iomap.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. /*
  2. * Copyright (C) 2010 Red Hat, Inc.
  3. * Copyright (c) 2016 Christoph Hellwig.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/compiler.h>
  16. #include <linux/fs.h>
  17. #include <linux/iomap.h>
  18. #include <linux/uaccess.h>
  19. #include <linux/gfp.h>
  20. #include <linux/mm.h>
  21. #include <linux/swap.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/file.h>
  24. #include <linux/uio.h>
  25. #include <linux/backing-dev.h>
  26. #include <linux/buffer_head.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/dax.h>
  29. #include <linux/sched/signal.h>
  30. #include "internal.h"
  31. /*
  32. * Execute a iomap write on a segment of the mapping that spans a
  33. * contiguous range of pages that have identical block mapping state.
  34. *
  35. * This avoids the need to map pages individually, do individual allocations
  36. * for each page and most importantly avoid the need for filesystem specific
  37. * locking per page. Instead, all the operations are amortised over the entire
  38. * range of pages. It is assumed that the filesystems will lock whatever
  39. * resources they require in the iomap_begin call, and release them in the
  40. * iomap_end call.
  41. */
  42. loff_t
  43. iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
  44. const struct iomap_ops *ops, void *data, iomap_actor_t actor)
  45. {
  46. struct iomap iomap = { 0 };
  47. loff_t written = 0, ret;
  48. /*
  49. * Need to map a range from start position for length bytes. This can
  50. * span multiple pages - it is only guaranteed to return a range of a
  51. * single type of pages (e.g. all into a hole, all mapped or all
  52. * unwritten). Failure at this point has nothing to undo.
  53. *
  54. * If allocation is required for this range, reserve the space now so
  55. * that the allocation is guaranteed to succeed later on. Once we copy
  56. * the data into the page cache pages, then we cannot fail otherwise we
  57. * expose transient stale data. If the reserve fails, we can safely
  58. * back out at this point as there is nothing to undo.
  59. */
  60. ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
  61. if (ret)
  62. return ret;
  63. if (WARN_ON(iomap.offset > pos))
  64. return -EIO;
  65. if (WARN_ON(iomap.length == 0))
  66. return -EIO;
  67. /*
  68. * Cut down the length to the one actually provided by the filesystem,
  69. * as it might not be able to give us the whole size that we requested.
  70. */
  71. if (iomap.offset + iomap.length < pos + length)
  72. length = iomap.offset + iomap.length - pos;
  73. /*
  74. * Now that we have guaranteed that the space allocation will succeed.
  75. * we can do the copy-in page by page without having to worry about
  76. * failures exposing transient data.
  77. */
  78. written = actor(inode, pos, length, data, &iomap);
  79. /*
  80. * Now the data has been copied, commit the range we've copied. This
  81. * should not fail unless the filesystem has had a fatal error.
  82. */
  83. if (ops->iomap_end) {
  84. ret = ops->iomap_end(inode, pos, length,
  85. written > 0 ? written : 0,
  86. flags, &iomap);
  87. }
  88. return written ? written : ret;
  89. }
  90. static void
  91. iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
  92. {
  93. loff_t i_size = i_size_read(inode);
  94. /*
  95. * Only truncate newly allocated pages beyoned EOF, even if the
  96. * write started inside the existing inode size.
  97. */
  98. if (pos + len > i_size)
  99. truncate_pagecache_range(inode, max(pos, i_size), pos + len);
  100. }
  101. static int
  102. iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
  103. struct page **pagep, struct iomap *iomap)
  104. {
  105. pgoff_t index = pos >> PAGE_SHIFT;
  106. struct page *page;
  107. int status = 0;
  108. BUG_ON(pos + len > iomap->offset + iomap->length);
  109. if (fatal_signal_pending(current))
  110. return -EINTR;
  111. page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
  112. if (!page)
  113. return -ENOMEM;
  114. status = __block_write_begin_int(page, pos, len, NULL, iomap);
  115. if (unlikely(status)) {
  116. unlock_page(page);
  117. put_page(page);
  118. page = NULL;
  119. iomap_write_failed(inode, pos, len);
  120. }
  121. *pagep = page;
  122. return status;
  123. }
  124. static int
  125. iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
  126. unsigned copied, struct page *page)
  127. {
  128. int ret;
  129. ret = generic_write_end(NULL, inode->i_mapping, pos, len,
  130. copied, page, NULL);
  131. if (ret < len)
  132. iomap_write_failed(inode, pos, len);
  133. return ret;
  134. }
  135. static loff_t
  136. iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  137. struct iomap *iomap)
  138. {
  139. struct iov_iter *i = data;
  140. long status = 0;
  141. ssize_t written = 0;
  142. unsigned int flags = AOP_FLAG_NOFS;
  143. do {
  144. struct page *page;
  145. unsigned long offset; /* Offset into pagecache page */
  146. unsigned long bytes; /* Bytes to write to page */
  147. size_t copied; /* Bytes copied from user */
  148. offset = (pos & (PAGE_SIZE - 1));
  149. bytes = min_t(unsigned long, PAGE_SIZE - offset,
  150. iov_iter_count(i));
  151. again:
  152. if (bytes > length)
  153. bytes = length;
  154. /*
  155. * Bring in the user page that we will copy from _first_.
  156. * Otherwise there's a nasty deadlock on copying from the
  157. * same page as we're writing to, without it being marked
  158. * up-to-date.
  159. *
  160. * Not only is this an optimisation, but it is also required
  161. * to check that the address is actually valid, when atomic
  162. * usercopies are used, below.
  163. */
  164. if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
  165. status = -EFAULT;
  166. break;
  167. }
  168. status = iomap_write_begin(inode, pos, bytes, flags, &page,
  169. iomap);
  170. if (unlikely(status))
  171. break;
  172. if (mapping_writably_mapped(inode->i_mapping))
  173. flush_dcache_page(page);
  174. copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
  175. flush_dcache_page(page);
  176. status = iomap_write_end(inode, pos, bytes, copied, page);
  177. if (unlikely(status < 0))
  178. break;
  179. copied = status;
  180. cond_resched();
  181. iov_iter_advance(i, copied);
  182. if (unlikely(copied == 0)) {
  183. /*
  184. * If we were unable to copy any data at all, we must
  185. * fall back to a single segment length write.
  186. *
  187. * If we didn't fallback here, we could livelock
  188. * because not all segments in the iov can be copied at
  189. * once without a pagefault.
  190. */
  191. bytes = min_t(unsigned long, PAGE_SIZE - offset,
  192. iov_iter_single_seg_count(i));
  193. goto again;
  194. }
  195. pos += copied;
  196. written += copied;
  197. length -= copied;
  198. balance_dirty_pages_ratelimited(inode->i_mapping);
  199. } while (iov_iter_count(i) && length);
  200. return written ? written : status;
  201. }
  202. ssize_t
  203. iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
  204. const struct iomap_ops *ops)
  205. {
  206. struct inode *inode = iocb->ki_filp->f_mapping->host;
  207. loff_t pos = iocb->ki_pos, ret = 0, written = 0;
  208. while (iov_iter_count(iter)) {
  209. ret = iomap_apply(inode, pos, iov_iter_count(iter),
  210. IOMAP_WRITE, ops, iter, iomap_write_actor);
  211. if (ret <= 0)
  212. break;
  213. pos += ret;
  214. written += ret;
  215. }
  216. return written ? written : ret;
  217. }
  218. EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
  219. static struct page *
  220. __iomap_read_page(struct inode *inode, loff_t offset)
  221. {
  222. struct address_space *mapping = inode->i_mapping;
  223. struct page *page;
  224. page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
  225. if (IS_ERR(page))
  226. return page;
  227. if (!PageUptodate(page)) {
  228. put_page(page);
  229. return ERR_PTR(-EIO);
  230. }
  231. return page;
  232. }
  233. static loff_t
  234. iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  235. struct iomap *iomap)
  236. {
  237. long status = 0;
  238. ssize_t written = 0;
  239. do {
  240. struct page *page, *rpage;
  241. unsigned long offset; /* Offset into pagecache page */
  242. unsigned long bytes; /* Bytes to write to page */
  243. offset = (pos & (PAGE_SIZE - 1));
  244. bytes = min_t(loff_t, PAGE_SIZE - offset, length);
  245. rpage = __iomap_read_page(inode, pos);
  246. if (IS_ERR(rpage))
  247. return PTR_ERR(rpage);
  248. status = iomap_write_begin(inode, pos, bytes,
  249. AOP_FLAG_NOFS, &page, iomap);
  250. put_page(rpage);
  251. if (unlikely(status))
  252. return status;
  253. WARN_ON_ONCE(!PageUptodate(page));
  254. status = iomap_write_end(inode, pos, bytes, bytes, page);
  255. if (unlikely(status <= 0)) {
  256. if (WARN_ON_ONCE(status == 0))
  257. return -EIO;
  258. return status;
  259. }
  260. cond_resched();
  261. pos += status;
  262. written += status;
  263. length -= status;
  264. balance_dirty_pages_ratelimited(inode->i_mapping);
  265. } while (length);
  266. return written;
  267. }
  268. int
  269. iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
  270. const struct iomap_ops *ops)
  271. {
  272. loff_t ret;
  273. while (len) {
  274. ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
  275. iomap_dirty_actor);
  276. if (ret <= 0)
  277. return ret;
  278. pos += ret;
  279. len -= ret;
  280. }
  281. return 0;
  282. }
  283. EXPORT_SYMBOL_GPL(iomap_file_dirty);
  284. static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
  285. unsigned bytes, struct iomap *iomap)
  286. {
  287. struct page *page;
  288. int status;
  289. status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
  290. iomap);
  291. if (status)
  292. return status;
  293. zero_user(page, offset, bytes);
  294. mark_page_accessed(page);
  295. return iomap_write_end(inode, pos, bytes, bytes, page);
  296. }
  297. static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
  298. struct iomap *iomap)
  299. {
  300. sector_t sector = (iomap->addr +
  301. (pos & PAGE_MASK) - iomap->offset) >> 9;
  302. return __dax_zero_page_range(iomap->bdev, iomap->dax_dev, sector,
  303. offset, bytes);
  304. }
  305. static loff_t
  306. iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
  307. void *data, struct iomap *iomap)
  308. {
  309. bool *did_zero = data;
  310. loff_t written = 0;
  311. int status;
  312. /* already zeroed? we're done. */
  313. if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
  314. return count;
  315. do {
  316. unsigned offset, bytes;
  317. offset = pos & (PAGE_SIZE - 1); /* Within page */
  318. bytes = min_t(loff_t, PAGE_SIZE - offset, count);
  319. if (IS_DAX(inode))
  320. status = iomap_dax_zero(pos, offset, bytes, iomap);
  321. else
  322. status = iomap_zero(inode, pos, offset, bytes, iomap);
  323. if (status < 0)
  324. return status;
  325. pos += bytes;
  326. count -= bytes;
  327. written += bytes;
  328. if (did_zero)
  329. *did_zero = true;
  330. } while (count > 0);
  331. return written;
  332. }
  333. int
  334. iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
  335. const struct iomap_ops *ops)
  336. {
  337. loff_t ret;
  338. while (len > 0) {
  339. ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
  340. ops, did_zero, iomap_zero_range_actor);
  341. if (ret <= 0)
  342. return ret;
  343. pos += ret;
  344. len -= ret;
  345. }
  346. return 0;
  347. }
  348. EXPORT_SYMBOL_GPL(iomap_zero_range);
  349. int
  350. iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
  351. const struct iomap_ops *ops)
  352. {
  353. unsigned int blocksize = i_blocksize(inode);
  354. unsigned int off = pos & (blocksize - 1);
  355. /* Block boundary? Nothing to do */
  356. if (!off)
  357. return 0;
  358. return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
  359. }
  360. EXPORT_SYMBOL_GPL(iomap_truncate_page);
  361. static loff_t
  362. iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
  363. void *data, struct iomap *iomap)
  364. {
  365. struct page *page = data;
  366. int ret;
  367. ret = __block_write_begin_int(page, pos, length, NULL, iomap);
  368. if (ret)
  369. return ret;
  370. block_commit_write(page, 0, length);
  371. return length;
  372. }
  373. int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
  374. {
  375. struct page *page = vmf->page;
  376. struct inode *inode = file_inode(vmf->vma->vm_file);
  377. unsigned long length;
  378. loff_t offset, size;
  379. ssize_t ret;
  380. lock_page(page);
  381. size = i_size_read(inode);
  382. if ((page->mapping != inode->i_mapping) ||
  383. (page_offset(page) > size)) {
  384. /* We overload EFAULT to mean page got truncated */
  385. ret = -EFAULT;
  386. goto out_unlock;
  387. }
  388. /* page is wholly or partially inside EOF */
  389. if (((page->index + 1) << PAGE_SHIFT) > size)
  390. length = size & ~PAGE_MASK;
  391. else
  392. length = PAGE_SIZE;
  393. offset = page_offset(page);
  394. while (length > 0) {
  395. ret = iomap_apply(inode, offset, length,
  396. IOMAP_WRITE | IOMAP_FAULT, ops, page,
  397. iomap_page_mkwrite_actor);
  398. if (unlikely(ret <= 0))
  399. goto out_unlock;
  400. offset += ret;
  401. length -= ret;
  402. }
  403. set_page_dirty(page);
  404. wait_for_stable_page(page);
  405. return VM_FAULT_LOCKED;
  406. out_unlock:
  407. unlock_page(page);
  408. return block_page_mkwrite_return(ret);
  409. }
  410. EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
  411. struct fiemap_ctx {
  412. struct fiemap_extent_info *fi;
  413. struct iomap prev;
  414. };
  415. static int iomap_to_fiemap(struct fiemap_extent_info *fi,
  416. struct iomap *iomap, u32 flags)
  417. {
  418. switch (iomap->type) {
  419. case IOMAP_HOLE:
  420. /* skip holes */
  421. return 0;
  422. case IOMAP_DELALLOC:
  423. flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
  424. break;
  425. case IOMAP_UNWRITTEN:
  426. flags |= FIEMAP_EXTENT_UNWRITTEN;
  427. break;
  428. case IOMAP_MAPPED:
  429. break;
  430. }
  431. if (iomap->flags & IOMAP_F_MERGED)
  432. flags |= FIEMAP_EXTENT_MERGED;
  433. if (iomap->flags & IOMAP_F_SHARED)
  434. flags |= FIEMAP_EXTENT_SHARED;
  435. if (iomap->flags & IOMAP_F_DATA_INLINE)
  436. flags |= FIEMAP_EXTENT_DATA_INLINE;
  437. return fiemap_fill_next_extent(fi, iomap->offset,
  438. iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
  439. iomap->length, flags);
  440. }
  441. static loff_t
  442. iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
  443. struct iomap *iomap)
  444. {
  445. struct fiemap_ctx *ctx = data;
  446. loff_t ret = length;
  447. if (iomap->type == IOMAP_HOLE)
  448. return length;
  449. ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
  450. ctx->prev = *iomap;
  451. switch (ret) {
  452. case 0: /* success */
  453. return length;
  454. case 1: /* extent array full */
  455. return 0;
  456. default:
  457. return ret;
  458. }
  459. }
  460. int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
  461. loff_t start, loff_t len, const struct iomap_ops *ops)
  462. {
  463. struct fiemap_ctx ctx;
  464. loff_t ret;
  465. memset(&ctx, 0, sizeof(ctx));
  466. ctx.fi = fi;
  467. ctx.prev.type = IOMAP_HOLE;
  468. ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
  469. if (ret)
  470. return ret;
  471. if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
  472. ret = filemap_write_and_wait(inode->i_mapping);
  473. if (ret)
  474. return ret;
  475. }
  476. while (len > 0) {
  477. ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
  478. iomap_fiemap_actor);
  479. /* inode with no (attribute) mapping will give ENOENT */
  480. if (ret == -ENOENT)
  481. break;
  482. if (ret < 0)
  483. return ret;
  484. if (ret == 0)
  485. break;
  486. start += ret;
  487. len -= ret;
  488. }
  489. if (ctx.prev.type != IOMAP_HOLE) {
  490. ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
  491. if (ret < 0)
  492. return ret;
  493. }
  494. return 0;
  495. }
  496. EXPORT_SYMBOL_GPL(iomap_fiemap);
  497. static loff_t
  498. iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
  499. void *data, struct iomap *iomap)
  500. {
  501. switch (iomap->type) {
  502. case IOMAP_UNWRITTEN:
  503. offset = page_cache_seek_hole_data(inode, offset, length,
  504. SEEK_HOLE);
  505. if (offset < 0)
  506. return length;
  507. /* fall through */
  508. case IOMAP_HOLE:
  509. *(loff_t *)data = offset;
  510. return 0;
  511. default:
  512. return length;
  513. }
  514. }
  515. loff_t
  516. iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
  517. {
  518. loff_t size = i_size_read(inode);
  519. loff_t length = size - offset;
  520. loff_t ret;
  521. /* Nothing to be found before or beyond the end of the file. */
  522. if (offset < 0 || offset >= size)
  523. return -ENXIO;
  524. while (length > 0) {
  525. ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
  526. &offset, iomap_seek_hole_actor);
  527. if (ret < 0)
  528. return ret;
  529. if (ret == 0)
  530. break;
  531. offset += ret;
  532. length -= ret;
  533. }
  534. return offset;
  535. }
  536. EXPORT_SYMBOL_GPL(iomap_seek_hole);
  537. static loff_t
  538. iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
  539. void *data, struct iomap *iomap)
  540. {
  541. switch (iomap->type) {
  542. case IOMAP_HOLE:
  543. return length;
  544. case IOMAP_UNWRITTEN:
  545. offset = page_cache_seek_hole_data(inode, offset, length,
  546. SEEK_DATA);
  547. if (offset < 0)
  548. return length;
  549. /*FALLTHRU*/
  550. default:
  551. *(loff_t *)data = offset;
  552. return 0;
  553. }
  554. }
  555. loff_t
  556. iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
  557. {
  558. loff_t size = i_size_read(inode);
  559. loff_t length = size - offset;
  560. loff_t ret;
  561. /* Nothing to be found before or beyond the end of the file. */
  562. if (offset < 0 || offset >= size)
  563. return -ENXIO;
  564. while (length > 0) {
  565. ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
  566. &offset, iomap_seek_data_actor);
  567. if (ret < 0)
  568. return ret;
  569. if (ret == 0)
  570. break;
  571. offset += ret;
  572. length -= ret;
  573. }
  574. if (length <= 0)
  575. return -ENXIO;
  576. return offset;
  577. }
  578. EXPORT_SYMBOL_GPL(iomap_seek_data);
  579. /*
  580. * Private flags for iomap_dio, must not overlap with the public ones in
  581. * iomap.h:
  582. */
  583. #define IOMAP_DIO_WRITE (1 << 30)
  584. #define IOMAP_DIO_DIRTY (1 << 31)
  585. struct iomap_dio {
  586. struct kiocb *iocb;
  587. iomap_dio_end_io_t *end_io;
  588. loff_t i_size;
  589. loff_t size;
  590. atomic_t ref;
  591. unsigned flags;
  592. int error;
  593. union {
  594. /* used during submission and for synchronous completion: */
  595. struct {
  596. struct iov_iter *iter;
  597. struct task_struct *waiter;
  598. struct request_queue *last_queue;
  599. blk_qc_t cookie;
  600. } submit;
  601. /* used for aio completion: */
  602. struct {
  603. struct work_struct work;
  604. } aio;
  605. };
  606. };
  607. static ssize_t iomap_dio_complete(struct iomap_dio *dio)
  608. {
  609. struct kiocb *iocb = dio->iocb;
  610. struct inode *inode = file_inode(iocb->ki_filp);
  611. loff_t offset = iocb->ki_pos;
  612. ssize_t ret;
  613. if (dio->end_io) {
  614. ret = dio->end_io(iocb,
  615. dio->error ? dio->error : dio->size,
  616. dio->flags);
  617. } else {
  618. ret = dio->error;
  619. }
  620. if (likely(!ret)) {
  621. ret = dio->size;
  622. /* check for short read */
  623. if (offset + ret > dio->i_size &&
  624. !(dio->flags & IOMAP_DIO_WRITE))
  625. ret = dio->i_size - offset;
  626. iocb->ki_pos += ret;
  627. }
  628. /*
  629. * Try again to invalidate clean pages which might have been cached by
  630. * non-direct readahead, or faulted in by get_user_pages() if the source
  631. * of the write was an mmap'ed region of the file we're writing. Either
  632. * one is a pretty crazy thing to do, so we don't support it 100%. If
  633. * this invalidation fails, tough, the write still worked...
  634. *
  635. * And this page cache invalidation has to be after dio->end_io(), as
  636. * some filesystems convert unwritten extents to real allocations in
  637. * end_io() when necessary, otherwise a racing buffer read would cache
  638. * zeros from unwritten extents.
  639. */
  640. if (!dio->error &&
  641. (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
  642. int err;
  643. err = invalidate_inode_pages2_range(inode->i_mapping,
  644. offset >> PAGE_SHIFT,
  645. (offset + dio->size - 1) >> PAGE_SHIFT);
  646. if (err)
  647. dio_warn_stale_pagecache(iocb->ki_filp);
  648. }
  649. inode_dio_end(file_inode(iocb->ki_filp));
  650. kfree(dio);
  651. return ret;
  652. }
  653. static void iomap_dio_complete_work(struct work_struct *work)
  654. {
  655. struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
  656. struct kiocb *iocb = dio->iocb;
  657. bool is_write = (dio->flags & IOMAP_DIO_WRITE);
  658. ssize_t ret;
  659. ret = iomap_dio_complete(dio);
  660. if (is_write && ret > 0)
  661. ret = generic_write_sync(iocb, ret);
  662. iocb->ki_complete(iocb, ret, 0);
  663. }
  664. /*
  665. * Set an error in the dio if none is set yet. We have to use cmpxchg
  666. * as the submission context and the completion context(s) can race to
  667. * update the error.
  668. */
  669. static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
  670. {
  671. cmpxchg(&dio->error, 0, ret);
  672. }
  673. static void iomap_dio_bio_end_io(struct bio *bio)
  674. {
  675. struct iomap_dio *dio = bio->bi_private;
  676. bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
  677. if (bio->bi_status)
  678. iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
  679. if (atomic_dec_and_test(&dio->ref)) {
  680. if (is_sync_kiocb(dio->iocb)) {
  681. struct task_struct *waiter = dio->submit.waiter;
  682. WRITE_ONCE(dio->submit.waiter, NULL);
  683. wake_up_process(waiter);
  684. } else if (dio->flags & IOMAP_DIO_WRITE) {
  685. struct inode *inode = file_inode(dio->iocb->ki_filp);
  686. INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
  687. queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
  688. } else {
  689. iomap_dio_complete_work(&dio->aio.work);
  690. }
  691. }
  692. if (should_dirty) {
  693. bio_check_pages_dirty(bio);
  694. } else {
  695. struct bio_vec *bvec;
  696. int i;
  697. bio_for_each_segment_all(bvec, bio, i)
  698. put_page(bvec->bv_page);
  699. bio_put(bio);
  700. }
  701. }
  702. static blk_qc_t
  703. iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
  704. unsigned len)
  705. {
  706. struct page *page = ZERO_PAGE(0);
  707. struct bio *bio;
  708. bio = bio_alloc(GFP_KERNEL, 1);
  709. bio_set_dev(bio, iomap->bdev);
  710. bio->bi_iter.bi_sector =
  711. (iomap->addr + pos - iomap->offset) >> 9;
  712. bio->bi_private = dio;
  713. bio->bi_end_io = iomap_dio_bio_end_io;
  714. get_page(page);
  715. if (bio_add_page(bio, page, len, 0) != len)
  716. BUG();
  717. bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
  718. atomic_inc(&dio->ref);
  719. return submit_bio(bio);
  720. }
  721. static loff_t
  722. iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
  723. void *data, struct iomap *iomap)
  724. {
  725. struct iomap_dio *dio = data;
  726. unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
  727. unsigned int fs_block_size = i_blocksize(inode), pad;
  728. unsigned int align = iov_iter_alignment(dio->submit.iter);
  729. struct iov_iter iter;
  730. struct bio *bio;
  731. bool need_zeroout = false;
  732. int nr_pages, ret;
  733. size_t copied = 0;
  734. if ((pos | length | align) & ((1 << blkbits) - 1))
  735. return -EINVAL;
  736. switch (iomap->type) {
  737. case IOMAP_HOLE:
  738. if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
  739. return -EIO;
  740. /*FALLTHRU*/
  741. case IOMAP_UNWRITTEN:
  742. if (!(dio->flags & IOMAP_DIO_WRITE)) {
  743. length = iov_iter_zero(length, dio->submit.iter);
  744. dio->size += length;
  745. return length;
  746. }
  747. dio->flags |= IOMAP_DIO_UNWRITTEN;
  748. need_zeroout = true;
  749. break;
  750. case IOMAP_MAPPED:
  751. if (iomap->flags & IOMAP_F_SHARED)
  752. dio->flags |= IOMAP_DIO_COW;
  753. if (iomap->flags & IOMAP_F_NEW)
  754. need_zeroout = true;
  755. break;
  756. default:
  757. WARN_ON_ONCE(1);
  758. return -EIO;
  759. }
  760. /*
  761. * Operate on a partial iter trimmed to the extent we were called for.
  762. * We'll update the iter in the dio once we're done with this extent.
  763. */
  764. iter = *dio->submit.iter;
  765. iov_iter_truncate(&iter, length);
  766. nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
  767. if (nr_pages <= 0)
  768. return nr_pages;
  769. if (need_zeroout) {
  770. /* zero out from the start of the block to the write offset */
  771. pad = pos & (fs_block_size - 1);
  772. if (pad)
  773. iomap_dio_zero(dio, iomap, pos - pad, pad);
  774. }
  775. do {
  776. size_t n;
  777. if (dio->error) {
  778. iov_iter_revert(dio->submit.iter, copied);
  779. return 0;
  780. }
  781. bio = bio_alloc(GFP_KERNEL, nr_pages);
  782. bio_set_dev(bio, iomap->bdev);
  783. bio->bi_iter.bi_sector =
  784. (iomap->addr + pos - iomap->offset) >> 9;
  785. bio->bi_write_hint = dio->iocb->ki_hint;
  786. bio->bi_private = dio;
  787. bio->bi_end_io = iomap_dio_bio_end_io;
  788. ret = bio_iov_iter_get_pages(bio, &iter);
  789. if (unlikely(ret)) {
  790. bio_put(bio);
  791. return copied ? copied : ret;
  792. }
  793. n = bio->bi_iter.bi_size;
  794. if (dio->flags & IOMAP_DIO_WRITE) {
  795. bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
  796. task_io_account_write(n);
  797. } else {
  798. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  799. if (dio->flags & IOMAP_DIO_DIRTY)
  800. bio_set_pages_dirty(bio);
  801. }
  802. iov_iter_advance(dio->submit.iter, n);
  803. dio->size += n;
  804. pos += n;
  805. copied += n;
  806. nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
  807. atomic_inc(&dio->ref);
  808. dio->submit.last_queue = bdev_get_queue(iomap->bdev);
  809. dio->submit.cookie = submit_bio(bio);
  810. } while (nr_pages);
  811. if (need_zeroout) {
  812. /* zero out from the end of the write to the end of the block */
  813. pad = pos & (fs_block_size - 1);
  814. if (pad)
  815. iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
  816. }
  817. return copied;
  818. }
  819. ssize_t
  820. iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
  821. const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
  822. {
  823. struct address_space *mapping = iocb->ki_filp->f_mapping;
  824. struct inode *inode = file_inode(iocb->ki_filp);
  825. size_t count = iov_iter_count(iter);
  826. loff_t pos = iocb->ki_pos, start = pos;
  827. loff_t end = iocb->ki_pos + count - 1, ret = 0;
  828. unsigned int flags = IOMAP_DIRECT;
  829. struct blk_plug plug;
  830. struct iomap_dio *dio;
  831. lockdep_assert_held(&inode->i_rwsem);
  832. if (!count)
  833. return 0;
  834. dio = kmalloc(sizeof(*dio), GFP_KERNEL);
  835. if (!dio)
  836. return -ENOMEM;
  837. dio->iocb = iocb;
  838. atomic_set(&dio->ref, 1);
  839. dio->size = 0;
  840. dio->i_size = i_size_read(inode);
  841. dio->end_io = end_io;
  842. dio->error = 0;
  843. dio->flags = 0;
  844. dio->submit.iter = iter;
  845. if (is_sync_kiocb(iocb)) {
  846. dio->submit.waiter = current;
  847. dio->submit.cookie = BLK_QC_T_NONE;
  848. dio->submit.last_queue = NULL;
  849. }
  850. if (iov_iter_rw(iter) == READ) {
  851. if (pos >= dio->i_size)
  852. goto out_free_dio;
  853. if (iter->type == ITER_IOVEC)
  854. dio->flags |= IOMAP_DIO_DIRTY;
  855. } else {
  856. dio->flags |= IOMAP_DIO_WRITE;
  857. flags |= IOMAP_WRITE;
  858. }
  859. if (iocb->ki_flags & IOCB_NOWAIT) {
  860. if (filemap_range_has_page(mapping, start, end)) {
  861. ret = -EAGAIN;
  862. goto out_free_dio;
  863. }
  864. flags |= IOMAP_NOWAIT;
  865. }
  866. ret = filemap_write_and_wait_range(mapping, start, end);
  867. if (ret)
  868. goto out_free_dio;
  869. /*
  870. * Try to invalidate cache pages for the range we're direct
  871. * writing. If this invalidation fails, tough, the write will
  872. * still work, but racing two incompatible write paths is a
  873. * pretty crazy thing to do, so we don't support it 100%.
  874. */
  875. ret = invalidate_inode_pages2_range(mapping,
  876. start >> PAGE_SHIFT, end >> PAGE_SHIFT);
  877. if (ret)
  878. dio_warn_stale_pagecache(iocb->ki_filp);
  879. ret = 0;
  880. if (iov_iter_rw(iter) == WRITE && !is_sync_kiocb(iocb) &&
  881. !inode->i_sb->s_dio_done_wq) {
  882. ret = sb_init_dio_done_wq(inode->i_sb);
  883. if (ret < 0)
  884. goto out_free_dio;
  885. }
  886. inode_dio_begin(inode);
  887. blk_start_plug(&plug);
  888. do {
  889. ret = iomap_apply(inode, pos, count, flags, ops, dio,
  890. iomap_dio_actor);
  891. if (ret <= 0) {
  892. /* magic error code to fall back to buffered I/O */
  893. if (ret == -ENOTBLK)
  894. ret = 0;
  895. break;
  896. }
  897. pos += ret;
  898. if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
  899. break;
  900. } while ((count = iov_iter_count(iter)) > 0);
  901. blk_finish_plug(&plug);
  902. if (ret < 0)
  903. iomap_dio_set_error(dio, ret);
  904. if (!atomic_dec_and_test(&dio->ref)) {
  905. if (!is_sync_kiocb(iocb))
  906. return -EIOCBQUEUED;
  907. for (;;) {
  908. set_current_state(TASK_UNINTERRUPTIBLE);
  909. if (!READ_ONCE(dio->submit.waiter))
  910. break;
  911. if (!(iocb->ki_flags & IOCB_HIPRI) ||
  912. !dio->submit.last_queue ||
  913. !blk_poll(dio->submit.last_queue,
  914. dio->submit.cookie))
  915. io_schedule();
  916. }
  917. __set_current_state(TASK_RUNNING);
  918. }
  919. ret = iomap_dio_complete(dio);
  920. return ret;
  921. out_free_dio:
  922. kfree(dio);
  923. return ret;
  924. }
  925. EXPORT_SYMBOL_GPL(iomap_dio_rw);