. /* Must be called with tasklist_lock held */
  6243. static inline int tg_has_rt_tasks(struct task_group *tg)
  6244. {
  6245. struct task_struct *g, *p;
  6246. do_each_thread(g, p) {
  6247. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6248. return 1;
  6249. } while_each_thread(g, p);
  6250. return 0;
  6251. }
  6252. struct rt_schedulable_data {
  6253. struct task_group *tg;
  6254. u64 rt_period;
  6255. u64 rt_runtime;
  6256. };
  6257. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6258. {
  6259. struct rt_schedulable_data *d = data;
  6260. struct task_group *child;
  6261. unsigned long total, sum = 0;
  6262. u64 period, runtime;
  6263. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6264. runtime = tg->rt_bandwidth.rt_runtime;
  6265. if (tg == d->tg) {
  6266. period = d->rt_period;
  6267. runtime = d->rt_runtime;
  6268. }
  6269. /*
  6270. * Cannot have more runtime than the period.
  6271. */
  6272. if (runtime > period && runtime != RUNTIME_INF)
  6273. return -EINVAL;
  6274. /*
  6275. * Ensure we don't starve existing RT tasks.
  6276. */
  6277. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6278. return -EBUSY;
  6279. total = to_ratio(period, runtime);
  6280. /*
  6281. * Nobody can have more than the global setting allows.
  6282. */
  6283. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6284. return -EINVAL;
  6285. /*
  6286. * The sum of our children's runtime should not exceed our own.
  6287. */
  6288. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6289. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6290. runtime = child->rt_bandwidth.rt_runtime;
  6291. if (child == d->tg) {
  6292. period = d->rt_period;
  6293. runtime = d->rt_runtime;
  6294. }
  6295. sum += to_ratio(period, runtime);
  6296. }
  6297. if (sum > total)
  6298. return -EINVAL;
  6299. return 0;
  6300. }
  6301. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6302. {
  6303. int ret;
  6304. struct rt_schedulable_data data = {
  6305. .tg = tg,
  6306. .rt_period = period,
  6307. .rt_runtime = runtime,
  6308. };
  6309. rcu_read_lock();
  6310. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6311. rcu_read_unlock();
  6312. return ret;
  6313. }
  6314. static int tg_set_rt_bandwidth(struct task_group *tg,
  6315. u64 rt_period, u64 rt_runtime)
  6316. {
  6317. int i, err = 0;
  6318. mutex_lock(&rt_constraints_mutex);
  6319. read_lock(&tasklist_lock);
  6320. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6321. if (err)
  6322. goto unlock;
  6323. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6324. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6325. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6326. for_each_possible_cpu(i) {
  6327. struct rt_rq *rt_rq = tg->rt_rq[i];
  6328. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6329. rt_rq->rt_runtime = rt_runtime;
  6330. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6331. }
  6332. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6333. unlock:
  6334. read_unlock(&tasklist_lock);
  6335. mutex_unlock(&rt_constraints_mutex);
  6336. return err;
  6337. }
  6338. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6339. {
  6340. u64 rt_runtime, rt_period;
  6341. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6342. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6343. if (rt_runtime_us < 0)
  6344. rt_runtime = RUNTIME_INF;
  6345. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6346. }
  6347. static long sched_group_rt_runtime(struct task_group *tg)
  6348. {
  6349. u64 rt_runtime_us;
  6350. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6351. return -1;
  6352. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6353. do_div(rt_runtime_us, NSEC_PER_USEC);
  6354. return rt_runtime_us;
  6355. }
  6356. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6357. {
  6358. u64 rt_runtime, rt_period;
  6359. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6360. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6361. if (rt_period == 0)
  6362. return -EINVAL;
  6363. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6364. }
  6365. static long sched_group_rt_period(struct task_group *tg)
  6366. {
  6367. u64 rt_period_us;
  6368. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6369. do_div(rt_period_us, NSEC_PER_USEC);
  6370. return rt_period_us;
  6371. }
  6372. #endif /* CONFIG_RT_GROUP_SCHED */
  6373. #ifdef CONFIG_RT_GROUP_SCHED
  6374. static int sched_rt_global_constraints(void)
  6375. {
  6376. int ret = 0;
  6377. mutex_lock(&rt_constraints_mutex);
  6378. read_lock(&tasklist_lock);
  6379. ret = __rt_schedulable(NULL, 0, 0);
  6380. read_unlock(&tasklist_lock);
  6381. mutex_unlock(&rt_constraints_mutex);
  6382. return ret;
  6383. }
  6384. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6385. {
  6386. /* Don't accept realtime tasks when there is no way for them to run */
  6387. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6388. return 0;
  6389. return 1;
  6390. }
  6391. #else /* !CONFIG_RT_GROUP_SCHED */
  6392. static int sched_rt_global_constraints(void)
  6393. {
  6394. unsigned long flags;
  6395. int i, ret = 0;
  6396. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6397. for_each_possible_cpu(i) {
  6398. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6399. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6400. rt_rq->rt_runtime = global_rt_runtime();
  6401. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6402. }
  6403. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6404. return ret;
  6405. }
  6406. #endif /* CONFIG_RT_GROUP_SCHED */
  6407. static int sched_dl_global_constraints(void)
  6408. {
  6409. u64 runtime = global_rt_runtime();
  6410. u64 period = global_rt_period();
  6411. u64 new_bw = to_ratio(period, runtime);
  6412. int cpu, ret = 0;
  6413. unsigned long flags;
  6414. /*
  6415. * Here we want to check the bandwidth not being set to some
  6416. * value smaller than the currently allocated bandwidth in
  6417. * any of the root_domains.
  6418. *
  6419. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6420. * cycling on root_domains... Discussion on different/better
  6421. * solutions is welcome!
  6422. */
  6423. for_each_possible_cpu(cpu) {
  6424. struct dl_bw *dl_b = dl_bw_of(cpu);
  6425. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6426. if (new_bw < dl_b->total_bw)
  6427. ret = -EBUSY;
  6428. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6429. if (ret)
  6430. break;
  6431. }
  6432. return ret;
  6433. }
  6434. static void sched_dl_do_global(void)
  6435. {
  6436. u64 new_bw = -1;
  6437. int cpu;
  6438. unsigned long flags;
  6439. def_dl_bandwidth.dl_period = global_rt_period();
  6440. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6441. if (global_rt_runtime() != RUNTIME_INF)
  6442. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6443. /*
  6444. * FIXME: As above...
  6445. */
  6446. for_each_possible_cpu(cpu) {
  6447. struct dl_bw *dl_b = dl_bw_of(cpu);
  6448. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6449. dl_b->bw = new_bw;
  6450. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6451. }
  6452. }
  6453. static int sched_rt_global_validate(void)
  6454. {
  6455. if (sysctl_sched_rt_period <= 0)
  6456. return -EINVAL;
  6457. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6458. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6459. return -EINVAL;
  6460. return 0;
  6461. }
  6462. static void sched_rt_do_global(void)
  6463. {
  6464. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6465. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6466. }
  6467. int sched_rt_handler(struct ctl_table *table, int write,
  6468. void __user *buffer, size_t *lenp,
  6469. loff_t *ppos)
  6470. {
  6471. int old_period, old_runtime;
  6472. static DEFINE_MUTEX(mutex);
  6473. int ret;
  6474. mutex_lock(&mutex);
  6475. old_period = sysctl_sched_rt_period;
  6476. old_runtime = sysctl_sched_rt_runtime;
  6477. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6478. if (!ret && write) {
  6479. ret = sched_rt_global_validate();
  6480. if (ret)
  6481. goto undo;
  6482. ret = sched_rt_global_constraints();
  6483. if (ret)
  6484. goto undo;
  6485. ret = sched_dl_global_constraints();
  6486. if (ret)
  6487. goto undo;
  6488. sched_rt_do_global();
  6489. sched_dl_do_global();
  6490. }
  6491. if (0) {
  6492. undo:
  6493. sysctl_sched_rt_period = old_period;
  6494. sysctl_sched_rt_runtime = old_runtime;
  6495. }
  6496. mutex_unlock(&mutex);
  6497. return ret;
  6498. }
  6499. int sched_rr_handler(struct ctl_table *table, int write,
  6500. void __user *buffer, size_t *lenp,
  6501. loff_t *ppos)
  6502. {
  6503. int ret;
  6504. static DEFINE_MUTEX(mutex);
  6505. mutex_lock(&mutex);
  6506. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6507. /* make sure that internally we keep jiffies */
  6508. /* also, writing zero resets timeslice to default */
  6509. if (!ret && write) {
  6510. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6511. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6512. }
  6513. mutex_unlock(&mutex);
  6514. return ret;
  6515. }
  6516. #ifdef CONFIG_CGROUP_SCHED
  6517. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6518. {
  6519. return css ? container_of(css, struct task_group, css) : NULL;
  6520. }
  6521. static struct cgroup_subsys_state *
  6522. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6523. {
  6524. struct task_group *parent = css_tg(parent_css);
  6525. struct task_group *tg;
  6526. if (!parent) {
  6527. /* This is early initialization for the top cgroup */
  6528. return &root_task_group.css;
  6529. }
  6530. tg = sched_create_group(parent);
  6531. if (IS_ERR(tg))
  6532. return ERR_PTR(-ENOMEM);
  6533. return &tg->css;
  6534. }
  6535. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6536. {
  6537. struct task_group *tg = css_tg(css);
  6538. struct task_group *parent = css_tg(css->parent);
  6539. if (parent)
  6540. sched_online_group(tg, parent);
  6541. return 0;
  6542. }
  6543. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6544. {
  6545. struct task_group *tg = css_tg(css);
  6546. sched_destroy_group(tg);
  6547. }
  6548. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6549. {
  6550. struct task_group *tg = css_tg(css);
  6551. sched_offline_group(tg);
  6552. }
  6553. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6554. struct cgroup_taskset *tset)
  6555. {
  6556. struct task_struct *task;
  6557. cgroup_taskset_for_each(task, tset) {
  6558. #ifdef CONFIG_RT_GROUP_SCHED
  6559. if (!sched_rt_can_attach(css_tg(css), task))
  6560. return -EINVAL;
  6561. #else
  6562. /* We don't support RT-tasks being in separate groups */
  6563. if (task->sched_class != &fair_sched_class)
  6564. return -EINVAL;
  6565. #endif
  6566. }
  6567. return 0;
  6568. }
  6569. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6570. struct cgroup_taskset *tset)
  6571. {
  6572. struct task_struct *task;
  6573. cgroup_taskset_for_each(task, tset)
  6574. sched_move_task(task);
  6575. }
  6576. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6577. struct cgroup_subsys_state *old_css,
  6578. struct task_struct *task)
  6579. {
  6580. /*
  6581. * cgroup_exit() is called in the copy_process() failure path.
  6582. * Ignore this case since the task hasn't ran yet, this avoids
  6583. * trying to poke a half freed task state from generic code.
  6584. */
  6585. if (!(task->flags & PF_EXITING))
  6586. return;
  6587. sched_move_task(task);
  6588. }
  6589. #ifdef CONFIG_FAIR_GROUP_SCHED
  6590. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6591. struct cftype *cftype, u64 shareval)
  6592. {
  6593. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6594. }
  6595. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6596. struct cftype *cft)
  6597. {
  6598. struct task_group *tg = css_tg(css);
  6599. return (u64) scale_load_down(tg->shares);
  6600. }
  6601. #ifdef CONFIG_CFS_BANDWIDTH
  6602. static DEFINE_MUTEX(cfs_constraints_mutex);
  6603. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6604. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6605. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6606. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6607. {
  6608. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6609. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6610. if (tg == &root_task_group)
  6611. return -EINVAL;
  6612. /*
  6613. * Ensure we have at some amount of bandwidth every period. This is
  6614. * to prevent reaching a state of large arrears when throttled via
  6615. * entity_tick() resulting in prolonged exit starvation.
  6616. */
  6617. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6618. return -EINVAL;
  6619. /*
  6620. * Likewise, bound things on the otherside by preventing insane quota
  6621. * periods. This also allows us to normalize in computing quota
  6622. * feasibility.
  6623. */
  6624. if (period > max_cfs_quota_period)
  6625. return -EINVAL;
  6626. /*
  6627. * Prevent race between setting of cfs_rq->runtime_enabled and
  6628. * unthrottle_offline_cfs_rqs().
  6629. */
  6630. get_online_cpus();
  6631. mutex_lock(&cfs_constraints_mutex);
  6632. ret = __cfs_schedulable(tg, period, quota);
  6633. if (ret)
  6634. goto out_unlock;
  6635. runtime_enabled = quota != RUNTIME_INF;
  6636. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6637. /*
  6638. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6639. * before making related changes, and on->off must occur afterwards
  6640. */
  6641. if (runtime_enabled && !runtime_was_enabled)
  6642. cfs_bandwidth_usage_inc();
  6643. raw_spin_lock_irq(&cfs_b->lock);
  6644. cfs_b->period = ns_to_ktime(period);
  6645. cfs_b->quota = quota;
  6646. __refill_cfs_bandwidth_runtime(cfs_b);
  6647. /* restart the period timer (if active) to handle new period expiry */
  6648. if (runtime_enabled && cfs_b->timer_active) {
  6649. /* force a reprogram */
  6650. __start_cfs_bandwidth(cfs_b, true);
  6651. }
  6652. raw_spin_unlock_irq(&cfs_b->lock);
  6653. for_each_online_cpu(i) {
  6654. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6655. struct rq *rq = cfs_rq->rq;
  6656. raw_spin_lock_irq(&rq->lock);
  6657. cfs_rq->runtime_enabled = runtime_enabled;
  6658. cfs_rq->runtime_remaining = 0;
  6659. if (cfs_rq->throttled)
  6660. unthrottle_cfs_rq(cfs_rq);
  6661. raw_spin_unlock_irq(&rq->lock);
  6662. }
  6663. if (runtime_was_enabled && !runtime_enabled)
  6664. cfs_bandwidth_usage_dec();
  6665. out_unlock:
  6666. mutex_unlock(&cfs_constraints_mutex);
  6667. put_online_cpus();
  6668. return ret;
  6669. }
  6670. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6671. {
  6672. u64 quota, period;
  6673. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6674. if (cfs_quota_us < 0)
  6675. quota = RUNTIME_INF;
  6676. else
  6677. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6678. return tg_set_cfs_bandwidth(tg, period, quota);
  6679. }
  6680. long tg_get_cfs_quota(struct task_group *tg)
  6681. {
  6682. u64 quota_us;
  6683. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6684. return -1;
  6685. quota_us = tg->cfs_bandwidth.quota;
  6686. do_div(quota_us, NSEC_PER_USEC);
  6687. return quota_us;
  6688. }
  6689. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6690. {
  6691. u64 quota, period;
  6692. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6693. quota = tg->cfs_bandwidth.quota;
  6694. return tg_set_cfs_bandwidth(tg, period, quota);
  6695. }
  6696. long tg_get_cfs_period(struct task_group *tg)
  6697. {
  6698. u64 cfs_period_us;
  6699. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6700. do_div(cfs_period_us, NSEC_PER_USEC);
  6701. return cfs_period_us;
  6702. }
  6703. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6704. struct cftype *cft)
  6705. {
  6706. return tg_get_cfs_quota(css_tg(css));
  6707. }
  6708. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6709. struct cftype *cftype, s64 cfs_quota_us)
  6710. {
  6711. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6712. }
  6713. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6714. struct cftype *cft)
  6715. {
  6716. return tg_get_cfs_period(css_tg(css));
  6717. }
  6718. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6719. struct cftype *cftype, u64 cfs_period_us)
  6720. {
  6721. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6722. }
  6723. struct cfs_schedulable_data {
  6724. struct task_group *tg;
  6725. u64 period, quota;
  6726. };
  6727. /*
  6728. * normalize group quota/period to be quota/max_period
  6729. * note: units are usecs
  6730. */
  6731. static u64 normalize_cfs_quota(struct task_group *tg,
  6732. struct cfs_schedulable_data *d)
  6733. {
  6734. u64 quota, period;
  6735. if (tg == d->tg) {
  6736. period = d->period;
  6737. quota = d->quota;
  6738. } else {
  6739. period = tg_get_cfs_period(tg);
  6740. quota = tg_get_cfs_quota(tg);
  6741. }
  6742. /* note: these should typically be equivalent */
  6743. if (quota == RUNTIME_INF || quota == -1)
  6744. return RUNTIME_INF;
  6745. return to_ratio(period, quota);
  6746. }
  6747. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6748. {
  6749. struct cfs_schedulable_data *d = data;
  6750. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6751. s64 quota = 0, parent_quota = -1;
  6752. if (!tg->parent) {
  6753. quota = RUNTIME_INF;
  6754. } else {
  6755. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6756. quota = normalize_cfs_quota(tg, d);
  6757. parent_quota = parent_b->hierarchal_quota;
  6758. /*
  6759. * ensure max(child_quota) <= parent_quota, inherit when no
  6760. * limit is set
  6761. */
  6762. if (quota == RUNTIME_INF)
  6763. quota = parent_quota;
  6764. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6765. return -EINVAL;
  6766. }
  6767. cfs_b->hierarchal_quota = quota;
  6768. return 0;
  6769. }
  6770. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6771. {
  6772. int ret;
  6773. struct cfs_schedulable_data data = {
  6774. .tg = tg,
  6775. .period = period,
  6776. .quota = quota,
  6777. };
  6778. if (quota != RUNTIME_INF) {
  6779. do_div(data.period, NSEC_PER_USEC);
  6780. do_div(data.quota, NSEC_PER_USEC);
  6781. }
  6782. rcu_read_lock();
  6783. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6784. rcu_read_unlock();
  6785. return ret;
  6786. }
  6787. static int cpu_stats_show(struct seq_file *sf, void *v)
  6788. {
  6789. struct task_group *tg = css_tg(seq_css(sf));
  6790. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6791. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6792. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6793. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6794. return 0;
  6795. }
  6796. #endif /* CONFIG_CFS_BANDWIDTH */
  6797. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6798. #ifdef CONFIG_RT_GROUP_SCHED
  6799. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6800. struct cftype *cft, s64 val)
  6801. {
  6802. return sched_group_set_rt_runtime(css_tg(css), val);
  6803. }
  6804. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6805. struct cftype *cft)
  6806. {
  6807. return sched_group_rt_runtime(css_tg(css));
  6808. }
  6809. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6810. struct cftype *cftype, u64 rt_period_us)
  6811. {
  6812. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6813. }
  6814. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6815. struct cftype *cft)
  6816. {
  6817. return sched_group_rt_period(css_tg(css));
  6818. }
  6819. #endif /* CONFIG_RT_GROUP_SCHED */
  6820. static struct cftype cpu_files[] = {
  6821. #ifdef CONFIG_FAIR_GROUP_SCHED
  6822. {
  6823. .name = "shares",
  6824. .read_u64 = cpu_shares_read_u64,
  6825. .write_u64 = cpu_shares_write_u64,
  6826. },
  6827. #endif
  6828. #ifdef CONFIG_CFS_BANDWIDTH
  6829. {
  6830. .name = "cfs_quota_us",
  6831. .read_s64 = cpu_cfs_quota_read_s64,
  6832. .write_s64 = cpu_cfs_quota_write_s64,
  6833. },
  6834. {
  6835. .name = "cfs_period_us",
  6836. .read_u64 = cpu_cfs_period_read_u64,
  6837. .write_u64 = cpu_cfs_period_write_u64,
  6838. },
  6839. {
  6840. .name = "stat",
  6841. .seq_show = cpu_stats_show,
  6842. },
  6843. #endif
  6844. #ifdef CONFIG_RT_GROUP_SCHED
  6845. {
  6846. .name = "rt_runtime_us",
  6847. .read_s64 = cpu_rt_runtime_read,
  6848. .write_s64 = cpu_rt_runtime_write,
  6849. },
  6850. {
  6851. .name = "rt_period_us",
  6852. .read_u64 = cpu_rt_period_read_uint,
  6853. .write_u64 = cpu_rt_period_write_uint,
  6854. },
  6855. #endif
  6856. { } /* terminate */
  6857. };
  6858. struct cgroup_subsys cpu_cgrp_subsys = {
  6859. .css_alloc = cpu_cgroup_css_alloc,
  6860. .css_free = cpu_cgroup_css_free,
  6861. .css_online = cpu_cgroup_css_online,
  6862. .css_offline = cpu_cgroup_css_offline,
  6863. .can_attach = cpu_cgroup_can_attach,
  6864. .attach = cpu_cgroup_attach,
  6865. .exit = cpu_cgroup_exit,
  6866. .legacy_cftypes = cpu_files,
  6867. .early_init = 1,
  6868. };
  6869. #endif /* CONFIG_CGROUP_SCHED */
  6870. void dump_cpu_task(int cpu)
  6871. {
  6872. pr_info("Task dump for CPU %d:\n", cpu);
  6873. sched_show_task(cpu_curr(cpu));
  6874. }