namespace.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/cred.h>
  18. #include <linux/idr.h>
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/task_work.h>
  27. #include <linux/sched/task.h>
  28. #include "pnode.h"
  29. #include "internal.h"
  30. /* Maximum number of mounts in a mount namespace */
  31. unsigned int sysctl_mount_max __read_mostly = 100000;
  32. static unsigned int m_hash_mask __read_mostly;
  33. static unsigned int m_hash_shift __read_mostly;
  34. static unsigned int mp_hash_mask __read_mostly;
  35. static unsigned int mp_hash_shift __read_mostly;
  36. static __initdata unsigned long mhash_entries;
  37. static int __init set_mhash_entries(char *str)
  38. {
  39. if (!str)
  40. return 0;
  41. mhash_entries = simple_strtoul(str, &str, 0);
  42. return 1;
  43. }
  44. __setup("mhash_entries=", set_mhash_entries);
  45. static __initdata unsigned long mphash_entries;
  46. static int __init set_mphash_entries(char *str)
  47. {
  48. if (!str)
  49. return 0;
  50. mphash_entries = simple_strtoul(str, &str, 0);
  51. return 1;
  52. }
  53. __setup("mphash_entries=", set_mphash_entries);
  54. static u64 event;
  55. static DEFINE_IDA(mnt_id_ida);
  56. static DEFINE_IDA(mnt_group_ida);
  57. static DEFINE_SPINLOCK(mnt_id_lock);
  58. static int mnt_id_start = 0;
  59. static int mnt_group_start = 1;
  60. static struct hlist_head *mount_hashtable __read_mostly;
  61. static struct hlist_head *mountpoint_hashtable __read_mostly;
  62. static struct kmem_cache *mnt_cache __read_mostly;
  63. static DECLARE_RWSEM(namespace_sem);
  64. /* /sys/fs */
  65. struct kobject *fs_kobj;
  66. EXPORT_SYMBOL_GPL(fs_kobj);
  67. /*
  68. * vfsmount lock may be taken for read to prevent changes to the
  69. * vfsmount hash, ie. during mountpoint lookups or walking back
  70. * up the tree.
  71. *
  72. * It should be taken for write in all cases where the vfsmount
  73. * tree or hash is modified or when a vfsmount structure is modified.
  74. */
  75. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  76. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  77. {
  78. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  79. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  80. tmp = tmp + (tmp >> m_hash_shift);
  81. return &mount_hashtable[tmp & m_hash_mask];
  82. }
  83. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  84. {
  85. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  86. tmp = tmp + (tmp >> mp_hash_shift);
  87. return &mountpoint_hashtable[tmp & mp_hash_mask];
  88. }
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static void drop_mountpoint(struct fs_pin *p)
  170. {
  171. struct mount *m = container_of(p, struct mount, mnt_umount);
  172. dput(m->mnt_ex_mountpoint);
  173. pin_remove(p);
  174. mntput(&m->mnt);
  175. }
  176. static struct mount *alloc_vfsmnt(const char *name)
  177. {
  178. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  179. if (mnt) {
  180. int err;
  181. err = mnt_alloc_id(mnt);
  182. if (err)
  183. goto out_free_cache;
  184. if (name) {
  185. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  186. if (!mnt->mnt_devname)
  187. goto out_free_id;
  188. }
  189. #ifdef CONFIG_SMP
  190. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  191. if (!mnt->mnt_pcp)
  192. goto out_free_devname;
  193. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  194. #else
  195. mnt->mnt_count = 1;
  196. mnt->mnt_writers = 0;
  197. #endif
  198. INIT_HLIST_NODE(&mnt->mnt_hash);
  199. INIT_LIST_HEAD(&mnt->mnt_child);
  200. INIT_LIST_HEAD(&mnt->mnt_mounts);
  201. INIT_LIST_HEAD(&mnt->mnt_list);
  202. INIT_LIST_HEAD(&mnt->mnt_expire);
  203. INIT_LIST_HEAD(&mnt->mnt_share);
  204. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  205. INIT_LIST_HEAD(&mnt->mnt_slave);
  206. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  207. INIT_LIST_HEAD(&mnt->mnt_umounting);
  208. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  209. }
  210. return mnt;
  211. #ifdef CONFIG_SMP
  212. out_free_devname:
  213. kfree_const(mnt->mnt_devname);
  214. #endif
  215. out_free_id:
  216. mnt_free_id(mnt);
  217. out_free_cache:
  218. kmem_cache_free(mnt_cache, mnt);
  219. return NULL;
  220. }
  221. /*
  222. * Most r/o checks on a fs are for operations that take
  223. * discrete amounts of time, like a write() or unlink().
  224. * We must keep track of when those operations start
  225. * (for permission checks) and when they end, so that
  226. * we can determine when writes are able to occur to
  227. * a filesystem.
  228. */
  229. /*
  230. * __mnt_is_readonly: check whether a mount is read-only
  231. * @mnt: the mount to check for its write status
  232. *
  233. * This shouldn't be used directly ouside of the VFS.
  234. * It does not guarantee that the filesystem will stay
  235. * r/w, just that it is right *now*. This can not and
  236. * should not be used in place of IS_RDONLY(inode).
  237. * mnt_want/drop_write() will _keep_ the filesystem
  238. * r/w.
  239. */
  240. int __mnt_is_readonly(struct vfsmount *mnt)
  241. {
  242. if (mnt->mnt_flags & MNT_READONLY)
  243. return 1;
  244. if (sb_rdonly(mnt->mnt_sb))
  245. return 1;
  246. return 0;
  247. }
  248. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  249. static inline void mnt_inc_writers(struct mount *mnt)
  250. {
  251. #ifdef CONFIG_SMP
  252. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  253. #else
  254. mnt->mnt_writers++;
  255. #endif
  256. }
  257. static inline void mnt_dec_writers(struct mount *mnt)
  258. {
  259. #ifdef CONFIG_SMP
  260. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  261. #else
  262. mnt->mnt_writers--;
  263. #endif
  264. }
  265. static unsigned int mnt_get_writers(struct mount *mnt)
  266. {
  267. #ifdef CONFIG_SMP
  268. unsigned int count = 0;
  269. int cpu;
  270. for_each_possible_cpu(cpu) {
  271. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  272. }
  273. return count;
  274. #else
  275. return mnt->mnt_writers;
  276. #endif
  277. }
  278. static int mnt_is_readonly(struct vfsmount *mnt)
  279. {
  280. if (mnt->mnt_sb->s_readonly_remount)
  281. return 1;
  282. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  283. smp_rmb();
  284. return __mnt_is_readonly(mnt);
  285. }
  286. /*
  287. * Most r/o & frozen checks on a fs are for operations that take discrete
  288. * amounts of time, like a write() or unlink(). We must keep track of when
  289. * those operations start (for permission checks) and when they end, so that we
  290. * can determine when writes are able to occur to a filesystem.
  291. */
  292. /**
  293. * __mnt_want_write - get write access to a mount without freeze protection
  294. * @m: the mount on which to take a write
  295. *
  296. * This tells the low-level filesystem that a write is about to be performed to
  297. * it, and makes sure that writes are allowed (mnt it read-write) before
  298. * returning success. This operation does not protect against filesystem being
  299. * frozen. When the write operation is finished, __mnt_drop_write() must be
  300. * called. This is effectively a refcount.
  301. */
  302. int __mnt_want_write(struct vfsmount *m)
  303. {
  304. struct mount *mnt = real_mount(m);
  305. int ret = 0;
  306. preempt_disable();
  307. mnt_inc_writers(mnt);
  308. /*
  309. * The store to mnt_inc_writers must be visible before we pass
  310. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  311. * incremented count after it has set MNT_WRITE_HOLD.
  312. */
  313. smp_mb();
  314. while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  315. cpu_relax();
  316. /*
  317. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  318. * be set to match its requirements. So we must not load that until
  319. * MNT_WRITE_HOLD is cleared.
  320. */
  321. smp_rmb();
  322. if (mnt_is_readonly(m)) {
  323. mnt_dec_writers(mnt);
  324. ret = -EROFS;
  325. }
  326. preempt_enable();
  327. return ret;
  328. }
  329. /**
  330. * mnt_want_write - get write access to a mount
  331. * @m: the mount on which to take a write
  332. *
  333. * This tells the low-level filesystem that a write is about to be performed to
  334. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  335. * is not frozen) before returning success. When the write operation is
  336. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  337. */
  338. int mnt_want_write(struct vfsmount *m)
  339. {
  340. int ret;
  341. sb_start_write(m->mnt_sb);
  342. ret = __mnt_want_write(m);
  343. if (ret)
  344. sb_end_write(m->mnt_sb);
  345. return ret;
  346. }
  347. EXPORT_SYMBOL_GPL(mnt_want_write);
  348. /**
  349. * mnt_clone_write - get write access to a mount
  350. * @mnt: the mount on which to take a write
  351. *
  352. * This is effectively like mnt_want_write, except
  353. * it must only be used to take an extra write reference
  354. * on a mountpoint that we already know has a write reference
  355. * on it. This allows some optimisation.
  356. *
  357. * After finished, mnt_drop_write must be called as usual to
  358. * drop the reference.
  359. */
  360. int mnt_clone_write(struct vfsmount *mnt)
  361. {
  362. /* superblock may be r/o */
  363. if (__mnt_is_readonly(mnt))
  364. return -EROFS;
  365. preempt_disable();
  366. mnt_inc_writers(real_mount(mnt));
  367. preempt_enable();
  368. return 0;
  369. }
  370. EXPORT_SYMBOL_GPL(mnt_clone_write);
  371. /**
  372. * __mnt_want_write_file - get write access to a file's mount
  373. * @file: the file who's mount on which to take a write
  374. *
  375. * This is like __mnt_want_write, but it takes a file and can
  376. * do some optimisations if the file is open for write already
  377. */
  378. int __mnt_want_write_file(struct file *file)
  379. {
  380. if (!(file->f_mode & FMODE_WRITER))
  381. return __mnt_want_write(file->f_path.mnt);
  382. else
  383. return mnt_clone_write(file->f_path.mnt);
  384. }
  385. /**
  386. * mnt_want_write_file_path - get write access to a file's mount
  387. * @file: the file who's mount on which to take a write
  388. *
  389. * This is like mnt_want_write, but it takes a file and can
  390. * do some optimisations if the file is open for write already
  391. *
  392. * Called by the vfs for cases when we have an open file at hand, but will do an
  393. * inode operation on it (important distinction for files opened on overlayfs,
  394. * since the file operations will come from the real underlying file, while
  395. * inode operations come from the overlay).
  396. */
  397. int mnt_want_write_file_path(struct file *file)
  398. {
  399. int ret;
  400. sb_start_write(file->f_path.mnt->mnt_sb);
  401. ret = __mnt_want_write_file(file);
  402. if (ret)
  403. sb_end_write(file->f_path.mnt->mnt_sb);
  404. return ret;
  405. }
  406. static inline int may_write_real(struct file *file)
  407. {
  408. struct dentry *dentry = file->f_path.dentry;
  409. struct dentry *upperdentry;
  410. /* Writable file? */
  411. if (file->f_mode & FMODE_WRITER)
  412. return 0;
  413. /* Not overlayfs? */
  414. if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
  415. return 0;
  416. /* File refers to upper, writable layer? */
  417. upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
  418. if (upperdentry &&
  419. (file_inode(file) == d_inode(upperdentry) ||
  420. file_inode(file) == d_inode(dentry)))
  421. return 0;
  422. /* Lower layer: can't write to real file, sorry... */
  423. return -EPERM;
  424. }
  425. /**
  426. * mnt_want_write_file - get write access to a file's mount
  427. * @file: the file who's mount on which to take a write
  428. *
  429. * This is like mnt_want_write, but it takes a file and can
  430. * do some optimisations if the file is open for write already
  431. *
  432. * Mostly called by filesystems from their ioctl operation before performing
  433. * modification. On overlayfs this needs to check if the file is on a read-only
  434. * lower layer and deny access in that case.
  435. */
  436. int mnt_want_write_file(struct file *file)
  437. {
  438. int ret;
  439. ret = may_write_real(file);
  440. if (!ret) {
  441. sb_start_write(file_inode(file)->i_sb);
  442. ret = __mnt_want_write_file(file);
  443. if (ret)
  444. sb_end_write(file_inode(file)->i_sb);
  445. }
  446. return ret;
  447. }
  448. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  449. /**
  450. * __mnt_drop_write - give up write access to a mount
  451. * @mnt: the mount on which to give up write access
  452. *
  453. * Tells the low-level filesystem that we are done
  454. * performing writes to it. Must be matched with
  455. * __mnt_want_write() call above.
  456. */
  457. void __mnt_drop_write(struct vfsmount *mnt)
  458. {
  459. preempt_disable();
  460. mnt_dec_writers(real_mount(mnt));
  461. preempt_enable();
  462. }
  463. /**
  464. * mnt_drop_write - give up write access to a mount
  465. * @mnt: the mount on which to give up write access
  466. *
  467. * Tells the low-level filesystem that we are done performing writes to it and
  468. * also allows filesystem to be frozen again. Must be matched with
  469. * mnt_want_write() call above.
  470. */
  471. void mnt_drop_write(struct vfsmount *mnt)
  472. {
  473. __mnt_drop_write(mnt);
  474. sb_end_write(mnt->mnt_sb);
  475. }
  476. EXPORT_SYMBOL_GPL(mnt_drop_write);
  477. void __mnt_drop_write_file(struct file *file)
  478. {
  479. __mnt_drop_write(file->f_path.mnt);
  480. }
  481. void mnt_drop_write_file_path(struct file *file)
  482. {
  483. mnt_drop_write(file->f_path.mnt);
  484. }
  485. void mnt_drop_write_file(struct file *file)
  486. {
  487. __mnt_drop_write(file->f_path.mnt);
  488. sb_end_write(file_inode(file)->i_sb);
  489. }
  490. EXPORT_SYMBOL(mnt_drop_write_file);
  491. static int mnt_make_readonly(struct mount *mnt)
  492. {
  493. int ret = 0;
  494. lock_mount_hash();
  495. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  496. /*
  497. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  498. * should be visible before we do.
  499. */
  500. smp_mb();
  501. /*
  502. * With writers on hold, if this value is zero, then there are
  503. * definitely no active writers (although held writers may subsequently
  504. * increment the count, they'll have to wait, and decrement it after
  505. * seeing MNT_READONLY).
  506. *
  507. * It is OK to have counter incremented on one CPU and decremented on
  508. * another: the sum will add up correctly. The danger would be when we
  509. * sum up each counter, if we read a counter before it is incremented,
  510. * but then read another CPU's count which it has been subsequently
  511. * decremented from -- we would see more decrements than we should.
  512. * MNT_WRITE_HOLD protects against this scenario, because
  513. * mnt_want_write first increments count, then smp_mb, then spins on
  514. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  515. * we're counting up here.
  516. */
  517. if (mnt_get_writers(mnt) > 0)
  518. ret = -EBUSY;
  519. else
  520. mnt->mnt.mnt_flags |= MNT_READONLY;
  521. /*
  522. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  523. * that become unheld will see MNT_READONLY.
  524. */
  525. smp_wmb();
  526. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  527. unlock_mount_hash();
  528. return ret;
  529. }
  530. static void __mnt_unmake_readonly(struct mount *mnt)
  531. {
  532. lock_mount_hash();
  533. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  534. unlock_mount_hash();
  535. }
  536. int sb_prepare_remount_readonly(struct super_block *sb)
  537. {
  538. struct mount *mnt;
  539. int err = 0;
  540. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  541. if (atomic_long_read(&sb->s_remove_count))
  542. return -EBUSY;
  543. lock_mount_hash();
  544. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  545. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  546. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  547. smp_mb();
  548. if (mnt_get_writers(mnt) > 0) {
  549. err = -EBUSY;
  550. break;
  551. }
  552. }
  553. }
  554. if (!err && atomic_long_read(&sb->s_remove_count))
  555. err = -EBUSY;
  556. if (!err) {
  557. sb->s_readonly_remount = 1;
  558. smp_wmb();
  559. }
  560. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  561. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  562. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  563. }
  564. unlock_mount_hash();
  565. return err;
  566. }
  567. static void free_vfsmnt(struct mount *mnt)
  568. {
  569. kfree_const(mnt->mnt_devname);
  570. #ifdef CONFIG_SMP
  571. free_percpu(mnt->mnt_pcp);
  572. #endif
  573. kmem_cache_free(mnt_cache, mnt);
  574. }
  575. static void delayed_free_vfsmnt(struct rcu_head *head)
  576. {
  577. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  578. }
  579. /* call under rcu_read_lock */
  580. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  581. {
  582. struct mount *mnt;
  583. if (read_seqretry(&mount_lock, seq))
  584. return 1;
  585. if (bastard == NULL)
  586. return 0;
  587. mnt = real_mount(bastard);
  588. mnt_add_count(mnt, 1);
  589. if (likely(!read_seqretry(&mount_lock, seq)))
  590. return 0;
  591. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  592. mnt_add_count(mnt, -1);
  593. return 1;
  594. }
  595. return -1;
  596. }
  597. /* call under rcu_read_lock */
  598. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  599. {
  600. int res = __legitimize_mnt(bastard, seq);
  601. if (likely(!res))
  602. return true;
  603. if (unlikely(res < 0)) {
  604. rcu_read_unlock();
  605. mntput(bastard);
  606. rcu_read_lock();
  607. }
  608. return false;
  609. }
  610. /*
  611. * find the first mount at @dentry on vfsmount @mnt.
  612. * call under rcu_read_lock()
  613. */
  614. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  615. {
  616. struct hlist_head *head = m_hash(mnt, dentry);
  617. struct mount *p;
  618. hlist_for_each_entry_rcu(p, head, mnt_hash)
  619. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  620. return p;
  621. return NULL;
  622. }
  623. /*
  624. * lookup_mnt - Return the first child mount mounted at path
  625. *
  626. * "First" means first mounted chronologically. If you create the
  627. * following mounts:
  628. *
  629. * mount /dev/sda1 /mnt
  630. * mount /dev/sda2 /mnt
  631. * mount /dev/sda3 /mnt
  632. *
  633. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  634. * return successively the root dentry and vfsmount of /dev/sda1, then
  635. * /dev/sda2, then /dev/sda3, then NULL.
  636. *
  637. * lookup_mnt takes a reference to the found vfsmount.
  638. */
  639. struct vfsmount *lookup_mnt(const struct path *path)
  640. {
  641. struct mount *child_mnt;
  642. struct vfsmount *m;
  643. unsigned seq;
  644. rcu_read_lock();
  645. do {
  646. seq = read_seqbegin(&mount_lock);
  647. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  648. m = child_mnt ? &child_mnt->mnt : NULL;
  649. } while (!legitimize_mnt(m, seq));
  650. rcu_read_unlock();
  651. return m;
  652. }
  653. /*
  654. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  655. * current mount namespace.
  656. *
  657. * The common case is dentries are not mountpoints at all and that
  658. * test is handled inline. For the slow case when we are actually
  659. * dealing with a mountpoint of some kind, walk through all of the
  660. * mounts in the current mount namespace and test to see if the dentry
  661. * is a mountpoint.
  662. *
  663. * The mount_hashtable is not usable in the context because we
  664. * need to identify all mounts that may be in the current mount
  665. * namespace not just a mount that happens to have some specified
  666. * parent mount.
  667. */
  668. bool __is_local_mountpoint(struct dentry *dentry)
  669. {
  670. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  671. struct mount *mnt;
  672. bool is_covered = false;
  673. if (!d_mountpoint(dentry))
  674. goto out;
  675. down_read(&namespace_sem);
  676. list_for_each_entry(mnt, &ns->list, mnt_list) {
  677. is_covered = (mnt->mnt_mountpoint == dentry);
  678. if (is_covered)
  679. break;
  680. }
  681. up_read(&namespace_sem);
  682. out:
  683. return is_covered;
  684. }
  685. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  686. {
  687. struct hlist_head *chain = mp_hash(dentry);
  688. struct mountpoint *mp;
  689. hlist_for_each_entry(mp, chain, m_hash) {
  690. if (mp->m_dentry == dentry) {
  691. /* might be worth a WARN_ON() */
  692. if (d_unlinked(dentry))
  693. return ERR_PTR(-ENOENT);
  694. mp->m_count++;
  695. return mp;
  696. }
  697. }
  698. return NULL;
  699. }
  700. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  701. {
  702. struct mountpoint *mp, *new = NULL;
  703. int ret;
  704. if (d_mountpoint(dentry)) {
  705. mountpoint:
  706. read_seqlock_excl(&mount_lock);
  707. mp = lookup_mountpoint(dentry);
  708. read_sequnlock_excl(&mount_lock);
  709. if (mp)
  710. goto done;
  711. }
  712. if (!new)
  713. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  714. if (!new)
  715. return ERR_PTR(-ENOMEM);
  716. /* Exactly one processes may set d_mounted */
  717. ret = d_set_mounted(dentry);
  718. /* Someone else set d_mounted? */
  719. if (ret == -EBUSY)
  720. goto mountpoint;
  721. /* The dentry is not available as a mountpoint? */
  722. mp = ERR_PTR(ret);
  723. if (ret)
  724. goto done;
  725. /* Add the new mountpoint to the hash table */
  726. read_seqlock_excl(&mount_lock);
  727. new->m_dentry = dentry;
  728. new->m_count = 1;
  729. hlist_add_head(&new->m_hash, mp_hash(dentry));
  730. INIT_HLIST_HEAD(&new->m_list);
  731. read_sequnlock_excl(&mount_lock);
  732. mp = new;
  733. new = NULL;
  734. done:
  735. kfree(new);
  736. return mp;
  737. }
  738. static void put_mountpoint(struct mountpoint *mp)
  739. {
  740. if (!--mp->m_count) {
  741. struct dentry *dentry = mp->m_dentry;
  742. BUG_ON(!hlist_empty(&mp->m_list));
  743. spin_lock(&dentry->d_lock);
  744. dentry->d_flags &= ~DCACHE_MOUNTED;
  745. spin_unlock(&dentry->d_lock);
  746. hlist_del(&mp->m_hash);
  747. kfree(mp);
  748. }
  749. }
  750. static inline int check_mnt(struct mount *mnt)
  751. {
  752. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  753. }
  754. /*
  755. * vfsmount lock must be held for write
  756. */
  757. static void touch_mnt_namespace(struct mnt_namespace *ns)
  758. {
  759. if (ns) {
  760. ns->event = ++event;
  761. wake_up_interruptible(&ns->poll);
  762. }
  763. }
  764. /*
  765. * vfsmount lock must be held for write
  766. */
  767. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  768. {
  769. if (ns && ns->event != event) {
  770. ns->event = event;
  771. wake_up_interruptible(&ns->poll);
  772. }
  773. }
  774. /*
  775. * vfsmount lock must be held for write
  776. */
  777. static void unhash_mnt(struct mount *mnt)
  778. {
  779. mnt->mnt_parent = mnt;
  780. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  781. list_del_init(&mnt->mnt_child);
  782. hlist_del_init_rcu(&mnt->mnt_hash);
  783. hlist_del_init(&mnt->mnt_mp_list);
  784. put_mountpoint(mnt->mnt_mp);
  785. mnt->mnt_mp = NULL;
  786. }
  787. /*
  788. * vfsmount lock must be held for write
  789. */
  790. static void detach_mnt(struct mount *mnt, struct path *old_path)
  791. {
  792. old_path->dentry = mnt->mnt_mountpoint;
  793. old_path->mnt = &mnt->mnt_parent->mnt;
  794. unhash_mnt(mnt);
  795. }
  796. /*
  797. * vfsmount lock must be held for write
  798. */
  799. static void umount_mnt(struct mount *mnt)
  800. {
  801. /* old mountpoint will be dropped when we can do that */
  802. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  803. unhash_mnt(mnt);
  804. }
  805. /*
  806. * vfsmount lock must be held for write
  807. */
  808. void mnt_set_mountpoint(struct mount *mnt,
  809. struct mountpoint *mp,
  810. struct mount *child_mnt)
  811. {
  812. mp->m_count++;
  813. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  814. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  815. child_mnt->mnt_parent = mnt;
  816. child_mnt->mnt_mp = mp;
  817. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  818. }
  819. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  820. {
  821. hlist_add_head_rcu(&mnt->mnt_hash,
  822. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  823. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  824. }
  825. /*
  826. * vfsmount lock must be held for write
  827. */
  828. static void attach_mnt(struct mount *mnt,
  829. struct mount *parent,
  830. struct mountpoint *mp)
  831. {
  832. mnt_set_mountpoint(parent, mp, mnt);
  833. __attach_mnt(mnt, parent);
  834. }
  835. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  836. {
  837. struct mountpoint *old_mp = mnt->mnt_mp;
  838. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  839. struct mount *old_parent = mnt->mnt_parent;
  840. list_del_init(&mnt->mnt_child);
  841. hlist_del_init(&mnt->mnt_mp_list);
  842. hlist_del_init_rcu(&mnt->mnt_hash);
  843. attach_mnt(mnt, parent, mp);
  844. put_mountpoint(old_mp);
  845. /*
  846. * Safely avoid even the suggestion this code might sleep or
  847. * lock the mount hash by taking advantage of the knowledge that
  848. * mnt_change_mountpoint will not release the final reference
  849. * to a mountpoint.
  850. *
  851. * During mounting, the mount passed in as the parent mount will
  852. * continue to use the old mountpoint and during unmounting, the
  853. * old mountpoint will continue to exist until namespace_unlock,
  854. * which happens well after mnt_change_mountpoint.
  855. */
  856. spin_lock(&old_mountpoint->d_lock);
  857. old_mountpoint->d_lockref.count--;
  858. spin_unlock(&old_mountpoint->d_lock);
  859. mnt_add_count(old_parent, -1);
  860. }
  861. /*
  862. * vfsmount lock must be held for write
  863. */
  864. static void commit_tree(struct mount *mnt)
  865. {
  866. struct mount *parent = mnt->mnt_parent;
  867. struct mount *m;
  868. LIST_HEAD(head);
  869. struct mnt_namespace *n = parent->mnt_ns;
  870. BUG_ON(parent == mnt);
  871. list_add_tail(&head, &mnt->mnt_list);
  872. list_for_each_entry(m, &head, mnt_list)
  873. m->mnt_ns = n;
  874. list_splice(&head, n->list.prev);
  875. n->mounts += n->pending_mounts;
  876. n->pending_mounts = 0;
  877. __attach_mnt(mnt, parent);
  878. touch_mnt_namespace(n);
  879. }
  880. static struct mount *next_mnt(struct mount *p, struct mount *root)
  881. {
  882. struct list_head *next = p->mnt_mounts.next;
  883. if (next == &p->mnt_mounts) {
  884. while (1) {
  885. if (p == root)
  886. return NULL;
  887. next = p->mnt_child.next;
  888. if (next != &p->mnt_parent->mnt_mounts)
  889. break;
  890. p = p->mnt_parent;
  891. }
  892. }
  893. return list_entry(next, struct mount, mnt_child);
  894. }
  895. static struct mount *skip_mnt_tree(struct mount *p)
  896. {
  897. struct list_head *prev = p->mnt_mounts.prev;
  898. while (prev != &p->mnt_mounts) {
  899. p = list_entry(prev, struct mount, mnt_child);
  900. prev = p->mnt_mounts.prev;
  901. }
  902. return p;
  903. }
  904. struct vfsmount *
  905. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  906. {
  907. struct mount *mnt;
  908. struct dentry *root;
  909. if (!type)
  910. return ERR_PTR(-ENODEV);
  911. mnt = alloc_vfsmnt(name);
  912. if (!mnt)
  913. return ERR_PTR(-ENOMEM);
  914. if (flags & SB_KERNMOUNT)
  915. mnt->mnt.mnt_flags = MNT_INTERNAL;
  916. root = mount_fs(type, flags, name, data);
  917. if (IS_ERR(root)) {
  918. mnt_free_id(mnt);
  919. free_vfsmnt(mnt);
  920. return ERR_CAST(root);
  921. }
  922. mnt->mnt.mnt_root = root;
  923. mnt->mnt.mnt_sb = root->d_sb;
  924. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  925. mnt->mnt_parent = mnt;
  926. lock_mount_hash();
  927. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  928. unlock_mount_hash();
  929. return &mnt->mnt;
  930. }
  931. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  932. struct vfsmount *
  933. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  934. const char *name, void *data)
  935. {
  936. /* Until it is worked out how to pass the user namespace
  937. * through from the parent mount to the submount don't support
  938. * unprivileged mounts with submounts.
  939. */
  940. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  941. return ERR_PTR(-EPERM);
  942. return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
  943. }
  944. EXPORT_SYMBOL_GPL(vfs_submount);
  945. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  946. int flag)
  947. {
  948. struct super_block *sb = old->mnt.mnt_sb;
  949. struct mount *mnt;
  950. int err;
  951. mnt = alloc_vfsmnt(old->mnt_devname);
  952. if (!mnt)
  953. return ERR_PTR(-ENOMEM);
  954. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  955. mnt->mnt_group_id = 0; /* not a peer of original */
  956. else
  957. mnt->mnt_group_id = old->mnt_group_id;
  958. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  959. err = mnt_alloc_group_id(mnt);
  960. if (err)
  961. goto out_free;
  962. }
  963. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  964. /* Don't allow unprivileged users to change mount flags */
  965. if (flag & CL_UNPRIVILEGED) {
  966. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  967. if (mnt->mnt.mnt_flags & MNT_READONLY)
  968. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  969. if (mnt->mnt.mnt_flags & MNT_NODEV)
  970. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  971. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  972. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  973. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  974. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  975. }
  976. /* Don't allow unprivileged users to reveal what is under a mount */
  977. if ((flag & CL_UNPRIVILEGED) &&
  978. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  979. mnt->mnt.mnt_flags |= MNT_LOCKED;
  980. atomic_inc(&sb->s_active);
  981. mnt->mnt.mnt_sb = sb;
  982. mnt->mnt.mnt_root = dget(root);
  983. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  984. mnt->mnt_parent = mnt;
  985. lock_mount_hash();
  986. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  987. unlock_mount_hash();
  988. if ((flag & CL_SLAVE) ||
  989. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  990. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  991. mnt->mnt_master = old;
  992. CLEAR_MNT_SHARED(mnt);
  993. } else if (!(flag & CL_PRIVATE)) {
  994. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  995. list_add(&mnt->mnt_share, &old->mnt_share);
  996. if (IS_MNT_SLAVE(old))
  997. list_add(&mnt->mnt_slave, &old->mnt_slave);
  998. mnt->mnt_master = old->mnt_master;
  999. } else {
  1000. CLEAR_MNT_SHARED(mnt);
  1001. }
  1002. if (flag & CL_MAKE_SHARED)
  1003. set_mnt_shared(mnt);
  1004. /* stick the duplicate mount on the same expiry list
  1005. * as the original if that was on one */
  1006. if (flag & CL_EXPIRE) {
  1007. if (!list_empty(&old->mnt_expire))
  1008. list_add(&mnt->mnt_expire, &old->mnt_expire);
  1009. }
  1010. return mnt;
  1011. out_free:
  1012. mnt_free_id(mnt);
  1013. free_vfsmnt(mnt);
  1014. return ERR_PTR(err);
  1015. }
  1016. static void cleanup_mnt(struct mount *mnt)
  1017. {
  1018. /*
  1019. * This probably indicates that somebody messed
  1020. * up a mnt_want/drop_write() pair. If this
  1021. * happens, the filesystem was probably unable
  1022. * to make r/w->r/o transitions.
  1023. */
  1024. /*
  1025. * The locking used to deal with mnt_count decrement provides barriers,
  1026. * so mnt_get_writers() below is safe.
  1027. */
  1028. WARN_ON(mnt_get_writers(mnt));
  1029. if (unlikely(mnt->mnt_pins.first))
  1030. mnt_pin_kill(mnt);
  1031. fsnotify_vfsmount_delete(&mnt->mnt);
  1032. dput(mnt->mnt.mnt_root);
  1033. deactivate_super(mnt->mnt.mnt_sb);
  1034. mnt_free_id(mnt);
  1035. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  1036. }
  1037. static void __cleanup_mnt(struct rcu_head *head)
  1038. {
  1039. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  1040. }
  1041. static LLIST_HEAD(delayed_mntput_list);
  1042. static void delayed_mntput(struct work_struct *unused)
  1043. {
  1044. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  1045. struct mount *m, *t;
  1046. llist_for_each_entry_safe(m, t, node, mnt_llist)
  1047. cleanup_mnt(m);
  1048. }
  1049. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  1050. static void mntput_no_expire(struct mount *mnt)
  1051. {
  1052. rcu_read_lock();
  1053. mnt_add_count(mnt, -1);
  1054. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  1055. rcu_read_unlock();
  1056. return;
  1057. }
  1058. lock_mount_hash();
  1059. if (mnt_get_count(mnt)) {
  1060. rcu_read_unlock();
  1061. unlock_mount_hash();
  1062. return;
  1063. }
  1064. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1065. rcu_read_unlock();
  1066. unlock_mount_hash();
  1067. return;
  1068. }
  1069. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1070. rcu_read_unlock();
  1071. list_del(&mnt->mnt_instance);
  1072. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1073. struct mount *p, *tmp;
  1074. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1075. umount_mnt(p);
  1076. }
  1077. }
  1078. unlock_mount_hash();
  1079. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1080. struct task_struct *task = current;
  1081. if (likely(!(task->flags & PF_KTHREAD))) {
  1082. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1083. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1084. return;
  1085. }
  1086. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1087. schedule_delayed_work(&delayed_mntput_work, 1);
  1088. return;
  1089. }
  1090. cleanup_mnt(mnt);
  1091. }
  1092. void mntput(struct vfsmount *mnt)
  1093. {
  1094. if (mnt) {
  1095. struct mount *m = real_mount(mnt);
  1096. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1097. if (unlikely(m->mnt_expiry_mark))
  1098. m->mnt_expiry_mark = 0;
  1099. mntput_no_expire(m);
  1100. }
  1101. }
  1102. EXPORT_SYMBOL(mntput);
  1103. struct vfsmount *mntget(struct vfsmount *mnt)
  1104. {
  1105. if (mnt)
  1106. mnt_add_count(real_mount(mnt), 1);
  1107. return mnt;
  1108. }
  1109. EXPORT_SYMBOL(mntget);
  1110. /* path_is_mountpoint() - Check if path is a mount in the current
  1111. * namespace.
  1112. *
  1113. * d_mountpoint() can only be used reliably to establish if a dentry is
  1114. * not mounted in any namespace and that common case is handled inline.
  1115. * d_mountpoint() isn't aware of the possibility there may be multiple
  1116. * mounts using a given dentry in a different namespace. This function
  1117. * checks if the passed in path is a mountpoint rather than the dentry
  1118. * alone.
  1119. */
  1120. bool path_is_mountpoint(const struct path *path)
  1121. {
  1122. unsigned seq;
  1123. bool res;
  1124. if (!d_mountpoint(path->dentry))
  1125. return false;
  1126. rcu_read_lock();
  1127. do {
  1128. seq = read_seqbegin(&mount_lock);
  1129. res = __path_is_mountpoint(path);
  1130. } while (read_seqretry(&mount_lock, seq));
  1131. rcu_read_unlock();
  1132. return res;
  1133. }
  1134. EXPORT_SYMBOL(path_is_mountpoint);
  1135. struct vfsmount *mnt_clone_internal(const struct path *path)
  1136. {
  1137. struct mount *p;
  1138. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1139. if (IS_ERR(p))
  1140. return ERR_CAST(p);
  1141. p->mnt.mnt_flags |= MNT_INTERNAL;
  1142. return &p->mnt;
  1143. }
  1144. #ifdef CONFIG_PROC_FS
  1145. /* iterator; we want it to have access to namespace_sem, thus here... */
  1146. static void *m_start(struct seq_file *m, loff_t *pos)
  1147. {
  1148. struct proc_mounts *p = m->private;
  1149. down_read(&namespace_sem);
  1150. if (p->cached_event == p->ns->event) {
  1151. void *v = p->cached_mount;
  1152. if (*pos == p->cached_index)
  1153. return v;
  1154. if (*pos == p->cached_index + 1) {
  1155. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1156. return p->cached_mount = v;
  1157. }
  1158. }
  1159. p->cached_event = p->ns->event;
  1160. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1161. p->cached_index = *pos;
  1162. return p->cached_mount;
  1163. }
  1164. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1165. {
  1166. struct proc_mounts *p = m->private;
  1167. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1168. p->cached_index = *pos;
  1169. return p->cached_mount;
  1170. }
  1171. static void m_stop(struct seq_file *m, void *v)
  1172. {
  1173. up_read(&namespace_sem);
  1174. }
  1175. static int m_show(struct seq_file *m, void *v)
  1176. {
  1177. struct proc_mounts *p = m->private;
  1178. struct mount *r = list_entry(v, struct mount, mnt_list);
  1179. return p->show(m, &r->mnt);
  1180. }
  1181. const struct seq_operations mounts_op = {
  1182. .start = m_start,
  1183. .next = m_next,
  1184. .stop = m_stop,
  1185. .show = m_show,
  1186. };
  1187. #endif /* CONFIG_PROC_FS */
  1188. /**
  1189. * may_umount_tree - check if a mount tree is busy
  1190. * @mnt: root of mount tree
  1191. *
  1192. * This is called to check if a tree of mounts has any
  1193. * open files, pwds, chroots or sub mounts that are
  1194. * busy.
  1195. */
  1196. int may_umount_tree(struct vfsmount *m)
  1197. {
  1198. struct mount *mnt = real_mount(m);
  1199. int actual_refs = 0;
  1200. int minimum_refs = 0;
  1201. struct mount *p;
  1202. BUG_ON(!m);
  1203. /* write lock needed for mnt_get_count */
  1204. lock_mount_hash();
  1205. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1206. actual_refs += mnt_get_count(p);
  1207. minimum_refs += 2;
  1208. }
  1209. unlock_mount_hash();
  1210. if (actual_refs > minimum_refs)
  1211. return 0;
  1212. return 1;
  1213. }
  1214. EXPORT_SYMBOL(may_umount_tree);
  1215. /**
  1216. * may_umount - check if a mount point is busy
  1217. * @mnt: root of mount
  1218. *
  1219. * This is called to check if a mount point has any
  1220. * open files, pwds, chroots or sub mounts. If the
  1221. * mount has sub mounts this will return busy
  1222. * regardless of whether the sub mounts are busy.
  1223. *
  1224. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1225. * give false negatives. The main reason why it's here is that we need
  1226. * a non-destructive way to look for easily umountable filesystems.
  1227. */
  1228. int may_umount(struct vfsmount *mnt)
  1229. {
  1230. int ret = 1;
  1231. down_read(&namespace_sem);
  1232. lock_mount_hash();
  1233. if (propagate_mount_busy(real_mount(mnt), 2))
  1234. ret = 0;
  1235. unlock_mount_hash();
  1236. up_read(&namespace_sem);
  1237. return ret;
  1238. }
  1239. EXPORT_SYMBOL(may_umount);
  1240. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1241. static void namespace_unlock(void)
  1242. {
  1243. struct hlist_head head;
  1244. hlist_move_list(&unmounted, &head);
  1245. up_write(&namespace_sem);
  1246. if (likely(hlist_empty(&head)))
  1247. return;
  1248. synchronize_rcu();
  1249. group_pin_kill(&head);
  1250. }
  1251. static inline void namespace_lock(void)
  1252. {
  1253. down_write(&namespace_sem);
  1254. }
  1255. enum umount_tree_flags {
  1256. UMOUNT_SYNC = 1,
  1257. UMOUNT_PROPAGATE = 2,
  1258. UMOUNT_CONNECTED = 4,
  1259. };
  1260. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1261. {
  1262. /* Leaving mounts connected is only valid for lazy umounts */
  1263. if (how & UMOUNT_SYNC)
  1264. return true;
  1265. /* A mount without a parent has nothing to be connected to */
  1266. if (!mnt_has_parent(mnt))
  1267. return true;
  1268. /* Because the reference counting rules change when mounts are
  1269. * unmounted and connected, umounted mounts may not be
  1270. * connected to mounted mounts.
  1271. */
  1272. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1273. return true;
  1274. /* Has it been requested that the mount remain connected? */
  1275. if (how & UMOUNT_CONNECTED)
  1276. return false;
  1277. /* Is the mount locked such that it needs to remain connected? */
  1278. if (IS_MNT_LOCKED(mnt))
  1279. return false;
  1280. /* By default disconnect the mount */
  1281. return true;
  1282. }
  1283. /*
  1284. * mount_lock must be held
  1285. * namespace_sem must be held for write
  1286. */
  1287. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1288. {
  1289. LIST_HEAD(tmp_list);
  1290. struct mount *p;
  1291. if (how & UMOUNT_PROPAGATE)
  1292. propagate_mount_unlock(mnt);
  1293. /* Gather the mounts to umount */
  1294. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1295. p->mnt.mnt_flags |= MNT_UMOUNT;
  1296. list_move(&p->mnt_list, &tmp_list);
  1297. }
  1298. /* Hide the mounts from mnt_mounts */
  1299. list_for_each_entry(p, &tmp_list, mnt_list) {
  1300. list_del_init(&p->mnt_child);
  1301. }
  1302. /* Add propogated mounts to the tmp_list */
  1303. if (how & UMOUNT_PROPAGATE)
  1304. propagate_umount(&tmp_list);
  1305. while (!list_empty(&tmp_list)) {
  1306. struct mnt_namespace *ns;
  1307. bool disconnect;
  1308. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1309. list_del_init(&p->mnt_expire);
  1310. list_del_init(&p->mnt_list);
  1311. ns = p->mnt_ns;
  1312. if (ns) {
  1313. ns->mounts--;
  1314. __touch_mnt_namespace(ns);
  1315. }
  1316. p->mnt_ns = NULL;
  1317. if (how & UMOUNT_SYNC)
  1318. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1319. disconnect = disconnect_mount(p, how);
  1320. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1321. disconnect ? &unmounted : NULL);
  1322. if (mnt_has_parent(p)) {
  1323. mnt_add_count(p->mnt_parent, -1);
  1324. if (!disconnect) {
  1325. /* Don't forget about p */
  1326. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1327. } else {
  1328. umount_mnt(p);
  1329. }
  1330. }
  1331. change_mnt_propagation(p, MS_PRIVATE);
  1332. }
  1333. }
  1334. static void shrink_submounts(struct mount *mnt);
  1335. static int do_umount(struct mount *mnt, int flags)
  1336. {
  1337. struct super_block *sb = mnt->mnt.mnt_sb;
  1338. int retval;
  1339. retval = security_sb_umount(&mnt->mnt, flags);
  1340. if (retval)
  1341. return retval;
  1342. /*
  1343. * Allow userspace to request a mountpoint be expired rather than
  1344. * unmounting unconditionally. Unmount only happens if:
  1345. * (1) the mark is already set (the mark is cleared by mntput())
  1346. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1347. */
  1348. if (flags & MNT_EXPIRE) {
  1349. if (&mnt->mnt == current->fs->root.mnt ||
  1350. flags & (MNT_FORCE | MNT_DETACH))
  1351. return -EINVAL;
  1352. /*
  1353. * probably don't strictly need the lock here if we examined
  1354. * all race cases, but it's a slowpath.
  1355. */
  1356. lock_mount_hash();
  1357. if (mnt_get_count(mnt) != 2) {
  1358. unlock_mount_hash();
  1359. return -EBUSY;
  1360. }
  1361. unlock_mount_hash();
  1362. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1363. return -EAGAIN;
  1364. }
  1365. /*
  1366. * If we may have to abort operations to get out of this
  1367. * mount, and they will themselves hold resources we must
  1368. * allow the fs to do things. In the Unix tradition of
  1369. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1370. * might fail to complete on the first run through as other tasks
  1371. * must return, and the like. Thats for the mount program to worry
  1372. * about for the moment.
  1373. */
  1374. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1375. sb->s_op->umount_begin(sb);
  1376. }
  1377. /*
  1378. * No sense to grab the lock for this test, but test itself looks
  1379. * somewhat bogus. Suggestions for better replacement?
  1380. * Ho-hum... In principle, we might treat that as umount + switch
  1381. * to rootfs. GC would eventually take care of the old vfsmount.
  1382. * Actually it makes sense, especially if rootfs would contain a
  1383. * /reboot - static binary that would close all descriptors and
  1384. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1385. */
  1386. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1387. /*
  1388. * Special case for "unmounting" root ...
  1389. * we just try to remount it readonly.
  1390. */
  1391. if (!capable(CAP_SYS_ADMIN))
  1392. return -EPERM;
  1393. down_write(&sb->s_umount);
  1394. if (!sb_rdonly(sb))
  1395. retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
  1396. up_write(&sb->s_umount);
  1397. return retval;
  1398. }
  1399. namespace_lock();
  1400. lock_mount_hash();
  1401. event++;
  1402. if (flags & MNT_DETACH) {
  1403. if (!list_empty(&mnt->mnt_list))
  1404. umount_tree(mnt, UMOUNT_PROPAGATE);
  1405. retval = 0;
  1406. } else {
  1407. shrink_submounts(mnt);
  1408. retval = -EBUSY;
  1409. if (!propagate_mount_busy(mnt, 2)) {
  1410. if (!list_empty(&mnt->mnt_list))
  1411. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1412. retval = 0;
  1413. }
  1414. }
  1415. unlock_mount_hash();
  1416. namespace_unlock();
  1417. return retval;
  1418. }
  1419. /*
  1420. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1421. *
  1422. * During unlink, rmdir, and d_drop it is possible to loose the path
  1423. * to an existing mountpoint, and wind up leaking the mount.
  1424. * detach_mounts allows lazily unmounting those mounts instead of
  1425. * leaking them.
  1426. *
  1427. * The caller may hold dentry->d_inode->i_mutex.
  1428. */
  1429. void __detach_mounts(struct dentry *dentry)
  1430. {
  1431. struct mountpoint *mp;
  1432. struct mount *mnt;
  1433. namespace_lock();
  1434. lock_mount_hash();
  1435. mp = lookup_mountpoint(dentry);
  1436. if (IS_ERR_OR_NULL(mp))
  1437. goto out_unlock;
  1438. event++;
  1439. while (!hlist_empty(&mp->m_list)) {
  1440. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1441. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1442. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1443. umount_mnt(mnt);
  1444. }
  1445. else umount_tree(mnt, UMOUNT_CONNECTED);
  1446. }
  1447. put_mountpoint(mp);
  1448. out_unlock:
  1449. unlock_mount_hash();
  1450. namespace_unlock();
  1451. }
  1452. /*
  1453. * Is the caller allowed to modify his namespace?
  1454. */
  1455. static inline bool may_mount(void)
  1456. {
  1457. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1458. }
  1459. static inline bool may_mandlock(void)
  1460. {
  1461. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1462. return false;
  1463. #endif
  1464. return capable(CAP_SYS_ADMIN);
  1465. }
  1466. /*
  1467. * Now umount can handle mount points as well as block devices.
  1468. * This is important for filesystems which use unnamed block devices.
  1469. *
  1470. * We now support a flag for forced unmount like the other 'big iron'
  1471. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1472. */
  1473. int ksys_umount(char __user *name, int flags)
  1474. {
  1475. struct path path;
  1476. struct mount *mnt;
  1477. int retval;
  1478. int lookup_flags = 0;
  1479. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1480. return -EINVAL;
  1481. if (!may_mount())
  1482. return -EPERM;
  1483. if (!(flags & UMOUNT_NOFOLLOW))
  1484. lookup_flags |= LOOKUP_FOLLOW;
  1485. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1486. if (retval)
  1487. goto out;
  1488. mnt = real_mount(path.mnt);
  1489. retval = -EINVAL;
  1490. if (path.dentry != path.mnt->mnt_root)
  1491. goto dput_and_out;
  1492. if (!check_mnt(mnt))
  1493. goto dput_and_out;
  1494. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1495. goto dput_and_out;
  1496. retval = -EPERM;
  1497. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1498. goto dput_and_out;
  1499. retval = do_umount(mnt, flags);
  1500. dput_and_out:
  1501. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1502. dput(path.dentry);
  1503. mntput_no_expire(mnt);
  1504. out:
  1505. return retval;
  1506. }
  1507. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1508. {
  1509. return ksys_umount(name, flags);
  1510. }
  1511. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1512. /*
  1513. * The 2.0 compatible umount. No flags.
  1514. */
  1515. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1516. {
  1517. return ksys_umount(name, 0);
  1518. }
  1519. #endif
  1520. static bool is_mnt_ns_file(struct dentry *dentry)
  1521. {
  1522. /* Is this a proxy for a mount namespace? */
  1523. return dentry->d_op == &ns_dentry_operations &&
  1524. dentry->d_fsdata == &mntns_operations;
  1525. }
  1526. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1527. {
  1528. return container_of(ns, struct mnt_namespace, ns);
  1529. }
  1530. static bool mnt_ns_loop(struct dentry *dentry)
  1531. {
  1532. /* Could bind mounting the mount namespace inode cause a
  1533. * mount namespace loop?
  1534. */
  1535. struct mnt_namespace *mnt_ns;
  1536. if (!is_mnt_ns_file(dentry))
  1537. return false;
  1538. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1539. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1540. }
  1541. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1542. int flag)
  1543. {
  1544. struct mount *res, *p, *q, *r, *parent;
  1545. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1546. return ERR_PTR(-EINVAL);
  1547. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1548. return ERR_PTR(-EINVAL);
  1549. res = q = clone_mnt(mnt, dentry, flag);
  1550. if (IS_ERR(q))
  1551. return q;
  1552. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1553. p = mnt;
  1554. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1555. struct mount *s;
  1556. if (!is_subdir(r->mnt_mountpoint, dentry))
  1557. continue;
  1558. for (s = r; s; s = next_mnt(s, r)) {
  1559. if (!(flag & CL_COPY_UNBINDABLE) &&
  1560. IS_MNT_UNBINDABLE(s)) {
  1561. s = skip_mnt_tree(s);
  1562. continue;
  1563. }
  1564. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1565. is_mnt_ns_file(s->mnt.mnt_root)) {
  1566. s = skip_mnt_tree(s);
  1567. continue;
  1568. }
  1569. while (p != s->mnt_parent) {
  1570. p = p->mnt_parent;
  1571. q = q->mnt_parent;
  1572. }
  1573. p = s;
  1574. parent = q;
  1575. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1576. if (IS_ERR(q))
  1577. goto out;
  1578. lock_mount_hash();
  1579. list_add_tail(&q->mnt_list, &res->mnt_list);
  1580. attach_mnt(q, parent, p->mnt_mp);
  1581. unlock_mount_hash();
  1582. }
  1583. }
  1584. return res;
  1585. out:
  1586. if (res) {
  1587. lock_mount_hash();
  1588. umount_tree(res, UMOUNT_SYNC);
  1589. unlock_mount_hash();
  1590. }
  1591. return q;
  1592. }
  1593. /* Caller should check returned pointer for errors */
  1594. struct vfsmount *collect_mounts(const struct path *path)
  1595. {
  1596. struct mount *tree;
  1597. namespace_lock();
  1598. if (!check_mnt(real_mount(path->mnt)))
  1599. tree = ERR_PTR(-EINVAL);
  1600. else
  1601. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1602. CL_COPY_ALL | CL_PRIVATE);
  1603. namespace_unlock();
  1604. if (IS_ERR(tree))
  1605. return ERR_CAST(tree);
  1606. return &tree->mnt;
  1607. }
  1608. void drop_collected_mounts(struct vfsmount *mnt)
  1609. {
  1610. namespace_lock();
  1611. lock_mount_hash();
  1612. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1613. unlock_mount_hash();
  1614. namespace_unlock();
  1615. }
  1616. /**
  1617. * clone_private_mount - create a private clone of a path
  1618. *
  1619. * This creates a new vfsmount, which will be the clone of @path. The new will
  1620. * not be attached anywhere in the namespace and will be private (i.e. changes
  1621. * to the originating mount won't be propagated into this).
  1622. *
  1623. * Release with mntput().
  1624. */
  1625. struct vfsmount *clone_private_mount(const struct path *path)
  1626. {
  1627. struct mount *old_mnt = real_mount(path->mnt);
  1628. struct mount *new_mnt;
  1629. if (IS_MNT_UNBINDABLE(old_mnt))
  1630. return ERR_PTR(-EINVAL);
  1631. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1632. if (IS_ERR(new_mnt))
  1633. return ERR_CAST(new_mnt);
  1634. return &new_mnt->mnt;
  1635. }
  1636. EXPORT_SYMBOL_GPL(clone_private_mount);
  1637. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1638. struct vfsmount *root)
  1639. {
  1640. struct mount *mnt;
  1641. int res = f(root, arg);
  1642. if (res)
  1643. return res;
  1644. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1645. res = f(&mnt->mnt, arg);
  1646. if (res)
  1647. return res;
  1648. }
  1649. return 0;
  1650. }
  1651. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1652. {
  1653. struct mount *p;
  1654. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1655. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1656. mnt_release_group_id(p);
  1657. }
  1658. }
  1659. static int invent_group_ids(struct mount *mnt, bool recurse)
  1660. {
  1661. struct mount *p;
  1662. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1663. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1664. int err = mnt_alloc_group_id(p);
  1665. if (err) {
  1666. cleanup_group_ids(mnt, p);
  1667. return err;
  1668. }
  1669. }
  1670. }
  1671. return 0;
  1672. }
  1673. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1674. {
  1675. unsigned int max = READ_ONCE(sysctl_mount_max);
  1676. unsigned int mounts = 0, old, pending, sum;
  1677. struct mount *p;
  1678. for (p = mnt; p; p = next_mnt(p, mnt))
  1679. mounts++;
  1680. old = ns->mounts;
  1681. pending = ns->pending_mounts;
  1682. sum = old + pending;
  1683. if ((old > sum) ||
  1684. (pending > sum) ||
  1685. (max < sum) ||
  1686. (mounts > (max - sum)))
  1687. return -ENOSPC;
  1688. ns->pending_mounts = pending + mounts;
  1689. return 0;
  1690. }
  1691. /*
  1692. * @source_mnt : mount tree to be attached
  1693. * @nd : place the mount tree @source_mnt is attached
  1694. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1695. * store the parent mount and mountpoint dentry.
  1696. * (done when source_mnt is moved)
  1697. *
  1698. * NOTE: in the table below explains the semantics when a source mount
  1699. * of a given type is attached to a destination mount of a given type.
  1700. * ---------------------------------------------------------------------------
  1701. * | BIND MOUNT OPERATION |
  1702. * |**************************************************************************
  1703. * | source-->| shared | private | slave | unbindable |
  1704. * | dest | | | | |
  1705. * | | | | | | |
  1706. * | v | | | | |
  1707. * |**************************************************************************
  1708. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1709. * | | | | | |
  1710. * |non-shared| shared (+) | private | slave (*) | invalid |
  1711. * ***************************************************************************
  1712. * A bind operation clones the source mount and mounts the clone on the
  1713. * destination mount.
  1714. *
  1715. * (++) the cloned mount is propagated to all the mounts in the propagation
  1716. * tree of the destination mount and the cloned mount is added to
  1717. * the peer group of the source mount.
  1718. * (+) the cloned mount is created under the destination mount and is marked
  1719. * as shared. The cloned mount is added to the peer group of the source
  1720. * mount.
  1721. * (+++) the mount is propagated to all the mounts in the propagation tree
  1722. * of the destination mount and the cloned mount is made slave
  1723. * of the same master as that of the source mount. The cloned mount
  1724. * is marked as 'shared and slave'.
  1725. * (*) the cloned mount is made a slave of the same master as that of the
  1726. * source mount.
  1727. *
  1728. * ---------------------------------------------------------------------------
  1729. * | MOVE MOUNT OPERATION |
  1730. * |**************************************************************************
  1731. * | source-->| shared | private | slave | unbindable |
  1732. * | dest | | | | |
  1733. * | | | | | | |
  1734. * | v | | | | |
  1735. * |**************************************************************************
  1736. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1737. * | | | | | |
  1738. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1739. * ***************************************************************************
  1740. *
  1741. * (+) the mount is moved to the destination. And is then propagated to
  1742. * all the mounts in the propagation tree of the destination mount.
  1743. * (+*) the mount is moved to the destination.
  1744. * (+++) the mount is moved to the destination and is then propagated to
  1745. * all the mounts belonging to the destination mount's propagation tree.
  1746. * the mount is marked as 'shared and slave'.
  1747. * (*) the mount continues to be a slave at the new location.
  1748. *
  1749. * if the source mount is a tree, the operations explained above is
  1750. * applied to each mount in the tree.
  1751. * Must be called without spinlocks held, since this function can sleep
  1752. * in allocations.
  1753. */
  1754. static int attach_recursive_mnt(struct mount *source_mnt,
  1755. struct mount *dest_mnt,
  1756. struct mountpoint *dest_mp,
  1757. struct path *parent_path)
  1758. {
  1759. HLIST_HEAD(tree_list);
  1760. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1761. struct mountpoint *smp;
  1762. struct mount *child, *p;
  1763. struct hlist_node *n;
  1764. int err;
  1765. /* Preallocate a mountpoint in case the new mounts need
  1766. * to be tucked under other mounts.
  1767. */
  1768. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1769. if (IS_ERR(smp))
  1770. return PTR_ERR(smp);
  1771. /* Is there space to add these mounts to the mount namespace? */
  1772. if (!parent_path) {
  1773. err = count_mounts(ns, source_mnt);
  1774. if (err)
  1775. goto out;
  1776. }
  1777. if (IS_MNT_SHARED(dest_mnt)) {
  1778. err = invent_group_ids(source_mnt, true);
  1779. if (err)
  1780. goto out;
  1781. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1782. lock_mount_hash();
  1783. if (err)
  1784. goto out_cleanup_ids;
  1785. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1786. set_mnt_shared(p);
  1787. } else {
  1788. lock_mount_hash();
  1789. }
  1790. if (parent_path) {
  1791. detach_mnt(source_mnt, parent_path);
  1792. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1793. touch_mnt_namespace(source_mnt->mnt_ns);
  1794. } else {
  1795. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1796. commit_tree(source_mnt);
  1797. }
  1798. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1799. struct mount *q;
  1800. hlist_del_init(&child->mnt_hash);
  1801. q = __lookup_mnt(&child->mnt_parent->mnt,
  1802. child->mnt_mountpoint);
  1803. if (q)
  1804. mnt_change_mountpoint(child, smp, q);
  1805. commit_tree(child);
  1806. }
  1807. put_mountpoint(smp);
  1808. unlock_mount_hash();
  1809. return 0;
  1810. out_cleanup_ids:
  1811. while (!hlist_empty(&tree_list)) {
  1812. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1813. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1814. umount_tree(child, UMOUNT_SYNC);
  1815. }
  1816. unlock_mount_hash();
  1817. cleanup_group_ids(source_mnt, NULL);
  1818. out:
  1819. ns->pending_mounts = 0;
  1820. read_seqlock_excl(&mount_lock);
  1821. put_mountpoint(smp);
  1822. read_sequnlock_excl(&mount_lock);
  1823. return err;
  1824. }
  1825. static struct mountpoint *lock_mount(struct path *path)
  1826. {
  1827. struct vfsmount *mnt;
  1828. struct dentry *dentry = path->dentry;
  1829. retry:
  1830. inode_lock(dentry->d_inode);
  1831. if (unlikely(cant_mount(dentry))) {
  1832. inode_unlock(dentry->d_inode);
  1833. return ERR_PTR(-ENOENT);
  1834. }
  1835. namespace_lock();
  1836. mnt = lookup_mnt(path);
  1837. if (likely(!mnt)) {
  1838. struct mountpoint *mp = get_mountpoint(dentry);
  1839. if (IS_ERR(mp)) {
  1840. namespace_unlock();
  1841. inode_unlock(dentry->d_inode);
  1842. return mp;
  1843. }
  1844. return mp;
  1845. }
  1846. namespace_unlock();
  1847. inode_unlock(path->dentry->d_inode);
  1848. path_put(path);
  1849. path->mnt = mnt;
  1850. dentry = path->dentry = dget(mnt->mnt_root);
  1851. goto retry;
  1852. }
  1853. static void unlock_mount(struct mountpoint *where)
  1854. {
  1855. struct dentry *dentry = where->m_dentry;
  1856. read_seqlock_excl(&mount_lock);
  1857. put_mountpoint(where);
  1858. read_sequnlock_excl(&mount_lock);
  1859. namespace_unlock();
  1860. inode_unlock(dentry->d_inode);
  1861. }
  1862. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1863. {
  1864. if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
  1865. return -EINVAL;
  1866. if (d_is_dir(mp->m_dentry) !=
  1867. d_is_dir(mnt->mnt.mnt_root))
  1868. return -ENOTDIR;
  1869. return attach_recursive_mnt(mnt, p, mp, NULL);
  1870. }
  1871. /*
  1872. * Sanity check the flags to change_mnt_propagation.
  1873. */
  1874. static int flags_to_propagation_type(int ms_flags)
  1875. {
  1876. int type = ms_flags & ~(MS_REC | MS_SILENT);
  1877. /* Fail if any non-propagation flags are set */
  1878. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1879. return 0;
  1880. /* Only one propagation flag should be set */
  1881. if (!is_power_of_2(type))
  1882. return 0;
  1883. return type;
  1884. }
  1885. /*
  1886. * recursively change the type of the mountpoint.
  1887. */
  1888. static int do_change_type(struct path *path, int ms_flags)
  1889. {
  1890. struct mount *m;
  1891. struct mount *mnt = real_mount(path->mnt);
  1892. int recurse = ms_flags & MS_REC;
  1893. int type;
  1894. int err = 0;
  1895. if (path->dentry != path->mnt->mnt_root)
  1896. return -EINVAL;
  1897. type = flags_to_propagation_type(ms_flags);
  1898. if (!type)
  1899. return -EINVAL;
  1900. namespace_lock();
  1901. if (type == MS_SHARED) {
  1902. err = invent_group_ids(mnt, recurse);
  1903. if (err)
  1904. goto out_unlock;
  1905. }
  1906. lock_mount_hash();
  1907. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1908. change_mnt_propagation(m, type);
  1909. unlock_mount_hash();
  1910. out_unlock:
  1911. namespace_unlock();
  1912. return err;
  1913. }
  1914. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1915. {
  1916. struct mount *child;
  1917. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1918. if (!is_subdir(child->mnt_mountpoint, dentry))
  1919. continue;
  1920. if (child->mnt.mnt_flags & MNT_LOCKED)
  1921. return true;
  1922. }
  1923. return false;
  1924. }
  1925. /*
  1926. * do loopback mount.
  1927. */
  1928. static int do_loopback(struct path *path, const char *old_name,
  1929. int recurse)
  1930. {
  1931. struct path old_path;
  1932. struct mount *mnt = NULL, *old, *parent;
  1933. struct mountpoint *mp;
  1934. int err;
  1935. if (!old_name || !*old_name)
  1936. return -EINVAL;
  1937. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1938. if (err)
  1939. return err;
  1940. err = -EINVAL;
  1941. if (mnt_ns_loop(old_path.dentry))
  1942. goto out;
  1943. mp = lock_mount(path);
  1944. err = PTR_ERR(mp);
  1945. if (IS_ERR(mp))
  1946. goto out;
  1947. old = real_mount(old_path.mnt);
  1948. parent = real_mount(path->mnt);
  1949. err = -EINVAL;
  1950. if (IS_MNT_UNBINDABLE(old))
  1951. goto out2;
  1952. if (!check_mnt(parent))
  1953. goto out2;
  1954. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1955. goto out2;
  1956. if (!recurse && has_locked_children(old, old_path.dentry))
  1957. goto out2;
  1958. if (recurse)
  1959. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1960. else
  1961. mnt = clone_mnt(old, old_path.dentry, 0);
  1962. if (IS_ERR(mnt)) {
  1963. err = PTR_ERR(mnt);
  1964. goto out2;
  1965. }
  1966. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1967. err = graft_tree(mnt, parent, mp);
  1968. if (err) {
  1969. lock_mount_hash();
  1970. umount_tree(mnt, UMOUNT_SYNC);
  1971. unlock_mount_hash();
  1972. }
  1973. out2:
  1974. unlock_mount(mp);
  1975. out:
  1976. path_put(&old_path);
  1977. return err;
  1978. }
  1979. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1980. {
  1981. int error = 0;
  1982. int readonly_request = 0;
  1983. if (ms_flags & MS_RDONLY)
  1984. readonly_request = 1;
  1985. if (readonly_request == __mnt_is_readonly(mnt))
  1986. return 0;
  1987. if (readonly_request)
  1988. error = mnt_make_readonly(real_mount(mnt));
  1989. else
  1990. __mnt_unmake_readonly(real_mount(mnt));
  1991. return error;
  1992. }
  1993. /*
  1994. * change filesystem flags. dir should be a physical root of filesystem.
  1995. * If you've mounted a non-root directory somewhere and want to do remount
  1996. * on it - tough luck.
  1997. */
  1998. static int do_remount(struct path *path, int ms_flags, int sb_flags,
  1999. int mnt_flags, void *data)
  2000. {
  2001. int err;
  2002. struct super_block *sb = path->mnt->mnt_sb;
  2003. struct mount *mnt = real_mount(path->mnt);
  2004. if (!check_mnt(mnt))
  2005. return -EINVAL;
  2006. if (path->dentry != path->mnt->mnt_root)
  2007. return -EINVAL;
  2008. /* Don't allow changing of locked mnt flags.
  2009. *
  2010. * No locks need to be held here while testing the various
  2011. * MNT_LOCK flags because those flags can never be cleared
  2012. * once they are set.
  2013. */
  2014. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  2015. !(mnt_flags & MNT_READONLY)) {
  2016. return -EPERM;
  2017. }
  2018. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2019. !(mnt_flags & MNT_NODEV)) {
  2020. return -EPERM;
  2021. }
  2022. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2023. !(mnt_flags & MNT_NOSUID)) {
  2024. return -EPERM;
  2025. }
  2026. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2027. !(mnt_flags & MNT_NOEXEC)) {
  2028. return -EPERM;
  2029. }
  2030. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2031. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2032. return -EPERM;
  2033. }
  2034. err = security_sb_remount(sb, data);
  2035. if (err)
  2036. return err;
  2037. down_write(&sb->s_umount);
  2038. if (ms_flags & MS_BIND)
  2039. err = change_mount_flags(path->mnt, ms_flags);
  2040. else if (!capable(CAP_SYS_ADMIN))
  2041. err = -EPERM;
  2042. else
  2043. err = do_remount_sb(sb, sb_flags, data, 0);
  2044. if (!err) {
  2045. lock_mount_hash();
  2046. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2047. mnt->mnt.mnt_flags = mnt_flags;
  2048. touch_mnt_namespace(mnt->mnt_ns);
  2049. unlock_mount_hash();
  2050. }
  2051. up_write(&sb->s_umount);
  2052. return err;
  2053. }
  2054. static inline int tree_contains_unbindable(struct mount *mnt)
  2055. {
  2056. struct mount *p;
  2057. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2058. if (IS_MNT_UNBINDABLE(p))
  2059. return 1;
  2060. }
  2061. return 0;
  2062. }
  2063. static int do_move_mount(struct path *path, const char *old_name)
  2064. {
  2065. struct path old_path, parent_path;
  2066. struct mount *p;
  2067. struct mount *old;
  2068. struct mountpoint *mp;
  2069. int err;
  2070. if (!old_name || !*old_name)
  2071. return -EINVAL;
  2072. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2073. if (err)
  2074. return err;
  2075. mp = lock_mount(path);
  2076. err = PTR_ERR(mp);
  2077. if (IS_ERR(mp))
  2078. goto out;
  2079. old = real_mount(old_path.mnt);
  2080. p = real_mount(path->mnt);
  2081. err = -EINVAL;
  2082. if (!check_mnt(p) || !check_mnt(old))
  2083. goto out1;
  2084. if (old->mnt.mnt_flags & MNT_LOCKED)
  2085. goto out1;
  2086. err = -EINVAL;
  2087. if (old_path.dentry != old_path.mnt->mnt_root)
  2088. goto out1;
  2089. if (!mnt_has_parent(old))
  2090. goto out1;
  2091. if (d_is_dir(path->dentry) !=
  2092. d_is_dir(old_path.dentry))
  2093. goto out1;
  2094. /*
  2095. * Don't move a mount residing in a shared parent.
  2096. */
  2097. if (IS_MNT_SHARED(old->mnt_parent))
  2098. goto out1;
  2099. /*
  2100. * Don't move a mount tree containing unbindable mounts to a destination
  2101. * mount which is shared.
  2102. */
  2103. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2104. goto out1;
  2105. err = -ELOOP;
  2106. for (; mnt_has_parent(p); p = p->mnt_parent)
  2107. if (p == old)
  2108. goto out1;
  2109. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2110. if (err)
  2111. goto out1;
  2112. /* if the mount is moved, it should no longer be expire
  2113. * automatically */
  2114. list_del_init(&old->mnt_expire);
  2115. out1:
  2116. unlock_mount(mp);
  2117. out:
  2118. if (!err)
  2119. path_put(&parent_path);
  2120. path_put(&old_path);
  2121. return err;
  2122. }
  2123. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2124. {
  2125. int err;
  2126. const char *subtype = strchr(fstype, '.');
  2127. if (subtype) {
  2128. subtype++;
  2129. err = -EINVAL;
  2130. if (!subtype[0])
  2131. goto err;
  2132. } else
  2133. subtype = "";
  2134. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2135. err = -ENOMEM;
  2136. if (!mnt->mnt_sb->s_subtype)
  2137. goto err;
  2138. return mnt;
  2139. err:
  2140. mntput(mnt);
  2141. return ERR_PTR(err);
  2142. }
  2143. /*
  2144. * add a mount into a namespace's mount tree
  2145. */
  2146. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2147. {
  2148. struct mountpoint *mp;
  2149. struct mount *parent;
  2150. int err;
  2151. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2152. mp = lock_mount(path);
  2153. if (IS_ERR(mp))
  2154. return PTR_ERR(mp);
  2155. parent = real_mount(path->mnt);
  2156. err = -EINVAL;
  2157. if (unlikely(!check_mnt(parent))) {
  2158. /* that's acceptable only for automounts done in private ns */
  2159. if (!(mnt_flags & MNT_SHRINKABLE))
  2160. goto unlock;
  2161. /* ... and for those we'd better have mountpoint still alive */
  2162. if (!parent->mnt_ns)
  2163. goto unlock;
  2164. }
  2165. /* Refuse the same filesystem on the same mount point */
  2166. err = -EBUSY;
  2167. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2168. path->mnt->mnt_root == path->dentry)
  2169. goto unlock;
  2170. err = -EINVAL;
  2171. if (d_is_symlink(newmnt->mnt.mnt_root))
  2172. goto unlock;
  2173. newmnt->mnt.mnt_flags = mnt_flags;
  2174. err = graft_tree(newmnt, parent, mp);
  2175. unlock:
  2176. unlock_mount(mp);
  2177. return err;
  2178. }
  2179. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2180. /*
  2181. * create a new mount for userspace and request it to be added into the
  2182. * namespace's tree
  2183. */
  2184. static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
  2185. int mnt_flags, const char *name, void *data)
  2186. {
  2187. struct file_system_type *type;
  2188. struct vfsmount *mnt;
  2189. int err;
  2190. if (!fstype)
  2191. return -EINVAL;
  2192. type = get_fs_type(fstype);
  2193. if (!type)
  2194. return -ENODEV;
  2195. mnt = vfs_kern_mount(type, sb_flags, name, data);
  2196. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2197. !mnt->mnt_sb->s_subtype)
  2198. mnt = fs_set_subtype(mnt, fstype);
  2199. put_filesystem(type);
  2200. if (IS_ERR(mnt))
  2201. return PTR_ERR(mnt);
  2202. if (mount_too_revealing(mnt, &mnt_flags)) {
  2203. mntput(mnt);
  2204. return -EPERM;
  2205. }
  2206. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2207. if (err)
  2208. mntput(mnt);
  2209. return err;
  2210. }
  2211. int finish_automount(struct vfsmount *m, struct path *path)
  2212. {
  2213. struct mount *mnt = real_mount(m);
  2214. int err;
  2215. /* The new mount record should have at least 2 refs to prevent it being
  2216. * expired before we get a chance to add it
  2217. */
  2218. BUG_ON(mnt_get_count(mnt) < 2);
  2219. if (m->mnt_sb == path->mnt->mnt_sb &&
  2220. m->mnt_root == path->dentry) {
  2221. err = -ELOOP;
  2222. goto fail;
  2223. }
  2224. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2225. if (!err)
  2226. return 0;
  2227. fail:
  2228. /* remove m from any expiration list it may be on */
  2229. if (!list_empty(&mnt->mnt_expire)) {
  2230. namespace_lock();
  2231. list_del_init(&mnt->mnt_expire);
  2232. namespace_unlock();
  2233. }
  2234. mntput(m);
  2235. mntput(m);
  2236. return err;
  2237. }
  2238. /**
  2239. * mnt_set_expiry - Put a mount on an expiration list
  2240. * @mnt: The mount to list.
  2241. * @expiry_list: The list to add the mount to.
  2242. */
  2243. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2244. {
  2245. namespace_lock();
  2246. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2247. namespace_unlock();
  2248. }
  2249. EXPORT_SYMBOL(mnt_set_expiry);
  2250. /*
  2251. * process a list of expirable mountpoints with the intent of discarding any
  2252. * mountpoints that aren't in use and haven't been touched since last we came
  2253. * here
  2254. */
  2255. void mark_mounts_for_expiry(struct list_head *mounts)
  2256. {
  2257. struct mount *mnt, *next;
  2258. LIST_HEAD(graveyard);
  2259. if (list_empty(mounts))
  2260. return;
  2261. namespace_lock();
  2262. lock_mount_hash();
  2263. /* extract from the expiration list every vfsmount that matches the
  2264. * following criteria:
  2265. * - only referenced by its parent vfsmount
  2266. * - still marked for expiry (marked on the last call here; marks are
  2267. * cleared by mntput())
  2268. */
  2269. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2270. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2271. propagate_mount_busy(mnt, 1))
  2272. continue;
  2273. list_move(&mnt->mnt_expire, &graveyard);
  2274. }
  2275. while (!list_empty(&graveyard)) {
  2276. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2277. touch_mnt_namespace(mnt->mnt_ns);
  2278. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2279. }
  2280. unlock_mount_hash();
  2281. namespace_unlock();
  2282. }
  2283. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2284. /*
  2285. * Ripoff of 'select_parent()'
  2286. *
  2287. * search the list of submounts for a given mountpoint, and move any
  2288. * shrinkable submounts to the 'graveyard' list.
  2289. */
  2290. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2291. {
  2292. struct mount *this_parent = parent;
  2293. struct list_head *next;
  2294. int found = 0;
  2295. repeat:
  2296. next = this_parent->mnt_mounts.next;
  2297. resume:
  2298. while (next != &this_parent->mnt_mounts) {
  2299. struct list_head *tmp = next;
  2300. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2301. next = tmp->next;
  2302. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2303. continue;
  2304. /*
  2305. * Descend a level if the d_mounts list is non-empty.
  2306. */
  2307. if (!list_empty(&mnt->mnt_mounts)) {
  2308. this_parent = mnt;
  2309. goto repeat;
  2310. }
  2311. if (!propagate_mount_busy(mnt, 1)) {
  2312. list_move_tail(&mnt->mnt_expire, graveyard);
  2313. found++;
  2314. }
  2315. }
  2316. /*
  2317. * All done at this level ... ascend and resume the search
  2318. */
  2319. if (this_parent != parent) {
  2320. next = this_parent->mnt_child.next;
  2321. this_parent = this_parent->mnt_parent;
  2322. goto resume;
  2323. }
  2324. return found;
  2325. }
  2326. /*
  2327. * process a list of expirable mountpoints with the intent of discarding any
  2328. * submounts of a specific parent mountpoint
  2329. *
  2330. * mount_lock must be held for write
  2331. */
  2332. static void shrink_submounts(struct mount *mnt)
  2333. {
  2334. LIST_HEAD(graveyard);
  2335. struct mount *m;
  2336. /* extract submounts of 'mountpoint' from the expiration list */
  2337. while (select_submounts(mnt, &graveyard)) {
  2338. while (!list_empty(&graveyard)) {
  2339. m = list_first_entry(&graveyard, struct mount,
  2340. mnt_expire);
  2341. touch_mnt_namespace(m->mnt_ns);
  2342. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2343. }
  2344. }
  2345. }
  2346. /*
  2347. * Some copy_from_user() implementations do not return the exact number of
  2348. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2349. * Note that this function differs from copy_from_user() in that it will oops
  2350. * on bad values of `to', rather than returning a short copy.
  2351. */
  2352. static long exact_copy_from_user(void *to, const void __user * from,
  2353. unsigned long n)
  2354. {
  2355. char *t = to;
  2356. const char __user *f = from;
  2357. char c;
  2358. if (!access_ok(VERIFY_READ, from, n))
  2359. return n;
  2360. while (n) {
  2361. if (__get_user(c, f)) {
  2362. memset(t, 0, n);
  2363. break;
  2364. }
  2365. *t++ = c;
  2366. f++;
  2367. n--;
  2368. }
  2369. return n;
  2370. }
  2371. void *copy_mount_options(const void __user * data)
  2372. {
  2373. int i;
  2374. unsigned long size;
  2375. char *copy;
  2376. if (!data)
  2377. return NULL;
  2378. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2379. if (!copy)
  2380. return ERR_PTR(-ENOMEM);
  2381. /* We only care that *some* data at the address the user
  2382. * gave us is valid. Just in case, we'll zero
  2383. * the remainder of the page.
  2384. */
  2385. /* copy_from_user cannot cross TASK_SIZE ! */
  2386. size = TASK_SIZE - (unsigned long)data;
  2387. if (size > PAGE_SIZE)
  2388. size = PAGE_SIZE;
  2389. i = size - exact_copy_from_user(copy, data, size);
  2390. if (!i) {
  2391. kfree(copy);
  2392. return ERR_PTR(-EFAULT);
  2393. }
  2394. if (i != PAGE_SIZE)
  2395. memset(copy + i, 0, PAGE_SIZE - i);
  2396. return copy;
  2397. }
  2398. char *copy_mount_string(const void __user *data)
  2399. {
  2400. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2401. }
  2402. /*
  2403. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2404. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2405. *
  2406. * data is a (void *) that can point to any structure up to
  2407. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2408. * information (or be NULL).
  2409. *
  2410. * Pre-0.97 versions of mount() didn't have a flags word.
  2411. * When the flags word was introduced its top half was required
  2412. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2413. * Therefore, if this magic number is present, it carries no information
  2414. * and must be discarded.
  2415. */
  2416. long do_mount(const char *dev_name, const char __user *dir_name,
  2417. const char *type_page, unsigned long flags, void *data_page)
  2418. {
  2419. struct path path;
  2420. unsigned int mnt_flags = 0, sb_flags;
  2421. int retval = 0;
  2422. /* Discard magic */
  2423. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2424. flags &= ~MS_MGC_MSK;
  2425. /* Basic sanity checks */
  2426. if (data_page)
  2427. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2428. if (flags & MS_NOUSER)
  2429. return -EINVAL;
  2430. /* ... and get the mountpoint */
  2431. retval = user_path(dir_name, &path);
  2432. if (retval)
  2433. return retval;
  2434. retval = security_sb_mount(dev_name, &path,
  2435. type_page, flags, data_page);
  2436. if (!retval && !may_mount())
  2437. retval = -EPERM;
  2438. if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
  2439. retval = -EPERM;
  2440. if (retval)
  2441. goto dput_out;
  2442. /* Default to relatime unless overriden */
  2443. if (!(flags & MS_NOATIME))
  2444. mnt_flags |= MNT_RELATIME;
  2445. /* Separate the per-mountpoint flags */
  2446. if (flags & MS_NOSUID)
  2447. mnt_flags |= MNT_NOSUID;
  2448. if (flags & MS_NODEV)
  2449. mnt_flags |= MNT_NODEV;
  2450. if (flags & MS_NOEXEC)
  2451. mnt_flags |= MNT_NOEXEC;
  2452. if (flags & MS_NOATIME)
  2453. mnt_flags |= MNT_NOATIME;
  2454. if (flags & MS_NODIRATIME)
  2455. mnt_flags |= MNT_NODIRATIME;
  2456. if (flags & MS_STRICTATIME)
  2457. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2458. if (flags & SB_RDONLY)
  2459. mnt_flags |= MNT_READONLY;
  2460. /* The default atime for remount is preservation */
  2461. if ((flags & MS_REMOUNT) &&
  2462. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2463. MS_STRICTATIME)) == 0)) {
  2464. mnt_flags &= ~MNT_ATIME_MASK;
  2465. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2466. }
  2467. sb_flags = flags & (SB_RDONLY |
  2468. SB_SYNCHRONOUS |
  2469. SB_MANDLOCK |
  2470. SB_DIRSYNC |
  2471. SB_SILENT |
  2472. SB_POSIXACL |
  2473. SB_LAZYTIME |
  2474. SB_I_VERSION);
  2475. if (flags & MS_REMOUNT)
  2476. retval = do_remount(&path, flags, sb_flags, mnt_flags,
  2477. data_page);
  2478. else if (flags & MS_BIND)
  2479. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2480. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2481. retval = do_change_type(&path, flags);
  2482. else if (flags & MS_MOVE)
  2483. retval = do_move_mount(&path, dev_name);
  2484. else
  2485. retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
  2486. dev_name, data_page);
  2487. dput_out:
  2488. path_put(&path);
  2489. return retval;
  2490. }
  2491. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2492. {
  2493. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2494. }
  2495. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2496. {
  2497. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2498. }
  2499. static void free_mnt_ns(struct mnt_namespace *ns)
  2500. {
  2501. ns_free_inum(&ns->ns);
  2502. dec_mnt_namespaces(ns->ucounts);
  2503. put_user_ns(ns->user_ns);
  2504. kfree(ns);
  2505. }
  2506. /*
  2507. * Assign a sequence number so we can detect when we attempt to bind
  2508. * mount a reference to an older mount namespace into the current
  2509. * mount namespace, preventing reference counting loops. A 64bit
  2510. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2511. * is effectively never, so we can ignore the possibility.
  2512. */
  2513. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2514. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2515. {
  2516. struct mnt_namespace *new_ns;
  2517. struct ucounts *ucounts;
  2518. int ret;
  2519. ucounts = inc_mnt_namespaces(user_ns);
  2520. if (!ucounts)
  2521. return ERR_PTR(-ENOSPC);
  2522. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2523. if (!new_ns) {
  2524. dec_mnt_namespaces(ucounts);
  2525. return ERR_PTR(-ENOMEM);
  2526. }
  2527. ret = ns_alloc_inum(&new_ns->ns);
  2528. if (ret) {
  2529. kfree(new_ns);
  2530. dec_mnt_namespaces(ucounts);
  2531. return ERR_PTR(ret);
  2532. }
  2533. new_ns->ns.ops = &mntns_operations;
  2534. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2535. atomic_set(&new_ns->count, 1);
  2536. new_ns->root = NULL;
  2537. INIT_LIST_HEAD(&new_ns->list);
  2538. init_waitqueue_head(&new_ns->poll);
  2539. new_ns->event = 0;
  2540. new_ns->user_ns = get_user_ns(user_ns);
  2541. new_ns->ucounts = ucounts;
  2542. new_ns->mounts = 0;
  2543. new_ns->pending_mounts = 0;
  2544. return new_ns;
  2545. }
  2546. __latent_entropy
  2547. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2548. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2549. {
  2550. struct mnt_namespace *new_ns;
  2551. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2552. struct mount *p, *q;
  2553. struct mount *old;
  2554. struct mount *new;
  2555. int copy_flags;
  2556. BUG_ON(!ns);
  2557. if (likely(!(flags & CLONE_NEWNS))) {
  2558. get_mnt_ns(ns);
  2559. return ns;
  2560. }
  2561. old = ns->root;
  2562. new_ns = alloc_mnt_ns(user_ns);
  2563. if (IS_ERR(new_ns))
  2564. return new_ns;
  2565. namespace_lock();
  2566. /* First pass: copy the tree topology */
  2567. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2568. if (user_ns != ns->user_ns)
  2569. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2570. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2571. if (IS_ERR(new)) {
  2572. namespace_unlock();
  2573. free_mnt_ns(new_ns);
  2574. return ERR_CAST(new);
  2575. }
  2576. new_ns->root = new;
  2577. list_add_tail(&new_ns->list, &new->mnt_list);
  2578. /*
  2579. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2580. * as belonging to new namespace. We have already acquired a private
  2581. * fs_struct, so tsk->fs->lock is not needed.
  2582. */
  2583. p = old;
  2584. q = new;
  2585. while (p) {
  2586. q->mnt_ns = new_ns;
  2587. new_ns->mounts++;
  2588. if (new_fs) {
  2589. if (&p->mnt == new_fs->root.mnt) {
  2590. new_fs->root.mnt = mntget(&q->mnt);
  2591. rootmnt = &p->mnt;
  2592. }
  2593. if (&p->mnt == new_fs->pwd.mnt) {
  2594. new_fs->pwd.mnt = mntget(&q->mnt);
  2595. pwdmnt = &p->mnt;
  2596. }
  2597. }
  2598. p = next_mnt(p, old);
  2599. q = next_mnt(q, new);
  2600. if (!q)
  2601. break;
  2602. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2603. p = next_mnt(p, old);
  2604. }
  2605. namespace_unlock();
  2606. if (rootmnt)
  2607. mntput(rootmnt);
  2608. if (pwdmnt)
  2609. mntput(pwdmnt);
  2610. return new_ns;
  2611. }
  2612. /**
  2613. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2614. * @mnt: pointer to the new root filesystem mountpoint
  2615. */
  2616. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2617. {
  2618. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2619. if (!IS_ERR(new_ns)) {
  2620. struct mount *mnt = real_mount(m);
  2621. mnt->mnt_ns = new_ns;
  2622. new_ns->root = mnt;
  2623. new_ns->mounts++;
  2624. list_add(&mnt->mnt_list, &new_ns->list);
  2625. } else {
  2626. mntput(m);
  2627. }
  2628. return new_ns;
  2629. }
  2630. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2631. {
  2632. struct mnt_namespace *ns;
  2633. struct super_block *s;
  2634. struct path path;
  2635. int err;
  2636. ns = create_mnt_ns(mnt);
  2637. if (IS_ERR(ns))
  2638. return ERR_CAST(ns);
  2639. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2640. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2641. put_mnt_ns(ns);
  2642. if (err)
  2643. return ERR_PTR(err);
  2644. /* trade a vfsmount reference for active sb one */
  2645. s = path.mnt->mnt_sb;
  2646. atomic_inc(&s->s_active);
  2647. mntput(path.mnt);
  2648. /* lock the sucker */
  2649. down_write(&s->s_umount);
  2650. /* ... and return the root of (sub)tree on it */
  2651. return path.dentry;
  2652. }
  2653. EXPORT_SYMBOL(mount_subtree);
  2654. int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
  2655. unsigned long flags, void __user *data)
  2656. {
  2657. int ret;
  2658. char *kernel_type;
  2659. char *kernel_dev;
  2660. void *options;
  2661. kernel_type = copy_mount_string(type);
  2662. ret = PTR_ERR(kernel_type);
  2663. if (IS_ERR(kernel_type))
  2664. goto out_type;
  2665. kernel_dev = copy_mount_string(dev_name);
  2666. ret = PTR_ERR(kernel_dev);
  2667. if (IS_ERR(kernel_dev))
  2668. goto out_dev;
  2669. options = copy_mount_options(data);
  2670. ret = PTR_ERR(options);
  2671. if (IS_ERR(options))
  2672. goto out_data;
  2673. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2674. kfree(options);
  2675. out_data:
  2676. kfree(kernel_dev);
  2677. out_dev:
  2678. kfree(kernel_type);
  2679. out_type:
  2680. return ret;
  2681. }
  2682. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2683. char __user *, type, unsigned long, flags, void __user *, data)
  2684. {
  2685. return ksys_mount(dev_name, dir_name, type, flags, data);
  2686. }
  2687. /*
  2688. * Return true if path is reachable from root
  2689. *
  2690. * namespace_sem or mount_lock is held
  2691. */
  2692. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2693. const struct path *root)
  2694. {
  2695. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2696. dentry = mnt->mnt_mountpoint;
  2697. mnt = mnt->mnt_parent;
  2698. }
  2699. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2700. }
  2701. bool path_is_under(const struct path *path1, const struct path *path2)
  2702. {
  2703. bool res;
  2704. read_seqlock_excl(&mount_lock);
  2705. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2706. read_sequnlock_excl(&mount_lock);
  2707. return res;
  2708. }
  2709. EXPORT_SYMBOL(path_is_under);
  2710. /*
  2711. * pivot_root Semantics:
  2712. * Moves the root file system of the current process to the directory put_old,
  2713. * makes new_root as the new root file system of the current process, and sets
  2714. * root/cwd of all processes which had them on the current root to new_root.
  2715. *
  2716. * Restrictions:
  2717. * The new_root and put_old must be directories, and must not be on the
  2718. * same file system as the current process root. The put_old must be
  2719. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2720. * pointed to by put_old must yield the same directory as new_root. No other
  2721. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2722. *
  2723. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2724. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2725. * in this situation.
  2726. *
  2727. * Notes:
  2728. * - we don't move root/cwd if they are not at the root (reason: if something
  2729. * cared enough to change them, it's probably wrong to force them elsewhere)
  2730. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2731. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2732. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2733. * first.
  2734. */
  2735. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2736. const char __user *, put_old)
  2737. {
  2738. struct path new, old, parent_path, root_parent, root;
  2739. struct mount *new_mnt, *root_mnt, *old_mnt;
  2740. struct mountpoint *old_mp, *root_mp;
  2741. int error;
  2742. if (!may_mount())
  2743. return -EPERM;
  2744. error = user_path_dir(new_root, &new);
  2745. if (error)
  2746. goto out0;
  2747. error = user_path_dir(put_old, &old);
  2748. if (error)
  2749. goto out1;
  2750. error = security_sb_pivotroot(&old, &new);
  2751. if (error)
  2752. goto out2;
  2753. get_fs_root(current->fs, &root);
  2754. old_mp = lock_mount(&old);
  2755. error = PTR_ERR(old_mp);
  2756. if (IS_ERR(old_mp))
  2757. goto out3;
  2758. error = -EINVAL;
  2759. new_mnt = real_mount(new.mnt);
  2760. root_mnt = real_mount(root.mnt);
  2761. old_mnt = real_mount(old.mnt);
  2762. if (IS_MNT_SHARED(old_mnt) ||
  2763. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2764. IS_MNT_SHARED(root_mnt->mnt_parent))
  2765. goto out4;
  2766. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2767. goto out4;
  2768. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2769. goto out4;
  2770. error = -ENOENT;
  2771. if (d_unlinked(new.dentry))
  2772. goto out4;
  2773. error = -EBUSY;
  2774. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2775. goto out4; /* loop, on the same file system */
  2776. error = -EINVAL;
  2777. if (root.mnt->mnt_root != root.dentry)
  2778. goto out4; /* not a mountpoint */
  2779. if (!mnt_has_parent(root_mnt))
  2780. goto out4; /* not attached */
  2781. root_mp = root_mnt->mnt_mp;
  2782. if (new.mnt->mnt_root != new.dentry)
  2783. goto out4; /* not a mountpoint */
  2784. if (!mnt_has_parent(new_mnt))
  2785. goto out4; /* not attached */
  2786. /* make sure we can reach put_old from new_root */
  2787. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2788. goto out4;
  2789. /* make certain new is below the root */
  2790. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2791. goto out4;
  2792. root_mp->m_count++; /* pin it so it won't go away */
  2793. lock_mount_hash();
  2794. detach_mnt(new_mnt, &parent_path);
  2795. detach_mnt(root_mnt, &root_parent);
  2796. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2797. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2798. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2799. }
  2800. /* mount old root on put_old */
  2801. attach_mnt(root_mnt, old_mnt, old_mp);
  2802. /* mount new_root on / */
  2803. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2804. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2805. /* A moved mount should not expire automatically */
  2806. list_del_init(&new_mnt->mnt_expire);
  2807. put_mountpoint(root_mp);
  2808. unlock_mount_hash();
  2809. chroot_fs_refs(&root, &new);
  2810. error = 0;
  2811. out4:
  2812. unlock_mount(old_mp);
  2813. if (!error) {
  2814. path_put(&root_parent);
  2815. path_put(&parent_path);
  2816. }
  2817. out3:
  2818. path_put(&root);
  2819. out2:
  2820. path_put(&old);
  2821. out1:
  2822. path_put(&new);
  2823. out0:
  2824. return error;
  2825. }
  2826. static void __init init_mount_tree(void)
  2827. {
  2828. struct vfsmount *mnt;
  2829. struct mnt_namespace *ns;
  2830. struct path root;
  2831. struct file_system_type *type;
  2832. type = get_fs_type("rootfs");
  2833. if (!type)
  2834. panic("Can't find rootfs type");
  2835. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2836. put_filesystem(type);
  2837. if (IS_ERR(mnt))
  2838. panic("Can't create rootfs");
  2839. ns = create_mnt_ns(mnt);
  2840. if (IS_ERR(ns))
  2841. panic("Can't allocate initial namespace");
  2842. init_task.nsproxy->mnt_ns = ns;
  2843. get_mnt_ns(ns);
  2844. root.mnt = mnt;
  2845. root.dentry = mnt->mnt_root;
  2846. mnt->mnt_flags |= MNT_LOCKED;
  2847. set_fs_pwd(current->fs, &root);
  2848. set_fs_root(current->fs, &root);
  2849. }
  2850. void __init mnt_init(void)
  2851. {
  2852. int err;
  2853. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2854. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2855. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2856. sizeof(struct hlist_head),
  2857. mhash_entries, 19,
  2858. HASH_ZERO,
  2859. &m_hash_shift, &m_hash_mask, 0, 0);
  2860. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2861. sizeof(struct hlist_head),
  2862. mphash_entries, 19,
  2863. HASH_ZERO,
  2864. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2865. if (!mount_hashtable || !mountpoint_hashtable)
  2866. panic("Failed to allocate mount hash table\n");
  2867. kernfs_init();
  2868. err = sysfs_init();
  2869. if (err)
  2870. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2871. __func__, err);
  2872. fs_kobj = kobject_create_and_add("fs", NULL);
  2873. if (!fs_kobj)
  2874. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2875. init_rootfs();
  2876. init_mount_tree();
  2877. }
  2878. void put_mnt_ns(struct mnt_namespace *ns)
  2879. {
  2880. if (!atomic_dec_and_test(&ns->count))
  2881. return;
  2882. drop_collected_mounts(&ns->root->mnt);
  2883. free_mnt_ns(ns);
  2884. }
  2885. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2886. {
  2887. struct vfsmount *mnt;
  2888. mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
  2889. if (!IS_ERR(mnt)) {
  2890. /*
  2891. * it is a longterm mount, don't release mnt until
  2892. * we unmount before file sys is unregistered
  2893. */
  2894. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2895. }
  2896. return mnt;
  2897. }
  2898. EXPORT_SYMBOL_GPL(kern_mount_data);
  2899. void kern_unmount(struct vfsmount *mnt)
  2900. {
  2901. /* release long term mount so mount point can be released */
  2902. if (!IS_ERR_OR_NULL(mnt)) {
  2903. real_mount(mnt)->mnt_ns = NULL;
  2904. synchronize_rcu(); /* yecchhh... */
  2905. mntput(mnt);
  2906. }
  2907. }
  2908. EXPORT_SYMBOL(kern_unmount);
  2909. bool our_mnt(struct vfsmount *mnt)
  2910. {
  2911. return check_mnt(real_mount(mnt));
  2912. }
  2913. bool current_chrooted(void)
  2914. {
  2915. /* Does the current process have a non-standard root */
  2916. struct path ns_root;
  2917. struct path fs_root;
  2918. bool chrooted;
  2919. /* Find the namespace root */
  2920. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2921. ns_root.dentry = ns_root.mnt->mnt_root;
  2922. path_get(&ns_root);
  2923. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2924. ;
  2925. get_fs_root(current->fs, &fs_root);
  2926. chrooted = !path_equal(&fs_root, &ns_root);
  2927. path_put(&fs_root);
  2928. path_put(&ns_root);
  2929. return chrooted;
  2930. }
  2931. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2932. int *new_mnt_flags)
  2933. {
  2934. int new_flags = *new_mnt_flags;
  2935. struct mount *mnt;
  2936. bool visible = false;
  2937. down_read(&namespace_sem);
  2938. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2939. struct mount *child;
  2940. int mnt_flags;
  2941. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2942. continue;
  2943. /* This mount is not fully visible if it's root directory
  2944. * is not the root directory of the filesystem.
  2945. */
  2946. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2947. continue;
  2948. /* A local view of the mount flags */
  2949. mnt_flags = mnt->mnt.mnt_flags;
  2950. /* Don't miss readonly hidden in the superblock flags */
  2951. if (sb_rdonly(mnt->mnt.mnt_sb))
  2952. mnt_flags |= MNT_LOCK_READONLY;
  2953. /* Verify the mount flags are equal to or more permissive
  2954. * than the proposed new mount.
  2955. */
  2956. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2957. !(new_flags & MNT_READONLY))
  2958. continue;
  2959. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2960. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2961. continue;
  2962. /* This mount is not fully visible if there are any
  2963. * locked child mounts that cover anything except for
  2964. * empty directories.
  2965. */
  2966. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2967. struct inode *inode = child->mnt_mountpoint->d_inode;
  2968. /* Only worry about locked mounts */
  2969. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2970. continue;
  2971. /* Is the directory permanetly empty? */
  2972. if (!is_empty_dir_inode(inode))
  2973. goto next;
  2974. }
  2975. /* Preserve the locked attributes */
  2976. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2977. MNT_LOCK_ATIME);
  2978. visible = true;
  2979. goto found;
  2980. next: ;
  2981. }
  2982. found:
  2983. up_read(&namespace_sem);
  2984. return visible;
  2985. }
  2986. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2987. {
  2988. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2989. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2990. unsigned long s_iflags;
  2991. if (ns->user_ns == &init_user_ns)
  2992. return false;
  2993. /* Can this filesystem be too revealing? */
  2994. s_iflags = mnt->mnt_sb->s_iflags;
  2995. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2996. return false;
  2997. if ((s_iflags & required_iflags) != required_iflags) {
  2998. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2999. required_iflags);
  3000. return true;
  3001. }
  3002. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  3003. }
  3004. bool mnt_may_suid(struct vfsmount *mnt)
  3005. {
  3006. /*
  3007. * Foreign mounts (accessed via fchdir or through /proc
  3008. * symlinks) are always treated as if they are nosuid. This
  3009. * prevents namespaces from trusting potentially unsafe
  3010. * suid/sgid bits, file caps, or security labels that originate
  3011. * in other namespaces.
  3012. */
  3013. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  3014. current_in_userns(mnt->mnt_sb->s_user_ns);
  3015. }
  3016. static struct ns_common *mntns_get(struct task_struct *task)
  3017. {
  3018. struct ns_common *ns = NULL;
  3019. struct nsproxy *nsproxy;
  3020. task_lock(task);
  3021. nsproxy = task->nsproxy;
  3022. if (nsproxy) {
  3023. ns = &nsproxy->mnt_ns->ns;
  3024. get_mnt_ns(to_mnt_ns(ns));
  3025. }
  3026. task_unlock(task);
  3027. return ns;
  3028. }
  3029. static void mntns_put(struct ns_common *ns)
  3030. {
  3031. put_mnt_ns(to_mnt_ns(ns));
  3032. }
  3033. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3034. {
  3035. struct fs_struct *fs = current->fs;
  3036. struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
  3037. struct path root;
  3038. int err;
  3039. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3040. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3041. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3042. return -EPERM;
  3043. if (fs->users != 1)
  3044. return -EINVAL;
  3045. get_mnt_ns(mnt_ns);
  3046. old_mnt_ns = nsproxy->mnt_ns;
  3047. nsproxy->mnt_ns = mnt_ns;
  3048. /* Find the root */
  3049. err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
  3050. "/", LOOKUP_DOWN, &root);
  3051. if (err) {
  3052. /* revert to old namespace */
  3053. nsproxy->mnt_ns = old_mnt_ns;
  3054. put_mnt_ns(mnt_ns);
  3055. return err;
  3056. }
  3057. put_mnt_ns(old_mnt_ns);
  3058. /* Update the pwd and root */
  3059. set_fs_pwd(fs, &root);
  3060. set_fs_root(fs, &root);
  3061. path_put(&root);
  3062. return 0;
  3063. }
  3064. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3065. {
  3066. return to_mnt_ns(ns)->user_ns;
  3067. }
  3068. const struct proc_ns_operations mntns_operations = {
  3069. .name = "mnt",
  3070. .type = CLONE_NEWNS,
  3071. .get = mntns_get,
  3072. .put = mntns_put,
  3073. .install = mntns_install,
  3074. .owner = mntns_owner,
  3075. };