segment.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
  159. }
  160. void register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. struct inmem_pages *new;
  165. f2fs_trace_pid(page);
  166. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  167. SetPagePrivate(page);
  168. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  169. /* add atomic page indices to the list */
  170. new->page = page;
  171. INIT_LIST_HEAD(&new->list);
  172. /* increase reference count with clean state */
  173. mutex_lock(&fi->inmem_lock);
  174. get_page(page);
  175. list_add_tail(&new->list, &fi->inmem_pages);
  176. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  177. if (list_empty(&fi->inmem_ilist))
  178. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  179. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  180. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  181. mutex_unlock(&fi->inmem_lock);
  182. trace_f2fs_register_inmem_page(page, INMEM);
  183. }
  184. static int __revoke_inmem_pages(struct inode *inode,
  185. struct list_head *head, bool drop, bool recover)
  186. {
  187. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  188. struct inmem_pages *cur, *tmp;
  189. int err = 0;
  190. list_for_each_entry_safe(cur, tmp, head, list) {
  191. struct page *page = cur->page;
  192. if (drop)
  193. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  194. lock_page(page);
  195. if (recover) {
  196. struct dnode_of_data dn;
  197. struct node_info ni;
  198. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  199. retry:
  200. set_new_dnode(&dn, inode, NULL, NULL, 0);
  201. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  202. if (err) {
  203. if (err == -ENOMEM) {
  204. congestion_wait(BLK_RW_ASYNC, HZ/50);
  205. cond_resched();
  206. goto retry;
  207. }
  208. err = -EAGAIN;
  209. goto next;
  210. }
  211. get_node_info(sbi, dn.nid, &ni);
  212. if (cur->old_addr == NEW_ADDR) {
  213. invalidate_blocks(sbi, dn.data_blkaddr);
  214. f2fs_update_data_blkaddr(&dn, NEW_ADDR);
  215. } else
  216. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  217. cur->old_addr, ni.version, true, true);
  218. f2fs_put_dnode(&dn);
  219. }
  220. next:
  221. /* we don't need to invalidate this in the sccessful status */
  222. if (drop || recover)
  223. ClearPageUptodate(page);
  224. set_page_private(page, 0);
  225. ClearPagePrivate(page);
  226. f2fs_put_page(page, 1);
  227. list_del(&cur->list);
  228. kmem_cache_free(inmem_entry_slab, cur);
  229. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  230. }
  231. return err;
  232. }
  233. void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
  234. {
  235. struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
  236. struct inode *inode;
  237. struct f2fs_inode_info *fi;
  238. next:
  239. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  240. if (list_empty(head)) {
  241. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  242. return;
  243. }
  244. fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
  245. inode = igrab(&fi->vfs_inode);
  246. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  247. if (inode) {
  248. drop_inmem_pages(inode);
  249. iput(inode);
  250. }
  251. congestion_wait(BLK_RW_ASYNC, HZ/50);
  252. cond_resched();
  253. goto next;
  254. }
  255. void drop_inmem_pages(struct inode *inode)
  256. {
  257. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  258. struct f2fs_inode_info *fi = F2FS_I(inode);
  259. mutex_lock(&fi->inmem_lock);
  260. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  261. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  262. if (!list_empty(&fi->inmem_ilist))
  263. list_del_init(&fi->inmem_ilist);
  264. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  265. mutex_unlock(&fi->inmem_lock);
  266. clear_inode_flag(inode, FI_ATOMIC_FILE);
  267. clear_inode_flag(inode, FI_HOT_DATA);
  268. stat_dec_atomic_write(inode);
  269. }
  270. void drop_inmem_page(struct inode *inode, struct page *page)
  271. {
  272. struct f2fs_inode_info *fi = F2FS_I(inode);
  273. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  274. struct list_head *head = &fi->inmem_pages;
  275. struct inmem_pages *cur = NULL;
  276. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  277. mutex_lock(&fi->inmem_lock);
  278. list_for_each_entry(cur, head, list) {
  279. if (cur->page == page)
  280. break;
  281. }
  282. f2fs_bug_on(sbi, !cur || cur->page != page);
  283. list_del(&cur->list);
  284. mutex_unlock(&fi->inmem_lock);
  285. dec_page_count(sbi, F2FS_INMEM_PAGES);
  286. kmem_cache_free(inmem_entry_slab, cur);
  287. ClearPageUptodate(page);
  288. set_page_private(page, 0);
  289. ClearPagePrivate(page);
  290. f2fs_put_page(page, 0);
  291. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  292. }
  293. static int __commit_inmem_pages(struct inode *inode,
  294. struct list_head *revoke_list)
  295. {
  296. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  297. struct f2fs_inode_info *fi = F2FS_I(inode);
  298. struct inmem_pages *cur, *tmp;
  299. struct f2fs_io_info fio = {
  300. .sbi = sbi,
  301. .ino = inode->i_ino,
  302. .type = DATA,
  303. .op = REQ_OP_WRITE,
  304. .op_flags = REQ_SYNC | REQ_PRIO,
  305. .io_type = FS_DATA_IO,
  306. };
  307. pgoff_t last_idx = ULONG_MAX;
  308. int err = 0;
  309. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  310. struct page *page = cur->page;
  311. lock_page(page);
  312. if (page->mapping == inode->i_mapping) {
  313. trace_f2fs_commit_inmem_page(page, INMEM);
  314. set_page_dirty(page);
  315. f2fs_wait_on_page_writeback(page, DATA, true);
  316. if (clear_page_dirty_for_io(page)) {
  317. inode_dec_dirty_pages(inode);
  318. remove_dirty_inode(inode);
  319. }
  320. retry:
  321. fio.page = page;
  322. fio.old_blkaddr = NULL_ADDR;
  323. fio.encrypted_page = NULL;
  324. fio.need_lock = LOCK_DONE;
  325. err = do_write_data_page(&fio);
  326. if (err) {
  327. if (err == -ENOMEM) {
  328. congestion_wait(BLK_RW_ASYNC, HZ/50);
  329. cond_resched();
  330. goto retry;
  331. }
  332. unlock_page(page);
  333. break;
  334. }
  335. /* record old blkaddr for revoking */
  336. cur->old_addr = fio.old_blkaddr;
  337. last_idx = page->index;
  338. }
  339. unlock_page(page);
  340. list_move_tail(&cur->list, revoke_list);
  341. }
  342. if (last_idx != ULONG_MAX)
  343. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  344. if (!err)
  345. __revoke_inmem_pages(inode, revoke_list, false, false);
  346. return err;
  347. }
  348. int commit_inmem_pages(struct inode *inode)
  349. {
  350. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  351. struct f2fs_inode_info *fi = F2FS_I(inode);
  352. struct list_head revoke_list;
  353. int err;
  354. INIT_LIST_HEAD(&revoke_list);
  355. f2fs_balance_fs(sbi, true);
  356. f2fs_lock_op(sbi);
  357. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  358. mutex_lock(&fi->inmem_lock);
  359. err = __commit_inmem_pages(inode, &revoke_list);
  360. if (err) {
  361. int ret;
  362. /*
  363. * try to revoke all committed pages, but still we could fail
  364. * due to no memory or other reason, if that happened, EAGAIN
  365. * will be returned, which means in such case, transaction is
  366. * already not integrity, caller should use journal to do the
  367. * recovery or rewrite & commit last transaction. For other
  368. * error number, revoking was done by filesystem itself.
  369. */
  370. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  371. if (ret)
  372. err = ret;
  373. /* drop all uncommitted pages */
  374. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  375. }
  376. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  377. if (!list_empty(&fi->inmem_ilist))
  378. list_del_init(&fi->inmem_ilist);
  379. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  380. mutex_unlock(&fi->inmem_lock);
  381. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  382. f2fs_unlock_op(sbi);
  383. return err;
  384. }
  385. /*
  386. * This function balances dirty node and dentry pages.
  387. * In addition, it controls garbage collection.
  388. */
  389. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  390. {
  391. #ifdef CONFIG_F2FS_FAULT_INJECTION
  392. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  393. f2fs_show_injection_info(FAULT_CHECKPOINT);
  394. f2fs_stop_checkpoint(sbi, false);
  395. }
  396. #endif
  397. /* balance_fs_bg is able to be pending */
  398. if (need && excess_cached_nats(sbi))
  399. f2fs_balance_fs_bg(sbi);
  400. /*
  401. * We should do GC or end up with checkpoint, if there are so many dirty
  402. * dir/node pages without enough free segments.
  403. */
  404. if (has_not_enough_free_secs(sbi, 0, 0)) {
  405. mutex_lock(&sbi->gc_mutex);
  406. f2fs_gc(sbi, false, false, NULL_SEGNO);
  407. }
  408. }
  409. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  410. {
  411. /* try to shrink extent cache when there is no enough memory */
  412. if (!available_free_memory(sbi, EXTENT_CACHE))
  413. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  414. /* check the # of cached NAT entries */
  415. if (!available_free_memory(sbi, NAT_ENTRIES))
  416. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  417. if (!available_free_memory(sbi, FREE_NIDS))
  418. try_to_free_nids(sbi, MAX_FREE_NIDS);
  419. else
  420. build_free_nids(sbi, false, false);
  421. if (!is_idle(sbi) && !excess_dirty_nats(sbi))
  422. return;
  423. /* checkpoint is the only way to shrink partial cached entries */
  424. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  425. !available_free_memory(sbi, INO_ENTRIES) ||
  426. excess_prefree_segs(sbi) ||
  427. excess_dirty_nats(sbi) ||
  428. f2fs_time_over(sbi, CP_TIME)) {
  429. if (test_opt(sbi, DATA_FLUSH)) {
  430. struct blk_plug plug;
  431. blk_start_plug(&plug);
  432. sync_dirty_inodes(sbi, FILE_INODE);
  433. blk_finish_plug(&plug);
  434. }
  435. f2fs_sync_fs(sbi->sb, true);
  436. stat_inc_bg_cp_count(sbi->stat_info);
  437. }
  438. }
  439. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  440. struct block_device *bdev)
  441. {
  442. struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
  443. int ret;
  444. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  445. bio_set_dev(bio, bdev);
  446. ret = submit_bio_wait(bio);
  447. bio_put(bio);
  448. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  449. test_opt(sbi, FLUSH_MERGE), ret);
  450. return ret;
  451. }
  452. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  453. {
  454. int ret = 0;
  455. int i;
  456. if (!sbi->s_ndevs)
  457. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  458. for (i = 0; i < sbi->s_ndevs; i++) {
  459. if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
  460. continue;
  461. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  462. if (ret)
  463. break;
  464. }
  465. return ret;
  466. }
  467. static int issue_flush_thread(void *data)
  468. {
  469. struct f2fs_sb_info *sbi = data;
  470. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  471. wait_queue_head_t *q = &fcc->flush_wait_queue;
  472. repeat:
  473. if (kthread_should_stop())
  474. return 0;
  475. sb_start_intwrite(sbi->sb);
  476. if (!llist_empty(&fcc->issue_list)) {
  477. struct flush_cmd *cmd, *next;
  478. int ret;
  479. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  480. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  481. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  482. ret = submit_flush_wait(sbi, cmd->ino);
  483. atomic_inc(&fcc->issued_flush);
  484. llist_for_each_entry_safe(cmd, next,
  485. fcc->dispatch_list, llnode) {
  486. cmd->ret = ret;
  487. complete(&cmd->wait);
  488. }
  489. fcc->dispatch_list = NULL;
  490. }
  491. sb_end_intwrite(sbi->sb);
  492. wait_event_interruptible(*q,
  493. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  494. goto repeat;
  495. }
  496. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  497. {
  498. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  499. struct flush_cmd cmd;
  500. int ret;
  501. if (test_opt(sbi, NOBARRIER))
  502. return 0;
  503. if (!test_opt(sbi, FLUSH_MERGE)) {
  504. ret = submit_flush_wait(sbi, ino);
  505. atomic_inc(&fcc->issued_flush);
  506. return ret;
  507. }
  508. if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
  509. ret = submit_flush_wait(sbi, ino);
  510. atomic_dec(&fcc->issing_flush);
  511. atomic_inc(&fcc->issued_flush);
  512. return ret;
  513. }
  514. cmd.ino = ino;
  515. init_completion(&cmd.wait);
  516. llist_add(&cmd.llnode, &fcc->issue_list);
  517. /* update issue_list before we wake up issue_flush thread */
  518. smp_mb();
  519. if (waitqueue_active(&fcc->flush_wait_queue))
  520. wake_up(&fcc->flush_wait_queue);
  521. if (fcc->f2fs_issue_flush) {
  522. wait_for_completion(&cmd.wait);
  523. atomic_dec(&fcc->issing_flush);
  524. } else {
  525. struct llist_node *list;
  526. list = llist_del_all(&fcc->issue_list);
  527. if (!list) {
  528. wait_for_completion(&cmd.wait);
  529. atomic_dec(&fcc->issing_flush);
  530. } else {
  531. struct flush_cmd *tmp, *next;
  532. ret = submit_flush_wait(sbi, ino);
  533. llist_for_each_entry_safe(tmp, next, list, llnode) {
  534. if (tmp == &cmd) {
  535. cmd.ret = ret;
  536. atomic_dec(&fcc->issing_flush);
  537. continue;
  538. }
  539. tmp->ret = ret;
  540. complete(&tmp->wait);
  541. }
  542. }
  543. }
  544. return cmd.ret;
  545. }
  546. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  547. {
  548. dev_t dev = sbi->sb->s_bdev->bd_dev;
  549. struct flush_cmd_control *fcc;
  550. int err = 0;
  551. if (SM_I(sbi)->fcc_info) {
  552. fcc = SM_I(sbi)->fcc_info;
  553. if (fcc->f2fs_issue_flush)
  554. return err;
  555. goto init_thread;
  556. }
  557. fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
  558. if (!fcc)
  559. return -ENOMEM;
  560. atomic_set(&fcc->issued_flush, 0);
  561. atomic_set(&fcc->issing_flush, 0);
  562. init_waitqueue_head(&fcc->flush_wait_queue);
  563. init_llist_head(&fcc->issue_list);
  564. SM_I(sbi)->fcc_info = fcc;
  565. if (!test_opt(sbi, FLUSH_MERGE))
  566. return err;
  567. init_thread:
  568. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  569. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  570. if (IS_ERR(fcc->f2fs_issue_flush)) {
  571. err = PTR_ERR(fcc->f2fs_issue_flush);
  572. kfree(fcc);
  573. SM_I(sbi)->fcc_info = NULL;
  574. return err;
  575. }
  576. return err;
  577. }
  578. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  579. {
  580. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  581. if (fcc && fcc->f2fs_issue_flush) {
  582. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  583. fcc->f2fs_issue_flush = NULL;
  584. kthread_stop(flush_thread);
  585. }
  586. if (free) {
  587. kfree(fcc);
  588. SM_I(sbi)->fcc_info = NULL;
  589. }
  590. }
  591. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  592. {
  593. int ret = 0, i;
  594. if (!sbi->s_ndevs)
  595. return 0;
  596. for (i = 1; i < sbi->s_ndevs; i++) {
  597. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  598. continue;
  599. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  600. if (ret)
  601. break;
  602. spin_lock(&sbi->dev_lock);
  603. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  604. spin_unlock(&sbi->dev_lock);
  605. }
  606. return ret;
  607. }
  608. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  609. enum dirty_type dirty_type)
  610. {
  611. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  612. /* need not be added */
  613. if (IS_CURSEG(sbi, segno))
  614. return;
  615. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  616. dirty_i->nr_dirty[dirty_type]++;
  617. if (dirty_type == DIRTY) {
  618. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  619. enum dirty_type t = sentry->type;
  620. if (unlikely(t >= DIRTY)) {
  621. f2fs_bug_on(sbi, 1);
  622. return;
  623. }
  624. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  625. dirty_i->nr_dirty[t]++;
  626. }
  627. }
  628. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  629. enum dirty_type dirty_type)
  630. {
  631. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  632. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  633. dirty_i->nr_dirty[dirty_type]--;
  634. if (dirty_type == DIRTY) {
  635. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  636. enum dirty_type t = sentry->type;
  637. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  638. dirty_i->nr_dirty[t]--;
  639. if (get_valid_blocks(sbi, segno, true) == 0)
  640. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  641. dirty_i->victim_secmap);
  642. }
  643. }
  644. /*
  645. * Should not occur error such as -ENOMEM.
  646. * Adding dirty entry into seglist is not critical operation.
  647. * If a given segment is one of current working segments, it won't be added.
  648. */
  649. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  650. {
  651. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  652. unsigned short valid_blocks;
  653. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  654. return;
  655. mutex_lock(&dirty_i->seglist_lock);
  656. valid_blocks = get_valid_blocks(sbi, segno, false);
  657. if (valid_blocks == 0) {
  658. __locate_dirty_segment(sbi, segno, PRE);
  659. __remove_dirty_segment(sbi, segno, DIRTY);
  660. } else if (valid_blocks < sbi->blocks_per_seg) {
  661. __locate_dirty_segment(sbi, segno, DIRTY);
  662. } else {
  663. /* Recovery routine with SSR needs this */
  664. __remove_dirty_segment(sbi, segno, DIRTY);
  665. }
  666. mutex_unlock(&dirty_i->seglist_lock);
  667. }
  668. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  669. struct block_device *bdev, block_t lstart,
  670. block_t start, block_t len)
  671. {
  672. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  673. struct list_head *pend_list;
  674. struct discard_cmd *dc;
  675. f2fs_bug_on(sbi, !len);
  676. pend_list = &dcc->pend_list[plist_idx(len)];
  677. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  678. INIT_LIST_HEAD(&dc->list);
  679. dc->bdev = bdev;
  680. dc->lstart = lstart;
  681. dc->start = start;
  682. dc->len = len;
  683. dc->ref = 0;
  684. dc->state = D_PREP;
  685. dc->error = 0;
  686. init_completion(&dc->wait);
  687. list_add_tail(&dc->list, pend_list);
  688. atomic_inc(&dcc->discard_cmd_cnt);
  689. dcc->undiscard_blks += len;
  690. return dc;
  691. }
  692. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  693. struct block_device *bdev, block_t lstart,
  694. block_t start, block_t len,
  695. struct rb_node *parent, struct rb_node **p)
  696. {
  697. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  698. struct discard_cmd *dc;
  699. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  700. rb_link_node(&dc->rb_node, parent, p);
  701. rb_insert_color(&dc->rb_node, &dcc->root);
  702. return dc;
  703. }
  704. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  705. struct discard_cmd *dc)
  706. {
  707. if (dc->state == D_DONE)
  708. atomic_dec(&dcc->issing_discard);
  709. list_del(&dc->list);
  710. rb_erase(&dc->rb_node, &dcc->root);
  711. dcc->undiscard_blks -= dc->len;
  712. kmem_cache_free(discard_cmd_slab, dc);
  713. atomic_dec(&dcc->discard_cmd_cnt);
  714. }
  715. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  716. struct discard_cmd *dc)
  717. {
  718. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  719. trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
  720. f2fs_bug_on(sbi, dc->ref);
  721. if (dc->error == -EOPNOTSUPP)
  722. dc->error = 0;
  723. if (dc->error)
  724. f2fs_msg(sbi->sb, KERN_INFO,
  725. "Issue discard(%u, %u, %u) failed, ret: %d",
  726. dc->lstart, dc->start, dc->len, dc->error);
  727. __detach_discard_cmd(dcc, dc);
  728. }
  729. static void f2fs_submit_discard_endio(struct bio *bio)
  730. {
  731. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  732. dc->error = blk_status_to_errno(bio->bi_status);
  733. dc->state = D_DONE;
  734. complete_all(&dc->wait);
  735. bio_put(bio);
  736. }
  737. static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  738. block_t start, block_t end)
  739. {
  740. #ifdef CONFIG_F2FS_CHECK_FS
  741. struct seg_entry *sentry;
  742. unsigned int segno;
  743. block_t blk = start;
  744. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  745. unsigned long *map;
  746. while (blk < end) {
  747. segno = GET_SEGNO(sbi, blk);
  748. sentry = get_seg_entry(sbi, segno);
  749. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  750. if (end < START_BLOCK(sbi, segno + 1))
  751. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  752. else
  753. size = max_blocks;
  754. map = (unsigned long *)(sentry->cur_valid_map);
  755. offset = __find_rev_next_bit(map, size, offset);
  756. f2fs_bug_on(sbi, offset != size);
  757. blk = START_BLOCK(sbi, segno + 1);
  758. }
  759. #endif
  760. }
  761. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  762. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  763. struct discard_policy *dpolicy,
  764. struct discard_cmd *dc)
  765. {
  766. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  767. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  768. &(dcc->fstrim_list) : &(dcc->wait_list);
  769. struct bio *bio = NULL;
  770. int flag = dpolicy->sync ? REQ_SYNC : 0;
  771. if (dc->state != D_PREP)
  772. return;
  773. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  774. dc->error = __blkdev_issue_discard(dc->bdev,
  775. SECTOR_FROM_BLOCK(dc->start),
  776. SECTOR_FROM_BLOCK(dc->len),
  777. GFP_NOFS, 0, &bio);
  778. if (!dc->error) {
  779. /* should keep before submission to avoid D_DONE right away */
  780. dc->state = D_SUBMIT;
  781. atomic_inc(&dcc->issued_discard);
  782. atomic_inc(&dcc->issing_discard);
  783. if (bio) {
  784. bio->bi_private = dc;
  785. bio->bi_end_io = f2fs_submit_discard_endio;
  786. bio->bi_opf |= flag;
  787. submit_bio(bio);
  788. list_move_tail(&dc->list, wait_list);
  789. __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
  790. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  791. }
  792. } else {
  793. __remove_discard_cmd(sbi, dc);
  794. }
  795. }
  796. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  797. struct block_device *bdev, block_t lstart,
  798. block_t start, block_t len,
  799. struct rb_node **insert_p,
  800. struct rb_node *insert_parent)
  801. {
  802. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  803. struct rb_node **p;
  804. struct rb_node *parent = NULL;
  805. struct discard_cmd *dc = NULL;
  806. if (insert_p && insert_parent) {
  807. parent = insert_parent;
  808. p = insert_p;
  809. goto do_insert;
  810. }
  811. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  812. do_insert:
  813. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  814. if (!dc)
  815. return NULL;
  816. return dc;
  817. }
  818. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  819. struct discard_cmd *dc)
  820. {
  821. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  822. }
  823. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  824. struct discard_cmd *dc, block_t blkaddr)
  825. {
  826. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  827. struct discard_info di = dc->di;
  828. bool modified = false;
  829. if (dc->state == D_DONE || dc->len == 1) {
  830. __remove_discard_cmd(sbi, dc);
  831. return;
  832. }
  833. dcc->undiscard_blks -= di.len;
  834. if (blkaddr > di.lstart) {
  835. dc->len = blkaddr - dc->lstart;
  836. dcc->undiscard_blks += dc->len;
  837. __relocate_discard_cmd(dcc, dc);
  838. modified = true;
  839. }
  840. if (blkaddr < di.lstart + di.len - 1) {
  841. if (modified) {
  842. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  843. di.start + blkaddr + 1 - di.lstart,
  844. di.lstart + di.len - 1 - blkaddr,
  845. NULL, NULL);
  846. } else {
  847. dc->lstart++;
  848. dc->len--;
  849. dc->start++;
  850. dcc->undiscard_blks += dc->len;
  851. __relocate_discard_cmd(dcc, dc);
  852. }
  853. }
  854. }
  855. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  856. struct block_device *bdev, block_t lstart,
  857. block_t start, block_t len)
  858. {
  859. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  860. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  861. struct discard_cmd *dc;
  862. struct discard_info di = {0};
  863. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  864. block_t end = lstart + len;
  865. mutex_lock(&dcc->cmd_lock);
  866. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  867. NULL, lstart,
  868. (struct rb_entry **)&prev_dc,
  869. (struct rb_entry **)&next_dc,
  870. &insert_p, &insert_parent, true);
  871. if (dc)
  872. prev_dc = dc;
  873. if (!prev_dc) {
  874. di.lstart = lstart;
  875. di.len = next_dc ? next_dc->lstart - lstart : len;
  876. di.len = min(di.len, len);
  877. di.start = start;
  878. }
  879. while (1) {
  880. struct rb_node *node;
  881. bool merged = false;
  882. struct discard_cmd *tdc = NULL;
  883. if (prev_dc) {
  884. di.lstart = prev_dc->lstart + prev_dc->len;
  885. if (di.lstart < lstart)
  886. di.lstart = lstart;
  887. if (di.lstart >= end)
  888. break;
  889. if (!next_dc || next_dc->lstart > end)
  890. di.len = end - di.lstart;
  891. else
  892. di.len = next_dc->lstart - di.lstart;
  893. di.start = start + di.lstart - lstart;
  894. }
  895. if (!di.len)
  896. goto next;
  897. if (prev_dc && prev_dc->state == D_PREP &&
  898. prev_dc->bdev == bdev &&
  899. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  900. prev_dc->di.len += di.len;
  901. dcc->undiscard_blks += di.len;
  902. __relocate_discard_cmd(dcc, prev_dc);
  903. di = prev_dc->di;
  904. tdc = prev_dc;
  905. merged = true;
  906. }
  907. if (next_dc && next_dc->state == D_PREP &&
  908. next_dc->bdev == bdev &&
  909. __is_discard_front_mergeable(&di, &next_dc->di)) {
  910. next_dc->di.lstart = di.lstart;
  911. next_dc->di.len += di.len;
  912. next_dc->di.start = di.start;
  913. dcc->undiscard_blks += di.len;
  914. __relocate_discard_cmd(dcc, next_dc);
  915. if (tdc)
  916. __remove_discard_cmd(sbi, tdc);
  917. merged = true;
  918. }
  919. if (!merged) {
  920. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  921. di.len, NULL, NULL);
  922. }
  923. next:
  924. prev_dc = next_dc;
  925. if (!prev_dc)
  926. break;
  927. node = rb_next(&prev_dc->rb_node);
  928. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  929. }
  930. mutex_unlock(&dcc->cmd_lock);
  931. }
  932. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  933. struct block_device *bdev, block_t blkstart, block_t blklen)
  934. {
  935. block_t lblkstart = blkstart;
  936. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  937. if (sbi->s_ndevs) {
  938. int devi = f2fs_target_device_index(sbi, blkstart);
  939. blkstart -= FDEV(devi).start_blk;
  940. }
  941. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  942. return 0;
  943. }
  944. static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  945. struct discard_policy *dpolicy,
  946. unsigned int start, unsigned int end)
  947. {
  948. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  949. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  950. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  951. struct discard_cmd *dc;
  952. struct blk_plug plug;
  953. int issued;
  954. next:
  955. issued = 0;
  956. mutex_lock(&dcc->cmd_lock);
  957. f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
  958. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  959. NULL, start,
  960. (struct rb_entry **)&prev_dc,
  961. (struct rb_entry **)&next_dc,
  962. &insert_p, &insert_parent, true);
  963. if (!dc)
  964. dc = next_dc;
  965. blk_start_plug(&plug);
  966. while (dc && dc->lstart <= end) {
  967. struct rb_node *node;
  968. if (dc->len < dpolicy->granularity)
  969. goto skip;
  970. if (dc->state != D_PREP) {
  971. list_move_tail(&dc->list, &dcc->fstrim_list);
  972. goto skip;
  973. }
  974. __submit_discard_cmd(sbi, dpolicy, dc);
  975. if (++issued >= dpolicy->max_requests) {
  976. start = dc->lstart + dc->len;
  977. blk_finish_plug(&plug);
  978. mutex_unlock(&dcc->cmd_lock);
  979. schedule();
  980. goto next;
  981. }
  982. skip:
  983. node = rb_next(&dc->rb_node);
  984. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  985. if (fatal_signal_pending(current))
  986. break;
  987. }
  988. blk_finish_plug(&plug);
  989. mutex_unlock(&dcc->cmd_lock);
  990. }
  991. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  992. struct discard_policy *dpolicy)
  993. {
  994. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  995. struct list_head *pend_list;
  996. struct discard_cmd *dc, *tmp;
  997. struct blk_plug plug;
  998. int i, iter = 0, issued = 0;
  999. bool io_interrupted = false;
  1000. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1001. if (i + 1 < dpolicy->granularity)
  1002. break;
  1003. pend_list = &dcc->pend_list[i];
  1004. mutex_lock(&dcc->cmd_lock);
  1005. if (list_empty(pend_list))
  1006. goto next;
  1007. f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
  1008. blk_start_plug(&plug);
  1009. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1010. f2fs_bug_on(sbi, dc->state != D_PREP);
  1011. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  1012. !is_idle(sbi)) {
  1013. io_interrupted = true;
  1014. goto skip;
  1015. }
  1016. __submit_discard_cmd(sbi, dpolicy, dc);
  1017. issued++;
  1018. skip:
  1019. if (++iter >= dpolicy->max_requests)
  1020. break;
  1021. }
  1022. blk_finish_plug(&plug);
  1023. next:
  1024. mutex_unlock(&dcc->cmd_lock);
  1025. if (iter >= dpolicy->max_requests)
  1026. break;
  1027. }
  1028. if (!issued && io_interrupted)
  1029. issued = -1;
  1030. return issued;
  1031. }
  1032. static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
  1033. {
  1034. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1035. struct list_head *pend_list;
  1036. struct discard_cmd *dc, *tmp;
  1037. int i;
  1038. bool dropped = false;
  1039. mutex_lock(&dcc->cmd_lock);
  1040. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1041. pend_list = &dcc->pend_list[i];
  1042. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1043. f2fs_bug_on(sbi, dc->state != D_PREP);
  1044. __remove_discard_cmd(sbi, dc);
  1045. dropped = true;
  1046. }
  1047. }
  1048. mutex_unlock(&dcc->cmd_lock);
  1049. return dropped;
  1050. }
  1051. void drop_discard_cmd(struct f2fs_sb_info *sbi)
  1052. {
  1053. __drop_discard_cmd(sbi);
  1054. }
  1055. static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1056. struct discard_cmd *dc)
  1057. {
  1058. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1059. unsigned int len = 0;
  1060. wait_for_completion_io(&dc->wait);
  1061. mutex_lock(&dcc->cmd_lock);
  1062. f2fs_bug_on(sbi, dc->state != D_DONE);
  1063. dc->ref--;
  1064. if (!dc->ref) {
  1065. if (!dc->error)
  1066. len = dc->len;
  1067. __remove_discard_cmd(sbi, dc);
  1068. }
  1069. mutex_unlock(&dcc->cmd_lock);
  1070. return len;
  1071. }
  1072. static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1073. struct discard_policy *dpolicy,
  1074. block_t start, block_t end)
  1075. {
  1076. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1077. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1078. &(dcc->fstrim_list) : &(dcc->wait_list);
  1079. struct discard_cmd *dc, *tmp;
  1080. bool need_wait;
  1081. unsigned int trimmed = 0;
  1082. next:
  1083. need_wait = false;
  1084. mutex_lock(&dcc->cmd_lock);
  1085. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1086. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1087. continue;
  1088. if (dc->len < dpolicy->granularity)
  1089. continue;
  1090. if (dc->state == D_DONE && !dc->ref) {
  1091. wait_for_completion_io(&dc->wait);
  1092. if (!dc->error)
  1093. trimmed += dc->len;
  1094. __remove_discard_cmd(sbi, dc);
  1095. } else {
  1096. dc->ref++;
  1097. need_wait = true;
  1098. break;
  1099. }
  1100. }
  1101. mutex_unlock(&dcc->cmd_lock);
  1102. if (need_wait) {
  1103. trimmed += __wait_one_discard_bio(sbi, dc);
  1104. goto next;
  1105. }
  1106. return trimmed;
  1107. }
  1108. static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1109. struct discard_policy *dpolicy)
  1110. {
  1111. __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1112. }
  1113. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1114. static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1115. {
  1116. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1117. struct discard_cmd *dc;
  1118. bool need_wait = false;
  1119. mutex_lock(&dcc->cmd_lock);
  1120. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  1121. if (dc) {
  1122. if (dc->state == D_PREP) {
  1123. __punch_discard_cmd(sbi, dc, blkaddr);
  1124. } else {
  1125. dc->ref++;
  1126. need_wait = true;
  1127. }
  1128. }
  1129. mutex_unlock(&dcc->cmd_lock);
  1130. if (need_wait)
  1131. __wait_one_discard_bio(sbi, dc);
  1132. }
  1133. void stop_discard_thread(struct f2fs_sb_info *sbi)
  1134. {
  1135. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1136. if (dcc && dcc->f2fs_issue_discard) {
  1137. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1138. dcc->f2fs_issue_discard = NULL;
  1139. kthread_stop(discard_thread);
  1140. }
  1141. }
  1142. /* This comes from f2fs_put_super */
  1143. bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1144. {
  1145. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1146. struct discard_policy dpolicy;
  1147. bool dropped;
  1148. init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
  1149. __issue_discard_cmd(sbi, &dpolicy);
  1150. dropped = __drop_discard_cmd(sbi);
  1151. __wait_all_discard_cmd(sbi, &dpolicy);
  1152. return dropped;
  1153. }
  1154. static int issue_discard_thread(void *data)
  1155. {
  1156. struct f2fs_sb_info *sbi = data;
  1157. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1158. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1159. struct discard_policy dpolicy;
  1160. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1161. int issued;
  1162. set_freezable();
  1163. do {
  1164. init_discard_policy(&dpolicy, DPOLICY_BG,
  1165. dcc->discard_granularity);
  1166. wait_event_interruptible_timeout(*q,
  1167. kthread_should_stop() || freezing(current) ||
  1168. dcc->discard_wake,
  1169. msecs_to_jiffies(wait_ms));
  1170. if (try_to_freeze())
  1171. continue;
  1172. if (f2fs_readonly(sbi->sb))
  1173. continue;
  1174. if (kthread_should_stop())
  1175. return 0;
  1176. if (dcc->discard_wake) {
  1177. dcc->discard_wake = 0;
  1178. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  1179. init_discard_policy(&dpolicy,
  1180. DPOLICY_FORCE, 1);
  1181. }
  1182. sb_start_intwrite(sbi->sb);
  1183. issued = __issue_discard_cmd(sbi, &dpolicy);
  1184. if (issued) {
  1185. __wait_all_discard_cmd(sbi, &dpolicy);
  1186. wait_ms = dpolicy.min_interval;
  1187. } else {
  1188. wait_ms = dpolicy.max_interval;
  1189. }
  1190. sb_end_intwrite(sbi->sb);
  1191. } while (!kthread_should_stop());
  1192. return 0;
  1193. }
  1194. #ifdef CONFIG_BLK_DEV_ZONED
  1195. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1196. struct block_device *bdev, block_t blkstart, block_t blklen)
  1197. {
  1198. sector_t sector, nr_sects;
  1199. block_t lblkstart = blkstart;
  1200. int devi = 0;
  1201. if (sbi->s_ndevs) {
  1202. devi = f2fs_target_device_index(sbi, blkstart);
  1203. blkstart -= FDEV(devi).start_blk;
  1204. }
  1205. /*
  1206. * We need to know the type of the zone: for conventional zones,
  1207. * use regular discard if the drive supports it. For sequential
  1208. * zones, reset the zone write pointer.
  1209. */
  1210. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1211. case BLK_ZONE_TYPE_CONVENTIONAL:
  1212. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1213. return 0;
  1214. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1215. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1216. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1217. sector = SECTOR_FROM_BLOCK(blkstart);
  1218. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1219. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1220. nr_sects != bdev_zone_sectors(bdev)) {
  1221. f2fs_msg(sbi->sb, KERN_INFO,
  1222. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1223. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1224. blkstart, blklen);
  1225. return -EIO;
  1226. }
  1227. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1228. return blkdev_reset_zones(bdev, sector,
  1229. nr_sects, GFP_NOFS);
  1230. default:
  1231. /* Unknown zone type: broken device ? */
  1232. return -EIO;
  1233. }
  1234. }
  1235. #endif
  1236. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1237. struct block_device *bdev, block_t blkstart, block_t blklen)
  1238. {
  1239. #ifdef CONFIG_BLK_DEV_ZONED
  1240. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  1241. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1242. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1243. #endif
  1244. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1245. }
  1246. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1247. block_t blkstart, block_t blklen)
  1248. {
  1249. sector_t start = blkstart, len = 0;
  1250. struct block_device *bdev;
  1251. struct seg_entry *se;
  1252. unsigned int offset;
  1253. block_t i;
  1254. int err = 0;
  1255. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1256. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1257. if (i != start) {
  1258. struct block_device *bdev2 =
  1259. f2fs_target_device(sbi, i, NULL);
  1260. if (bdev2 != bdev) {
  1261. err = __issue_discard_async(sbi, bdev,
  1262. start, len);
  1263. if (err)
  1264. return err;
  1265. bdev = bdev2;
  1266. start = i;
  1267. len = 0;
  1268. }
  1269. }
  1270. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1271. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1272. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1273. sbi->discard_blks--;
  1274. }
  1275. if (len)
  1276. err = __issue_discard_async(sbi, bdev, start, len);
  1277. return err;
  1278. }
  1279. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1280. bool check_only)
  1281. {
  1282. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1283. int max_blocks = sbi->blocks_per_seg;
  1284. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1285. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1286. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1287. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1288. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1289. unsigned int start = 0, end = -1;
  1290. bool force = (cpc->reason & CP_DISCARD);
  1291. struct discard_entry *de = NULL;
  1292. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1293. int i;
  1294. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1295. return false;
  1296. if (!force) {
  1297. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1298. SM_I(sbi)->dcc_info->nr_discards >=
  1299. SM_I(sbi)->dcc_info->max_discards)
  1300. return false;
  1301. }
  1302. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1303. for (i = 0; i < entries; i++)
  1304. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1305. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1306. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1307. SM_I(sbi)->dcc_info->max_discards) {
  1308. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1309. if (start >= max_blocks)
  1310. break;
  1311. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1312. if (force && start && end != max_blocks
  1313. && (end - start) < cpc->trim_minlen)
  1314. continue;
  1315. if (check_only)
  1316. return true;
  1317. if (!de) {
  1318. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1319. GFP_F2FS_ZERO);
  1320. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1321. list_add_tail(&de->list, head);
  1322. }
  1323. for (i = start; i < end; i++)
  1324. __set_bit_le(i, (void *)de->discard_map);
  1325. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1326. }
  1327. return false;
  1328. }
  1329. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1330. {
  1331. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1332. struct discard_entry *entry, *this;
  1333. /* drop caches */
  1334. list_for_each_entry_safe(entry, this, head, list) {
  1335. list_del(&entry->list);
  1336. kmem_cache_free(discard_entry_slab, entry);
  1337. }
  1338. }
  1339. /*
  1340. * Should call clear_prefree_segments after checkpoint is done.
  1341. */
  1342. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1343. {
  1344. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1345. unsigned int segno;
  1346. mutex_lock(&dirty_i->seglist_lock);
  1347. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1348. __set_test_and_free(sbi, segno);
  1349. mutex_unlock(&dirty_i->seglist_lock);
  1350. }
  1351. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1352. {
  1353. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1354. struct list_head *head = &dcc->entry_list;
  1355. struct discard_entry *entry, *this;
  1356. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1357. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1358. unsigned int start = 0, end = -1;
  1359. unsigned int secno, start_segno;
  1360. bool force = (cpc->reason & CP_DISCARD);
  1361. mutex_lock(&dirty_i->seglist_lock);
  1362. while (1) {
  1363. int i;
  1364. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1365. if (start >= MAIN_SEGS(sbi))
  1366. break;
  1367. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1368. start + 1);
  1369. for (i = start; i < end; i++)
  1370. clear_bit(i, prefree_map);
  1371. dirty_i->nr_dirty[PRE] -= end - start;
  1372. if (!test_opt(sbi, DISCARD))
  1373. continue;
  1374. if (force && start >= cpc->trim_start &&
  1375. (end - 1) <= cpc->trim_end)
  1376. continue;
  1377. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1378. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1379. (end - start) << sbi->log_blocks_per_seg);
  1380. continue;
  1381. }
  1382. next:
  1383. secno = GET_SEC_FROM_SEG(sbi, start);
  1384. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1385. if (!IS_CURSEC(sbi, secno) &&
  1386. !get_valid_blocks(sbi, start, true))
  1387. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1388. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1389. start = start_segno + sbi->segs_per_sec;
  1390. if (start < end)
  1391. goto next;
  1392. else
  1393. end = start - 1;
  1394. }
  1395. mutex_unlock(&dirty_i->seglist_lock);
  1396. /* send small discards */
  1397. list_for_each_entry_safe(entry, this, head, list) {
  1398. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1399. bool is_valid = test_bit_le(0, entry->discard_map);
  1400. find_next:
  1401. if (is_valid) {
  1402. next_pos = find_next_zero_bit_le(entry->discard_map,
  1403. sbi->blocks_per_seg, cur_pos);
  1404. len = next_pos - cur_pos;
  1405. if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
  1406. (force && len < cpc->trim_minlen))
  1407. goto skip;
  1408. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1409. len);
  1410. total_len += len;
  1411. } else {
  1412. next_pos = find_next_bit_le(entry->discard_map,
  1413. sbi->blocks_per_seg, cur_pos);
  1414. }
  1415. skip:
  1416. cur_pos = next_pos;
  1417. is_valid = !is_valid;
  1418. if (cur_pos < sbi->blocks_per_seg)
  1419. goto find_next;
  1420. list_del(&entry->list);
  1421. dcc->nr_discards -= total_len;
  1422. kmem_cache_free(discard_entry_slab, entry);
  1423. }
  1424. wake_up_discard_thread(sbi, false);
  1425. }
  1426. void init_discard_policy(struct discard_policy *dpolicy,
  1427. int discard_type, unsigned int granularity)
  1428. {
  1429. /* common policy */
  1430. dpolicy->type = discard_type;
  1431. dpolicy->sync = true;
  1432. dpolicy->granularity = granularity;
  1433. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1434. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1435. if (discard_type == DPOLICY_BG) {
  1436. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  1437. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  1438. dpolicy->io_aware = true;
  1439. } else if (discard_type == DPOLICY_FORCE) {
  1440. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  1441. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  1442. dpolicy->io_aware = true;
  1443. } else if (discard_type == DPOLICY_FSTRIM) {
  1444. dpolicy->io_aware = false;
  1445. } else if (discard_type == DPOLICY_UMOUNT) {
  1446. dpolicy->io_aware = false;
  1447. }
  1448. }
  1449. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1450. {
  1451. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1452. struct discard_cmd_control *dcc;
  1453. int err = 0, i;
  1454. if (SM_I(sbi)->dcc_info) {
  1455. dcc = SM_I(sbi)->dcc_info;
  1456. goto init_thread;
  1457. }
  1458. dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
  1459. if (!dcc)
  1460. return -ENOMEM;
  1461. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1462. INIT_LIST_HEAD(&dcc->entry_list);
  1463. for (i = 0; i < MAX_PLIST_NUM; i++)
  1464. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1465. INIT_LIST_HEAD(&dcc->wait_list);
  1466. INIT_LIST_HEAD(&dcc->fstrim_list);
  1467. mutex_init(&dcc->cmd_lock);
  1468. atomic_set(&dcc->issued_discard, 0);
  1469. atomic_set(&dcc->issing_discard, 0);
  1470. atomic_set(&dcc->discard_cmd_cnt, 0);
  1471. dcc->nr_discards = 0;
  1472. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1473. dcc->undiscard_blks = 0;
  1474. dcc->root = RB_ROOT;
  1475. init_waitqueue_head(&dcc->discard_wait_queue);
  1476. SM_I(sbi)->dcc_info = dcc;
  1477. init_thread:
  1478. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1479. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1480. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1481. err = PTR_ERR(dcc->f2fs_issue_discard);
  1482. kfree(dcc);
  1483. SM_I(sbi)->dcc_info = NULL;
  1484. return err;
  1485. }
  1486. return err;
  1487. }
  1488. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1489. {
  1490. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1491. if (!dcc)
  1492. return;
  1493. stop_discard_thread(sbi);
  1494. kfree(dcc);
  1495. SM_I(sbi)->dcc_info = NULL;
  1496. }
  1497. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1498. {
  1499. struct sit_info *sit_i = SIT_I(sbi);
  1500. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1501. sit_i->dirty_sentries++;
  1502. return false;
  1503. }
  1504. return true;
  1505. }
  1506. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1507. unsigned int segno, int modified)
  1508. {
  1509. struct seg_entry *se = get_seg_entry(sbi, segno);
  1510. se->type = type;
  1511. if (modified)
  1512. __mark_sit_entry_dirty(sbi, segno);
  1513. }
  1514. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1515. {
  1516. struct seg_entry *se;
  1517. unsigned int segno, offset;
  1518. long int new_vblocks;
  1519. bool exist;
  1520. #ifdef CONFIG_F2FS_CHECK_FS
  1521. bool mir_exist;
  1522. #endif
  1523. segno = GET_SEGNO(sbi, blkaddr);
  1524. se = get_seg_entry(sbi, segno);
  1525. new_vblocks = se->valid_blocks + del;
  1526. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1527. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1528. (new_vblocks > sbi->blocks_per_seg)));
  1529. se->valid_blocks = new_vblocks;
  1530. se->mtime = get_mtime(sbi);
  1531. SIT_I(sbi)->max_mtime = se->mtime;
  1532. /* Update valid block bitmap */
  1533. if (del > 0) {
  1534. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1535. #ifdef CONFIG_F2FS_CHECK_FS
  1536. mir_exist = f2fs_test_and_set_bit(offset,
  1537. se->cur_valid_map_mir);
  1538. if (unlikely(exist != mir_exist)) {
  1539. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1540. "when setting bitmap, blk:%u, old bit:%d",
  1541. blkaddr, exist);
  1542. f2fs_bug_on(sbi, 1);
  1543. }
  1544. #endif
  1545. if (unlikely(exist)) {
  1546. f2fs_msg(sbi->sb, KERN_ERR,
  1547. "Bitmap was wrongly set, blk:%u", blkaddr);
  1548. f2fs_bug_on(sbi, 1);
  1549. se->valid_blocks--;
  1550. del = 0;
  1551. }
  1552. if (f2fs_discard_en(sbi) &&
  1553. !f2fs_test_and_set_bit(offset, se->discard_map))
  1554. sbi->discard_blks--;
  1555. /* don't overwrite by SSR to keep node chain */
  1556. if (se->type == CURSEG_WARM_NODE) {
  1557. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1558. se->ckpt_valid_blocks++;
  1559. }
  1560. } else {
  1561. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1562. #ifdef CONFIG_F2FS_CHECK_FS
  1563. mir_exist = f2fs_test_and_clear_bit(offset,
  1564. se->cur_valid_map_mir);
  1565. if (unlikely(exist != mir_exist)) {
  1566. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1567. "when clearing bitmap, blk:%u, old bit:%d",
  1568. blkaddr, exist);
  1569. f2fs_bug_on(sbi, 1);
  1570. }
  1571. #endif
  1572. if (unlikely(!exist)) {
  1573. f2fs_msg(sbi->sb, KERN_ERR,
  1574. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1575. f2fs_bug_on(sbi, 1);
  1576. se->valid_blocks++;
  1577. del = 0;
  1578. }
  1579. if (f2fs_discard_en(sbi) &&
  1580. f2fs_test_and_clear_bit(offset, se->discard_map))
  1581. sbi->discard_blks++;
  1582. }
  1583. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1584. se->ckpt_valid_blocks += del;
  1585. __mark_sit_entry_dirty(sbi, segno);
  1586. /* update total number of valid blocks to be written in ckpt area */
  1587. SIT_I(sbi)->written_valid_blocks += del;
  1588. if (sbi->segs_per_sec > 1)
  1589. get_sec_entry(sbi, segno)->valid_blocks += del;
  1590. }
  1591. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1592. {
  1593. unsigned int segno = GET_SEGNO(sbi, addr);
  1594. struct sit_info *sit_i = SIT_I(sbi);
  1595. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1596. if (addr == NEW_ADDR)
  1597. return;
  1598. /* add it into sit main buffer */
  1599. down_write(&sit_i->sentry_lock);
  1600. update_sit_entry(sbi, addr, -1);
  1601. /* add it into dirty seglist */
  1602. locate_dirty_segment(sbi, segno);
  1603. up_write(&sit_i->sentry_lock);
  1604. }
  1605. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1606. {
  1607. struct sit_info *sit_i = SIT_I(sbi);
  1608. unsigned int segno, offset;
  1609. struct seg_entry *se;
  1610. bool is_cp = false;
  1611. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1612. return true;
  1613. down_read(&sit_i->sentry_lock);
  1614. segno = GET_SEGNO(sbi, blkaddr);
  1615. se = get_seg_entry(sbi, segno);
  1616. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1617. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1618. is_cp = true;
  1619. up_read(&sit_i->sentry_lock);
  1620. return is_cp;
  1621. }
  1622. /*
  1623. * This function should be resided under the curseg_mutex lock
  1624. */
  1625. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1626. struct f2fs_summary *sum)
  1627. {
  1628. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1629. void *addr = curseg->sum_blk;
  1630. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1631. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1632. }
  1633. /*
  1634. * Calculate the number of current summary pages for writing
  1635. */
  1636. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1637. {
  1638. int valid_sum_count = 0;
  1639. int i, sum_in_page;
  1640. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1641. if (sbi->ckpt->alloc_type[i] == SSR)
  1642. valid_sum_count += sbi->blocks_per_seg;
  1643. else {
  1644. if (for_ra)
  1645. valid_sum_count += le16_to_cpu(
  1646. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1647. else
  1648. valid_sum_count += curseg_blkoff(sbi, i);
  1649. }
  1650. }
  1651. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1652. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1653. if (valid_sum_count <= sum_in_page)
  1654. return 1;
  1655. else if ((valid_sum_count - sum_in_page) <=
  1656. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1657. return 2;
  1658. return 3;
  1659. }
  1660. /*
  1661. * Caller should put this summary page
  1662. */
  1663. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1664. {
  1665. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1666. }
  1667. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1668. {
  1669. struct page *page = grab_meta_page(sbi, blk_addr);
  1670. memcpy(page_address(page), src, PAGE_SIZE);
  1671. set_page_dirty(page);
  1672. f2fs_put_page(page, 1);
  1673. }
  1674. static void write_sum_page(struct f2fs_sb_info *sbi,
  1675. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1676. {
  1677. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1678. }
  1679. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1680. int type, block_t blk_addr)
  1681. {
  1682. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1683. struct page *page = grab_meta_page(sbi, blk_addr);
  1684. struct f2fs_summary_block *src = curseg->sum_blk;
  1685. struct f2fs_summary_block *dst;
  1686. dst = (struct f2fs_summary_block *)page_address(page);
  1687. mutex_lock(&curseg->curseg_mutex);
  1688. down_read(&curseg->journal_rwsem);
  1689. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1690. up_read(&curseg->journal_rwsem);
  1691. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1692. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1693. mutex_unlock(&curseg->curseg_mutex);
  1694. set_page_dirty(page);
  1695. f2fs_put_page(page, 1);
  1696. }
  1697. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1698. {
  1699. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1700. unsigned int segno = curseg->segno + 1;
  1701. struct free_segmap_info *free_i = FREE_I(sbi);
  1702. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1703. return !test_bit(segno, free_i->free_segmap);
  1704. return 0;
  1705. }
  1706. /*
  1707. * Find a new segment from the free segments bitmap to right order
  1708. * This function should be returned with success, otherwise BUG
  1709. */
  1710. static void get_new_segment(struct f2fs_sb_info *sbi,
  1711. unsigned int *newseg, bool new_sec, int dir)
  1712. {
  1713. struct free_segmap_info *free_i = FREE_I(sbi);
  1714. unsigned int segno, secno, zoneno;
  1715. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1716. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1717. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1718. unsigned int left_start = hint;
  1719. bool init = true;
  1720. int go_left = 0;
  1721. int i;
  1722. spin_lock(&free_i->segmap_lock);
  1723. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1724. segno = find_next_zero_bit(free_i->free_segmap,
  1725. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1726. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1727. goto got_it;
  1728. }
  1729. find_other_zone:
  1730. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1731. if (secno >= MAIN_SECS(sbi)) {
  1732. if (dir == ALLOC_RIGHT) {
  1733. secno = find_next_zero_bit(free_i->free_secmap,
  1734. MAIN_SECS(sbi), 0);
  1735. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1736. } else {
  1737. go_left = 1;
  1738. left_start = hint - 1;
  1739. }
  1740. }
  1741. if (go_left == 0)
  1742. goto skip_left;
  1743. while (test_bit(left_start, free_i->free_secmap)) {
  1744. if (left_start > 0) {
  1745. left_start--;
  1746. continue;
  1747. }
  1748. left_start = find_next_zero_bit(free_i->free_secmap,
  1749. MAIN_SECS(sbi), 0);
  1750. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1751. break;
  1752. }
  1753. secno = left_start;
  1754. skip_left:
  1755. segno = GET_SEG_FROM_SEC(sbi, secno);
  1756. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1757. /* give up on finding another zone */
  1758. if (!init)
  1759. goto got_it;
  1760. if (sbi->secs_per_zone == 1)
  1761. goto got_it;
  1762. if (zoneno == old_zoneno)
  1763. goto got_it;
  1764. if (dir == ALLOC_LEFT) {
  1765. if (!go_left && zoneno + 1 >= total_zones)
  1766. goto got_it;
  1767. if (go_left && zoneno == 0)
  1768. goto got_it;
  1769. }
  1770. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1771. if (CURSEG_I(sbi, i)->zone == zoneno)
  1772. break;
  1773. if (i < NR_CURSEG_TYPE) {
  1774. /* zone is in user, try another */
  1775. if (go_left)
  1776. hint = zoneno * sbi->secs_per_zone - 1;
  1777. else if (zoneno + 1 >= total_zones)
  1778. hint = 0;
  1779. else
  1780. hint = (zoneno + 1) * sbi->secs_per_zone;
  1781. init = false;
  1782. goto find_other_zone;
  1783. }
  1784. got_it:
  1785. /* set it as dirty segment in free segmap */
  1786. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1787. __set_inuse(sbi, segno);
  1788. *newseg = segno;
  1789. spin_unlock(&free_i->segmap_lock);
  1790. }
  1791. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1792. {
  1793. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1794. struct summary_footer *sum_footer;
  1795. curseg->segno = curseg->next_segno;
  1796. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1797. curseg->next_blkoff = 0;
  1798. curseg->next_segno = NULL_SEGNO;
  1799. sum_footer = &(curseg->sum_blk->footer);
  1800. memset(sum_footer, 0, sizeof(struct summary_footer));
  1801. if (IS_DATASEG(type))
  1802. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1803. if (IS_NODESEG(type))
  1804. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1805. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1806. }
  1807. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1808. {
  1809. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1810. if (sbi->segs_per_sec != 1)
  1811. return CURSEG_I(sbi, type)->segno;
  1812. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1813. return 0;
  1814. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1815. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1816. return CURSEG_I(sbi, type)->segno;
  1817. }
  1818. /*
  1819. * Allocate a current working segment.
  1820. * This function always allocates a free segment in LFS manner.
  1821. */
  1822. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1823. {
  1824. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1825. unsigned int segno = curseg->segno;
  1826. int dir = ALLOC_LEFT;
  1827. write_sum_page(sbi, curseg->sum_blk,
  1828. GET_SUM_BLOCK(sbi, segno));
  1829. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1830. dir = ALLOC_RIGHT;
  1831. if (test_opt(sbi, NOHEAP))
  1832. dir = ALLOC_RIGHT;
  1833. segno = __get_next_segno(sbi, type);
  1834. get_new_segment(sbi, &segno, new_sec, dir);
  1835. curseg->next_segno = segno;
  1836. reset_curseg(sbi, type, 1);
  1837. curseg->alloc_type = LFS;
  1838. }
  1839. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1840. struct curseg_info *seg, block_t start)
  1841. {
  1842. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1843. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1844. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1845. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1846. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1847. int i, pos;
  1848. for (i = 0; i < entries; i++)
  1849. target_map[i] = ckpt_map[i] | cur_map[i];
  1850. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1851. seg->next_blkoff = pos;
  1852. }
  1853. /*
  1854. * If a segment is written by LFS manner, next block offset is just obtained
  1855. * by increasing the current block offset. However, if a segment is written by
  1856. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1857. */
  1858. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1859. struct curseg_info *seg)
  1860. {
  1861. if (seg->alloc_type == SSR)
  1862. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1863. else
  1864. seg->next_blkoff++;
  1865. }
  1866. /*
  1867. * This function always allocates a used segment(from dirty seglist) by SSR
  1868. * manner, so it should recover the existing segment information of valid blocks
  1869. */
  1870. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  1871. {
  1872. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1873. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1874. unsigned int new_segno = curseg->next_segno;
  1875. struct f2fs_summary_block *sum_node;
  1876. struct page *sum_page;
  1877. write_sum_page(sbi, curseg->sum_blk,
  1878. GET_SUM_BLOCK(sbi, curseg->segno));
  1879. __set_test_and_inuse(sbi, new_segno);
  1880. mutex_lock(&dirty_i->seglist_lock);
  1881. __remove_dirty_segment(sbi, new_segno, PRE);
  1882. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1883. mutex_unlock(&dirty_i->seglist_lock);
  1884. reset_curseg(sbi, type, 1);
  1885. curseg->alloc_type = SSR;
  1886. __next_free_blkoff(sbi, curseg, 0);
  1887. sum_page = get_sum_page(sbi, new_segno);
  1888. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1889. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1890. f2fs_put_page(sum_page, 1);
  1891. }
  1892. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1893. {
  1894. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1895. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1896. unsigned segno = NULL_SEGNO;
  1897. int i, cnt;
  1898. bool reversed = false;
  1899. /* need_SSR() already forces to do this */
  1900. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  1901. curseg->next_segno = segno;
  1902. return 1;
  1903. }
  1904. /* For node segments, let's do SSR more intensively */
  1905. if (IS_NODESEG(type)) {
  1906. if (type >= CURSEG_WARM_NODE) {
  1907. reversed = true;
  1908. i = CURSEG_COLD_NODE;
  1909. } else {
  1910. i = CURSEG_HOT_NODE;
  1911. }
  1912. cnt = NR_CURSEG_NODE_TYPE;
  1913. } else {
  1914. if (type >= CURSEG_WARM_DATA) {
  1915. reversed = true;
  1916. i = CURSEG_COLD_DATA;
  1917. } else {
  1918. i = CURSEG_HOT_DATA;
  1919. }
  1920. cnt = NR_CURSEG_DATA_TYPE;
  1921. }
  1922. for (; cnt-- > 0; reversed ? i-- : i++) {
  1923. if (i == type)
  1924. continue;
  1925. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  1926. curseg->next_segno = segno;
  1927. return 1;
  1928. }
  1929. }
  1930. return 0;
  1931. }
  1932. /*
  1933. * flush out current segment and replace it with new segment
  1934. * This function should be returned with success, otherwise BUG
  1935. */
  1936. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1937. int type, bool force)
  1938. {
  1939. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1940. if (force)
  1941. new_curseg(sbi, type, true);
  1942. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1943. type == CURSEG_WARM_NODE)
  1944. new_curseg(sbi, type, false);
  1945. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1946. new_curseg(sbi, type, false);
  1947. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1948. change_curseg(sbi, type);
  1949. else
  1950. new_curseg(sbi, type, false);
  1951. stat_inc_seg_type(sbi, curseg);
  1952. }
  1953. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1954. {
  1955. struct curseg_info *curseg;
  1956. unsigned int old_segno;
  1957. int i;
  1958. down_write(&SIT_I(sbi)->sentry_lock);
  1959. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1960. curseg = CURSEG_I(sbi, i);
  1961. old_segno = curseg->segno;
  1962. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1963. locate_dirty_segment(sbi, old_segno);
  1964. }
  1965. up_write(&SIT_I(sbi)->sentry_lock);
  1966. }
  1967. static const struct segment_allocation default_salloc_ops = {
  1968. .allocate_segment = allocate_segment_by_default,
  1969. };
  1970. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1971. {
  1972. __u64 trim_start = cpc->trim_start;
  1973. bool has_candidate = false;
  1974. down_write(&SIT_I(sbi)->sentry_lock);
  1975. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1976. if (add_discard_addrs(sbi, cpc, true)) {
  1977. has_candidate = true;
  1978. break;
  1979. }
  1980. }
  1981. up_write(&SIT_I(sbi)->sentry_lock);
  1982. cpc->trim_start = trim_start;
  1983. return has_candidate;
  1984. }
  1985. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1986. {
  1987. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1988. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1989. unsigned int start_segno, end_segno, cur_segno;
  1990. block_t start_block, end_block;
  1991. struct cp_control cpc;
  1992. struct discard_policy dpolicy;
  1993. unsigned long long trimmed = 0;
  1994. int err = 0;
  1995. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1996. return -EINVAL;
  1997. if (end <= MAIN_BLKADDR(sbi))
  1998. goto out;
  1999. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  2000. f2fs_msg(sbi->sb, KERN_WARNING,
  2001. "Found FS corruption, run fsck to fix.");
  2002. goto out;
  2003. }
  2004. /* start/end segment number in main_area */
  2005. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  2006. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  2007. GET_SEGNO(sbi, end);
  2008. cpc.reason = CP_DISCARD;
  2009. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  2010. /* do checkpoint to issue discard commands safely */
  2011. for (cur_segno = start_segno; cur_segno <= end_segno;
  2012. cur_segno = cpc.trim_end + 1) {
  2013. cpc.trim_start = cur_segno;
  2014. if (sbi->discard_blks == 0)
  2015. break;
  2016. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  2017. cpc.trim_end = end_segno;
  2018. else
  2019. cpc.trim_end = min_t(unsigned int,
  2020. rounddown(cur_segno +
  2021. BATCHED_TRIM_SEGMENTS(sbi),
  2022. sbi->segs_per_sec) - 1, end_segno);
  2023. mutex_lock(&sbi->gc_mutex);
  2024. err = write_checkpoint(sbi, &cpc);
  2025. mutex_unlock(&sbi->gc_mutex);
  2026. if (err)
  2027. break;
  2028. schedule();
  2029. }
  2030. start_block = START_BLOCK(sbi, start_segno);
  2031. end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
  2032. init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  2033. __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
  2034. trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
  2035. start_block, end_block);
  2036. out:
  2037. range->len = F2FS_BLK_TO_BYTES(trimmed);
  2038. return err;
  2039. }
  2040. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  2041. {
  2042. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2043. if (curseg->next_blkoff < sbi->blocks_per_seg)
  2044. return true;
  2045. return false;
  2046. }
  2047. int rw_hint_to_seg_type(enum rw_hint hint)
  2048. {
  2049. switch (hint) {
  2050. case WRITE_LIFE_SHORT:
  2051. return CURSEG_HOT_DATA;
  2052. case WRITE_LIFE_EXTREME:
  2053. return CURSEG_COLD_DATA;
  2054. default:
  2055. return CURSEG_WARM_DATA;
  2056. }
  2057. }
  2058. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2059. {
  2060. if (fio->type == DATA)
  2061. return CURSEG_HOT_DATA;
  2062. else
  2063. return CURSEG_HOT_NODE;
  2064. }
  2065. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2066. {
  2067. if (fio->type == DATA) {
  2068. struct inode *inode = fio->page->mapping->host;
  2069. if (S_ISDIR(inode->i_mode))
  2070. return CURSEG_HOT_DATA;
  2071. else
  2072. return CURSEG_COLD_DATA;
  2073. } else {
  2074. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2075. return CURSEG_WARM_NODE;
  2076. else
  2077. return CURSEG_COLD_NODE;
  2078. }
  2079. }
  2080. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2081. {
  2082. if (fio->type == DATA) {
  2083. struct inode *inode = fio->page->mapping->host;
  2084. if (is_cold_data(fio->page) || file_is_cold(inode))
  2085. return CURSEG_COLD_DATA;
  2086. if (is_inode_flag_set(inode, FI_HOT_DATA))
  2087. return CURSEG_HOT_DATA;
  2088. return rw_hint_to_seg_type(inode->i_write_hint);
  2089. } else {
  2090. if (IS_DNODE(fio->page))
  2091. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2092. CURSEG_HOT_NODE;
  2093. return CURSEG_COLD_NODE;
  2094. }
  2095. }
  2096. static int __get_segment_type(struct f2fs_io_info *fio)
  2097. {
  2098. int type = 0;
  2099. switch (fio->sbi->active_logs) {
  2100. case 2:
  2101. type = __get_segment_type_2(fio);
  2102. break;
  2103. case 4:
  2104. type = __get_segment_type_4(fio);
  2105. break;
  2106. case 6:
  2107. type = __get_segment_type_6(fio);
  2108. break;
  2109. default:
  2110. f2fs_bug_on(fio->sbi, true);
  2111. }
  2112. if (IS_HOT(type))
  2113. fio->temp = HOT;
  2114. else if (IS_WARM(type))
  2115. fio->temp = WARM;
  2116. else
  2117. fio->temp = COLD;
  2118. return type;
  2119. }
  2120. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2121. block_t old_blkaddr, block_t *new_blkaddr,
  2122. struct f2fs_summary *sum, int type,
  2123. struct f2fs_io_info *fio, bool add_list)
  2124. {
  2125. struct sit_info *sit_i = SIT_I(sbi);
  2126. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2127. down_read(&SM_I(sbi)->curseg_lock);
  2128. mutex_lock(&curseg->curseg_mutex);
  2129. down_write(&sit_i->sentry_lock);
  2130. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2131. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2132. /*
  2133. * __add_sum_entry should be resided under the curseg_mutex
  2134. * because, this function updates a summary entry in the
  2135. * current summary block.
  2136. */
  2137. __add_sum_entry(sbi, type, sum);
  2138. __refresh_next_blkoff(sbi, curseg);
  2139. stat_inc_block_count(sbi, curseg);
  2140. /*
  2141. * SIT information should be updated before segment allocation,
  2142. * since SSR needs latest valid block information.
  2143. */
  2144. update_sit_entry(sbi, *new_blkaddr, 1);
  2145. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2146. update_sit_entry(sbi, old_blkaddr, -1);
  2147. if (!__has_curseg_space(sbi, type))
  2148. sit_i->s_ops->allocate_segment(sbi, type, false);
  2149. /*
  2150. * segment dirty status should be updated after segment allocation,
  2151. * so we just need to update status only one time after previous
  2152. * segment being closed.
  2153. */
  2154. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2155. locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
  2156. up_write(&sit_i->sentry_lock);
  2157. if (page && IS_NODESEG(type)) {
  2158. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2159. f2fs_inode_chksum_set(sbi, page);
  2160. }
  2161. if (add_list) {
  2162. struct f2fs_bio_info *io;
  2163. INIT_LIST_HEAD(&fio->list);
  2164. fio->in_list = true;
  2165. io = sbi->write_io[fio->type] + fio->temp;
  2166. spin_lock(&io->io_lock);
  2167. list_add_tail(&fio->list, &io->io_list);
  2168. spin_unlock(&io->io_lock);
  2169. }
  2170. mutex_unlock(&curseg->curseg_mutex);
  2171. up_read(&SM_I(sbi)->curseg_lock);
  2172. }
  2173. static void update_device_state(struct f2fs_io_info *fio)
  2174. {
  2175. struct f2fs_sb_info *sbi = fio->sbi;
  2176. unsigned int devidx;
  2177. if (!sbi->s_ndevs)
  2178. return;
  2179. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2180. /* update device state for fsync */
  2181. set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2182. /* update device state for checkpoint */
  2183. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2184. spin_lock(&sbi->dev_lock);
  2185. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2186. spin_unlock(&sbi->dev_lock);
  2187. }
  2188. }
  2189. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2190. {
  2191. int type = __get_segment_type(fio);
  2192. int err;
  2193. reallocate:
  2194. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2195. &fio->new_blkaddr, sum, type, fio, true);
  2196. /* writeout dirty page into bdev */
  2197. err = f2fs_submit_page_write(fio);
  2198. if (err == -EAGAIN) {
  2199. fio->old_blkaddr = fio->new_blkaddr;
  2200. goto reallocate;
  2201. } else if (!err) {
  2202. update_device_state(fio);
  2203. }
  2204. }
  2205. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2206. enum iostat_type io_type)
  2207. {
  2208. struct f2fs_io_info fio = {
  2209. .sbi = sbi,
  2210. .type = META,
  2211. .op = REQ_OP_WRITE,
  2212. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2213. .old_blkaddr = page->index,
  2214. .new_blkaddr = page->index,
  2215. .page = page,
  2216. .encrypted_page = NULL,
  2217. .in_list = false,
  2218. };
  2219. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2220. fio.op_flags &= ~REQ_META;
  2221. set_page_writeback(page);
  2222. f2fs_submit_page_write(&fio);
  2223. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2224. }
  2225. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2226. {
  2227. struct f2fs_summary sum;
  2228. set_summary(&sum, nid, 0, 0);
  2229. do_write_page(&sum, fio);
  2230. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2231. }
  2232. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  2233. {
  2234. struct f2fs_sb_info *sbi = fio->sbi;
  2235. struct f2fs_summary sum;
  2236. struct node_info ni;
  2237. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2238. get_node_info(sbi, dn->nid, &ni);
  2239. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  2240. do_write_page(&sum, fio);
  2241. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2242. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2243. }
  2244. int rewrite_data_page(struct f2fs_io_info *fio)
  2245. {
  2246. int err;
  2247. fio->new_blkaddr = fio->old_blkaddr;
  2248. stat_inc_inplace_blocks(fio->sbi);
  2249. err = f2fs_submit_page_bio(fio);
  2250. if (!err)
  2251. update_device_state(fio);
  2252. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2253. return err;
  2254. }
  2255. static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
  2256. unsigned int segno)
  2257. {
  2258. int i;
  2259. for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
  2260. if (CURSEG_I(sbi, i)->segno == segno)
  2261. break;
  2262. }
  2263. return i;
  2264. }
  2265. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2266. block_t old_blkaddr, block_t new_blkaddr,
  2267. bool recover_curseg, bool recover_newaddr)
  2268. {
  2269. struct sit_info *sit_i = SIT_I(sbi);
  2270. struct curseg_info *curseg;
  2271. unsigned int segno, old_cursegno;
  2272. struct seg_entry *se;
  2273. int type;
  2274. unsigned short old_blkoff;
  2275. segno = GET_SEGNO(sbi, new_blkaddr);
  2276. se = get_seg_entry(sbi, segno);
  2277. type = se->type;
  2278. down_write(&SM_I(sbi)->curseg_lock);
  2279. if (!recover_curseg) {
  2280. /* for recovery flow */
  2281. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2282. if (old_blkaddr == NULL_ADDR)
  2283. type = CURSEG_COLD_DATA;
  2284. else
  2285. type = CURSEG_WARM_DATA;
  2286. }
  2287. } else {
  2288. if (IS_CURSEG(sbi, segno)) {
  2289. /* se->type is volatile as SSR allocation */
  2290. type = __f2fs_get_curseg(sbi, segno);
  2291. f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
  2292. } else {
  2293. type = CURSEG_WARM_DATA;
  2294. }
  2295. }
  2296. f2fs_bug_on(sbi, !IS_DATASEG(type));
  2297. curseg = CURSEG_I(sbi, type);
  2298. mutex_lock(&curseg->curseg_mutex);
  2299. down_write(&sit_i->sentry_lock);
  2300. old_cursegno = curseg->segno;
  2301. old_blkoff = curseg->next_blkoff;
  2302. /* change the current segment */
  2303. if (segno != curseg->segno) {
  2304. curseg->next_segno = segno;
  2305. change_curseg(sbi, type);
  2306. }
  2307. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2308. __add_sum_entry(sbi, type, sum);
  2309. if (!recover_curseg || recover_newaddr)
  2310. update_sit_entry(sbi, new_blkaddr, 1);
  2311. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2312. update_sit_entry(sbi, old_blkaddr, -1);
  2313. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2314. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2315. locate_dirty_segment(sbi, old_cursegno);
  2316. if (recover_curseg) {
  2317. if (old_cursegno != curseg->segno) {
  2318. curseg->next_segno = old_cursegno;
  2319. change_curseg(sbi, type);
  2320. }
  2321. curseg->next_blkoff = old_blkoff;
  2322. }
  2323. up_write(&sit_i->sentry_lock);
  2324. mutex_unlock(&curseg->curseg_mutex);
  2325. up_write(&SM_I(sbi)->curseg_lock);
  2326. }
  2327. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2328. block_t old_addr, block_t new_addr,
  2329. unsigned char version, bool recover_curseg,
  2330. bool recover_newaddr)
  2331. {
  2332. struct f2fs_summary sum;
  2333. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2334. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  2335. recover_curseg, recover_newaddr);
  2336. f2fs_update_data_blkaddr(dn, new_addr);
  2337. }
  2338. void f2fs_wait_on_page_writeback(struct page *page,
  2339. enum page_type type, bool ordered)
  2340. {
  2341. if (PageWriteback(page)) {
  2342. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2343. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2344. 0, page->index, type);
  2345. if (ordered)
  2346. wait_on_page_writeback(page);
  2347. else
  2348. wait_for_stable_page(page);
  2349. }
  2350. }
  2351. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2352. {
  2353. struct page *cpage;
  2354. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  2355. return;
  2356. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2357. if (cpage) {
  2358. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2359. f2fs_put_page(cpage, 1);
  2360. }
  2361. }
  2362. static void read_compacted_summaries(struct f2fs_sb_info *sbi)
  2363. {
  2364. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2365. struct curseg_info *seg_i;
  2366. unsigned char *kaddr;
  2367. struct page *page;
  2368. block_t start;
  2369. int i, j, offset;
  2370. start = start_sum_block(sbi);
  2371. page = get_meta_page(sbi, start++);
  2372. kaddr = (unsigned char *)page_address(page);
  2373. /* Step 1: restore nat cache */
  2374. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2375. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2376. /* Step 2: restore sit cache */
  2377. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2378. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2379. offset = 2 * SUM_JOURNAL_SIZE;
  2380. /* Step 3: restore summary entries */
  2381. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2382. unsigned short blk_off;
  2383. unsigned int segno;
  2384. seg_i = CURSEG_I(sbi, i);
  2385. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2386. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2387. seg_i->next_segno = segno;
  2388. reset_curseg(sbi, i, 0);
  2389. seg_i->alloc_type = ckpt->alloc_type[i];
  2390. seg_i->next_blkoff = blk_off;
  2391. if (seg_i->alloc_type == SSR)
  2392. blk_off = sbi->blocks_per_seg;
  2393. for (j = 0; j < blk_off; j++) {
  2394. struct f2fs_summary *s;
  2395. s = (struct f2fs_summary *)(kaddr + offset);
  2396. seg_i->sum_blk->entries[j] = *s;
  2397. offset += SUMMARY_SIZE;
  2398. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2399. SUM_FOOTER_SIZE)
  2400. continue;
  2401. f2fs_put_page(page, 1);
  2402. page = NULL;
  2403. page = get_meta_page(sbi, start++);
  2404. kaddr = (unsigned char *)page_address(page);
  2405. offset = 0;
  2406. }
  2407. }
  2408. f2fs_put_page(page, 1);
  2409. }
  2410. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2411. {
  2412. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2413. struct f2fs_summary_block *sum;
  2414. struct curseg_info *curseg;
  2415. struct page *new;
  2416. unsigned short blk_off;
  2417. unsigned int segno = 0;
  2418. block_t blk_addr = 0;
  2419. /* get segment number and block addr */
  2420. if (IS_DATASEG(type)) {
  2421. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2422. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2423. CURSEG_HOT_DATA]);
  2424. if (__exist_node_summaries(sbi))
  2425. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2426. else
  2427. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2428. } else {
  2429. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2430. CURSEG_HOT_NODE]);
  2431. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2432. CURSEG_HOT_NODE]);
  2433. if (__exist_node_summaries(sbi))
  2434. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2435. type - CURSEG_HOT_NODE);
  2436. else
  2437. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2438. }
  2439. new = get_meta_page(sbi, blk_addr);
  2440. sum = (struct f2fs_summary_block *)page_address(new);
  2441. if (IS_NODESEG(type)) {
  2442. if (__exist_node_summaries(sbi)) {
  2443. struct f2fs_summary *ns = &sum->entries[0];
  2444. int i;
  2445. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2446. ns->version = 0;
  2447. ns->ofs_in_node = 0;
  2448. }
  2449. } else {
  2450. restore_node_summary(sbi, segno, sum);
  2451. }
  2452. }
  2453. /* set uncompleted segment to curseg */
  2454. curseg = CURSEG_I(sbi, type);
  2455. mutex_lock(&curseg->curseg_mutex);
  2456. /* update journal info */
  2457. down_write(&curseg->journal_rwsem);
  2458. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2459. up_write(&curseg->journal_rwsem);
  2460. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2461. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2462. curseg->next_segno = segno;
  2463. reset_curseg(sbi, type, 0);
  2464. curseg->alloc_type = ckpt->alloc_type[type];
  2465. curseg->next_blkoff = blk_off;
  2466. mutex_unlock(&curseg->curseg_mutex);
  2467. f2fs_put_page(new, 1);
  2468. return 0;
  2469. }
  2470. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2471. {
  2472. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2473. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2474. int type = CURSEG_HOT_DATA;
  2475. int err;
  2476. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2477. int npages = npages_for_summary_flush(sbi, true);
  2478. if (npages >= 2)
  2479. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2480. META_CP, true);
  2481. /* restore for compacted data summary */
  2482. read_compacted_summaries(sbi);
  2483. type = CURSEG_HOT_NODE;
  2484. }
  2485. if (__exist_node_summaries(sbi))
  2486. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2487. NR_CURSEG_TYPE - type, META_CP, true);
  2488. for (; type <= CURSEG_COLD_NODE; type++) {
  2489. err = read_normal_summaries(sbi, type);
  2490. if (err)
  2491. return err;
  2492. }
  2493. /* sanity check for summary blocks */
  2494. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2495. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2496. return -EINVAL;
  2497. return 0;
  2498. }
  2499. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2500. {
  2501. struct page *page;
  2502. unsigned char *kaddr;
  2503. struct f2fs_summary *summary;
  2504. struct curseg_info *seg_i;
  2505. int written_size = 0;
  2506. int i, j;
  2507. page = grab_meta_page(sbi, blkaddr++);
  2508. kaddr = (unsigned char *)page_address(page);
  2509. /* Step 1: write nat cache */
  2510. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2511. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2512. written_size += SUM_JOURNAL_SIZE;
  2513. /* Step 2: write sit cache */
  2514. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2515. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2516. written_size += SUM_JOURNAL_SIZE;
  2517. /* Step 3: write summary entries */
  2518. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2519. unsigned short blkoff;
  2520. seg_i = CURSEG_I(sbi, i);
  2521. if (sbi->ckpt->alloc_type[i] == SSR)
  2522. blkoff = sbi->blocks_per_seg;
  2523. else
  2524. blkoff = curseg_blkoff(sbi, i);
  2525. for (j = 0; j < blkoff; j++) {
  2526. if (!page) {
  2527. page = grab_meta_page(sbi, blkaddr++);
  2528. kaddr = (unsigned char *)page_address(page);
  2529. written_size = 0;
  2530. }
  2531. summary = (struct f2fs_summary *)(kaddr + written_size);
  2532. *summary = seg_i->sum_blk->entries[j];
  2533. written_size += SUMMARY_SIZE;
  2534. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2535. SUM_FOOTER_SIZE)
  2536. continue;
  2537. set_page_dirty(page);
  2538. f2fs_put_page(page, 1);
  2539. page = NULL;
  2540. }
  2541. }
  2542. if (page) {
  2543. set_page_dirty(page);
  2544. f2fs_put_page(page, 1);
  2545. }
  2546. }
  2547. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2548. block_t blkaddr, int type)
  2549. {
  2550. int i, end;
  2551. if (IS_DATASEG(type))
  2552. end = type + NR_CURSEG_DATA_TYPE;
  2553. else
  2554. end = type + NR_CURSEG_NODE_TYPE;
  2555. for (i = type; i < end; i++)
  2556. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2557. }
  2558. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2559. {
  2560. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2561. write_compacted_summaries(sbi, start_blk);
  2562. else
  2563. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2564. }
  2565. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2566. {
  2567. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2568. }
  2569. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2570. unsigned int val, int alloc)
  2571. {
  2572. int i;
  2573. if (type == NAT_JOURNAL) {
  2574. for (i = 0; i < nats_in_cursum(journal); i++) {
  2575. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2576. return i;
  2577. }
  2578. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2579. return update_nats_in_cursum(journal, 1);
  2580. } else if (type == SIT_JOURNAL) {
  2581. for (i = 0; i < sits_in_cursum(journal); i++)
  2582. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2583. return i;
  2584. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2585. return update_sits_in_cursum(journal, 1);
  2586. }
  2587. return -1;
  2588. }
  2589. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2590. unsigned int segno)
  2591. {
  2592. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2593. }
  2594. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2595. unsigned int start)
  2596. {
  2597. struct sit_info *sit_i = SIT_I(sbi);
  2598. struct page *page;
  2599. pgoff_t src_off, dst_off;
  2600. src_off = current_sit_addr(sbi, start);
  2601. dst_off = next_sit_addr(sbi, src_off);
  2602. page = grab_meta_page(sbi, dst_off);
  2603. seg_info_to_sit_page(sbi, page, start);
  2604. set_page_dirty(page);
  2605. set_to_next_sit(sit_i, start);
  2606. return page;
  2607. }
  2608. static struct sit_entry_set *grab_sit_entry_set(void)
  2609. {
  2610. struct sit_entry_set *ses =
  2611. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2612. ses->entry_cnt = 0;
  2613. INIT_LIST_HEAD(&ses->set_list);
  2614. return ses;
  2615. }
  2616. static void release_sit_entry_set(struct sit_entry_set *ses)
  2617. {
  2618. list_del(&ses->set_list);
  2619. kmem_cache_free(sit_entry_set_slab, ses);
  2620. }
  2621. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2622. struct list_head *head)
  2623. {
  2624. struct sit_entry_set *next = ses;
  2625. if (list_is_last(&ses->set_list, head))
  2626. return;
  2627. list_for_each_entry_continue(next, head, set_list)
  2628. if (ses->entry_cnt <= next->entry_cnt)
  2629. break;
  2630. list_move_tail(&ses->set_list, &next->set_list);
  2631. }
  2632. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2633. {
  2634. struct sit_entry_set *ses;
  2635. unsigned int start_segno = START_SEGNO(segno);
  2636. list_for_each_entry(ses, head, set_list) {
  2637. if (ses->start_segno == start_segno) {
  2638. ses->entry_cnt++;
  2639. adjust_sit_entry_set(ses, head);
  2640. return;
  2641. }
  2642. }
  2643. ses = grab_sit_entry_set();
  2644. ses->start_segno = start_segno;
  2645. ses->entry_cnt++;
  2646. list_add(&ses->set_list, head);
  2647. }
  2648. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2649. {
  2650. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2651. struct list_head *set_list = &sm_info->sit_entry_set;
  2652. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2653. unsigned int segno;
  2654. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2655. add_sit_entry(segno, set_list);
  2656. }
  2657. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2658. {
  2659. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2660. struct f2fs_journal *journal = curseg->journal;
  2661. int i;
  2662. down_write(&curseg->journal_rwsem);
  2663. for (i = 0; i < sits_in_cursum(journal); i++) {
  2664. unsigned int segno;
  2665. bool dirtied;
  2666. segno = le32_to_cpu(segno_in_journal(journal, i));
  2667. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2668. if (!dirtied)
  2669. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2670. }
  2671. update_sits_in_cursum(journal, -i);
  2672. up_write(&curseg->journal_rwsem);
  2673. }
  2674. /*
  2675. * CP calls this function, which flushes SIT entries including sit_journal,
  2676. * and moves prefree segs to free segs.
  2677. */
  2678. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2679. {
  2680. struct sit_info *sit_i = SIT_I(sbi);
  2681. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2682. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2683. struct f2fs_journal *journal = curseg->journal;
  2684. struct sit_entry_set *ses, *tmp;
  2685. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2686. bool to_journal = true;
  2687. struct seg_entry *se;
  2688. down_write(&sit_i->sentry_lock);
  2689. if (!sit_i->dirty_sentries)
  2690. goto out;
  2691. /*
  2692. * add and account sit entries of dirty bitmap in sit entry
  2693. * set temporarily
  2694. */
  2695. add_sits_in_set(sbi);
  2696. /*
  2697. * if there are no enough space in journal to store dirty sit
  2698. * entries, remove all entries from journal and add and account
  2699. * them in sit entry set.
  2700. */
  2701. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2702. remove_sits_in_journal(sbi);
  2703. /*
  2704. * there are two steps to flush sit entries:
  2705. * #1, flush sit entries to journal in current cold data summary block.
  2706. * #2, flush sit entries to sit page.
  2707. */
  2708. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2709. struct page *page = NULL;
  2710. struct f2fs_sit_block *raw_sit = NULL;
  2711. unsigned int start_segno = ses->start_segno;
  2712. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2713. (unsigned long)MAIN_SEGS(sbi));
  2714. unsigned int segno = start_segno;
  2715. if (to_journal &&
  2716. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2717. to_journal = false;
  2718. if (to_journal) {
  2719. down_write(&curseg->journal_rwsem);
  2720. } else {
  2721. page = get_next_sit_page(sbi, start_segno);
  2722. raw_sit = page_address(page);
  2723. }
  2724. /* flush dirty sit entries in region of current sit set */
  2725. for_each_set_bit_from(segno, bitmap, end) {
  2726. int offset, sit_offset;
  2727. se = get_seg_entry(sbi, segno);
  2728. /* add discard candidates */
  2729. if (!(cpc->reason & CP_DISCARD)) {
  2730. cpc->trim_start = segno;
  2731. add_discard_addrs(sbi, cpc, false);
  2732. }
  2733. if (to_journal) {
  2734. offset = lookup_journal_in_cursum(journal,
  2735. SIT_JOURNAL, segno, 1);
  2736. f2fs_bug_on(sbi, offset < 0);
  2737. segno_in_journal(journal, offset) =
  2738. cpu_to_le32(segno);
  2739. seg_info_to_raw_sit(se,
  2740. &sit_in_journal(journal, offset));
  2741. } else {
  2742. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2743. seg_info_to_raw_sit(se,
  2744. &raw_sit->entries[sit_offset]);
  2745. }
  2746. __clear_bit(segno, bitmap);
  2747. sit_i->dirty_sentries--;
  2748. ses->entry_cnt--;
  2749. }
  2750. if (to_journal)
  2751. up_write(&curseg->journal_rwsem);
  2752. else
  2753. f2fs_put_page(page, 1);
  2754. f2fs_bug_on(sbi, ses->entry_cnt);
  2755. release_sit_entry_set(ses);
  2756. }
  2757. f2fs_bug_on(sbi, !list_empty(head));
  2758. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2759. out:
  2760. if (cpc->reason & CP_DISCARD) {
  2761. __u64 trim_start = cpc->trim_start;
  2762. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2763. add_discard_addrs(sbi, cpc, false);
  2764. cpc->trim_start = trim_start;
  2765. }
  2766. up_write(&sit_i->sentry_lock);
  2767. set_prefree_as_free_segments(sbi);
  2768. }
  2769. static int build_sit_info(struct f2fs_sb_info *sbi)
  2770. {
  2771. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2772. struct sit_info *sit_i;
  2773. unsigned int sit_segs, start;
  2774. char *src_bitmap;
  2775. unsigned int bitmap_size;
  2776. /* allocate memory for SIT information */
  2777. sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
  2778. if (!sit_i)
  2779. return -ENOMEM;
  2780. SM_I(sbi)->sit_info = sit_i;
  2781. sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
  2782. sizeof(struct seg_entry), GFP_KERNEL);
  2783. if (!sit_i->sentries)
  2784. return -ENOMEM;
  2785. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2786. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
  2787. GFP_KERNEL);
  2788. if (!sit_i->dirty_sentries_bitmap)
  2789. return -ENOMEM;
  2790. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2791. sit_i->sentries[start].cur_valid_map
  2792. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2793. sit_i->sentries[start].ckpt_valid_map
  2794. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2795. if (!sit_i->sentries[start].cur_valid_map ||
  2796. !sit_i->sentries[start].ckpt_valid_map)
  2797. return -ENOMEM;
  2798. #ifdef CONFIG_F2FS_CHECK_FS
  2799. sit_i->sentries[start].cur_valid_map_mir
  2800. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2801. if (!sit_i->sentries[start].cur_valid_map_mir)
  2802. return -ENOMEM;
  2803. #endif
  2804. if (f2fs_discard_en(sbi)) {
  2805. sit_i->sentries[start].discard_map
  2806. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
  2807. GFP_KERNEL);
  2808. if (!sit_i->sentries[start].discard_map)
  2809. return -ENOMEM;
  2810. }
  2811. }
  2812. sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2813. if (!sit_i->tmp_map)
  2814. return -ENOMEM;
  2815. if (sbi->segs_per_sec > 1) {
  2816. sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
  2817. sizeof(struct sec_entry), GFP_KERNEL);
  2818. if (!sit_i->sec_entries)
  2819. return -ENOMEM;
  2820. }
  2821. /* get information related with SIT */
  2822. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2823. /* setup SIT bitmap from ckeckpoint pack */
  2824. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2825. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2826. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2827. if (!sit_i->sit_bitmap)
  2828. return -ENOMEM;
  2829. #ifdef CONFIG_F2FS_CHECK_FS
  2830. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2831. if (!sit_i->sit_bitmap_mir)
  2832. return -ENOMEM;
  2833. #endif
  2834. /* init SIT information */
  2835. sit_i->s_ops = &default_salloc_ops;
  2836. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2837. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2838. sit_i->written_valid_blocks = 0;
  2839. sit_i->bitmap_size = bitmap_size;
  2840. sit_i->dirty_sentries = 0;
  2841. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2842. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2843. sit_i->mounted_time = ktime_get_real_seconds();
  2844. init_rwsem(&sit_i->sentry_lock);
  2845. return 0;
  2846. }
  2847. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2848. {
  2849. struct free_segmap_info *free_i;
  2850. unsigned int bitmap_size, sec_bitmap_size;
  2851. /* allocate memory for free segmap information */
  2852. free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
  2853. if (!free_i)
  2854. return -ENOMEM;
  2855. SM_I(sbi)->free_info = free_i;
  2856. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2857. free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
  2858. if (!free_i->free_segmap)
  2859. return -ENOMEM;
  2860. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2861. free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
  2862. if (!free_i->free_secmap)
  2863. return -ENOMEM;
  2864. /* set all segments as dirty temporarily */
  2865. memset(free_i->free_segmap, 0xff, bitmap_size);
  2866. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2867. /* init free segmap information */
  2868. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2869. free_i->free_segments = 0;
  2870. free_i->free_sections = 0;
  2871. spin_lock_init(&free_i->segmap_lock);
  2872. return 0;
  2873. }
  2874. static int build_curseg(struct f2fs_sb_info *sbi)
  2875. {
  2876. struct curseg_info *array;
  2877. int i;
  2878. array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
  2879. if (!array)
  2880. return -ENOMEM;
  2881. SM_I(sbi)->curseg_array = array;
  2882. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2883. mutex_init(&array[i].curseg_mutex);
  2884. array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
  2885. if (!array[i].sum_blk)
  2886. return -ENOMEM;
  2887. init_rwsem(&array[i].journal_rwsem);
  2888. array[i].journal = f2fs_kzalloc(sbi,
  2889. sizeof(struct f2fs_journal), GFP_KERNEL);
  2890. if (!array[i].journal)
  2891. return -ENOMEM;
  2892. array[i].segno = NULL_SEGNO;
  2893. array[i].next_blkoff = 0;
  2894. }
  2895. return restore_curseg_summaries(sbi);
  2896. }
  2897. static int build_sit_entries(struct f2fs_sb_info *sbi)
  2898. {
  2899. struct sit_info *sit_i = SIT_I(sbi);
  2900. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2901. struct f2fs_journal *journal = curseg->journal;
  2902. struct seg_entry *se;
  2903. struct f2fs_sit_entry sit;
  2904. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2905. unsigned int i, start, end;
  2906. unsigned int readed, start_blk = 0;
  2907. int err = 0;
  2908. do {
  2909. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2910. META_SIT, true);
  2911. start = start_blk * sit_i->sents_per_block;
  2912. end = (start_blk + readed) * sit_i->sents_per_block;
  2913. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2914. struct f2fs_sit_block *sit_blk;
  2915. struct page *page;
  2916. se = &sit_i->sentries[start];
  2917. page = get_current_sit_page(sbi, start);
  2918. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2919. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2920. f2fs_put_page(page, 1);
  2921. err = check_block_count(sbi, start, &sit);
  2922. if (err)
  2923. return err;
  2924. seg_info_from_raw_sit(se, &sit);
  2925. /* build discard map only one time */
  2926. if (f2fs_discard_en(sbi)) {
  2927. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2928. memset(se->discard_map, 0xff,
  2929. SIT_VBLOCK_MAP_SIZE);
  2930. } else {
  2931. memcpy(se->discard_map,
  2932. se->cur_valid_map,
  2933. SIT_VBLOCK_MAP_SIZE);
  2934. sbi->discard_blks +=
  2935. sbi->blocks_per_seg -
  2936. se->valid_blocks;
  2937. }
  2938. }
  2939. if (sbi->segs_per_sec > 1)
  2940. get_sec_entry(sbi, start)->valid_blocks +=
  2941. se->valid_blocks;
  2942. }
  2943. start_blk += readed;
  2944. } while (start_blk < sit_blk_cnt);
  2945. down_read(&curseg->journal_rwsem);
  2946. for (i = 0; i < sits_in_cursum(journal); i++) {
  2947. unsigned int old_valid_blocks;
  2948. start = le32_to_cpu(segno_in_journal(journal, i));
  2949. se = &sit_i->sentries[start];
  2950. sit = sit_in_journal(journal, i);
  2951. old_valid_blocks = se->valid_blocks;
  2952. err = check_block_count(sbi, start, &sit);
  2953. if (err)
  2954. break;
  2955. seg_info_from_raw_sit(se, &sit);
  2956. if (f2fs_discard_en(sbi)) {
  2957. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2958. memset(se->discard_map, 0xff,
  2959. SIT_VBLOCK_MAP_SIZE);
  2960. } else {
  2961. memcpy(se->discard_map, se->cur_valid_map,
  2962. SIT_VBLOCK_MAP_SIZE);
  2963. sbi->discard_blks += old_valid_blocks -
  2964. se->valid_blocks;
  2965. }
  2966. }
  2967. if (sbi->segs_per_sec > 1)
  2968. get_sec_entry(sbi, start)->valid_blocks +=
  2969. se->valid_blocks - old_valid_blocks;
  2970. }
  2971. up_read(&curseg->journal_rwsem);
  2972. return err;
  2973. }
  2974. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2975. {
  2976. unsigned int start;
  2977. int type;
  2978. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2979. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2980. if (!sentry->valid_blocks)
  2981. __set_free(sbi, start);
  2982. else
  2983. SIT_I(sbi)->written_valid_blocks +=
  2984. sentry->valid_blocks;
  2985. }
  2986. /* set use the current segments */
  2987. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2988. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2989. __set_test_and_inuse(sbi, curseg_t->segno);
  2990. }
  2991. }
  2992. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2993. {
  2994. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2995. struct free_segmap_info *free_i = FREE_I(sbi);
  2996. unsigned int segno = 0, offset = 0;
  2997. unsigned short valid_blocks;
  2998. while (1) {
  2999. /* find dirty segment based on free segmap */
  3000. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  3001. if (segno >= MAIN_SEGS(sbi))
  3002. break;
  3003. offset = segno + 1;
  3004. valid_blocks = get_valid_blocks(sbi, segno, false);
  3005. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  3006. continue;
  3007. if (valid_blocks > sbi->blocks_per_seg) {
  3008. f2fs_bug_on(sbi, 1);
  3009. continue;
  3010. }
  3011. mutex_lock(&dirty_i->seglist_lock);
  3012. __locate_dirty_segment(sbi, segno, DIRTY);
  3013. mutex_unlock(&dirty_i->seglist_lock);
  3014. }
  3015. }
  3016. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  3017. {
  3018. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3019. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3020. dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
  3021. if (!dirty_i->victim_secmap)
  3022. return -ENOMEM;
  3023. return 0;
  3024. }
  3025. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  3026. {
  3027. struct dirty_seglist_info *dirty_i;
  3028. unsigned int bitmap_size, i;
  3029. /* allocate memory for dirty segments list information */
  3030. dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
  3031. GFP_KERNEL);
  3032. if (!dirty_i)
  3033. return -ENOMEM;
  3034. SM_I(sbi)->dirty_info = dirty_i;
  3035. mutex_init(&dirty_i->seglist_lock);
  3036. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3037. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  3038. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
  3039. GFP_KERNEL);
  3040. if (!dirty_i->dirty_segmap[i])
  3041. return -ENOMEM;
  3042. }
  3043. init_dirty_segmap(sbi);
  3044. return init_victim_secmap(sbi);
  3045. }
  3046. /*
  3047. * Update min, max modified time for cost-benefit GC algorithm
  3048. */
  3049. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  3050. {
  3051. struct sit_info *sit_i = SIT_I(sbi);
  3052. unsigned int segno;
  3053. down_write(&sit_i->sentry_lock);
  3054. sit_i->min_mtime = LLONG_MAX;
  3055. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  3056. unsigned int i;
  3057. unsigned long long mtime = 0;
  3058. for (i = 0; i < sbi->segs_per_sec; i++)
  3059. mtime += get_seg_entry(sbi, segno + i)->mtime;
  3060. mtime = div_u64(mtime, sbi->segs_per_sec);
  3061. if (sit_i->min_mtime > mtime)
  3062. sit_i->min_mtime = mtime;
  3063. }
  3064. sit_i->max_mtime = get_mtime(sbi);
  3065. up_write(&sit_i->sentry_lock);
  3066. }
  3067. int build_segment_manager(struct f2fs_sb_info *sbi)
  3068. {
  3069. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3070. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  3071. struct f2fs_sm_info *sm_info;
  3072. int err;
  3073. sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
  3074. if (!sm_info)
  3075. return -ENOMEM;
  3076. /* init sm info */
  3077. sbi->sm_info = sm_info;
  3078. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  3079. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  3080. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3081. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3082. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3083. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3084. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3085. sm_info->rec_prefree_segments = sm_info->main_segments *
  3086. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3087. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3088. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3089. if (!test_opt(sbi, LFS))
  3090. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3091. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3092. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3093. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3094. sm_info->min_ssr_sections = reserved_sections(sbi);
  3095. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  3096. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3097. init_rwsem(&sm_info->curseg_lock);
  3098. if (!f2fs_readonly(sbi->sb)) {
  3099. err = create_flush_cmd_control(sbi);
  3100. if (err)
  3101. return err;
  3102. }
  3103. err = create_discard_cmd_control(sbi);
  3104. if (err)
  3105. return err;
  3106. err = build_sit_info(sbi);
  3107. if (err)
  3108. return err;
  3109. err = build_free_segmap(sbi);
  3110. if (err)
  3111. return err;
  3112. err = build_curseg(sbi);
  3113. if (err)
  3114. return err;
  3115. /* reinit free segmap based on SIT */
  3116. err = build_sit_entries(sbi);
  3117. if (err)
  3118. return err;
  3119. init_free_segmap(sbi);
  3120. err = build_dirty_segmap(sbi);
  3121. if (err)
  3122. return err;
  3123. init_min_max_mtime(sbi);
  3124. return 0;
  3125. }
  3126. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3127. enum dirty_type dirty_type)
  3128. {
  3129. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3130. mutex_lock(&dirty_i->seglist_lock);
  3131. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3132. dirty_i->nr_dirty[dirty_type] = 0;
  3133. mutex_unlock(&dirty_i->seglist_lock);
  3134. }
  3135. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3136. {
  3137. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3138. kvfree(dirty_i->victim_secmap);
  3139. }
  3140. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3141. {
  3142. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3143. int i;
  3144. if (!dirty_i)
  3145. return;
  3146. /* discard pre-free/dirty segments list */
  3147. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3148. discard_dirty_segmap(sbi, i);
  3149. destroy_victim_secmap(sbi);
  3150. SM_I(sbi)->dirty_info = NULL;
  3151. kfree(dirty_i);
  3152. }
  3153. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3154. {
  3155. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3156. int i;
  3157. if (!array)
  3158. return;
  3159. SM_I(sbi)->curseg_array = NULL;
  3160. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3161. kfree(array[i].sum_blk);
  3162. kfree(array[i].journal);
  3163. }
  3164. kfree(array);
  3165. }
  3166. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3167. {
  3168. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3169. if (!free_i)
  3170. return;
  3171. SM_I(sbi)->free_info = NULL;
  3172. kvfree(free_i->free_segmap);
  3173. kvfree(free_i->free_secmap);
  3174. kfree(free_i);
  3175. }
  3176. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3177. {
  3178. struct sit_info *sit_i = SIT_I(sbi);
  3179. unsigned int start;
  3180. if (!sit_i)
  3181. return;
  3182. if (sit_i->sentries) {
  3183. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3184. kfree(sit_i->sentries[start].cur_valid_map);
  3185. #ifdef CONFIG_F2FS_CHECK_FS
  3186. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3187. #endif
  3188. kfree(sit_i->sentries[start].ckpt_valid_map);
  3189. kfree(sit_i->sentries[start].discard_map);
  3190. }
  3191. }
  3192. kfree(sit_i->tmp_map);
  3193. kvfree(sit_i->sentries);
  3194. kvfree(sit_i->sec_entries);
  3195. kvfree(sit_i->dirty_sentries_bitmap);
  3196. SM_I(sbi)->sit_info = NULL;
  3197. kfree(sit_i->sit_bitmap);
  3198. #ifdef CONFIG_F2FS_CHECK_FS
  3199. kfree(sit_i->sit_bitmap_mir);
  3200. #endif
  3201. kfree(sit_i);
  3202. }
  3203. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  3204. {
  3205. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3206. if (!sm_info)
  3207. return;
  3208. destroy_flush_cmd_control(sbi, true);
  3209. destroy_discard_cmd_control(sbi);
  3210. destroy_dirty_segmap(sbi);
  3211. destroy_curseg(sbi);
  3212. destroy_free_segmap(sbi);
  3213. destroy_sit_info(sbi);
  3214. sbi->sm_info = NULL;
  3215. kfree(sm_info);
  3216. }
  3217. int __init create_segment_manager_caches(void)
  3218. {
  3219. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3220. sizeof(struct discard_entry));
  3221. if (!discard_entry_slab)
  3222. goto fail;
  3223. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3224. sizeof(struct discard_cmd));
  3225. if (!discard_cmd_slab)
  3226. goto destroy_discard_entry;
  3227. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3228. sizeof(struct sit_entry_set));
  3229. if (!sit_entry_set_slab)
  3230. goto destroy_discard_cmd;
  3231. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3232. sizeof(struct inmem_pages));
  3233. if (!inmem_entry_slab)
  3234. goto destroy_sit_entry_set;
  3235. return 0;
  3236. destroy_sit_entry_set:
  3237. kmem_cache_destroy(sit_entry_set_slab);
  3238. destroy_discard_cmd:
  3239. kmem_cache_destroy(discard_cmd_slab);
  3240. destroy_discard_entry:
  3241. kmem_cache_destroy(discard_entry_slab);
  3242. fail:
  3243. return -ENOMEM;
  3244. }
  3245. void destroy_segment_manager_caches(void)
  3246. {
  3247. kmem_cache_destroy(sit_entry_set_slab);
  3248. kmem_cache_destroy(discard_cmd_slab);
  3249. kmem_cache_destroy(discard_entry_slab);
  3250. kmem_cache_destroy(inmem_entry_slab);
  3251. }