task_mmu.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/vmacache.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/elf.h>
  22. #include <asm/tlb.h>
  23. #include <asm/tlbflush.h>
  24. #include "internal.h"
  25. void task_mem(struct seq_file *m, struct mm_struct *mm)
  26. {
  27. unsigned long text, lib, swap, anon, file, shmem;
  28. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  29. anon = get_mm_counter(mm, MM_ANONPAGES);
  30. file = get_mm_counter(mm, MM_FILEPAGES);
  31. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  32. /*
  33. * Note: to minimize their overhead, mm maintains hiwater_vm and
  34. * hiwater_rss only when about to *lower* total_vm or rss. Any
  35. * collector of these hiwater stats must therefore get total_vm
  36. * and rss too, which will usually be the higher. Barriers? not
  37. * worth the effort, such snapshots can always be inconsistent.
  38. */
  39. hiwater_vm = total_vm = mm->total_vm;
  40. if (hiwater_vm < mm->hiwater_vm)
  41. hiwater_vm = mm->hiwater_vm;
  42. hiwater_rss = total_rss = anon + file + shmem;
  43. if (hiwater_rss < mm->hiwater_rss)
  44. hiwater_rss = mm->hiwater_rss;
  45. /* split executable areas between text and lib */
  46. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  47. text = min(text, mm->exec_vm << PAGE_SHIFT);
  48. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  49. swap = get_mm_counter(mm, MM_SWAPENTS);
  50. seq_printf(m,
  51. "VmPeak:\t%8lu kB\n"
  52. "VmSize:\t%8lu kB\n"
  53. "VmLck:\t%8lu kB\n"
  54. "VmPin:\t%8lu kB\n"
  55. "VmHWM:\t%8lu kB\n"
  56. "VmRSS:\t%8lu kB\n"
  57. "RssAnon:\t%8lu kB\n"
  58. "RssFile:\t%8lu kB\n"
  59. "RssShmem:\t%8lu kB\n"
  60. "VmData:\t%8lu kB\n"
  61. "VmStk:\t%8lu kB\n"
  62. "VmExe:\t%8lu kB\n"
  63. "VmLib:\t%8lu kB\n"
  64. "VmPTE:\t%8lu kB\n"
  65. "VmSwap:\t%8lu kB\n",
  66. hiwater_vm << (PAGE_SHIFT-10),
  67. total_vm << (PAGE_SHIFT-10),
  68. mm->locked_vm << (PAGE_SHIFT-10),
  69. mm->pinned_vm << (PAGE_SHIFT-10),
  70. hiwater_rss << (PAGE_SHIFT-10),
  71. total_rss << (PAGE_SHIFT-10),
  72. anon << (PAGE_SHIFT-10),
  73. file << (PAGE_SHIFT-10),
  74. shmem << (PAGE_SHIFT-10),
  75. mm->data_vm << (PAGE_SHIFT-10),
  76. mm->stack_vm << (PAGE_SHIFT-10),
  77. text >> 10,
  78. lib >> 10,
  79. mm_pgtables_bytes(mm) >> 10,
  80. swap << (PAGE_SHIFT-10));
  81. hugetlb_report_usage(m, mm);
  82. }
  83. unsigned long task_vsize(struct mm_struct *mm)
  84. {
  85. return PAGE_SIZE * mm->total_vm;
  86. }
  87. unsigned long task_statm(struct mm_struct *mm,
  88. unsigned long *shared, unsigned long *text,
  89. unsigned long *data, unsigned long *resident)
  90. {
  91. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  92. get_mm_counter(mm, MM_SHMEMPAGES);
  93. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  94. >> PAGE_SHIFT;
  95. *data = mm->data_vm + mm->stack_vm;
  96. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  97. return mm->total_vm;
  98. }
  99. #ifdef CONFIG_NUMA
  100. /*
  101. * Save get_task_policy() for show_numa_map().
  102. */
  103. static void hold_task_mempolicy(struct proc_maps_private *priv)
  104. {
  105. struct task_struct *task = priv->task;
  106. task_lock(task);
  107. priv->task_mempolicy = get_task_policy(task);
  108. mpol_get(priv->task_mempolicy);
  109. task_unlock(task);
  110. }
  111. static void release_task_mempolicy(struct proc_maps_private *priv)
  112. {
  113. mpol_put(priv->task_mempolicy);
  114. }
  115. #else
  116. static void hold_task_mempolicy(struct proc_maps_private *priv)
  117. {
  118. }
  119. static void release_task_mempolicy(struct proc_maps_private *priv)
  120. {
  121. }
  122. #endif
  123. static void vma_stop(struct proc_maps_private *priv)
  124. {
  125. struct mm_struct *mm = priv->mm;
  126. release_task_mempolicy(priv);
  127. up_read(&mm->mmap_sem);
  128. mmput(mm);
  129. }
  130. static struct vm_area_struct *
  131. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  132. {
  133. if (vma == priv->tail_vma)
  134. return NULL;
  135. return vma->vm_next ?: priv->tail_vma;
  136. }
  137. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  138. {
  139. if (m->count < m->size) /* vma is copied successfully */
  140. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  141. }
  142. static void *m_start(struct seq_file *m, loff_t *ppos)
  143. {
  144. struct proc_maps_private *priv = m->private;
  145. unsigned long last_addr = m->version;
  146. struct mm_struct *mm;
  147. struct vm_area_struct *vma;
  148. unsigned int pos = *ppos;
  149. /* See m_cache_vma(). Zero at the start or after lseek. */
  150. if (last_addr == -1UL)
  151. return NULL;
  152. priv->task = get_proc_task(priv->inode);
  153. if (!priv->task)
  154. return ERR_PTR(-ESRCH);
  155. mm = priv->mm;
  156. if (!mm || !mmget_not_zero(mm))
  157. return NULL;
  158. down_read(&mm->mmap_sem);
  159. hold_task_mempolicy(priv);
  160. priv->tail_vma = get_gate_vma(mm);
  161. if (last_addr) {
  162. vma = find_vma(mm, last_addr - 1);
  163. if (vma && vma->vm_start <= last_addr)
  164. vma = m_next_vma(priv, vma);
  165. if (vma)
  166. return vma;
  167. }
  168. m->version = 0;
  169. if (pos < mm->map_count) {
  170. for (vma = mm->mmap; pos; pos--) {
  171. m->version = vma->vm_start;
  172. vma = vma->vm_next;
  173. }
  174. return vma;
  175. }
  176. /* we do not bother to update m->version in this case */
  177. if (pos == mm->map_count && priv->tail_vma)
  178. return priv->tail_vma;
  179. vma_stop(priv);
  180. return NULL;
  181. }
  182. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  183. {
  184. struct proc_maps_private *priv = m->private;
  185. struct vm_area_struct *next;
  186. (*pos)++;
  187. next = m_next_vma(priv, v);
  188. if (!next)
  189. vma_stop(priv);
  190. return next;
  191. }
  192. static void m_stop(struct seq_file *m, void *v)
  193. {
  194. struct proc_maps_private *priv = m->private;
  195. if (!IS_ERR_OR_NULL(v))
  196. vma_stop(priv);
  197. if (priv->task) {
  198. put_task_struct(priv->task);
  199. priv->task = NULL;
  200. }
  201. }
  202. static int proc_maps_open(struct inode *inode, struct file *file,
  203. const struct seq_operations *ops, int psize)
  204. {
  205. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  206. if (!priv)
  207. return -ENOMEM;
  208. priv->inode = inode;
  209. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  210. if (IS_ERR(priv->mm)) {
  211. int err = PTR_ERR(priv->mm);
  212. seq_release_private(inode, file);
  213. return err;
  214. }
  215. return 0;
  216. }
  217. static int proc_map_release(struct inode *inode, struct file *file)
  218. {
  219. struct seq_file *seq = file->private_data;
  220. struct proc_maps_private *priv = seq->private;
  221. if (priv->mm)
  222. mmdrop(priv->mm);
  223. kfree(priv->rollup);
  224. return seq_release_private(inode, file);
  225. }
  226. static int do_maps_open(struct inode *inode, struct file *file,
  227. const struct seq_operations *ops)
  228. {
  229. return proc_maps_open(inode, file, ops,
  230. sizeof(struct proc_maps_private));
  231. }
  232. /*
  233. * Indicate if the VMA is a stack for the given task; for
  234. * /proc/PID/maps that is the stack of the main task.
  235. */
  236. static int is_stack(struct vm_area_struct *vma)
  237. {
  238. /*
  239. * We make no effort to guess what a given thread considers to be
  240. * its "stack". It's not even well-defined for programs written
  241. * languages like Go.
  242. */
  243. return vma->vm_start <= vma->vm_mm->start_stack &&
  244. vma->vm_end >= vma->vm_mm->start_stack;
  245. }
  246. static void show_vma_header_prefix(struct seq_file *m,
  247. unsigned long start, unsigned long end,
  248. vm_flags_t flags, unsigned long long pgoff,
  249. dev_t dev, unsigned long ino)
  250. {
  251. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  252. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  253. start,
  254. end,
  255. flags & VM_READ ? 'r' : '-',
  256. flags & VM_WRITE ? 'w' : '-',
  257. flags & VM_EXEC ? 'x' : '-',
  258. flags & VM_MAYSHARE ? 's' : 'p',
  259. pgoff,
  260. MAJOR(dev), MINOR(dev), ino);
  261. }
  262. static void
  263. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  264. {
  265. struct mm_struct *mm = vma->vm_mm;
  266. struct file *file = vma->vm_file;
  267. vm_flags_t flags = vma->vm_flags;
  268. unsigned long ino = 0;
  269. unsigned long long pgoff = 0;
  270. unsigned long start, end;
  271. dev_t dev = 0;
  272. const char *name = NULL;
  273. if (file) {
  274. struct inode *inode = file_inode(vma->vm_file);
  275. dev = inode->i_sb->s_dev;
  276. ino = inode->i_ino;
  277. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  278. }
  279. start = vma->vm_start;
  280. end = vma->vm_end;
  281. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  282. /*
  283. * Print the dentry name for named mappings, and a
  284. * special [heap] marker for the heap:
  285. */
  286. if (file) {
  287. seq_pad(m, ' ');
  288. seq_file_path(m, file, "\n");
  289. goto done;
  290. }
  291. if (vma->vm_ops && vma->vm_ops->name) {
  292. name = vma->vm_ops->name(vma);
  293. if (name)
  294. goto done;
  295. }
  296. name = arch_vma_name(vma);
  297. if (!name) {
  298. if (!mm) {
  299. name = "[vdso]";
  300. goto done;
  301. }
  302. if (vma->vm_start <= mm->brk &&
  303. vma->vm_end >= mm->start_brk) {
  304. name = "[heap]";
  305. goto done;
  306. }
  307. if (is_stack(vma))
  308. name = "[stack]";
  309. }
  310. done:
  311. if (name) {
  312. seq_pad(m, ' ');
  313. seq_puts(m, name);
  314. }
  315. seq_putc(m, '\n');
  316. }
  317. static int show_map(struct seq_file *m, void *v, int is_pid)
  318. {
  319. show_map_vma(m, v, is_pid);
  320. m_cache_vma(m, v);
  321. return 0;
  322. }
  323. static int show_pid_map(struct seq_file *m, void *v)
  324. {
  325. return show_map(m, v, 1);
  326. }
  327. static int show_tid_map(struct seq_file *m, void *v)
  328. {
  329. return show_map(m, v, 0);
  330. }
  331. static const struct seq_operations proc_pid_maps_op = {
  332. .start = m_start,
  333. .next = m_next,
  334. .stop = m_stop,
  335. .show = show_pid_map
  336. };
  337. static const struct seq_operations proc_tid_maps_op = {
  338. .start = m_start,
  339. .next = m_next,
  340. .stop = m_stop,
  341. .show = show_tid_map
  342. };
  343. static int pid_maps_open(struct inode *inode, struct file *file)
  344. {
  345. return do_maps_open(inode, file, &proc_pid_maps_op);
  346. }
  347. static int tid_maps_open(struct inode *inode, struct file *file)
  348. {
  349. return do_maps_open(inode, file, &proc_tid_maps_op);
  350. }
  351. const struct file_operations proc_pid_maps_operations = {
  352. .open = pid_maps_open,
  353. .read = seq_read,
  354. .llseek = seq_lseek,
  355. .release = proc_map_release,
  356. };
  357. const struct file_operations proc_tid_maps_operations = {
  358. .open = tid_maps_open,
  359. .read = seq_read,
  360. .llseek = seq_lseek,
  361. .release = proc_map_release,
  362. };
  363. /*
  364. * Proportional Set Size(PSS): my share of RSS.
  365. *
  366. * PSS of a process is the count of pages it has in memory, where each
  367. * page is divided by the number of processes sharing it. So if a
  368. * process has 1000 pages all to itself, and 1000 shared with one other
  369. * process, its PSS will be 1500.
  370. *
  371. * To keep (accumulated) division errors low, we adopt a 64bit
  372. * fixed-point pss counter to minimize division errors. So (pss >>
  373. * PSS_SHIFT) would be the real byte count.
  374. *
  375. * A shift of 12 before division means (assuming 4K page size):
  376. * - 1M 3-user-pages add up to 8KB errors;
  377. * - supports mapcount up to 2^24, or 16M;
  378. * - supports PSS up to 2^52 bytes, or 4PB.
  379. */
  380. #define PSS_SHIFT 12
  381. #ifdef CONFIG_PROC_PAGE_MONITOR
  382. struct mem_size_stats {
  383. bool first;
  384. unsigned long resident;
  385. unsigned long shared_clean;
  386. unsigned long shared_dirty;
  387. unsigned long private_clean;
  388. unsigned long private_dirty;
  389. unsigned long referenced;
  390. unsigned long anonymous;
  391. unsigned long lazyfree;
  392. unsigned long anonymous_thp;
  393. unsigned long shmem_thp;
  394. unsigned long swap;
  395. unsigned long shared_hugetlb;
  396. unsigned long private_hugetlb;
  397. unsigned long first_vma_start;
  398. u64 pss;
  399. u64 pss_locked;
  400. u64 swap_pss;
  401. bool check_shmem_swap;
  402. };
  403. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  404. bool compound, bool young, bool dirty)
  405. {
  406. int i, nr = compound ? 1 << compound_order(page) : 1;
  407. unsigned long size = nr * PAGE_SIZE;
  408. if (PageAnon(page)) {
  409. mss->anonymous += size;
  410. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  411. mss->lazyfree += size;
  412. }
  413. mss->resident += size;
  414. /* Accumulate the size in pages that have been accessed. */
  415. if (young || page_is_young(page) || PageReferenced(page))
  416. mss->referenced += size;
  417. /*
  418. * page_count(page) == 1 guarantees the page is mapped exactly once.
  419. * If any subpage of the compound page mapped with PTE it would elevate
  420. * page_count().
  421. */
  422. if (page_count(page) == 1) {
  423. if (dirty || PageDirty(page))
  424. mss->private_dirty += size;
  425. else
  426. mss->private_clean += size;
  427. mss->pss += (u64)size << PSS_SHIFT;
  428. return;
  429. }
  430. for (i = 0; i < nr; i++, page++) {
  431. int mapcount = page_mapcount(page);
  432. if (mapcount >= 2) {
  433. if (dirty || PageDirty(page))
  434. mss->shared_dirty += PAGE_SIZE;
  435. else
  436. mss->shared_clean += PAGE_SIZE;
  437. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  438. } else {
  439. if (dirty || PageDirty(page))
  440. mss->private_dirty += PAGE_SIZE;
  441. else
  442. mss->private_clean += PAGE_SIZE;
  443. mss->pss += PAGE_SIZE << PSS_SHIFT;
  444. }
  445. }
  446. }
  447. #ifdef CONFIG_SHMEM
  448. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  449. struct mm_walk *walk)
  450. {
  451. struct mem_size_stats *mss = walk->private;
  452. mss->swap += shmem_partial_swap_usage(
  453. walk->vma->vm_file->f_mapping, addr, end);
  454. return 0;
  455. }
  456. #endif
  457. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  458. struct mm_walk *walk)
  459. {
  460. struct mem_size_stats *mss = walk->private;
  461. struct vm_area_struct *vma = walk->vma;
  462. struct page *page = NULL;
  463. if (pte_present(*pte)) {
  464. page = vm_normal_page(vma, addr, *pte);
  465. } else if (is_swap_pte(*pte)) {
  466. swp_entry_t swpent = pte_to_swp_entry(*pte);
  467. if (!non_swap_entry(swpent)) {
  468. int mapcount;
  469. mss->swap += PAGE_SIZE;
  470. mapcount = swp_swapcount(swpent);
  471. if (mapcount >= 2) {
  472. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  473. do_div(pss_delta, mapcount);
  474. mss->swap_pss += pss_delta;
  475. } else {
  476. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  477. }
  478. } else if (is_migration_entry(swpent))
  479. page = migration_entry_to_page(swpent);
  480. else if (is_device_private_entry(swpent))
  481. page = device_private_entry_to_page(swpent);
  482. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  483. && pte_none(*pte))) {
  484. page = find_get_entry(vma->vm_file->f_mapping,
  485. linear_page_index(vma, addr));
  486. if (!page)
  487. return;
  488. if (radix_tree_exceptional_entry(page))
  489. mss->swap += PAGE_SIZE;
  490. else
  491. put_page(page);
  492. return;
  493. }
  494. if (!page)
  495. return;
  496. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  497. }
  498. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  499. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  500. struct mm_walk *walk)
  501. {
  502. struct mem_size_stats *mss = walk->private;
  503. struct vm_area_struct *vma = walk->vma;
  504. struct page *page;
  505. /* FOLL_DUMP will return -EFAULT on huge zero page */
  506. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  507. if (IS_ERR_OR_NULL(page))
  508. return;
  509. if (PageAnon(page))
  510. mss->anonymous_thp += HPAGE_PMD_SIZE;
  511. else if (PageSwapBacked(page))
  512. mss->shmem_thp += HPAGE_PMD_SIZE;
  513. else if (is_zone_device_page(page))
  514. /* pass */;
  515. else
  516. VM_BUG_ON_PAGE(1, page);
  517. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  518. }
  519. #else
  520. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  521. struct mm_walk *walk)
  522. {
  523. }
  524. #endif
  525. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  526. struct mm_walk *walk)
  527. {
  528. struct vm_area_struct *vma = walk->vma;
  529. pte_t *pte;
  530. spinlock_t *ptl;
  531. ptl = pmd_trans_huge_lock(pmd, vma);
  532. if (ptl) {
  533. if (pmd_present(*pmd))
  534. smaps_pmd_entry(pmd, addr, walk);
  535. spin_unlock(ptl);
  536. goto out;
  537. }
  538. if (pmd_trans_unstable(pmd))
  539. goto out;
  540. /*
  541. * The mmap_sem held all the way back in m_start() is what
  542. * keeps khugepaged out of here and from collapsing things
  543. * in here.
  544. */
  545. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  546. for (; addr != end; pte++, addr += PAGE_SIZE)
  547. smaps_pte_entry(pte, addr, walk);
  548. pte_unmap_unlock(pte - 1, ptl);
  549. out:
  550. cond_resched();
  551. return 0;
  552. }
  553. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  554. {
  555. /*
  556. * Don't forget to update Documentation/ on changes.
  557. */
  558. static const char mnemonics[BITS_PER_LONG][2] = {
  559. /*
  560. * In case if we meet a flag we don't know about.
  561. */
  562. [0 ... (BITS_PER_LONG-1)] = "??",
  563. [ilog2(VM_READ)] = "rd",
  564. [ilog2(VM_WRITE)] = "wr",
  565. [ilog2(VM_EXEC)] = "ex",
  566. [ilog2(VM_SHARED)] = "sh",
  567. [ilog2(VM_MAYREAD)] = "mr",
  568. [ilog2(VM_MAYWRITE)] = "mw",
  569. [ilog2(VM_MAYEXEC)] = "me",
  570. [ilog2(VM_MAYSHARE)] = "ms",
  571. [ilog2(VM_GROWSDOWN)] = "gd",
  572. [ilog2(VM_PFNMAP)] = "pf",
  573. [ilog2(VM_DENYWRITE)] = "dw",
  574. #ifdef CONFIG_X86_INTEL_MPX
  575. [ilog2(VM_MPX)] = "mp",
  576. #endif
  577. [ilog2(VM_LOCKED)] = "lo",
  578. [ilog2(VM_IO)] = "io",
  579. [ilog2(VM_SEQ_READ)] = "sr",
  580. [ilog2(VM_RAND_READ)] = "rr",
  581. [ilog2(VM_DONTCOPY)] = "dc",
  582. [ilog2(VM_DONTEXPAND)] = "de",
  583. [ilog2(VM_ACCOUNT)] = "ac",
  584. [ilog2(VM_NORESERVE)] = "nr",
  585. [ilog2(VM_HUGETLB)] = "ht",
  586. [ilog2(VM_SYNC)] = "sf",
  587. [ilog2(VM_ARCH_1)] = "ar",
  588. [ilog2(VM_WIPEONFORK)] = "wf",
  589. [ilog2(VM_DONTDUMP)] = "dd",
  590. #ifdef CONFIG_MEM_SOFT_DIRTY
  591. [ilog2(VM_SOFTDIRTY)] = "sd",
  592. #endif
  593. [ilog2(VM_MIXEDMAP)] = "mm",
  594. [ilog2(VM_HUGEPAGE)] = "hg",
  595. [ilog2(VM_NOHUGEPAGE)] = "nh",
  596. [ilog2(VM_MERGEABLE)] = "mg",
  597. [ilog2(VM_UFFD_MISSING)]= "um",
  598. [ilog2(VM_UFFD_WP)] = "uw",
  599. #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
  600. /* These come out via ProtectionKey: */
  601. [ilog2(VM_PKEY_BIT0)] = "",
  602. [ilog2(VM_PKEY_BIT1)] = "",
  603. [ilog2(VM_PKEY_BIT2)] = "",
  604. [ilog2(VM_PKEY_BIT3)] = "",
  605. #endif
  606. };
  607. size_t i;
  608. seq_puts(m, "VmFlags: ");
  609. for (i = 0; i < BITS_PER_LONG; i++) {
  610. if (!mnemonics[i][0])
  611. continue;
  612. if (vma->vm_flags & (1UL << i)) {
  613. seq_printf(m, "%c%c ",
  614. mnemonics[i][0], mnemonics[i][1]);
  615. }
  616. }
  617. seq_putc(m, '\n');
  618. }
  619. #ifdef CONFIG_HUGETLB_PAGE
  620. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  621. unsigned long addr, unsigned long end,
  622. struct mm_walk *walk)
  623. {
  624. struct mem_size_stats *mss = walk->private;
  625. struct vm_area_struct *vma = walk->vma;
  626. struct page *page = NULL;
  627. if (pte_present(*pte)) {
  628. page = vm_normal_page(vma, addr, *pte);
  629. } else if (is_swap_pte(*pte)) {
  630. swp_entry_t swpent = pte_to_swp_entry(*pte);
  631. if (is_migration_entry(swpent))
  632. page = migration_entry_to_page(swpent);
  633. else if (is_device_private_entry(swpent))
  634. page = device_private_entry_to_page(swpent);
  635. }
  636. if (page) {
  637. int mapcount = page_mapcount(page);
  638. if (mapcount >= 2)
  639. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  640. else
  641. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  642. }
  643. return 0;
  644. }
  645. #endif /* HUGETLB_PAGE */
  646. void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
  647. {
  648. }
  649. static int show_smap(struct seq_file *m, void *v, int is_pid)
  650. {
  651. struct proc_maps_private *priv = m->private;
  652. struct vm_area_struct *vma = v;
  653. struct mem_size_stats mss_stack;
  654. struct mem_size_stats *mss;
  655. struct mm_walk smaps_walk = {
  656. .pmd_entry = smaps_pte_range,
  657. #ifdef CONFIG_HUGETLB_PAGE
  658. .hugetlb_entry = smaps_hugetlb_range,
  659. #endif
  660. .mm = vma->vm_mm,
  661. };
  662. int ret = 0;
  663. bool rollup_mode;
  664. bool last_vma;
  665. if (priv->rollup) {
  666. rollup_mode = true;
  667. mss = priv->rollup;
  668. if (mss->first) {
  669. mss->first_vma_start = vma->vm_start;
  670. mss->first = false;
  671. }
  672. last_vma = !m_next_vma(priv, vma);
  673. } else {
  674. rollup_mode = false;
  675. memset(&mss_stack, 0, sizeof(mss_stack));
  676. mss = &mss_stack;
  677. }
  678. smaps_walk.private = mss;
  679. #ifdef CONFIG_SHMEM
  680. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  681. /*
  682. * For shared or readonly shmem mappings we know that all
  683. * swapped out pages belong to the shmem object, and we can
  684. * obtain the swap value much more efficiently. For private
  685. * writable mappings, we might have COW pages that are
  686. * not affected by the parent swapped out pages of the shmem
  687. * object, so we have to distinguish them during the page walk.
  688. * Unless we know that the shmem object (or the part mapped by
  689. * our VMA) has no swapped out pages at all.
  690. */
  691. unsigned long shmem_swapped = shmem_swap_usage(vma);
  692. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  693. !(vma->vm_flags & VM_WRITE)) {
  694. mss->swap = shmem_swapped;
  695. } else {
  696. mss->check_shmem_swap = true;
  697. smaps_walk.pte_hole = smaps_pte_hole;
  698. }
  699. }
  700. #endif
  701. /* mmap_sem is held in m_start */
  702. walk_page_vma(vma, &smaps_walk);
  703. if (vma->vm_flags & VM_LOCKED)
  704. mss->pss_locked += mss->pss;
  705. if (!rollup_mode) {
  706. show_map_vma(m, vma, is_pid);
  707. } else if (last_vma) {
  708. show_vma_header_prefix(
  709. m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
  710. seq_pad(m, ' ');
  711. seq_puts(m, "[rollup]\n");
  712. } else {
  713. ret = SEQ_SKIP;
  714. }
  715. if (!rollup_mode)
  716. seq_printf(m,
  717. "Size: %8lu kB\n"
  718. "KernelPageSize: %8lu kB\n"
  719. "MMUPageSize: %8lu kB\n",
  720. (vma->vm_end - vma->vm_start) >> 10,
  721. vma_kernel_pagesize(vma) >> 10,
  722. vma_mmu_pagesize(vma) >> 10);
  723. if (!rollup_mode || last_vma)
  724. seq_printf(m,
  725. "Rss: %8lu kB\n"
  726. "Pss: %8lu kB\n"
  727. "Shared_Clean: %8lu kB\n"
  728. "Shared_Dirty: %8lu kB\n"
  729. "Private_Clean: %8lu kB\n"
  730. "Private_Dirty: %8lu kB\n"
  731. "Referenced: %8lu kB\n"
  732. "Anonymous: %8lu kB\n"
  733. "LazyFree: %8lu kB\n"
  734. "AnonHugePages: %8lu kB\n"
  735. "ShmemPmdMapped: %8lu kB\n"
  736. "Shared_Hugetlb: %8lu kB\n"
  737. "Private_Hugetlb: %7lu kB\n"
  738. "Swap: %8lu kB\n"
  739. "SwapPss: %8lu kB\n"
  740. "Locked: %8lu kB\n",
  741. mss->resident >> 10,
  742. (unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
  743. mss->shared_clean >> 10,
  744. mss->shared_dirty >> 10,
  745. mss->private_clean >> 10,
  746. mss->private_dirty >> 10,
  747. mss->referenced >> 10,
  748. mss->anonymous >> 10,
  749. mss->lazyfree >> 10,
  750. mss->anonymous_thp >> 10,
  751. mss->shmem_thp >> 10,
  752. mss->shared_hugetlb >> 10,
  753. mss->private_hugetlb >> 10,
  754. mss->swap >> 10,
  755. (unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)),
  756. (unsigned long)(mss->pss >> (10 + PSS_SHIFT)));
  757. if (!rollup_mode) {
  758. arch_show_smap(m, vma);
  759. show_smap_vma_flags(m, vma);
  760. }
  761. m_cache_vma(m, vma);
  762. return ret;
  763. }
  764. static int show_pid_smap(struct seq_file *m, void *v)
  765. {
  766. return show_smap(m, v, 1);
  767. }
  768. static int show_tid_smap(struct seq_file *m, void *v)
  769. {
  770. return show_smap(m, v, 0);
  771. }
  772. static const struct seq_operations proc_pid_smaps_op = {
  773. .start = m_start,
  774. .next = m_next,
  775. .stop = m_stop,
  776. .show = show_pid_smap
  777. };
  778. static const struct seq_operations proc_tid_smaps_op = {
  779. .start = m_start,
  780. .next = m_next,
  781. .stop = m_stop,
  782. .show = show_tid_smap
  783. };
  784. static int pid_smaps_open(struct inode *inode, struct file *file)
  785. {
  786. return do_maps_open(inode, file, &proc_pid_smaps_op);
  787. }
  788. static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
  789. {
  790. struct seq_file *seq;
  791. struct proc_maps_private *priv;
  792. int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
  793. if (ret < 0)
  794. return ret;
  795. seq = file->private_data;
  796. priv = seq->private;
  797. priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
  798. if (!priv->rollup) {
  799. proc_map_release(inode, file);
  800. return -ENOMEM;
  801. }
  802. priv->rollup->first = true;
  803. return 0;
  804. }
  805. static int tid_smaps_open(struct inode *inode, struct file *file)
  806. {
  807. return do_maps_open(inode, file, &proc_tid_smaps_op);
  808. }
  809. const struct file_operations proc_pid_smaps_operations = {
  810. .open = pid_smaps_open,
  811. .read = seq_read,
  812. .llseek = seq_lseek,
  813. .release = proc_map_release,
  814. };
  815. const struct file_operations proc_pid_smaps_rollup_operations = {
  816. .open = pid_smaps_rollup_open,
  817. .read = seq_read,
  818. .llseek = seq_lseek,
  819. .release = proc_map_release,
  820. };
  821. const struct file_operations proc_tid_smaps_operations = {
  822. .open = tid_smaps_open,
  823. .read = seq_read,
  824. .llseek = seq_lseek,
  825. .release = proc_map_release,
  826. };
  827. enum clear_refs_types {
  828. CLEAR_REFS_ALL = 1,
  829. CLEAR_REFS_ANON,
  830. CLEAR_REFS_MAPPED,
  831. CLEAR_REFS_SOFT_DIRTY,
  832. CLEAR_REFS_MM_HIWATER_RSS,
  833. CLEAR_REFS_LAST,
  834. };
  835. struct clear_refs_private {
  836. enum clear_refs_types type;
  837. };
  838. #ifdef CONFIG_MEM_SOFT_DIRTY
  839. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  840. unsigned long addr, pte_t *pte)
  841. {
  842. /*
  843. * The soft-dirty tracker uses #PF-s to catch writes
  844. * to pages, so write-protect the pte as well. See the
  845. * Documentation/vm/soft-dirty.txt for full description
  846. * of how soft-dirty works.
  847. */
  848. pte_t ptent = *pte;
  849. if (pte_present(ptent)) {
  850. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  851. ptent = pte_wrprotect(ptent);
  852. ptent = pte_clear_soft_dirty(ptent);
  853. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  854. } else if (is_swap_pte(ptent)) {
  855. ptent = pte_swp_clear_soft_dirty(ptent);
  856. set_pte_at(vma->vm_mm, addr, pte, ptent);
  857. }
  858. }
  859. #else
  860. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  861. unsigned long addr, pte_t *pte)
  862. {
  863. }
  864. #endif
  865. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  866. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  867. unsigned long addr, pmd_t *pmdp)
  868. {
  869. pmd_t old, pmd = *pmdp;
  870. if (pmd_present(pmd)) {
  871. /* See comment in change_huge_pmd() */
  872. old = pmdp_invalidate(vma, addr, pmdp);
  873. if (pmd_dirty(old))
  874. pmd = pmd_mkdirty(pmd);
  875. if (pmd_young(old))
  876. pmd = pmd_mkyoung(pmd);
  877. pmd = pmd_wrprotect(pmd);
  878. pmd = pmd_clear_soft_dirty(pmd);
  879. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  880. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  881. pmd = pmd_swp_clear_soft_dirty(pmd);
  882. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  883. }
  884. }
  885. #else
  886. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  887. unsigned long addr, pmd_t *pmdp)
  888. {
  889. }
  890. #endif
  891. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  892. unsigned long end, struct mm_walk *walk)
  893. {
  894. struct clear_refs_private *cp = walk->private;
  895. struct vm_area_struct *vma = walk->vma;
  896. pte_t *pte, ptent;
  897. spinlock_t *ptl;
  898. struct page *page;
  899. ptl = pmd_trans_huge_lock(pmd, vma);
  900. if (ptl) {
  901. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  902. clear_soft_dirty_pmd(vma, addr, pmd);
  903. goto out;
  904. }
  905. if (!pmd_present(*pmd))
  906. goto out;
  907. page = pmd_page(*pmd);
  908. /* Clear accessed and referenced bits. */
  909. pmdp_test_and_clear_young(vma, addr, pmd);
  910. test_and_clear_page_young(page);
  911. ClearPageReferenced(page);
  912. out:
  913. spin_unlock(ptl);
  914. return 0;
  915. }
  916. if (pmd_trans_unstable(pmd))
  917. return 0;
  918. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  919. for (; addr != end; pte++, addr += PAGE_SIZE) {
  920. ptent = *pte;
  921. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  922. clear_soft_dirty(vma, addr, pte);
  923. continue;
  924. }
  925. if (!pte_present(ptent))
  926. continue;
  927. page = vm_normal_page(vma, addr, ptent);
  928. if (!page)
  929. continue;
  930. /* Clear accessed and referenced bits. */
  931. ptep_test_and_clear_young(vma, addr, pte);
  932. test_and_clear_page_young(page);
  933. ClearPageReferenced(page);
  934. }
  935. pte_unmap_unlock(pte - 1, ptl);
  936. cond_resched();
  937. return 0;
  938. }
  939. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  940. struct mm_walk *walk)
  941. {
  942. struct clear_refs_private *cp = walk->private;
  943. struct vm_area_struct *vma = walk->vma;
  944. if (vma->vm_flags & VM_PFNMAP)
  945. return 1;
  946. /*
  947. * Writing 1 to /proc/pid/clear_refs affects all pages.
  948. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  949. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  950. * Writing 4 to /proc/pid/clear_refs affects all pages.
  951. */
  952. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  953. return 1;
  954. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  955. return 1;
  956. return 0;
  957. }
  958. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  959. size_t count, loff_t *ppos)
  960. {
  961. struct task_struct *task;
  962. char buffer[PROC_NUMBUF];
  963. struct mm_struct *mm;
  964. struct vm_area_struct *vma;
  965. enum clear_refs_types type;
  966. struct mmu_gather tlb;
  967. int itype;
  968. int rv;
  969. memset(buffer, 0, sizeof(buffer));
  970. if (count > sizeof(buffer) - 1)
  971. count = sizeof(buffer) - 1;
  972. if (copy_from_user(buffer, buf, count))
  973. return -EFAULT;
  974. rv = kstrtoint(strstrip(buffer), 10, &itype);
  975. if (rv < 0)
  976. return rv;
  977. type = (enum clear_refs_types)itype;
  978. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  979. return -EINVAL;
  980. task = get_proc_task(file_inode(file));
  981. if (!task)
  982. return -ESRCH;
  983. mm = get_task_mm(task);
  984. if (mm) {
  985. struct clear_refs_private cp = {
  986. .type = type,
  987. };
  988. struct mm_walk clear_refs_walk = {
  989. .pmd_entry = clear_refs_pte_range,
  990. .test_walk = clear_refs_test_walk,
  991. .mm = mm,
  992. .private = &cp,
  993. };
  994. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  995. if (down_write_killable(&mm->mmap_sem)) {
  996. count = -EINTR;
  997. goto out_mm;
  998. }
  999. /*
  1000. * Writing 5 to /proc/pid/clear_refs resets the peak
  1001. * resident set size to this mm's current rss value.
  1002. */
  1003. reset_mm_hiwater_rss(mm);
  1004. up_write(&mm->mmap_sem);
  1005. goto out_mm;
  1006. }
  1007. down_read(&mm->mmap_sem);
  1008. tlb_gather_mmu(&tlb, mm, 0, -1);
  1009. if (type == CLEAR_REFS_SOFT_DIRTY) {
  1010. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1011. if (!(vma->vm_flags & VM_SOFTDIRTY))
  1012. continue;
  1013. up_read(&mm->mmap_sem);
  1014. if (down_write_killable(&mm->mmap_sem)) {
  1015. count = -EINTR;
  1016. goto out_mm;
  1017. }
  1018. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1019. vma->vm_flags &= ~VM_SOFTDIRTY;
  1020. vma_set_page_prot(vma);
  1021. }
  1022. downgrade_write(&mm->mmap_sem);
  1023. break;
  1024. }
  1025. mmu_notifier_invalidate_range_start(mm, 0, -1);
  1026. }
  1027. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  1028. if (type == CLEAR_REFS_SOFT_DIRTY)
  1029. mmu_notifier_invalidate_range_end(mm, 0, -1);
  1030. tlb_finish_mmu(&tlb, 0, -1);
  1031. up_read(&mm->mmap_sem);
  1032. out_mm:
  1033. mmput(mm);
  1034. }
  1035. put_task_struct(task);
  1036. return count;
  1037. }
  1038. const struct file_operations proc_clear_refs_operations = {
  1039. .write = clear_refs_write,
  1040. .llseek = noop_llseek,
  1041. };
  1042. typedef struct {
  1043. u64 pme;
  1044. } pagemap_entry_t;
  1045. struct pagemapread {
  1046. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1047. pagemap_entry_t *buffer;
  1048. bool show_pfn;
  1049. };
  1050. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1051. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1052. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1053. #define PM_PFRAME_BITS 55
  1054. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1055. #define PM_SOFT_DIRTY BIT_ULL(55)
  1056. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1057. #define PM_FILE BIT_ULL(61)
  1058. #define PM_SWAP BIT_ULL(62)
  1059. #define PM_PRESENT BIT_ULL(63)
  1060. #define PM_END_OF_BUFFER 1
  1061. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1062. {
  1063. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1064. }
  1065. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1066. struct pagemapread *pm)
  1067. {
  1068. pm->buffer[pm->pos++] = *pme;
  1069. if (pm->pos >= pm->len)
  1070. return PM_END_OF_BUFFER;
  1071. return 0;
  1072. }
  1073. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1074. struct mm_walk *walk)
  1075. {
  1076. struct pagemapread *pm = walk->private;
  1077. unsigned long addr = start;
  1078. int err = 0;
  1079. while (addr < end) {
  1080. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1081. pagemap_entry_t pme = make_pme(0, 0);
  1082. /* End of address space hole, which we mark as non-present. */
  1083. unsigned long hole_end;
  1084. if (vma)
  1085. hole_end = min(end, vma->vm_start);
  1086. else
  1087. hole_end = end;
  1088. for (; addr < hole_end; addr += PAGE_SIZE) {
  1089. err = add_to_pagemap(addr, &pme, pm);
  1090. if (err)
  1091. goto out;
  1092. }
  1093. if (!vma)
  1094. break;
  1095. /* Addresses in the VMA. */
  1096. if (vma->vm_flags & VM_SOFTDIRTY)
  1097. pme = make_pme(0, PM_SOFT_DIRTY);
  1098. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1099. err = add_to_pagemap(addr, &pme, pm);
  1100. if (err)
  1101. goto out;
  1102. }
  1103. }
  1104. out:
  1105. return err;
  1106. }
  1107. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1108. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1109. {
  1110. u64 frame = 0, flags = 0;
  1111. struct page *page = NULL;
  1112. if (pte_present(pte)) {
  1113. if (pm->show_pfn)
  1114. frame = pte_pfn(pte);
  1115. flags |= PM_PRESENT;
  1116. page = _vm_normal_page(vma, addr, pte, true);
  1117. if (pte_soft_dirty(pte))
  1118. flags |= PM_SOFT_DIRTY;
  1119. } else if (is_swap_pte(pte)) {
  1120. swp_entry_t entry;
  1121. if (pte_swp_soft_dirty(pte))
  1122. flags |= PM_SOFT_DIRTY;
  1123. entry = pte_to_swp_entry(pte);
  1124. frame = swp_type(entry) |
  1125. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1126. flags |= PM_SWAP;
  1127. if (is_migration_entry(entry))
  1128. page = migration_entry_to_page(entry);
  1129. if (is_device_private_entry(entry))
  1130. page = device_private_entry_to_page(entry);
  1131. }
  1132. if (page && !PageAnon(page))
  1133. flags |= PM_FILE;
  1134. if (page && page_mapcount(page) == 1)
  1135. flags |= PM_MMAP_EXCLUSIVE;
  1136. if (vma->vm_flags & VM_SOFTDIRTY)
  1137. flags |= PM_SOFT_DIRTY;
  1138. return make_pme(frame, flags);
  1139. }
  1140. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1141. struct mm_walk *walk)
  1142. {
  1143. struct vm_area_struct *vma = walk->vma;
  1144. struct pagemapread *pm = walk->private;
  1145. spinlock_t *ptl;
  1146. pte_t *pte, *orig_pte;
  1147. int err = 0;
  1148. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1149. ptl = pmd_trans_huge_lock(pmdp, vma);
  1150. if (ptl) {
  1151. u64 flags = 0, frame = 0;
  1152. pmd_t pmd = *pmdp;
  1153. struct page *page = NULL;
  1154. if (vma->vm_flags & VM_SOFTDIRTY)
  1155. flags |= PM_SOFT_DIRTY;
  1156. if (pmd_present(pmd)) {
  1157. page = pmd_page(pmd);
  1158. flags |= PM_PRESENT;
  1159. if (pmd_soft_dirty(pmd))
  1160. flags |= PM_SOFT_DIRTY;
  1161. if (pm->show_pfn)
  1162. frame = pmd_pfn(pmd) +
  1163. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1164. }
  1165. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1166. else if (is_swap_pmd(pmd)) {
  1167. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1168. frame = swp_type(entry) |
  1169. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1170. flags |= PM_SWAP;
  1171. if (pmd_swp_soft_dirty(pmd))
  1172. flags |= PM_SOFT_DIRTY;
  1173. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1174. page = migration_entry_to_page(entry);
  1175. }
  1176. #endif
  1177. if (page && page_mapcount(page) == 1)
  1178. flags |= PM_MMAP_EXCLUSIVE;
  1179. for (; addr != end; addr += PAGE_SIZE) {
  1180. pagemap_entry_t pme = make_pme(frame, flags);
  1181. err = add_to_pagemap(addr, &pme, pm);
  1182. if (err)
  1183. break;
  1184. if (pm->show_pfn && (flags & PM_PRESENT))
  1185. frame++;
  1186. }
  1187. spin_unlock(ptl);
  1188. return err;
  1189. }
  1190. if (pmd_trans_unstable(pmdp))
  1191. return 0;
  1192. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1193. /*
  1194. * We can assume that @vma always points to a valid one and @end never
  1195. * goes beyond vma->vm_end.
  1196. */
  1197. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1198. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1199. pagemap_entry_t pme;
  1200. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1201. err = add_to_pagemap(addr, &pme, pm);
  1202. if (err)
  1203. break;
  1204. }
  1205. pte_unmap_unlock(orig_pte, ptl);
  1206. cond_resched();
  1207. return err;
  1208. }
  1209. #ifdef CONFIG_HUGETLB_PAGE
  1210. /* This function walks within one hugetlb entry in the single call */
  1211. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1212. unsigned long addr, unsigned long end,
  1213. struct mm_walk *walk)
  1214. {
  1215. struct pagemapread *pm = walk->private;
  1216. struct vm_area_struct *vma = walk->vma;
  1217. u64 flags = 0, frame = 0;
  1218. int err = 0;
  1219. pte_t pte;
  1220. if (vma->vm_flags & VM_SOFTDIRTY)
  1221. flags |= PM_SOFT_DIRTY;
  1222. pte = huge_ptep_get(ptep);
  1223. if (pte_present(pte)) {
  1224. struct page *page = pte_page(pte);
  1225. if (!PageAnon(page))
  1226. flags |= PM_FILE;
  1227. if (page_mapcount(page) == 1)
  1228. flags |= PM_MMAP_EXCLUSIVE;
  1229. flags |= PM_PRESENT;
  1230. if (pm->show_pfn)
  1231. frame = pte_pfn(pte) +
  1232. ((addr & ~hmask) >> PAGE_SHIFT);
  1233. }
  1234. for (; addr != end; addr += PAGE_SIZE) {
  1235. pagemap_entry_t pme = make_pme(frame, flags);
  1236. err = add_to_pagemap(addr, &pme, pm);
  1237. if (err)
  1238. return err;
  1239. if (pm->show_pfn && (flags & PM_PRESENT))
  1240. frame++;
  1241. }
  1242. cond_resched();
  1243. return err;
  1244. }
  1245. #endif /* HUGETLB_PAGE */
  1246. /*
  1247. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1248. *
  1249. * For each page in the address space, this file contains one 64-bit entry
  1250. * consisting of the following:
  1251. *
  1252. * Bits 0-54 page frame number (PFN) if present
  1253. * Bits 0-4 swap type if swapped
  1254. * Bits 5-54 swap offset if swapped
  1255. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1256. * Bit 56 page exclusively mapped
  1257. * Bits 57-60 zero
  1258. * Bit 61 page is file-page or shared-anon
  1259. * Bit 62 page swapped
  1260. * Bit 63 page present
  1261. *
  1262. * If the page is not present but in swap, then the PFN contains an
  1263. * encoding of the swap file number and the page's offset into the
  1264. * swap. Unmapped pages return a null PFN. This allows determining
  1265. * precisely which pages are mapped (or in swap) and comparing mapped
  1266. * pages between processes.
  1267. *
  1268. * Efficient users of this interface will use /proc/pid/maps to
  1269. * determine which areas of memory are actually mapped and llseek to
  1270. * skip over unmapped regions.
  1271. */
  1272. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1273. size_t count, loff_t *ppos)
  1274. {
  1275. struct mm_struct *mm = file->private_data;
  1276. struct pagemapread pm;
  1277. struct mm_walk pagemap_walk = {};
  1278. unsigned long src;
  1279. unsigned long svpfn;
  1280. unsigned long start_vaddr;
  1281. unsigned long end_vaddr;
  1282. int ret = 0, copied = 0;
  1283. if (!mm || !mmget_not_zero(mm))
  1284. goto out;
  1285. ret = -EINVAL;
  1286. /* file position must be aligned */
  1287. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1288. goto out_mm;
  1289. ret = 0;
  1290. if (!count)
  1291. goto out_mm;
  1292. /* do not disclose physical addresses: attack vector */
  1293. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1294. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1295. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
  1296. ret = -ENOMEM;
  1297. if (!pm.buffer)
  1298. goto out_mm;
  1299. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1300. pagemap_walk.pte_hole = pagemap_pte_hole;
  1301. #ifdef CONFIG_HUGETLB_PAGE
  1302. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1303. #endif
  1304. pagemap_walk.mm = mm;
  1305. pagemap_walk.private = &pm;
  1306. src = *ppos;
  1307. svpfn = src / PM_ENTRY_BYTES;
  1308. start_vaddr = svpfn << PAGE_SHIFT;
  1309. end_vaddr = mm->task_size;
  1310. /* watch out for wraparound */
  1311. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1312. start_vaddr = end_vaddr;
  1313. /*
  1314. * The odds are that this will stop walking way
  1315. * before end_vaddr, because the length of the
  1316. * user buffer is tracked in "pm", and the walk
  1317. * will stop when we hit the end of the buffer.
  1318. */
  1319. ret = 0;
  1320. while (count && (start_vaddr < end_vaddr)) {
  1321. int len;
  1322. unsigned long end;
  1323. pm.pos = 0;
  1324. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1325. /* overflow ? */
  1326. if (end < start_vaddr || end > end_vaddr)
  1327. end = end_vaddr;
  1328. down_read(&mm->mmap_sem);
  1329. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1330. up_read(&mm->mmap_sem);
  1331. start_vaddr = end;
  1332. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1333. if (copy_to_user(buf, pm.buffer, len)) {
  1334. ret = -EFAULT;
  1335. goto out_free;
  1336. }
  1337. copied += len;
  1338. buf += len;
  1339. count -= len;
  1340. }
  1341. *ppos += copied;
  1342. if (!ret || ret == PM_END_OF_BUFFER)
  1343. ret = copied;
  1344. out_free:
  1345. kfree(pm.buffer);
  1346. out_mm:
  1347. mmput(mm);
  1348. out:
  1349. return ret;
  1350. }
  1351. static int pagemap_open(struct inode *inode, struct file *file)
  1352. {
  1353. struct mm_struct *mm;
  1354. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1355. if (IS_ERR(mm))
  1356. return PTR_ERR(mm);
  1357. file->private_data = mm;
  1358. return 0;
  1359. }
  1360. static int pagemap_release(struct inode *inode, struct file *file)
  1361. {
  1362. struct mm_struct *mm = file->private_data;
  1363. if (mm)
  1364. mmdrop(mm);
  1365. return 0;
  1366. }
  1367. const struct file_operations proc_pagemap_operations = {
  1368. .llseek = mem_lseek, /* borrow this */
  1369. .read = pagemap_read,
  1370. .open = pagemap_open,
  1371. .release = pagemap_release,
  1372. };
  1373. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1374. #ifdef CONFIG_NUMA
  1375. struct numa_maps {
  1376. unsigned long pages;
  1377. unsigned long anon;
  1378. unsigned long active;
  1379. unsigned long writeback;
  1380. unsigned long mapcount_max;
  1381. unsigned long dirty;
  1382. unsigned long swapcache;
  1383. unsigned long node[MAX_NUMNODES];
  1384. };
  1385. struct numa_maps_private {
  1386. struct proc_maps_private proc_maps;
  1387. struct numa_maps md;
  1388. };
  1389. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1390. unsigned long nr_pages)
  1391. {
  1392. int count = page_mapcount(page);
  1393. md->pages += nr_pages;
  1394. if (pte_dirty || PageDirty(page))
  1395. md->dirty += nr_pages;
  1396. if (PageSwapCache(page))
  1397. md->swapcache += nr_pages;
  1398. if (PageActive(page) || PageUnevictable(page))
  1399. md->active += nr_pages;
  1400. if (PageWriteback(page))
  1401. md->writeback += nr_pages;
  1402. if (PageAnon(page))
  1403. md->anon += nr_pages;
  1404. if (count > md->mapcount_max)
  1405. md->mapcount_max = count;
  1406. md->node[page_to_nid(page)] += nr_pages;
  1407. }
  1408. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1409. unsigned long addr)
  1410. {
  1411. struct page *page;
  1412. int nid;
  1413. if (!pte_present(pte))
  1414. return NULL;
  1415. page = vm_normal_page(vma, addr, pte);
  1416. if (!page)
  1417. return NULL;
  1418. if (PageReserved(page))
  1419. return NULL;
  1420. nid = page_to_nid(page);
  1421. if (!node_isset(nid, node_states[N_MEMORY]))
  1422. return NULL;
  1423. return page;
  1424. }
  1425. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1426. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1427. struct vm_area_struct *vma,
  1428. unsigned long addr)
  1429. {
  1430. struct page *page;
  1431. int nid;
  1432. if (!pmd_present(pmd))
  1433. return NULL;
  1434. page = vm_normal_page_pmd(vma, addr, pmd);
  1435. if (!page)
  1436. return NULL;
  1437. if (PageReserved(page))
  1438. return NULL;
  1439. nid = page_to_nid(page);
  1440. if (!node_isset(nid, node_states[N_MEMORY]))
  1441. return NULL;
  1442. return page;
  1443. }
  1444. #endif
  1445. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1446. unsigned long end, struct mm_walk *walk)
  1447. {
  1448. struct numa_maps *md = walk->private;
  1449. struct vm_area_struct *vma = walk->vma;
  1450. spinlock_t *ptl;
  1451. pte_t *orig_pte;
  1452. pte_t *pte;
  1453. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1454. ptl = pmd_trans_huge_lock(pmd, vma);
  1455. if (ptl) {
  1456. struct page *page;
  1457. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1458. if (page)
  1459. gather_stats(page, md, pmd_dirty(*pmd),
  1460. HPAGE_PMD_SIZE/PAGE_SIZE);
  1461. spin_unlock(ptl);
  1462. return 0;
  1463. }
  1464. if (pmd_trans_unstable(pmd))
  1465. return 0;
  1466. #endif
  1467. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1468. do {
  1469. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1470. if (!page)
  1471. continue;
  1472. gather_stats(page, md, pte_dirty(*pte), 1);
  1473. } while (pte++, addr += PAGE_SIZE, addr != end);
  1474. pte_unmap_unlock(orig_pte, ptl);
  1475. cond_resched();
  1476. return 0;
  1477. }
  1478. #ifdef CONFIG_HUGETLB_PAGE
  1479. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1480. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1481. {
  1482. pte_t huge_pte = huge_ptep_get(pte);
  1483. struct numa_maps *md;
  1484. struct page *page;
  1485. if (!pte_present(huge_pte))
  1486. return 0;
  1487. page = pte_page(huge_pte);
  1488. if (!page)
  1489. return 0;
  1490. md = walk->private;
  1491. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1492. return 0;
  1493. }
  1494. #else
  1495. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1496. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1497. {
  1498. return 0;
  1499. }
  1500. #endif
  1501. /*
  1502. * Display pages allocated per node and memory policy via /proc.
  1503. */
  1504. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1505. {
  1506. struct numa_maps_private *numa_priv = m->private;
  1507. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1508. struct vm_area_struct *vma = v;
  1509. struct numa_maps *md = &numa_priv->md;
  1510. struct file *file = vma->vm_file;
  1511. struct mm_struct *mm = vma->vm_mm;
  1512. struct mm_walk walk = {
  1513. .hugetlb_entry = gather_hugetlb_stats,
  1514. .pmd_entry = gather_pte_stats,
  1515. .private = md,
  1516. .mm = mm,
  1517. };
  1518. struct mempolicy *pol;
  1519. char buffer[64];
  1520. int nid;
  1521. if (!mm)
  1522. return 0;
  1523. /* Ensure we start with an empty set of numa_maps statistics. */
  1524. memset(md, 0, sizeof(*md));
  1525. pol = __get_vma_policy(vma, vma->vm_start);
  1526. if (pol) {
  1527. mpol_to_str(buffer, sizeof(buffer), pol);
  1528. mpol_cond_put(pol);
  1529. } else {
  1530. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1531. }
  1532. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1533. if (file) {
  1534. seq_puts(m, " file=");
  1535. seq_file_path(m, file, "\n\t= ");
  1536. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1537. seq_puts(m, " heap");
  1538. } else if (is_stack(vma)) {
  1539. seq_puts(m, " stack");
  1540. }
  1541. if (is_vm_hugetlb_page(vma))
  1542. seq_puts(m, " huge");
  1543. /* mmap_sem is held by m_start */
  1544. walk_page_vma(vma, &walk);
  1545. if (!md->pages)
  1546. goto out;
  1547. if (md->anon)
  1548. seq_printf(m, " anon=%lu", md->anon);
  1549. if (md->dirty)
  1550. seq_printf(m, " dirty=%lu", md->dirty);
  1551. if (md->pages != md->anon && md->pages != md->dirty)
  1552. seq_printf(m, " mapped=%lu", md->pages);
  1553. if (md->mapcount_max > 1)
  1554. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1555. if (md->swapcache)
  1556. seq_printf(m, " swapcache=%lu", md->swapcache);
  1557. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1558. seq_printf(m, " active=%lu", md->active);
  1559. if (md->writeback)
  1560. seq_printf(m, " writeback=%lu", md->writeback);
  1561. for_each_node_state(nid, N_MEMORY)
  1562. if (md->node[nid])
  1563. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1564. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1565. out:
  1566. seq_putc(m, '\n');
  1567. m_cache_vma(m, vma);
  1568. return 0;
  1569. }
  1570. static int show_pid_numa_map(struct seq_file *m, void *v)
  1571. {
  1572. return show_numa_map(m, v, 1);
  1573. }
  1574. static int show_tid_numa_map(struct seq_file *m, void *v)
  1575. {
  1576. return show_numa_map(m, v, 0);
  1577. }
  1578. static const struct seq_operations proc_pid_numa_maps_op = {
  1579. .start = m_start,
  1580. .next = m_next,
  1581. .stop = m_stop,
  1582. .show = show_pid_numa_map,
  1583. };
  1584. static const struct seq_operations proc_tid_numa_maps_op = {
  1585. .start = m_start,
  1586. .next = m_next,
  1587. .stop = m_stop,
  1588. .show = show_tid_numa_map,
  1589. };
  1590. static int numa_maps_open(struct inode *inode, struct file *file,
  1591. const struct seq_operations *ops)
  1592. {
  1593. return proc_maps_open(inode, file, ops,
  1594. sizeof(struct numa_maps_private));
  1595. }
  1596. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1597. {
  1598. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1599. }
  1600. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1601. {
  1602. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1603. }
  1604. const struct file_operations proc_pid_numa_maps_operations = {
  1605. .open = pid_numa_maps_open,
  1606. .read = seq_read,
  1607. .llseek = seq_lseek,
  1608. .release = proc_map_release,
  1609. };
  1610. const struct file_operations proc_tid_numa_maps_operations = {
  1611. .open = tid_numa_maps_open,
  1612. .read = seq_read,
  1613. .llseek = seq_lseek,
  1614. .release = proc_map_release,
  1615. };
  1616. #endif /* CONFIG_NUMA */