fork.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <asm/pgtable.h>
  76. #include <asm/pgalloc.h>
  77. #include <asm/uaccess.h>
  78. #include <asm/mmu_context.h>
  79. #include <asm/cacheflush.h>
  80. #include <asm/tlbflush.h>
  81. #include <trace/events/sched.h>
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/task.h>
  84. /*
  85. * Protected counters by write_lock_irq(&tasklist_lock)
  86. */
  87. unsigned long total_forks; /* Handle normal Linux uptimes. */
  88. int nr_threads; /* The idle threads do not count.. */
  89. int max_threads; /* tunable limit on nr_threads */
  90. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  91. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  92. #ifdef CONFIG_PROVE_RCU
  93. int lockdep_tasklist_lock_is_held(void)
  94. {
  95. return lockdep_is_held(&tasklist_lock);
  96. }
  97. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  98. #endif /* #ifdef CONFIG_PROVE_RCU */
  99. int nr_processes(void)
  100. {
  101. int cpu;
  102. int total = 0;
  103. for_each_possible_cpu(cpu)
  104. total += per_cpu(process_counts, cpu);
  105. return total;
  106. }
  107. void __weak arch_release_task_struct(struct task_struct *tsk)
  108. {
  109. }
  110. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  111. static struct kmem_cache *task_struct_cachep;
  112. static inline struct task_struct *alloc_task_struct_node(int node)
  113. {
  114. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  115. }
  116. static inline void free_task_struct(struct task_struct *tsk)
  117. {
  118. kmem_cache_free(task_struct_cachep, tsk);
  119. }
  120. #endif
  121. void __weak arch_release_thread_info(struct thread_info *ti)
  122. {
  123. }
  124. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  125. /*
  126. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  127. * kmemcache based allocator.
  128. */
  129. # if THREAD_SIZE >= PAGE_SIZE
  130. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  131. int node)
  132. {
  133. struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
  134. THREAD_SIZE_ORDER);
  135. return page ? page_address(page) : NULL;
  136. }
  137. static inline void free_thread_info(struct thread_info *ti)
  138. {
  139. free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  140. }
  141. # else
  142. static struct kmem_cache *thread_info_cache;
  143. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  144. int node)
  145. {
  146. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  147. }
  148. static void free_thread_info(struct thread_info *ti)
  149. {
  150. kmem_cache_free(thread_info_cache, ti);
  151. }
  152. void thread_info_cache_init(void)
  153. {
  154. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  155. THREAD_SIZE, 0, NULL);
  156. BUG_ON(thread_info_cache == NULL);
  157. }
  158. # endif
  159. #endif
  160. /* SLAB cache for signal_struct structures (tsk->signal) */
  161. static struct kmem_cache *signal_cachep;
  162. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  163. struct kmem_cache *sighand_cachep;
  164. /* SLAB cache for files_struct structures (tsk->files) */
  165. struct kmem_cache *files_cachep;
  166. /* SLAB cache for fs_struct structures (tsk->fs) */
  167. struct kmem_cache *fs_cachep;
  168. /* SLAB cache for vm_area_struct structures */
  169. struct kmem_cache *vm_area_cachep;
  170. /* SLAB cache for mm_struct structures (tsk->mm) */
  171. static struct kmem_cache *mm_cachep;
  172. static void account_kernel_stack(struct thread_info *ti, int account)
  173. {
  174. struct zone *zone = page_zone(virt_to_page(ti));
  175. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  176. }
  177. void free_task(struct task_struct *tsk)
  178. {
  179. account_kernel_stack(tsk->stack, -1);
  180. arch_release_thread_info(tsk->stack);
  181. free_thread_info(tsk->stack);
  182. rt_mutex_debug_task_free(tsk);
  183. ftrace_graph_exit_task(tsk);
  184. put_seccomp_filter(tsk);
  185. arch_release_task_struct(tsk);
  186. free_task_struct(tsk);
  187. }
  188. EXPORT_SYMBOL(free_task);
  189. static inline void free_signal_struct(struct signal_struct *sig)
  190. {
  191. taskstats_tgid_free(sig);
  192. sched_autogroup_exit(sig);
  193. kmem_cache_free(signal_cachep, sig);
  194. }
  195. static inline void put_signal_struct(struct signal_struct *sig)
  196. {
  197. if (atomic_dec_and_test(&sig->sigcnt))
  198. free_signal_struct(sig);
  199. }
  200. void __put_task_struct(struct task_struct *tsk)
  201. {
  202. WARN_ON(!tsk->exit_state);
  203. WARN_ON(atomic_read(&tsk->usage));
  204. WARN_ON(tsk == current);
  205. task_numa_free(tsk);
  206. security_task_free(tsk);
  207. exit_creds(tsk);
  208. delayacct_tsk_free(tsk);
  209. put_signal_struct(tsk->signal);
  210. if (!profile_handoff_task(tsk))
  211. free_task(tsk);
  212. }
  213. EXPORT_SYMBOL_GPL(__put_task_struct);
  214. void __init __weak arch_task_cache_init(void) { }
  215. void __init fork_init(unsigned long mempages)
  216. {
  217. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  218. #ifndef ARCH_MIN_TASKALIGN
  219. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  220. #endif
  221. /* create a slab on which task_structs can be allocated */
  222. task_struct_cachep =
  223. kmem_cache_create("task_struct", sizeof(struct task_struct),
  224. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  225. #endif
  226. /* do the arch specific task caches init */
  227. arch_task_cache_init();
  228. /*
  229. * The default maximum number of threads is set to a safe
  230. * value: the thread structures can take up at most half
  231. * of memory.
  232. */
  233. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  234. /*
  235. * we need to allow at least 20 threads to boot a system
  236. */
  237. if (max_threads < 20)
  238. max_threads = 20;
  239. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  240. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  241. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  242. init_task.signal->rlim[RLIMIT_NPROC];
  243. }
  244. int __weak arch_dup_task_struct(struct task_struct *dst,
  245. struct task_struct *src)
  246. {
  247. *dst = *src;
  248. return 0;
  249. }
  250. static struct task_struct *dup_task_struct(struct task_struct *orig)
  251. {
  252. struct task_struct *tsk;
  253. struct thread_info *ti;
  254. unsigned long *stackend;
  255. int node = tsk_fork_get_node(orig);
  256. int err;
  257. tsk = alloc_task_struct_node(node);
  258. if (!tsk)
  259. return NULL;
  260. ti = alloc_thread_info_node(tsk, node);
  261. if (!ti)
  262. goto free_tsk;
  263. err = arch_dup_task_struct(tsk, orig);
  264. if (err)
  265. goto free_ti;
  266. tsk->stack = ti;
  267. #ifdef CONFIG_SECCOMP
  268. /*
  269. * We must handle setting up seccomp filters once we're under
  270. * the sighand lock in case orig has changed between now and
  271. * then. Until then, filter must be NULL to avoid messing up
  272. * the usage counts on the error path calling free_task.
  273. */
  274. tsk->seccomp.filter = NULL;
  275. #endif
  276. setup_thread_stack(tsk, orig);
  277. clear_user_return_notifier(tsk);
  278. clear_tsk_need_resched(tsk);
  279. stackend = end_of_stack(tsk);
  280. *stackend = STACK_END_MAGIC; /* for overflow detection */
  281. #ifdef CONFIG_CC_STACKPROTECTOR
  282. tsk->stack_canary = get_random_int();
  283. #endif
  284. /*
  285. * One for us, one for whoever does the "release_task()" (usually
  286. * parent)
  287. */
  288. atomic_set(&tsk->usage, 2);
  289. #ifdef CONFIG_BLK_DEV_IO_TRACE
  290. tsk->btrace_seq = 0;
  291. #endif
  292. tsk->splice_pipe = NULL;
  293. tsk->task_frag.page = NULL;
  294. account_kernel_stack(ti, 1);
  295. return tsk;
  296. free_ti:
  297. free_thread_info(ti);
  298. free_tsk:
  299. free_task_struct(tsk);
  300. return NULL;
  301. }
  302. #ifdef CONFIG_MMU
  303. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  304. {
  305. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  306. struct rb_node **rb_link, *rb_parent;
  307. int retval;
  308. unsigned long charge;
  309. uprobe_start_dup_mmap();
  310. down_write(&oldmm->mmap_sem);
  311. flush_cache_dup_mm(oldmm);
  312. uprobe_dup_mmap(oldmm, mm);
  313. /*
  314. * Not linked in yet - no deadlock potential:
  315. */
  316. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  317. rb_link = &mm->mm_rb.rb_node;
  318. rb_parent = NULL;
  319. pprev = &mm->mmap;
  320. retval = ksm_fork(mm, oldmm);
  321. if (retval)
  322. goto out;
  323. retval = khugepaged_fork(mm, oldmm);
  324. if (retval)
  325. goto out;
  326. prev = NULL;
  327. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  328. struct file *file;
  329. if (mpnt->vm_flags & VM_DONTCOPY) {
  330. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  331. -vma_pages(mpnt));
  332. continue;
  333. }
  334. charge = 0;
  335. if (mpnt->vm_flags & VM_ACCOUNT) {
  336. unsigned long len = vma_pages(mpnt);
  337. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  338. goto fail_nomem;
  339. charge = len;
  340. }
  341. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  342. if (!tmp)
  343. goto fail_nomem;
  344. *tmp = *mpnt;
  345. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  346. retval = vma_dup_policy(mpnt, tmp);
  347. if (retval)
  348. goto fail_nomem_policy;
  349. tmp->vm_mm = mm;
  350. if (anon_vma_fork(tmp, mpnt))
  351. goto fail_nomem_anon_vma_fork;
  352. tmp->vm_flags &= ~VM_LOCKED;
  353. tmp->vm_next = tmp->vm_prev = NULL;
  354. file = tmp->vm_file;
  355. if (file) {
  356. struct inode *inode = file_inode(file);
  357. struct address_space *mapping = file->f_mapping;
  358. get_file(file);
  359. if (tmp->vm_flags & VM_DENYWRITE)
  360. atomic_dec(&inode->i_writecount);
  361. mutex_lock(&mapping->i_mmap_mutex);
  362. if (tmp->vm_flags & VM_SHARED)
  363. mapping->i_mmap_writable++;
  364. flush_dcache_mmap_lock(mapping);
  365. /* insert tmp into the share list, just after mpnt */
  366. if (unlikely(tmp->vm_flags & VM_NONLINEAR))
  367. vma_nonlinear_insert(tmp,
  368. &mapping->i_mmap_nonlinear);
  369. else
  370. vma_interval_tree_insert_after(tmp, mpnt,
  371. &mapping->i_mmap);
  372. flush_dcache_mmap_unlock(mapping);
  373. mutex_unlock(&mapping->i_mmap_mutex);
  374. }
  375. /*
  376. * Clear hugetlb-related page reserves for children. This only
  377. * affects MAP_PRIVATE mappings. Faults generated by the child
  378. * are not guaranteed to succeed, even if read-only
  379. */
  380. if (is_vm_hugetlb_page(tmp))
  381. reset_vma_resv_huge_pages(tmp);
  382. /*
  383. * Link in the new vma and copy the page table entries.
  384. */
  385. *pprev = tmp;
  386. pprev = &tmp->vm_next;
  387. tmp->vm_prev = prev;
  388. prev = tmp;
  389. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  390. rb_link = &tmp->vm_rb.rb_right;
  391. rb_parent = &tmp->vm_rb;
  392. mm->map_count++;
  393. retval = copy_page_range(mm, oldmm, mpnt);
  394. if (tmp->vm_ops && tmp->vm_ops->open)
  395. tmp->vm_ops->open(tmp);
  396. if (retval)
  397. goto out;
  398. }
  399. /* a new mm has just been created */
  400. arch_dup_mmap(oldmm, mm);
  401. retval = 0;
  402. out:
  403. up_write(&mm->mmap_sem);
  404. flush_tlb_mm(oldmm);
  405. up_write(&oldmm->mmap_sem);
  406. uprobe_end_dup_mmap();
  407. return retval;
  408. fail_nomem_anon_vma_fork:
  409. mpol_put(vma_policy(tmp));
  410. fail_nomem_policy:
  411. kmem_cache_free(vm_area_cachep, tmp);
  412. fail_nomem:
  413. retval = -ENOMEM;
  414. vm_unacct_memory(charge);
  415. goto out;
  416. }
  417. static inline int mm_alloc_pgd(struct mm_struct *mm)
  418. {
  419. mm->pgd = pgd_alloc(mm);
  420. if (unlikely(!mm->pgd))
  421. return -ENOMEM;
  422. return 0;
  423. }
  424. static inline void mm_free_pgd(struct mm_struct *mm)
  425. {
  426. pgd_free(mm, mm->pgd);
  427. }
  428. #else
  429. #define dup_mmap(mm, oldmm) (0)
  430. #define mm_alloc_pgd(mm) (0)
  431. #define mm_free_pgd(mm)
  432. #endif /* CONFIG_MMU */
  433. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  434. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  435. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  436. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  437. static int __init coredump_filter_setup(char *s)
  438. {
  439. default_dump_filter =
  440. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  441. MMF_DUMP_FILTER_MASK;
  442. return 1;
  443. }
  444. __setup("coredump_filter=", coredump_filter_setup);
  445. #include <linux/init_task.h>
  446. static void mm_init_aio(struct mm_struct *mm)
  447. {
  448. #ifdef CONFIG_AIO
  449. spin_lock_init(&mm->ioctx_lock);
  450. mm->ioctx_table = NULL;
  451. #endif
  452. }
  453. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  454. {
  455. mm->mmap = NULL;
  456. mm->mm_rb = RB_ROOT;
  457. mm->vmacache_seqnum = 0;
  458. atomic_set(&mm->mm_users, 1);
  459. atomic_set(&mm->mm_count, 1);
  460. init_rwsem(&mm->mmap_sem);
  461. INIT_LIST_HEAD(&mm->mmlist);
  462. mm->core_state = NULL;
  463. atomic_long_set(&mm->nr_ptes, 0);
  464. mm->map_count = 0;
  465. mm->locked_vm = 0;
  466. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  467. spin_lock_init(&mm->page_table_lock);
  468. mm_init_cpumask(mm);
  469. mm_init_aio(mm);
  470. mm_init_owner(mm, p);
  471. mmu_notifier_mm_init(mm);
  472. clear_tlb_flush_pending(mm);
  473. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  474. mm->pmd_huge_pte = NULL;
  475. #endif
  476. if (current->mm) {
  477. mm->flags = current->mm->flags & MMF_INIT_MASK;
  478. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  479. } else {
  480. mm->flags = default_dump_filter;
  481. mm->def_flags = 0;
  482. }
  483. if (mm_alloc_pgd(mm))
  484. goto fail_nopgd;
  485. if (init_new_context(p, mm))
  486. goto fail_nocontext;
  487. return mm;
  488. fail_nocontext:
  489. mm_free_pgd(mm);
  490. fail_nopgd:
  491. free_mm(mm);
  492. return NULL;
  493. }
  494. static void check_mm(struct mm_struct *mm)
  495. {
  496. int i;
  497. for (i = 0; i < NR_MM_COUNTERS; i++) {
  498. long x = atomic_long_read(&mm->rss_stat.count[i]);
  499. if (unlikely(x))
  500. printk(KERN_ALERT "BUG: Bad rss-counter state "
  501. "mm:%p idx:%d val:%ld\n", mm, i, x);
  502. }
  503. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  504. VM_BUG_ON(mm->pmd_huge_pte);
  505. #endif
  506. }
  507. /*
  508. * Allocate and initialize an mm_struct.
  509. */
  510. struct mm_struct *mm_alloc(void)
  511. {
  512. struct mm_struct *mm;
  513. mm = allocate_mm();
  514. if (!mm)
  515. return NULL;
  516. memset(mm, 0, sizeof(*mm));
  517. return mm_init(mm, current);
  518. }
  519. /*
  520. * Called when the last reference to the mm
  521. * is dropped: either by a lazy thread or by
  522. * mmput. Free the page directory and the mm.
  523. */
  524. void __mmdrop(struct mm_struct *mm)
  525. {
  526. BUG_ON(mm == &init_mm);
  527. mm_free_pgd(mm);
  528. destroy_context(mm);
  529. mmu_notifier_mm_destroy(mm);
  530. check_mm(mm);
  531. free_mm(mm);
  532. }
  533. EXPORT_SYMBOL_GPL(__mmdrop);
  534. /*
  535. * Decrement the use count and release all resources for an mm.
  536. */
  537. void mmput(struct mm_struct *mm)
  538. {
  539. might_sleep();
  540. if (atomic_dec_and_test(&mm->mm_users)) {
  541. uprobe_clear_state(mm);
  542. exit_aio(mm);
  543. ksm_exit(mm);
  544. khugepaged_exit(mm); /* must run before exit_mmap */
  545. exit_mmap(mm);
  546. set_mm_exe_file(mm, NULL);
  547. if (!list_empty(&mm->mmlist)) {
  548. spin_lock(&mmlist_lock);
  549. list_del(&mm->mmlist);
  550. spin_unlock(&mmlist_lock);
  551. }
  552. if (mm->binfmt)
  553. module_put(mm->binfmt->module);
  554. mmdrop(mm);
  555. }
  556. }
  557. EXPORT_SYMBOL_GPL(mmput);
  558. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  559. {
  560. if (new_exe_file)
  561. get_file(new_exe_file);
  562. if (mm->exe_file)
  563. fput(mm->exe_file);
  564. mm->exe_file = new_exe_file;
  565. }
  566. struct file *get_mm_exe_file(struct mm_struct *mm)
  567. {
  568. struct file *exe_file;
  569. /* We need mmap_sem to protect against races with removal of exe_file */
  570. down_read(&mm->mmap_sem);
  571. exe_file = mm->exe_file;
  572. if (exe_file)
  573. get_file(exe_file);
  574. up_read(&mm->mmap_sem);
  575. return exe_file;
  576. }
  577. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  578. {
  579. /* It's safe to write the exe_file pointer without exe_file_lock because
  580. * this is called during fork when the task is not yet in /proc */
  581. newmm->exe_file = get_mm_exe_file(oldmm);
  582. }
  583. /**
  584. * get_task_mm - acquire a reference to the task's mm
  585. *
  586. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  587. * this kernel workthread has transiently adopted a user mm with use_mm,
  588. * to do its AIO) is not set and if so returns a reference to it, after
  589. * bumping up the use count. User must release the mm via mmput()
  590. * after use. Typically used by /proc and ptrace.
  591. */
  592. struct mm_struct *get_task_mm(struct task_struct *task)
  593. {
  594. struct mm_struct *mm;
  595. task_lock(task);
  596. mm = task->mm;
  597. if (mm) {
  598. if (task->flags & PF_KTHREAD)
  599. mm = NULL;
  600. else
  601. atomic_inc(&mm->mm_users);
  602. }
  603. task_unlock(task);
  604. return mm;
  605. }
  606. EXPORT_SYMBOL_GPL(get_task_mm);
  607. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  608. {
  609. struct mm_struct *mm;
  610. int err;
  611. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  612. if (err)
  613. return ERR_PTR(err);
  614. mm = get_task_mm(task);
  615. if (mm && mm != current->mm &&
  616. !ptrace_may_access(task, mode)) {
  617. mmput(mm);
  618. mm = ERR_PTR(-EACCES);
  619. }
  620. mutex_unlock(&task->signal->cred_guard_mutex);
  621. return mm;
  622. }
  623. static void complete_vfork_done(struct task_struct *tsk)
  624. {
  625. struct completion *vfork;
  626. task_lock(tsk);
  627. vfork = tsk->vfork_done;
  628. if (likely(vfork)) {
  629. tsk->vfork_done = NULL;
  630. complete(vfork);
  631. }
  632. task_unlock(tsk);
  633. }
  634. static int wait_for_vfork_done(struct task_struct *child,
  635. struct completion *vfork)
  636. {
  637. int killed;
  638. freezer_do_not_count();
  639. killed = wait_for_completion_killable(vfork);
  640. freezer_count();
  641. if (killed) {
  642. task_lock(child);
  643. child->vfork_done = NULL;
  644. task_unlock(child);
  645. }
  646. put_task_struct(child);
  647. return killed;
  648. }
  649. /* Please note the differences between mmput and mm_release.
  650. * mmput is called whenever we stop holding onto a mm_struct,
  651. * error success whatever.
  652. *
  653. * mm_release is called after a mm_struct has been removed
  654. * from the current process.
  655. *
  656. * This difference is important for error handling, when we
  657. * only half set up a mm_struct for a new process and need to restore
  658. * the old one. Because we mmput the new mm_struct before
  659. * restoring the old one. . .
  660. * Eric Biederman 10 January 1998
  661. */
  662. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  663. {
  664. /* Get rid of any futexes when releasing the mm */
  665. #ifdef CONFIG_FUTEX
  666. if (unlikely(tsk->robust_list)) {
  667. exit_robust_list(tsk);
  668. tsk->robust_list = NULL;
  669. }
  670. #ifdef CONFIG_COMPAT
  671. if (unlikely(tsk->compat_robust_list)) {
  672. compat_exit_robust_list(tsk);
  673. tsk->compat_robust_list = NULL;
  674. }
  675. #endif
  676. if (unlikely(!list_empty(&tsk->pi_state_list)))
  677. exit_pi_state_list(tsk);
  678. #endif
  679. uprobe_free_utask(tsk);
  680. /* Get rid of any cached register state */
  681. deactivate_mm(tsk, mm);
  682. /*
  683. * If we're exiting normally, clear a user-space tid field if
  684. * requested. We leave this alone when dying by signal, to leave
  685. * the value intact in a core dump, and to save the unnecessary
  686. * trouble, say, a killed vfork parent shouldn't touch this mm.
  687. * Userland only wants this done for a sys_exit.
  688. */
  689. if (tsk->clear_child_tid) {
  690. if (!(tsk->flags & PF_SIGNALED) &&
  691. atomic_read(&mm->mm_users) > 1) {
  692. /*
  693. * We don't check the error code - if userspace has
  694. * not set up a proper pointer then tough luck.
  695. */
  696. put_user(0, tsk->clear_child_tid);
  697. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  698. 1, NULL, NULL, 0);
  699. }
  700. tsk->clear_child_tid = NULL;
  701. }
  702. /*
  703. * All done, finally we can wake up parent and return this mm to him.
  704. * Also kthread_stop() uses this completion for synchronization.
  705. */
  706. if (tsk->vfork_done)
  707. complete_vfork_done(tsk);
  708. }
  709. /*
  710. * Allocate a new mm structure and copy contents from the
  711. * mm structure of the passed in task structure.
  712. */
  713. static struct mm_struct *dup_mm(struct task_struct *tsk)
  714. {
  715. struct mm_struct *mm, *oldmm = current->mm;
  716. int err;
  717. mm = allocate_mm();
  718. if (!mm)
  719. goto fail_nomem;
  720. memcpy(mm, oldmm, sizeof(*mm));
  721. if (!mm_init(mm, tsk))
  722. goto fail_nomem;
  723. dup_mm_exe_file(oldmm, mm);
  724. err = dup_mmap(mm, oldmm);
  725. if (err)
  726. goto free_pt;
  727. mm->hiwater_rss = get_mm_rss(mm);
  728. mm->hiwater_vm = mm->total_vm;
  729. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  730. goto free_pt;
  731. return mm;
  732. free_pt:
  733. /* don't put binfmt in mmput, we haven't got module yet */
  734. mm->binfmt = NULL;
  735. mmput(mm);
  736. fail_nomem:
  737. return NULL;
  738. }
  739. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  740. {
  741. struct mm_struct *mm, *oldmm;
  742. int retval;
  743. tsk->min_flt = tsk->maj_flt = 0;
  744. tsk->nvcsw = tsk->nivcsw = 0;
  745. #ifdef CONFIG_DETECT_HUNG_TASK
  746. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  747. #endif
  748. tsk->mm = NULL;
  749. tsk->active_mm = NULL;
  750. /*
  751. * Are we cloning a kernel thread?
  752. *
  753. * We need to steal a active VM for that..
  754. */
  755. oldmm = current->mm;
  756. if (!oldmm)
  757. return 0;
  758. /* initialize the new vmacache entries */
  759. vmacache_flush(tsk);
  760. if (clone_flags & CLONE_VM) {
  761. atomic_inc(&oldmm->mm_users);
  762. mm = oldmm;
  763. goto good_mm;
  764. }
  765. retval = -ENOMEM;
  766. mm = dup_mm(tsk);
  767. if (!mm)
  768. goto fail_nomem;
  769. good_mm:
  770. tsk->mm = mm;
  771. tsk->active_mm = mm;
  772. return 0;
  773. fail_nomem:
  774. return retval;
  775. }
  776. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  777. {
  778. struct fs_struct *fs = current->fs;
  779. if (clone_flags & CLONE_FS) {
  780. /* tsk->fs is already what we want */
  781. spin_lock(&fs->lock);
  782. if (fs->in_exec) {
  783. spin_unlock(&fs->lock);
  784. return -EAGAIN;
  785. }
  786. fs->users++;
  787. spin_unlock(&fs->lock);
  788. return 0;
  789. }
  790. tsk->fs = copy_fs_struct(fs);
  791. if (!tsk->fs)
  792. return -ENOMEM;
  793. return 0;
  794. }
  795. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  796. {
  797. struct files_struct *oldf, *newf;
  798. int error = 0;
  799. /*
  800. * A background process may not have any files ...
  801. */
  802. oldf = current->files;
  803. if (!oldf)
  804. goto out;
  805. if (clone_flags & CLONE_FILES) {
  806. atomic_inc(&oldf->count);
  807. goto out;
  808. }
  809. newf = dup_fd(oldf, &error);
  810. if (!newf)
  811. goto out;
  812. tsk->files = newf;
  813. error = 0;
  814. out:
  815. return error;
  816. }
  817. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  818. {
  819. #ifdef CONFIG_BLOCK
  820. struct io_context *ioc = current->io_context;
  821. struct io_context *new_ioc;
  822. if (!ioc)
  823. return 0;
  824. /*
  825. * Share io context with parent, if CLONE_IO is set
  826. */
  827. if (clone_flags & CLONE_IO) {
  828. ioc_task_link(ioc);
  829. tsk->io_context = ioc;
  830. } else if (ioprio_valid(ioc->ioprio)) {
  831. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  832. if (unlikely(!new_ioc))
  833. return -ENOMEM;
  834. new_ioc->ioprio = ioc->ioprio;
  835. put_io_context(new_ioc);
  836. }
  837. #endif
  838. return 0;
  839. }
  840. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  841. {
  842. struct sighand_struct *sig;
  843. if (clone_flags & CLONE_SIGHAND) {
  844. atomic_inc(&current->sighand->count);
  845. return 0;
  846. }
  847. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  848. rcu_assign_pointer(tsk->sighand, sig);
  849. if (!sig)
  850. return -ENOMEM;
  851. atomic_set(&sig->count, 1);
  852. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  853. return 0;
  854. }
  855. void __cleanup_sighand(struct sighand_struct *sighand)
  856. {
  857. if (atomic_dec_and_test(&sighand->count)) {
  858. signalfd_cleanup(sighand);
  859. kmem_cache_free(sighand_cachep, sighand);
  860. }
  861. }
  862. /*
  863. * Initialize POSIX timer handling for a thread group.
  864. */
  865. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  866. {
  867. unsigned long cpu_limit;
  868. /* Thread group counters. */
  869. thread_group_cputime_init(sig);
  870. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  871. if (cpu_limit != RLIM_INFINITY) {
  872. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  873. sig->cputimer.running = 1;
  874. }
  875. /* The timer lists. */
  876. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  877. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  878. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  879. }
  880. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  881. {
  882. struct signal_struct *sig;
  883. if (clone_flags & CLONE_THREAD)
  884. return 0;
  885. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  886. tsk->signal = sig;
  887. if (!sig)
  888. return -ENOMEM;
  889. sig->nr_threads = 1;
  890. atomic_set(&sig->live, 1);
  891. atomic_set(&sig->sigcnt, 1);
  892. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  893. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  894. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  895. init_waitqueue_head(&sig->wait_chldexit);
  896. sig->curr_target = tsk;
  897. init_sigpending(&sig->shared_pending);
  898. INIT_LIST_HEAD(&sig->posix_timers);
  899. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  900. sig->real_timer.function = it_real_fn;
  901. task_lock(current->group_leader);
  902. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  903. task_unlock(current->group_leader);
  904. posix_cpu_timers_init_group(sig);
  905. tty_audit_fork(sig);
  906. sched_autogroup_fork(sig);
  907. #ifdef CONFIG_CGROUPS
  908. init_rwsem(&sig->group_rwsem);
  909. #endif
  910. sig->oom_score_adj = current->signal->oom_score_adj;
  911. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  912. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  913. current->signal->is_child_subreaper;
  914. mutex_init(&sig->cred_guard_mutex);
  915. return 0;
  916. }
  917. static void copy_seccomp(struct task_struct *p)
  918. {
  919. #ifdef CONFIG_SECCOMP
  920. /*
  921. * Must be called with sighand->lock held, which is common to
  922. * all threads in the group. Holding cred_guard_mutex is not
  923. * needed because this new task is not yet running and cannot
  924. * be racing exec.
  925. */
  926. BUG_ON(!spin_is_locked(&current->sighand->siglock));
  927. /* Ref-count the new filter user, and assign it. */
  928. get_seccomp_filter(current);
  929. p->seccomp = current->seccomp;
  930. /*
  931. * Explicitly enable no_new_privs here in case it got set
  932. * between the task_struct being duplicated and holding the
  933. * sighand lock. The seccomp state and nnp must be in sync.
  934. */
  935. if (task_no_new_privs(current))
  936. task_set_no_new_privs(p);
  937. /*
  938. * If the parent gained a seccomp mode after copying thread
  939. * flags and between before we held the sighand lock, we have
  940. * to manually enable the seccomp thread flag here.
  941. */
  942. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  943. set_tsk_thread_flag(p, TIF_SECCOMP);
  944. #endif
  945. }
  946. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  947. {
  948. current->clear_child_tid = tidptr;
  949. return task_pid_vnr(current);
  950. }
  951. static void rt_mutex_init_task(struct task_struct *p)
  952. {
  953. raw_spin_lock_init(&p->pi_lock);
  954. #ifdef CONFIG_RT_MUTEXES
  955. p->pi_waiters = RB_ROOT;
  956. p->pi_waiters_leftmost = NULL;
  957. p->pi_blocked_on = NULL;
  958. #endif
  959. }
  960. #ifdef CONFIG_MEMCG
  961. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  962. {
  963. mm->owner = p;
  964. }
  965. #endif /* CONFIG_MEMCG */
  966. /*
  967. * Initialize POSIX timer handling for a single task.
  968. */
  969. static void posix_cpu_timers_init(struct task_struct *tsk)
  970. {
  971. tsk->cputime_expires.prof_exp = 0;
  972. tsk->cputime_expires.virt_exp = 0;
  973. tsk->cputime_expires.sched_exp = 0;
  974. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  975. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  976. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  977. }
  978. static inline void
  979. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  980. {
  981. task->pids[type].pid = pid;
  982. }
  983. /*
  984. * This creates a new process as a copy of the old one,
  985. * but does not actually start it yet.
  986. *
  987. * It copies the registers, and all the appropriate
  988. * parts of the process environment (as per the clone
  989. * flags). The actual kick-off is left to the caller.
  990. */
  991. static struct task_struct *copy_process(unsigned long clone_flags,
  992. unsigned long stack_start,
  993. unsigned long stack_size,
  994. int __user *child_tidptr,
  995. struct pid *pid,
  996. int trace)
  997. {
  998. int retval;
  999. struct task_struct *p;
  1000. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1001. return ERR_PTR(-EINVAL);
  1002. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1003. return ERR_PTR(-EINVAL);
  1004. /*
  1005. * Thread groups must share signals as well, and detached threads
  1006. * can only be started up within the thread group.
  1007. */
  1008. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1009. return ERR_PTR(-EINVAL);
  1010. /*
  1011. * Shared signal handlers imply shared VM. By way of the above,
  1012. * thread groups also imply shared VM. Blocking this case allows
  1013. * for various simplifications in other code.
  1014. */
  1015. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1016. return ERR_PTR(-EINVAL);
  1017. /*
  1018. * Siblings of global init remain as zombies on exit since they are
  1019. * not reaped by their parent (swapper). To solve this and to avoid
  1020. * multi-rooted process trees, prevent global and container-inits
  1021. * from creating siblings.
  1022. */
  1023. if ((clone_flags & CLONE_PARENT) &&
  1024. current->signal->flags & SIGNAL_UNKILLABLE)
  1025. return ERR_PTR(-EINVAL);
  1026. /*
  1027. * If the new process will be in a different pid or user namespace
  1028. * do not allow it to share a thread group or signal handlers or
  1029. * parent with the forking task.
  1030. */
  1031. if (clone_flags & CLONE_SIGHAND) {
  1032. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1033. (task_active_pid_ns(current) !=
  1034. current->nsproxy->pid_ns_for_children))
  1035. return ERR_PTR(-EINVAL);
  1036. }
  1037. retval = security_task_create(clone_flags);
  1038. if (retval)
  1039. goto fork_out;
  1040. retval = -ENOMEM;
  1041. p = dup_task_struct(current);
  1042. if (!p)
  1043. goto fork_out;
  1044. ftrace_graph_init_task(p);
  1045. rt_mutex_init_task(p);
  1046. #ifdef CONFIG_PROVE_LOCKING
  1047. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1048. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1049. #endif
  1050. retval = -EAGAIN;
  1051. if (atomic_read(&p->real_cred->user->processes) >=
  1052. task_rlimit(p, RLIMIT_NPROC)) {
  1053. if (p->real_cred->user != INIT_USER &&
  1054. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1055. goto bad_fork_free;
  1056. }
  1057. current->flags &= ~PF_NPROC_EXCEEDED;
  1058. retval = copy_creds(p, clone_flags);
  1059. if (retval < 0)
  1060. goto bad_fork_free;
  1061. /*
  1062. * If multiple threads are within copy_process(), then this check
  1063. * triggers too late. This doesn't hurt, the check is only there
  1064. * to stop root fork bombs.
  1065. */
  1066. retval = -EAGAIN;
  1067. if (nr_threads >= max_threads)
  1068. goto bad_fork_cleanup_count;
  1069. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1070. goto bad_fork_cleanup_count;
  1071. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1072. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1073. p->flags |= PF_FORKNOEXEC;
  1074. INIT_LIST_HEAD(&p->children);
  1075. INIT_LIST_HEAD(&p->sibling);
  1076. rcu_copy_process(p);
  1077. p->vfork_done = NULL;
  1078. spin_lock_init(&p->alloc_lock);
  1079. init_sigpending(&p->pending);
  1080. p->utime = p->stime = p->gtime = 0;
  1081. p->utimescaled = p->stimescaled = 0;
  1082. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1083. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1084. #endif
  1085. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1086. seqlock_init(&p->vtime_seqlock);
  1087. p->vtime_snap = 0;
  1088. p->vtime_snap_whence = VTIME_SLEEPING;
  1089. #endif
  1090. #if defined(SPLIT_RSS_COUNTING)
  1091. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1092. #endif
  1093. p->default_timer_slack_ns = current->timer_slack_ns;
  1094. task_io_accounting_init(&p->ioac);
  1095. acct_clear_integrals(p);
  1096. posix_cpu_timers_init(p);
  1097. p->start_time = ktime_get_ns();
  1098. p->real_start_time = ktime_get_boot_ns();
  1099. p->io_context = NULL;
  1100. p->audit_context = NULL;
  1101. if (clone_flags & CLONE_THREAD)
  1102. threadgroup_change_begin(current);
  1103. cgroup_fork(p);
  1104. #ifdef CONFIG_NUMA
  1105. p->mempolicy = mpol_dup(p->mempolicy);
  1106. if (IS_ERR(p->mempolicy)) {
  1107. retval = PTR_ERR(p->mempolicy);
  1108. p->mempolicy = NULL;
  1109. goto bad_fork_cleanup_threadgroup_lock;
  1110. }
  1111. #endif
  1112. #ifdef CONFIG_CPUSETS
  1113. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1114. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1115. seqcount_init(&p->mems_allowed_seq);
  1116. #endif
  1117. #ifdef CONFIG_TRACE_IRQFLAGS
  1118. p->irq_events = 0;
  1119. p->hardirqs_enabled = 0;
  1120. p->hardirq_enable_ip = 0;
  1121. p->hardirq_enable_event = 0;
  1122. p->hardirq_disable_ip = _THIS_IP_;
  1123. p->hardirq_disable_event = 0;
  1124. p->softirqs_enabled = 1;
  1125. p->softirq_enable_ip = _THIS_IP_;
  1126. p->softirq_enable_event = 0;
  1127. p->softirq_disable_ip = 0;
  1128. p->softirq_disable_event = 0;
  1129. p->hardirq_context = 0;
  1130. p->softirq_context = 0;
  1131. #endif
  1132. #ifdef CONFIG_LOCKDEP
  1133. p->lockdep_depth = 0; /* no locks held yet */
  1134. p->curr_chain_key = 0;
  1135. p->lockdep_recursion = 0;
  1136. #endif
  1137. #ifdef CONFIG_DEBUG_MUTEXES
  1138. p->blocked_on = NULL; /* not blocked yet */
  1139. #endif
  1140. #ifdef CONFIG_BCACHE
  1141. p->sequential_io = 0;
  1142. p->sequential_io_avg = 0;
  1143. #endif
  1144. /* Perform scheduler related setup. Assign this task to a CPU. */
  1145. retval = sched_fork(clone_flags, p);
  1146. if (retval)
  1147. goto bad_fork_cleanup_policy;
  1148. retval = perf_event_init_task(p);
  1149. if (retval)
  1150. goto bad_fork_cleanup_policy;
  1151. retval = audit_alloc(p);
  1152. if (retval)
  1153. goto bad_fork_cleanup_policy;
  1154. /* copy all the process information */
  1155. retval = copy_semundo(clone_flags, p);
  1156. if (retval)
  1157. goto bad_fork_cleanup_audit;
  1158. retval = copy_files(clone_flags, p);
  1159. if (retval)
  1160. goto bad_fork_cleanup_semundo;
  1161. retval = copy_fs(clone_flags, p);
  1162. if (retval)
  1163. goto bad_fork_cleanup_files;
  1164. retval = copy_sighand(clone_flags, p);
  1165. if (retval)
  1166. goto bad_fork_cleanup_fs;
  1167. retval = copy_signal(clone_flags, p);
  1168. if (retval)
  1169. goto bad_fork_cleanup_sighand;
  1170. retval = copy_mm(clone_flags, p);
  1171. if (retval)
  1172. goto bad_fork_cleanup_signal;
  1173. retval = copy_namespaces(clone_flags, p);
  1174. if (retval)
  1175. goto bad_fork_cleanup_mm;
  1176. retval = copy_io(clone_flags, p);
  1177. if (retval)
  1178. goto bad_fork_cleanup_namespaces;
  1179. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1180. if (retval)
  1181. goto bad_fork_cleanup_io;
  1182. if (pid != &init_struct_pid) {
  1183. retval = -ENOMEM;
  1184. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1185. if (!pid)
  1186. goto bad_fork_cleanup_io;
  1187. }
  1188. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1189. /*
  1190. * Clear TID on mm_release()?
  1191. */
  1192. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1193. #ifdef CONFIG_BLOCK
  1194. p->plug = NULL;
  1195. #endif
  1196. #ifdef CONFIG_FUTEX
  1197. p->robust_list = NULL;
  1198. #ifdef CONFIG_COMPAT
  1199. p->compat_robust_list = NULL;
  1200. #endif
  1201. INIT_LIST_HEAD(&p->pi_state_list);
  1202. p->pi_state_cache = NULL;
  1203. #endif
  1204. /*
  1205. * sigaltstack should be cleared when sharing the same VM
  1206. */
  1207. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1208. p->sas_ss_sp = p->sas_ss_size = 0;
  1209. /*
  1210. * Syscall tracing and stepping should be turned off in the
  1211. * child regardless of CLONE_PTRACE.
  1212. */
  1213. user_disable_single_step(p);
  1214. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1215. #ifdef TIF_SYSCALL_EMU
  1216. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1217. #endif
  1218. clear_all_latency_tracing(p);
  1219. /* ok, now we should be set up.. */
  1220. p->pid = pid_nr(pid);
  1221. if (clone_flags & CLONE_THREAD) {
  1222. p->exit_signal = -1;
  1223. p->group_leader = current->group_leader;
  1224. p->tgid = current->tgid;
  1225. } else {
  1226. if (clone_flags & CLONE_PARENT)
  1227. p->exit_signal = current->group_leader->exit_signal;
  1228. else
  1229. p->exit_signal = (clone_flags & CSIGNAL);
  1230. p->group_leader = p;
  1231. p->tgid = p->pid;
  1232. }
  1233. p->nr_dirtied = 0;
  1234. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1235. p->dirty_paused_when = 0;
  1236. p->pdeath_signal = 0;
  1237. INIT_LIST_HEAD(&p->thread_group);
  1238. p->task_works = NULL;
  1239. /*
  1240. * Make it visible to the rest of the system, but dont wake it up yet.
  1241. * Need tasklist lock for parent etc handling!
  1242. */
  1243. write_lock_irq(&tasklist_lock);
  1244. /* CLONE_PARENT re-uses the old parent */
  1245. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1246. p->real_parent = current->real_parent;
  1247. p->parent_exec_id = current->parent_exec_id;
  1248. } else {
  1249. p->real_parent = current;
  1250. p->parent_exec_id = current->self_exec_id;
  1251. }
  1252. spin_lock(&current->sighand->siglock);
  1253. /*
  1254. * Copy seccomp details explicitly here, in case they were changed
  1255. * before holding sighand lock.
  1256. */
  1257. copy_seccomp(p);
  1258. /*
  1259. * Process group and session signals need to be delivered to just the
  1260. * parent before the fork or both the parent and the child after the
  1261. * fork. Restart if a signal comes in before we add the new process to
  1262. * it's process group.
  1263. * A fatal signal pending means that current will exit, so the new
  1264. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1265. */
  1266. recalc_sigpending();
  1267. if (signal_pending(current)) {
  1268. spin_unlock(&current->sighand->siglock);
  1269. write_unlock_irq(&tasklist_lock);
  1270. retval = -ERESTARTNOINTR;
  1271. goto bad_fork_free_pid;
  1272. }
  1273. if (likely(p->pid)) {
  1274. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1275. init_task_pid(p, PIDTYPE_PID, pid);
  1276. if (thread_group_leader(p)) {
  1277. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1278. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1279. if (is_child_reaper(pid)) {
  1280. ns_of_pid(pid)->child_reaper = p;
  1281. p->signal->flags |= SIGNAL_UNKILLABLE;
  1282. }
  1283. p->signal->leader_pid = pid;
  1284. p->signal->tty = tty_kref_get(current->signal->tty);
  1285. list_add_tail(&p->sibling, &p->real_parent->children);
  1286. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1287. attach_pid(p, PIDTYPE_PGID);
  1288. attach_pid(p, PIDTYPE_SID);
  1289. __this_cpu_inc(process_counts);
  1290. } else {
  1291. current->signal->nr_threads++;
  1292. atomic_inc(&current->signal->live);
  1293. atomic_inc(&current->signal->sigcnt);
  1294. list_add_tail_rcu(&p->thread_group,
  1295. &p->group_leader->thread_group);
  1296. list_add_tail_rcu(&p->thread_node,
  1297. &p->signal->thread_head);
  1298. }
  1299. attach_pid(p, PIDTYPE_PID);
  1300. nr_threads++;
  1301. }
  1302. total_forks++;
  1303. spin_unlock(&current->sighand->siglock);
  1304. syscall_tracepoint_update(p);
  1305. write_unlock_irq(&tasklist_lock);
  1306. proc_fork_connector(p);
  1307. cgroup_post_fork(p);
  1308. if (clone_flags & CLONE_THREAD)
  1309. threadgroup_change_end(current);
  1310. perf_event_fork(p);
  1311. trace_task_newtask(p, clone_flags);
  1312. uprobe_copy_process(p, clone_flags);
  1313. return p;
  1314. bad_fork_free_pid:
  1315. if (pid != &init_struct_pid)
  1316. free_pid(pid);
  1317. bad_fork_cleanup_io:
  1318. if (p->io_context)
  1319. exit_io_context(p);
  1320. bad_fork_cleanup_namespaces:
  1321. exit_task_namespaces(p);
  1322. bad_fork_cleanup_mm:
  1323. if (p->mm)
  1324. mmput(p->mm);
  1325. bad_fork_cleanup_signal:
  1326. if (!(clone_flags & CLONE_THREAD))
  1327. free_signal_struct(p->signal);
  1328. bad_fork_cleanup_sighand:
  1329. __cleanup_sighand(p->sighand);
  1330. bad_fork_cleanup_fs:
  1331. exit_fs(p); /* blocking */
  1332. bad_fork_cleanup_files:
  1333. exit_files(p); /* blocking */
  1334. bad_fork_cleanup_semundo:
  1335. exit_sem(p);
  1336. bad_fork_cleanup_audit:
  1337. audit_free(p);
  1338. bad_fork_cleanup_policy:
  1339. perf_event_free_task(p);
  1340. #ifdef CONFIG_NUMA
  1341. mpol_put(p->mempolicy);
  1342. bad_fork_cleanup_threadgroup_lock:
  1343. #endif
  1344. if (clone_flags & CLONE_THREAD)
  1345. threadgroup_change_end(current);
  1346. delayacct_tsk_free(p);
  1347. module_put(task_thread_info(p)->exec_domain->module);
  1348. bad_fork_cleanup_count:
  1349. atomic_dec(&p->cred->user->processes);
  1350. exit_creds(p);
  1351. bad_fork_free:
  1352. free_task(p);
  1353. fork_out:
  1354. return ERR_PTR(retval);
  1355. }
  1356. static inline void init_idle_pids(struct pid_link *links)
  1357. {
  1358. enum pid_type type;
  1359. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1360. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1361. links[type].pid = &init_struct_pid;
  1362. }
  1363. }
  1364. struct task_struct *fork_idle(int cpu)
  1365. {
  1366. struct task_struct *task;
  1367. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1368. if (!IS_ERR(task)) {
  1369. init_idle_pids(task->pids);
  1370. init_idle(task, cpu);
  1371. }
  1372. return task;
  1373. }
  1374. /*
  1375. * Ok, this is the main fork-routine.
  1376. *
  1377. * It copies the process, and if successful kick-starts
  1378. * it and waits for it to finish using the VM if required.
  1379. */
  1380. long do_fork(unsigned long clone_flags,
  1381. unsigned long stack_start,
  1382. unsigned long stack_size,
  1383. int __user *parent_tidptr,
  1384. int __user *child_tidptr)
  1385. {
  1386. struct task_struct *p;
  1387. int trace = 0;
  1388. long nr;
  1389. /*
  1390. * Determine whether and which event to report to ptracer. When
  1391. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1392. * requested, no event is reported; otherwise, report if the event
  1393. * for the type of forking is enabled.
  1394. */
  1395. if (!(clone_flags & CLONE_UNTRACED)) {
  1396. if (clone_flags & CLONE_VFORK)
  1397. trace = PTRACE_EVENT_VFORK;
  1398. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1399. trace = PTRACE_EVENT_CLONE;
  1400. else
  1401. trace = PTRACE_EVENT_FORK;
  1402. if (likely(!ptrace_event_enabled(current, trace)))
  1403. trace = 0;
  1404. }
  1405. p = copy_process(clone_flags, stack_start, stack_size,
  1406. child_tidptr, NULL, trace);
  1407. /*
  1408. * Do this prior waking up the new thread - the thread pointer
  1409. * might get invalid after that point, if the thread exits quickly.
  1410. */
  1411. if (!IS_ERR(p)) {
  1412. struct completion vfork;
  1413. struct pid *pid;
  1414. trace_sched_process_fork(current, p);
  1415. pid = get_task_pid(p, PIDTYPE_PID);
  1416. nr = pid_vnr(pid);
  1417. if (clone_flags & CLONE_PARENT_SETTID)
  1418. put_user(nr, parent_tidptr);
  1419. if (clone_flags & CLONE_VFORK) {
  1420. p->vfork_done = &vfork;
  1421. init_completion(&vfork);
  1422. get_task_struct(p);
  1423. }
  1424. wake_up_new_task(p);
  1425. /* forking complete and child started to run, tell ptracer */
  1426. if (unlikely(trace))
  1427. ptrace_event_pid(trace, pid);
  1428. if (clone_flags & CLONE_VFORK) {
  1429. if (!wait_for_vfork_done(p, &vfork))
  1430. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1431. }
  1432. put_pid(pid);
  1433. } else {
  1434. nr = PTR_ERR(p);
  1435. }
  1436. return nr;
  1437. }
  1438. /*
  1439. * Create a kernel thread.
  1440. */
  1441. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1442. {
  1443. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1444. (unsigned long)arg, NULL, NULL);
  1445. }
  1446. #ifdef __ARCH_WANT_SYS_FORK
  1447. SYSCALL_DEFINE0(fork)
  1448. {
  1449. #ifdef CONFIG_MMU
  1450. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1451. #else
  1452. /* can not support in nommu mode */
  1453. return -EINVAL;
  1454. #endif
  1455. }
  1456. #endif
  1457. #ifdef __ARCH_WANT_SYS_VFORK
  1458. SYSCALL_DEFINE0(vfork)
  1459. {
  1460. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1461. 0, NULL, NULL);
  1462. }
  1463. #endif
  1464. #ifdef __ARCH_WANT_SYS_CLONE
  1465. #ifdef CONFIG_CLONE_BACKWARDS
  1466. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1467. int __user *, parent_tidptr,
  1468. int, tls_val,
  1469. int __user *, child_tidptr)
  1470. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1471. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1472. int __user *, parent_tidptr,
  1473. int __user *, child_tidptr,
  1474. int, tls_val)
  1475. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1476. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1477. int, stack_size,
  1478. int __user *, parent_tidptr,
  1479. int __user *, child_tidptr,
  1480. int, tls_val)
  1481. #else
  1482. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1483. int __user *, parent_tidptr,
  1484. int __user *, child_tidptr,
  1485. int, tls_val)
  1486. #endif
  1487. {
  1488. return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
  1489. }
  1490. #endif
  1491. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1492. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1493. #endif
  1494. static void sighand_ctor(void *data)
  1495. {
  1496. struct sighand_struct *sighand = data;
  1497. spin_lock_init(&sighand->siglock);
  1498. init_waitqueue_head(&sighand->signalfd_wqh);
  1499. }
  1500. void __init proc_caches_init(void)
  1501. {
  1502. sighand_cachep = kmem_cache_create("sighand_cache",
  1503. sizeof(struct sighand_struct), 0,
  1504. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1505. SLAB_NOTRACK, sighand_ctor);
  1506. signal_cachep = kmem_cache_create("signal_cache",
  1507. sizeof(struct signal_struct), 0,
  1508. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1509. files_cachep = kmem_cache_create("files_cache",
  1510. sizeof(struct files_struct), 0,
  1511. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1512. fs_cachep = kmem_cache_create("fs_cache",
  1513. sizeof(struct fs_struct), 0,
  1514. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1515. /*
  1516. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1517. * whole struct cpumask for the OFFSTACK case. We could change
  1518. * this to *only* allocate as much of it as required by the
  1519. * maximum number of CPU's we can ever have. The cpumask_allocation
  1520. * is at the end of the structure, exactly for that reason.
  1521. */
  1522. mm_cachep = kmem_cache_create("mm_struct",
  1523. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1524. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1525. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1526. mmap_init();
  1527. nsproxy_cache_init();
  1528. }
  1529. /*
  1530. * Check constraints on flags passed to the unshare system call.
  1531. */
  1532. static int check_unshare_flags(unsigned long unshare_flags)
  1533. {
  1534. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1535. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1536. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1537. CLONE_NEWUSER|CLONE_NEWPID))
  1538. return -EINVAL;
  1539. /*
  1540. * Not implemented, but pretend it works if there is nothing to
  1541. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1542. * needs to unshare vm.
  1543. */
  1544. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1545. /* FIXME: get_task_mm() increments ->mm_users */
  1546. if (atomic_read(&current->mm->mm_users) > 1)
  1547. return -EINVAL;
  1548. }
  1549. return 0;
  1550. }
  1551. /*
  1552. * Unshare the filesystem structure if it is being shared
  1553. */
  1554. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1555. {
  1556. struct fs_struct *fs = current->fs;
  1557. if (!(unshare_flags & CLONE_FS) || !fs)
  1558. return 0;
  1559. /* don't need lock here; in the worst case we'll do useless copy */
  1560. if (fs->users == 1)
  1561. return 0;
  1562. *new_fsp = copy_fs_struct(fs);
  1563. if (!*new_fsp)
  1564. return -ENOMEM;
  1565. return 0;
  1566. }
  1567. /*
  1568. * Unshare file descriptor table if it is being shared
  1569. */
  1570. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1571. {
  1572. struct files_struct *fd = current->files;
  1573. int error = 0;
  1574. if ((unshare_flags & CLONE_FILES) &&
  1575. (fd && atomic_read(&fd->count) > 1)) {
  1576. *new_fdp = dup_fd(fd, &error);
  1577. if (!*new_fdp)
  1578. return error;
  1579. }
  1580. return 0;
  1581. }
  1582. /*
  1583. * unshare allows a process to 'unshare' part of the process
  1584. * context which was originally shared using clone. copy_*
  1585. * functions used by do_fork() cannot be used here directly
  1586. * because they modify an inactive task_struct that is being
  1587. * constructed. Here we are modifying the current, active,
  1588. * task_struct.
  1589. */
  1590. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1591. {
  1592. struct fs_struct *fs, *new_fs = NULL;
  1593. struct files_struct *fd, *new_fd = NULL;
  1594. struct cred *new_cred = NULL;
  1595. struct nsproxy *new_nsproxy = NULL;
  1596. int do_sysvsem = 0;
  1597. int err;
  1598. /*
  1599. * If unsharing a user namespace must also unshare the thread.
  1600. */
  1601. if (unshare_flags & CLONE_NEWUSER)
  1602. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1603. /*
  1604. * If unsharing a thread from a thread group, must also unshare vm.
  1605. */
  1606. if (unshare_flags & CLONE_THREAD)
  1607. unshare_flags |= CLONE_VM;
  1608. /*
  1609. * If unsharing vm, must also unshare signal handlers.
  1610. */
  1611. if (unshare_flags & CLONE_VM)
  1612. unshare_flags |= CLONE_SIGHAND;
  1613. /*
  1614. * If unsharing namespace, must also unshare filesystem information.
  1615. */
  1616. if (unshare_flags & CLONE_NEWNS)
  1617. unshare_flags |= CLONE_FS;
  1618. err = check_unshare_flags(unshare_flags);
  1619. if (err)
  1620. goto bad_unshare_out;
  1621. /*
  1622. * CLONE_NEWIPC must also detach from the undolist: after switching
  1623. * to a new ipc namespace, the semaphore arrays from the old
  1624. * namespace are unreachable.
  1625. */
  1626. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1627. do_sysvsem = 1;
  1628. err = unshare_fs(unshare_flags, &new_fs);
  1629. if (err)
  1630. goto bad_unshare_out;
  1631. err = unshare_fd(unshare_flags, &new_fd);
  1632. if (err)
  1633. goto bad_unshare_cleanup_fs;
  1634. err = unshare_userns(unshare_flags, &new_cred);
  1635. if (err)
  1636. goto bad_unshare_cleanup_fd;
  1637. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1638. new_cred, new_fs);
  1639. if (err)
  1640. goto bad_unshare_cleanup_cred;
  1641. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1642. if (do_sysvsem) {
  1643. /*
  1644. * CLONE_SYSVSEM is equivalent to sys_exit().
  1645. */
  1646. exit_sem(current);
  1647. }
  1648. if (new_nsproxy)
  1649. switch_task_namespaces(current, new_nsproxy);
  1650. task_lock(current);
  1651. if (new_fs) {
  1652. fs = current->fs;
  1653. spin_lock(&fs->lock);
  1654. current->fs = new_fs;
  1655. if (--fs->users)
  1656. new_fs = NULL;
  1657. else
  1658. new_fs = fs;
  1659. spin_unlock(&fs->lock);
  1660. }
  1661. if (new_fd) {
  1662. fd = current->files;
  1663. current->files = new_fd;
  1664. new_fd = fd;
  1665. }
  1666. task_unlock(current);
  1667. if (new_cred) {
  1668. /* Install the new user namespace */
  1669. commit_creds(new_cred);
  1670. new_cred = NULL;
  1671. }
  1672. }
  1673. bad_unshare_cleanup_cred:
  1674. if (new_cred)
  1675. put_cred(new_cred);
  1676. bad_unshare_cleanup_fd:
  1677. if (new_fd)
  1678. put_files_struct(new_fd);
  1679. bad_unshare_cleanup_fs:
  1680. if (new_fs)
  1681. free_fs_struct(new_fs);
  1682. bad_unshare_out:
  1683. return err;
  1684. }
  1685. /*
  1686. * Helper to unshare the files of the current task.
  1687. * We don't want to expose copy_files internals to
  1688. * the exec layer of the kernel.
  1689. */
  1690. int unshare_files(struct files_struct **displaced)
  1691. {
  1692. struct task_struct *task = current;
  1693. struct files_struct *copy = NULL;
  1694. int error;
  1695. error = unshare_fd(CLONE_FILES, &copy);
  1696. if (error || !copy) {
  1697. *displaced = NULL;
  1698. return error;
  1699. }
  1700. *displaced = task->files;
  1701. task_lock(task);
  1702. task->files = copy;
  1703. task_unlock(task);
  1704. return 0;
  1705. }