node.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "xattr.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  25. static struct kmem_cache *nat_entry_slab;
  26. static struct kmem_cache *free_nid_slab;
  27. static struct kmem_cache *nat_entry_set_slab;
  28. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  29. {
  30. struct f2fs_nm_info *nm_i = NM_I(sbi);
  31. struct sysinfo val;
  32. unsigned long avail_ram;
  33. unsigned long mem_size = 0;
  34. bool res = false;
  35. si_meminfo(&val);
  36. /* only uses low memory */
  37. avail_ram = val.totalram - val.totalhigh;
  38. /*
  39. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  40. */
  41. if (type == FREE_NIDS) {
  42. mem_size = (nm_i->nid_cnt[FREE_NID] *
  43. sizeof(struct free_nid)) >> PAGE_SHIFT;
  44. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  45. } else if (type == NAT_ENTRIES) {
  46. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  47. PAGE_SHIFT;
  48. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  49. if (excess_cached_nats(sbi))
  50. res = false;
  51. } else if (type == DIRTY_DENTS) {
  52. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  53. return false;
  54. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  55. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  56. } else if (type == INO_ENTRIES) {
  57. int i;
  58. for (i = 0; i < MAX_INO_ENTRY; i++)
  59. mem_size += sbi->im[i].ino_num *
  60. sizeof(struct ino_entry);
  61. mem_size >>= PAGE_SHIFT;
  62. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  63. } else if (type == EXTENT_CACHE) {
  64. mem_size = (atomic_read(&sbi->total_ext_tree) *
  65. sizeof(struct extent_tree) +
  66. atomic_read(&sbi->total_ext_node) *
  67. sizeof(struct extent_node)) >> PAGE_SHIFT;
  68. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  69. } else if (type == INMEM_PAGES) {
  70. /* it allows 20% / total_ram for inmemory pages */
  71. mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  72. res = mem_size < (val.totalram / 5);
  73. } else {
  74. if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75. return true;
  76. }
  77. return res;
  78. }
  79. static void clear_node_page_dirty(struct page *page)
  80. {
  81. struct address_space *mapping = page->mapping;
  82. unsigned int long flags;
  83. if (PageDirty(page)) {
  84. spin_lock_irqsave(&mapping->tree_lock, flags);
  85. radix_tree_tag_clear(&mapping->page_tree,
  86. page_index(page),
  87. PAGECACHE_TAG_DIRTY);
  88. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  89. clear_page_dirty_for_io(page);
  90. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  91. }
  92. ClearPageUptodate(page);
  93. }
  94. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  95. {
  96. pgoff_t index = current_nat_addr(sbi, nid);
  97. return get_meta_page(sbi, index);
  98. }
  99. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  100. {
  101. struct page *src_page;
  102. struct page *dst_page;
  103. pgoff_t src_off;
  104. pgoff_t dst_off;
  105. void *src_addr;
  106. void *dst_addr;
  107. struct f2fs_nm_info *nm_i = NM_I(sbi);
  108. src_off = current_nat_addr(sbi, nid);
  109. dst_off = next_nat_addr(sbi, src_off);
  110. /* get current nat block page with lock */
  111. src_page = get_meta_page(sbi, src_off);
  112. dst_page = grab_meta_page(sbi, dst_off);
  113. f2fs_bug_on(sbi, PageDirty(src_page));
  114. src_addr = page_address(src_page);
  115. dst_addr = page_address(dst_page);
  116. memcpy(dst_addr, src_addr, PAGE_SIZE);
  117. set_page_dirty(dst_page);
  118. f2fs_put_page(src_page, 1);
  119. set_to_next_nat(nm_i, nid);
  120. return dst_page;
  121. }
  122. static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
  123. {
  124. struct nat_entry *new;
  125. if (no_fail)
  126. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  127. else
  128. new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  129. if (new) {
  130. nat_set_nid(new, nid);
  131. nat_reset_flag(new);
  132. }
  133. return new;
  134. }
  135. static void __free_nat_entry(struct nat_entry *e)
  136. {
  137. kmem_cache_free(nat_entry_slab, e);
  138. }
  139. /* must be locked by nat_tree_lock */
  140. static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
  141. struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
  142. {
  143. if (no_fail)
  144. f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
  145. else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
  146. return NULL;
  147. if (raw_ne)
  148. node_info_from_raw_nat(&ne->ni, raw_ne);
  149. list_add_tail(&ne->list, &nm_i->nat_entries);
  150. nm_i->nat_cnt++;
  151. return ne;
  152. }
  153. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  154. {
  155. return radix_tree_lookup(&nm_i->nat_root, n);
  156. }
  157. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  158. nid_t start, unsigned int nr, struct nat_entry **ep)
  159. {
  160. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  161. }
  162. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  163. {
  164. list_del(&e->list);
  165. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  166. nm_i->nat_cnt--;
  167. __free_nat_entry(e);
  168. }
  169. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  170. struct nat_entry *ne)
  171. {
  172. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  173. struct nat_entry_set *head;
  174. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  175. if (!head) {
  176. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
  177. INIT_LIST_HEAD(&head->entry_list);
  178. INIT_LIST_HEAD(&head->set_list);
  179. head->set = set;
  180. head->entry_cnt = 0;
  181. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  182. }
  183. if (get_nat_flag(ne, IS_DIRTY))
  184. goto refresh_list;
  185. nm_i->dirty_nat_cnt++;
  186. head->entry_cnt++;
  187. set_nat_flag(ne, IS_DIRTY, true);
  188. refresh_list:
  189. if (nat_get_blkaddr(ne) == NEW_ADDR)
  190. list_del_init(&ne->list);
  191. else
  192. list_move_tail(&ne->list, &head->entry_list);
  193. }
  194. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  195. struct nat_entry_set *set, struct nat_entry *ne)
  196. {
  197. list_move_tail(&ne->list, &nm_i->nat_entries);
  198. set_nat_flag(ne, IS_DIRTY, false);
  199. set->entry_cnt--;
  200. nm_i->dirty_nat_cnt--;
  201. }
  202. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  203. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  204. {
  205. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  206. start, nr);
  207. }
  208. int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  209. {
  210. struct f2fs_nm_info *nm_i = NM_I(sbi);
  211. struct nat_entry *e;
  212. bool need = false;
  213. down_read(&nm_i->nat_tree_lock);
  214. e = __lookup_nat_cache(nm_i, nid);
  215. if (e) {
  216. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  217. !get_nat_flag(e, HAS_FSYNCED_INODE))
  218. need = true;
  219. }
  220. up_read(&nm_i->nat_tree_lock);
  221. return need;
  222. }
  223. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  224. {
  225. struct f2fs_nm_info *nm_i = NM_I(sbi);
  226. struct nat_entry *e;
  227. bool is_cp = true;
  228. down_read(&nm_i->nat_tree_lock);
  229. e = __lookup_nat_cache(nm_i, nid);
  230. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  231. is_cp = false;
  232. up_read(&nm_i->nat_tree_lock);
  233. return is_cp;
  234. }
  235. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  236. {
  237. struct f2fs_nm_info *nm_i = NM_I(sbi);
  238. struct nat_entry *e;
  239. bool need_update = true;
  240. down_read(&nm_i->nat_tree_lock);
  241. e = __lookup_nat_cache(nm_i, ino);
  242. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  243. (get_nat_flag(e, IS_CHECKPOINTED) ||
  244. get_nat_flag(e, HAS_FSYNCED_INODE)))
  245. need_update = false;
  246. up_read(&nm_i->nat_tree_lock);
  247. return need_update;
  248. }
  249. /* must be locked by nat_tree_lock */
  250. static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
  251. struct f2fs_nat_entry *ne)
  252. {
  253. struct f2fs_nm_info *nm_i = NM_I(sbi);
  254. struct nat_entry *new, *e;
  255. new = __alloc_nat_entry(nid, false);
  256. if (!new)
  257. return;
  258. down_write(&nm_i->nat_tree_lock);
  259. e = __lookup_nat_cache(nm_i, nid);
  260. if (!e)
  261. e = __init_nat_entry(nm_i, new, ne, false);
  262. else
  263. f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
  264. nat_get_blkaddr(e) !=
  265. le32_to_cpu(ne->block_addr) ||
  266. nat_get_version(e) != ne->version);
  267. up_write(&nm_i->nat_tree_lock);
  268. if (e != new)
  269. __free_nat_entry(new);
  270. }
  271. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  272. block_t new_blkaddr, bool fsync_done)
  273. {
  274. struct f2fs_nm_info *nm_i = NM_I(sbi);
  275. struct nat_entry *e;
  276. struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
  277. down_write(&nm_i->nat_tree_lock);
  278. e = __lookup_nat_cache(nm_i, ni->nid);
  279. if (!e) {
  280. e = __init_nat_entry(nm_i, new, NULL, true);
  281. copy_node_info(&e->ni, ni);
  282. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  283. } else if (new_blkaddr == NEW_ADDR) {
  284. /*
  285. * when nid is reallocated,
  286. * previous nat entry can be remained in nat cache.
  287. * So, reinitialize it with new information.
  288. */
  289. copy_node_info(&e->ni, ni);
  290. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  291. }
  292. /* let's free early to reduce memory consumption */
  293. if (e != new)
  294. __free_nat_entry(new);
  295. /* sanity check */
  296. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  297. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  298. new_blkaddr == NULL_ADDR);
  299. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  300. new_blkaddr == NEW_ADDR);
  301. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  302. nat_get_blkaddr(e) != NULL_ADDR &&
  303. new_blkaddr == NEW_ADDR);
  304. /* increment version no as node is removed */
  305. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  306. unsigned char version = nat_get_version(e);
  307. nat_set_version(e, inc_node_version(version));
  308. }
  309. /* change address */
  310. nat_set_blkaddr(e, new_blkaddr);
  311. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  312. set_nat_flag(e, IS_CHECKPOINTED, false);
  313. __set_nat_cache_dirty(nm_i, e);
  314. /* update fsync_mark if its inode nat entry is still alive */
  315. if (ni->nid != ni->ino)
  316. e = __lookup_nat_cache(nm_i, ni->ino);
  317. if (e) {
  318. if (fsync_done && ni->nid == ni->ino)
  319. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  320. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  321. }
  322. up_write(&nm_i->nat_tree_lock);
  323. }
  324. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  325. {
  326. struct f2fs_nm_info *nm_i = NM_I(sbi);
  327. int nr = nr_shrink;
  328. if (!down_write_trylock(&nm_i->nat_tree_lock))
  329. return 0;
  330. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  331. struct nat_entry *ne;
  332. ne = list_first_entry(&nm_i->nat_entries,
  333. struct nat_entry, list);
  334. __del_from_nat_cache(nm_i, ne);
  335. nr_shrink--;
  336. }
  337. up_write(&nm_i->nat_tree_lock);
  338. return nr - nr_shrink;
  339. }
  340. /*
  341. * This function always returns success
  342. */
  343. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  344. {
  345. struct f2fs_nm_info *nm_i = NM_I(sbi);
  346. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  347. struct f2fs_journal *journal = curseg->journal;
  348. nid_t start_nid = START_NID(nid);
  349. struct f2fs_nat_block *nat_blk;
  350. struct page *page = NULL;
  351. struct f2fs_nat_entry ne;
  352. struct nat_entry *e;
  353. pgoff_t index;
  354. int i;
  355. ni->nid = nid;
  356. /* Check nat cache */
  357. down_read(&nm_i->nat_tree_lock);
  358. e = __lookup_nat_cache(nm_i, nid);
  359. if (e) {
  360. ni->ino = nat_get_ino(e);
  361. ni->blk_addr = nat_get_blkaddr(e);
  362. ni->version = nat_get_version(e);
  363. up_read(&nm_i->nat_tree_lock);
  364. return;
  365. }
  366. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  367. /* Check current segment summary */
  368. down_read(&curseg->journal_rwsem);
  369. i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
  370. if (i >= 0) {
  371. ne = nat_in_journal(journal, i);
  372. node_info_from_raw_nat(ni, &ne);
  373. }
  374. up_read(&curseg->journal_rwsem);
  375. if (i >= 0) {
  376. up_read(&nm_i->nat_tree_lock);
  377. goto cache;
  378. }
  379. /* Fill node_info from nat page */
  380. index = current_nat_addr(sbi, nid);
  381. up_read(&nm_i->nat_tree_lock);
  382. page = get_meta_page(sbi, index);
  383. nat_blk = (struct f2fs_nat_block *)page_address(page);
  384. ne = nat_blk->entries[nid - start_nid];
  385. node_info_from_raw_nat(ni, &ne);
  386. f2fs_put_page(page, 1);
  387. cache:
  388. /* cache nat entry */
  389. cache_nat_entry(sbi, nid, &ne);
  390. }
  391. /*
  392. * readahead MAX_RA_NODE number of node pages.
  393. */
  394. static void ra_node_pages(struct page *parent, int start, int n)
  395. {
  396. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  397. struct blk_plug plug;
  398. int i, end;
  399. nid_t nid;
  400. blk_start_plug(&plug);
  401. /* Then, try readahead for siblings of the desired node */
  402. end = start + n;
  403. end = min(end, NIDS_PER_BLOCK);
  404. for (i = start; i < end; i++) {
  405. nid = get_nid(parent, i, false);
  406. ra_node_page(sbi, nid);
  407. }
  408. blk_finish_plug(&plug);
  409. }
  410. pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
  411. {
  412. const long direct_index = ADDRS_PER_INODE(dn->inode);
  413. const long direct_blks = ADDRS_PER_BLOCK;
  414. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  415. unsigned int skipped_unit = ADDRS_PER_BLOCK;
  416. int cur_level = dn->cur_level;
  417. int max_level = dn->max_level;
  418. pgoff_t base = 0;
  419. if (!dn->max_level)
  420. return pgofs + 1;
  421. while (max_level-- > cur_level)
  422. skipped_unit *= NIDS_PER_BLOCK;
  423. switch (dn->max_level) {
  424. case 3:
  425. base += 2 * indirect_blks;
  426. case 2:
  427. base += 2 * direct_blks;
  428. case 1:
  429. base += direct_index;
  430. break;
  431. default:
  432. f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
  433. }
  434. return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
  435. }
  436. /*
  437. * The maximum depth is four.
  438. * Offset[0] will have raw inode offset.
  439. */
  440. static int get_node_path(struct inode *inode, long block,
  441. int offset[4], unsigned int noffset[4])
  442. {
  443. const long direct_index = ADDRS_PER_INODE(inode);
  444. const long direct_blks = ADDRS_PER_BLOCK;
  445. const long dptrs_per_blk = NIDS_PER_BLOCK;
  446. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  447. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  448. int n = 0;
  449. int level = 0;
  450. noffset[0] = 0;
  451. if (block < direct_index) {
  452. offset[n] = block;
  453. goto got;
  454. }
  455. block -= direct_index;
  456. if (block < direct_blks) {
  457. offset[n++] = NODE_DIR1_BLOCK;
  458. noffset[n] = 1;
  459. offset[n] = block;
  460. level = 1;
  461. goto got;
  462. }
  463. block -= direct_blks;
  464. if (block < direct_blks) {
  465. offset[n++] = NODE_DIR2_BLOCK;
  466. noffset[n] = 2;
  467. offset[n] = block;
  468. level = 1;
  469. goto got;
  470. }
  471. block -= direct_blks;
  472. if (block < indirect_blks) {
  473. offset[n++] = NODE_IND1_BLOCK;
  474. noffset[n] = 3;
  475. offset[n++] = block / direct_blks;
  476. noffset[n] = 4 + offset[n - 1];
  477. offset[n] = block % direct_blks;
  478. level = 2;
  479. goto got;
  480. }
  481. block -= indirect_blks;
  482. if (block < indirect_blks) {
  483. offset[n++] = NODE_IND2_BLOCK;
  484. noffset[n] = 4 + dptrs_per_blk;
  485. offset[n++] = block / direct_blks;
  486. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  487. offset[n] = block % direct_blks;
  488. level = 2;
  489. goto got;
  490. }
  491. block -= indirect_blks;
  492. if (block < dindirect_blks) {
  493. offset[n++] = NODE_DIND_BLOCK;
  494. noffset[n] = 5 + (dptrs_per_blk * 2);
  495. offset[n++] = block / indirect_blks;
  496. noffset[n] = 6 + (dptrs_per_blk * 2) +
  497. offset[n - 1] * (dptrs_per_blk + 1);
  498. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  499. noffset[n] = 7 + (dptrs_per_blk * 2) +
  500. offset[n - 2] * (dptrs_per_blk + 1) +
  501. offset[n - 1];
  502. offset[n] = block % direct_blks;
  503. level = 3;
  504. goto got;
  505. } else {
  506. return -E2BIG;
  507. }
  508. got:
  509. return level;
  510. }
  511. /*
  512. * Caller should call f2fs_put_dnode(dn).
  513. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  514. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  515. * In the case of RDONLY_NODE, we don't need to care about mutex.
  516. */
  517. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  518. {
  519. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  520. struct page *npage[4];
  521. struct page *parent = NULL;
  522. int offset[4];
  523. unsigned int noffset[4];
  524. nid_t nids[4];
  525. int level, i = 0;
  526. int err = 0;
  527. level = get_node_path(dn->inode, index, offset, noffset);
  528. if (level < 0)
  529. return level;
  530. nids[0] = dn->inode->i_ino;
  531. npage[0] = dn->inode_page;
  532. if (!npage[0]) {
  533. npage[0] = get_node_page(sbi, nids[0]);
  534. if (IS_ERR(npage[0]))
  535. return PTR_ERR(npage[0]);
  536. }
  537. /* if inline_data is set, should not report any block indices */
  538. if (f2fs_has_inline_data(dn->inode) && index) {
  539. err = -ENOENT;
  540. f2fs_put_page(npage[0], 1);
  541. goto release_out;
  542. }
  543. parent = npage[0];
  544. if (level != 0)
  545. nids[1] = get_nid(parent, offset[0], true);
  546. dn->inode_page = npage[0];
  547. dn->inode_page_locked = true;
  548. /* get indirect or direct nodes */
  549. for (i = 1; i <= level; i++) {
  550. bool done = false;
  551. if (!nids[i] && mode == ALLOC_NODE) {
  552. /* alloc new node */
  553. if (!alloc_nid(sbi, &(nids[i]))) {
  554. err = -ENOSPC;
  555. goto release_pages;
  556. }
  557. dn->nid = nids[i];
  558. npage[i] = new_node_page(dn, noffset[i]);
  559. if (IS_ERR(npage[i])) {
  560. alloc_nid_failed(sbi, nids[i]);
  561. err = PTR_ERR(npage[i]);
  562. goto release_pages;
  563. }
  564. set_nid(parent, offset[i - 1], nids[i], i == 1);
  565. alloc_nid_done(sbi, nids[i]);
  566. done = true;
  567. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  568. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  569. if (IS_ERR(npage[i])) {
  570. err = PTR_ERR(npage[i]);
  571. goto release_pages;
  572. }
  573. done = true;
  574. }
  575. if (i == 1) {
  576. dn->inode_page_locked = false;
  577. unlock_page(parent);
  578. } else {
  579. f2fs_put_page(parent, 1);
  580. }
  581. if (!done) {
  582. npage[i] = get_node_page(sbi, nids[i]);
  583. if (IS_ERR(npage[i])) {
  584. err = PTR_ERR(npage[i]);
  585. f2fs_put_page(npage[0], 0);
  586. goto release_out;
  587. }
  588. }
  589. if (i < level) {
  590. parent = npage[i];
  591. nids[i + 1] = get_nid(parent, offset[i], false);
  592. }
  593. }
  594. dn->nid = nids[level];
  595. dn->ofs_in_node = offset[level];
  596. dn->node_page = npage[level];
  597. dn->data_blkaddr = datablock_addr(dn->inode,
  598. dn->node_page, dn->ofs_in_node);
  599. return 0;
  600. release_pages:
  601. f2fs_put_page(parent, 1);
  602. if (i > 1)
  603. f2fs_put_page(npage[0], 0);
  604. release_out:
  605. dn->inode_page = NULL;
  606. dn->node_page = NULL;
  607. if (err == -ENOENT) {
  608. dn->cur_level = i;
  609. dn->max_level = level;
  610. dn->ofs_in_node = offset[level];
  611. }
  612. return err;
  613. }
  614. static void truncate_node(struct dnode_of_data *dn)
  615. {
  616. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  617. struct node_info ni;
  618. get_node_info(sbi, dn->nid, &ni);
  619. /* Deallocate node address */
  620. invalidate_blocks(sbi, ni.blk_addr);
  621. dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
  622. set_node_addr(sbi, &ni, NULL_ADDR, false);
  623. if (dn->nid == dn->inode->i_ino) {
  624. remove_orphan_inode(sbi, dn->nid);
  625. dec_valid_inode_count(sbi);
  626. f2fs_inode_synced(dn->inode);
  627. }
  628. clear_node_page_dirty(dn->node_page);
  629. set_sbi_flag(sbi, SBI_IS_DIRTY);
  630. f2fs_put_page(dn->node_page, 1);
  631. invalidate_mapping_pages(NODE_MAPPING(sbi),
  632. dn->node_page->index, dn->node_page->index);
  633. dn->node_page = NULL;
  634. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  635. }
  636. static int truncate_dnode(struct dnode_of_data *dn)
  637. {
  638. struct page *page;
  639. if (dn->nid == 0)
  640. return 1;
  641. /* get direct node */
  642. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  643. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  644. return 1;
  645. else if (IS_ERR(page))
  646. return PTR_ERR(page);
  647. /* Make dnode_of_data for parameter */
  648. dn->node_page = page;
  649. dn->ofs_in_node = 0;
  650. truncate_data_blocks(dn);
  651. truncate_node(dn);
  652. return 1;
  653. }
  654. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  655. int ofs, int depth)
  656. {
  657. struct dnode_of_data rdn = *dn;
  658. struct page *page;
  659. struct f2fs_node *rn;
  660. nid_t child_nid;
  661. unsigned int child_nofs;
  662. int freed = 0;
  663. int i, ret;
  664. if (dn->nid == 0)
  665. return NIDS_PER_BLOCK + 1;
  666. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  667. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  668. if (IS_ERR(page)) {
  669. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  670. return PTR_ERR(page);
  671. }
  672. ra_node_pages(page, ofs, NIDS_PER_BLOCK);
  673. rn = F2FS_NODE(page);
  674. if (depth < 3) {
  675. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  676. child_nid = le32_to_cpu(rn->in.nid[i]);
  677. if (child_nid == 0)
  678. continue;
  679. rdn.nid = child_nid;
  680. ret = truncate_dnode(&rdn);
  681. if (ret < 0)
  682. goto out_err;
  683. if (set_nid(page, i, 0, false))
  684. dn->node_changed = true;
  685. }
  686. } else {
  687. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  688. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  689. child_nid = le32_to_cpu(rn->in.nid[i]);
  690. if (child_nid == 0) {
  691. child_nofs += NIDS_PER_BLOCK + 1;
  692. continue;
  693. }
  694. rdn.nid = child_nid;
  695. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  696. if (ret == (NIDS_PER_BLOCK + 1)) {
  697. if (set_nid(page, i, 0, false))
  698. dn->node_changed = true;
  699. child_nofs += ret;
  700. } else if (ret < 0 && ret != -ENOENT) {
  701. goto out_err;
  702. }
  703. }
  704. freed = child_nofs;
  705. }
  706. if (!ofs) {
  707. /* remove current indirect node */
  708. dn->node_page = page;
  709. truncate_node(dn);
  710. freed++;
  711. } else {
  712. f2fs_put_page(page, 1);
  713. }
  714. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  715. return freed;
  716. out_err:
  717. f2fs_put_page(page, 1);
  718. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  719. return ret;
  720. }
  721. static int truncate_partial_nodes(struct dnode_of_data *dn,
  722. struct f2fs_inode *ri, int *offset, int depth)
  723. {
  724. struct page *pages[2];
  725. nid_t nid[3];
  726. nid_t child_nid;
  727. int err = 0;
  728. int i;
  729. int idx = depth - 2;
  730. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  731. if (!nid[0])
  732. return 0;
  733. /* get indirect nodes in the path */
  734. for (i = 0; i < idx + 1; i++) {
  735. /* reference count'll be increased */
  736. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  737. if (IS_ERR(pages[i])) {
  738. err = PTR_ERR(pages[i]);
  739. idx = i - 1;
  740. goto fail;
  741. }
  742. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  743. }
  744. ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
  745. /* free direct nodes linked to a partial indirect node */
  746. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  747. child_nid = get_nid(pages[idx], i, false);
  748. if (!child_nid)
  749. continue;
  750. dn->nid = child_nid;
  751. err = truncate_dnode(dn);
  752. if (err < 0)
  753. goto fail;
  754. if (set_nid(pages[idx], i, 0, false))
  755. dn->node_changed = true;
  756. }
  757. if (offset[idx + 1] == 0) {
  758. dn->node_page = pages[idx];
  759. dn->nid = nid[idx];
  760. truncate_node(dn);
  761. } else {
  762. f2fs_put_page(pages[idx], 1);
  763. }
  764. offset[idx]++;
  765. offset[idx + 1] = 0;
  766. idx--;
  767. fail:
  768. for (i = idx; i >= 0; i--)
  769. f2fs_put_page(pages[i], 1);
  770. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  771. return err;
  772. }
  773. /*
  774. * All the block addresses of data and nodes should be nullified.
  775. */
  776. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  777. {
  778. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  779. int err = 0, cont = 1;
  780. int level, offset[4], noffset[4];
  781. unsigned int nofs = 0;
  782. struct f2fs_inode *ri;
  783. struct dnode_of_data dn;
  784. struct page *page;
  785. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  786. level = get_node_path(inode, from, offset, noffset);
  787. if (level < 0)
  788. return level;
  789. page = get_node_page(sbi, inode->i_ino);
  790. if (IS_ERR(page)) {
  791. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  792. return PTR_ERR(page);
  793. }
  794. set_new_dnode(&dn, inode, page, NULL, 0);
  795. unlock_page(page);
  796. ri = F2FS_INODE(page);
  797. switch (level) {
  798. case 0:
  799. case 1:
  800. nofs = noffset[1];
  801. break;
  802. case 2:
  803. nofs = noffset[1];
  804. if (!offset[level - 1])
  805. goto skip_partial;
  806. err = truncate_partial_nodes(&dn, ri, offset, level);
  807. if (err < 0 && err != -ENOENT)
  808. goto fail;
  809. nofs += 1 + NIDS_PER_BLOCK;
  810. break;
  811. case 3:
  812. nofs = 5 + 2 * NIDS_PER_BLOCK;
  813. if (!offset[level - 1])
  814. goto skip_partial;
  815. err = truncate_partial_nodes(&dn, ri, offset, level);
  816. if (err < 0 && err != -ENOENT)
  817. goto fail;
  818. break;
  819. default:
  820. BUG();
  821. }
  822. skip_partial:
  823. while (cont) {
  824. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  825. switch (offset[0]) {
  826. case NODE_DIR1_BLOCK:
  827. case NODE_DIR2_BLOCK:
  828. err = truncate_dnode(&dn);
  829. break;
  830. case NODE_IND1_BLOCK:
  831. case NODE_IND2_BLOCK:
  832. err = truncate_nodes(&dn, nofs, offset[1], 2);
  833. break;
  834. case NODE_DIND_BLOCK:
  835. err = truncate_nodes(&dn, nofs, offset[1], 3);
  836. cont = 0;
  837. break;
  838. default:
  839. BUG();
  840. }
  841. if (err < 0 && err != -ENOENT)
  842. goto fail;
  843. if (offset[1] == 0 &&
  844. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  845. lock_page(page);
  846. BUG_ON(page->mapping != NODE_MAPPING(sbi));
  847. f2fs_wait_on_page_writeback(page, NODE, true);
  848. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  849. set_page_dirty(page);
  850. unlock_page(page);
  851. }
  852. offset[1] = 0;
  853. offset[0]++;
  854. nofs += err;
  855. }
  856. fail:
  857. f2fs_put_page(page, 0);
  858. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  859. return err > 0 ? 0 : err;
  860. }
  861. /* caller must lock inode page */
  862. int truncate_xattr_node(struct inode *inode)
  863. {
  864. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  865. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  866. struct dnode_of_data dn;
  867. struct page *npage;
  868. if (!nid)
  869. return 0;
  870. npage = get_node_page(sbi, nid);
  871. if (IS_ERR(npage))
  872. return PTR_ERR(npage);
  873. f2fs_i_xnid_write(inode, 0);
  874. set_new_dnode(&dn, inode, NULL, npage, nid);
  875. truncate_node(&dn);
  876. return 0;
  877. }
  878. /*
  879. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  880. * f2fs_unlock_op().
  881. */
  882. int remove_inode_page(struct inode *inode)
  883. {
  884. struct dnode_of_data dn;
  885. int err;
  886. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  887. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  888. if (err)
  889. return err;
  890. err = truncate_xattr_node(inode);
  891. if (err) {
  892. f2fs_put_dnode(&dn);
  893. return err;
  894. }
  895. /* remove potential inline_data blocks */
  896. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  897. S_ISLNK(inode->i_mode))
  898. truncate_data_blocks_range(&dn, 1);
  899. /* 0 is possible, after f2fs_new_inode() has failed */
  900. f2fs_bug_on(F2FS_I_SB(inode),
  901. inode->i_blocks != 0 && inode->i_blocks != 8);
  902. /* will put inode & node pages */
  903. truncate_node(&dn);
  904. return 0;
  905. }
  906. struct page *new_inode_page(struct inode *inode)
  907. {
  908. struct dnode_of_data dn;
  909. /* allocate inode page for new inode */
  910. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  911. /* caller should f2fs_put_page(page, 1); */
  912. return new_node_page(&dn, 0);
  913. }
  914. struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  915. {
  916. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  917. struct node_info new_ni;
  918. struct page *page;
  919. int err;
  920. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  921. return ERR_PTR(-EPERM);
  922. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
  923. if (!page)
  924. return ERR_PTR(-ENOMEM);
  925. if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
  926. goto fail;
  927. #ifdef CONFIG_F2FS_CHECK_FS
  928. get_node_info(sbi, dn->nid, &new_ni);
  929. f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
  930. #endif
  931. new_ni.nid = dn->nid;
  932. new_ni.ino = dn->inode->i_ino;
  933. new_ni.blk_addr = NULL_ADDR;
  934. new_ni.flag = 0;
  935. new_ni.version = 0;
  936. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  937. f2fs_wait_on_page_writeback(page, NODE, true);
  938. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  939. set_cold_node(dn->inode, page);
  940. if (!PageUptodate(page))
  941. SetPageUptodate(page);
  942. if (set_page_dirty(page))
  943. dn->node_changed = true;
  944. if (f2fs_has_xattr_block(ofs))
  945. f2fs_i_xnid_write(dn->inode, dn->nid);
  946. if (ofs == 0)
  947. inc_valid_inode_count(sbi);
  948. return page;
  949. fail:
  950. clear_node_page_dirty(page);
  951. f2fs_put_page(page, 1);
  952. return ERR_PTR(err);
  953. }
  954. /*
  955. * Caller should do after getting the following values.
  956. * 0: f2fs_put_page(page, 0)
  957. * LOCKED_PAGE or error: f2fs_put_page(page, 1)
  958. */
  959. static int read_node_page(struct page *page, int op_flags)
  960. {
  961. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  962. struct node_info ni;
  963. struct f2fs_io_info fio = {
  964. .sbi = sbi,
  965. .type = NODE,
  966. .op = REQ_OP_READ,
  967. .op_flags = op_flags,
  968. .page = page,
  969. .encrypted_page = NULL,
  970. };
  971. if (PageUptodate(page))
  972. return LOCKED_PAGE;
  973. get_node_info(sbi, page->index, &ni);
  974. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  975. ClearPageUptodate(page);
  976. return -ENOENT;
  977. }
  978. fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
  979. return f2fs_submit_page_bio(&fio);
  980. }
  981. /*
  982. * Readahead a node page
  983. */
  984. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  985. {
  986. struct page *apage;
  987. int err;
  988. if (!nid)
  989. return;
  990. f2fs_bug_on(sbi, check_nid_range(sbi, nid));
  991. rcu_read_lock();
  992. apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
  993. rcu_read_unlock();
  994. if (apage)
  995. return;
  996. apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  997. if (!apage)
  998. return;
  999. err = read_node_page(apage, REQ_RAHEAD);
  1000. f2fs_put_page(apage, err ? 1 : 0);
  1001. }
  1002. static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
  1003. struct page *parent, int start)
  1004. {
  1005. struct page *page;
  1006. int err;
  1007. if (!nid)
  1008. return ERR_PTR(-ENOENT);
  1009. f2fs_bug_on(sbi, check_nid_range(sbi, nid));
  1010. repeat:
  1011. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  1012. if (!page)
  1013. return ERR_PTR(-ENOMEM);
  1014. err = read_node_page(page, 0);
  1015. if (err < 0) {
  1016. f2fs_put_page(page, 1);
  1017. return ERR_PTR(err);
  1018. } else if (err == LOCKED_PAGE) {
  1019. err = 0;
  1020. goto page_hit;
  1021. }
  1022. if (parent)
  1023. ra_node_pages(parent, start + 1, MAX_RA_NODE);
  1024. lock_page(page);
  1025. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1026. f2fs_put_page(page, 1);
  1027. goto repeat;
  1028. }
  1029. if (unlikely(!PageUptodate(page))) {
  1030. err = -EIO;
  1031. goto out_err;
  1032. }
  1033. if (!f2fs_inode_chksum_verify(sbi, page)) {
  1034. err = -EBADMSG;
  1035. goto out_err;
  1036. }
  1037. page_hit:
  1038. if(unlikely(nid != nid_of_node(page))) {
  1039. f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
  1040. "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
  1041. nid, nid_of_node(page), ino_of_node(page),
  1042. ofs_of_node(page), cpver_of_node(page),
  1043. next_blkaddr_of_node(page));
  1044. err = -EINVAL;
  1045. out_err:
  1046. ClearPageUptodate(page);
  1047. f2fs_put_page(page, 1);
  1048. return ERR_PTR(err);
  1049. }
  1050. return page;
  1051. }
  1052. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  1053. {
  1054. return __get_node_page(sbi, nid, NULL, 0);
  1055. }
  1056. struct page *get_node_page_ra(struct page *parent, int start)
  1057. {
  1058. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  1059. nid_t nid = get_nid(parent, start, false);
  1060. return __get_node_page(sbi, nid, parent, start);
  1061. }
  1062. static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
  1063. {
  1064. struct inode *inode;
  1065. struct page *page;
  1066. int ret;
  1067. /* should flush inline_data before evict_inode */
  1068. inode = ilookup(sbi->sb, ino);
  1069. if (!inode)
  1070. return;
  1071. page = f2fs_pagecache_get_page(inode->i_mapping, 0,
  1072. FGP_LOCK|FGP_NOWAIT, 0);
  1073. if (!page)
  1074. goto iput_out;
  1075. if (!PageUptodate(page))
  1076. goto page_out;
  1077. if (!PageDirty(page))
  1078. goto page_out;
  1079. if (!clear_page_dirty_for_io(page))
  1080. goto page_out;
  1081. ret = f2fs_write_inline_data(inode, page);
  1082. inode_dec_dirty_pages(inode);
  1083. remove_dirty_inode(inode);
  1084. if (ret)
  1085. set_page_dirty(page);
  1086. page_out:
  1087. f2fs_put_page(page, 1);
  1088. iput_out:
  1089. iput(inode);
  1090. }
  1091. static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
  1092. {
  1093. pgoff_t index;
  1094. struct pagevec pvec;
  1095. struct page *last_page = NULL;
  1096. int nr_pages;
  1097. pagevec_init(&pvec);
  1098. index = 0;
  1099. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1100. PAGECACHE_TAG_DIRTY))) {
  1101. int i;
  1102. for (i = 0; i < nr_pages; i++) {
  1103. struct page *page = pvec.pages[i];
  1104. if (unlikely(f2fs_cp_error(sbi))) {
  1105. f2fs_put_page(last_page, 0);
  1106. pagevec_release(&pvec);
  1107. return ERR_PTR(-EIO);
  1108. }
  1109. if (!IS_DNODE(page) || !is_cold_node(page))
  1110. continue;
  1111. if (ino_of_node(page) != ino)
  1112. continue;
  1113. lock_page(page);
  1114. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1115. continue_unlock:
  1116. unlock_page(page);
  1117. continue;
  1118. }
  1119. if (ino_of_node(page) != ino)
  1120. goto continue_unlock;
  1121. if (!PageDirty(page)) {
  1122. /* someone wrote it for us */
  1123. goto continue_unlock;
  1124. }
  1125. if (last_page)
  1126. f2fs_put_page(last_page, 0);
  1127. get_page(page);
  1128. last_page = page;
  1129. unlock_page(page);
  1130. }
  1131. pagevec_release(&pvec);
  1132. cond_resched();
  1133. }
  1134. return last_page;
  1135. }
  1136. static int __write_node_page(struct page *page, bool atomic, bool *submitted,
  1137. struct writeback_control *wbc, bool do_balance,
  1138. enum iostat_type io_type)
  1139. {
  1140. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1141. nid_t nid;
  1142. struct node_info ni;
  1143. struct f2fs_io_info fio = {
  1144. .sbi = sbi,
  1145. .ino = ino_of_node(page),
  1146. .type = NODE,
  1147. .op = REQ_OP_WRITE,
  1148. .op_flags = wbc_to_write_flags(wbc),
  1149. .page = page,
  1150. .encrypted_page = NULL,
  1151. .submitted = false,
  1152. .io_type = io_type,
  1153. .io_wbc = wbc,
  1154. };
  1155. trace_f2fs_writepage(page, NODE);
  1156. if (unlikely(f2fs_cp_error(sbi))) {
  1157. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1158. unlock_page(page);
  1159. return 0;
  1160. }
  1161. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1162. goto redirty_out;
  1163. /* get old block addr of this node page */
  1164. nid = nid_of_node(page);
  1165. f2fs_bug_on(sbi, page->index != nid);
  1166. if (wbc->for_reclaim) {
  1167. if (!down_read_trylock(&sbi->node_write))
  1168. goto redirty_out;
  1169. } else {
  1170. down_read(&sbi->node_write);
  1171. }
  1172. get_node_info(sbi, nid, &ni);
  1173. /* This page is already truncated */
  1174. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1175. ClearPageUptodate(page);
  1176. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1177. up_read(&sbi->node_write);
  1178. unlock_page(page);
  1179. return 0;
  1180. }
  1181. if (atomic && !test_opt(sbi, NOBARRIER))
  1182. fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  1183. set_page_writeback(page);
  1184. fio.old_blkaddr = ni.blk_addr;
  1185. write_node_page(nid, &fio);
  1186. set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
  1187. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1188. up_read(&sbi->node_write);
  1189. if (wbc->for_reclaim) {
  1190. f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
  1191. page->index, NODE);
  1192. submitted = NULL;
  1193. }
  1194. unlock_page(page);
  1195. if (unlikely(f2fs_cp_error(sbi))) {
  1196. f2fs_submit_merged_write(sbi, NODE);
  1197. submitted = NULL;
  1198. }
  1199. if (submitted)
  1200. *submitted = fio.submitted;
  1201. if (do_balance)
  1202. f2fs_balance_fs(sbi, false);
  1203. return 0;
  1204. redirty_out:
  1205. redirty_page_for_writepage(wbc, page);
  1206. return AOP_WRITEPAGE_ACTIVATE;
  1207. }
  1208. void move_node_page(struct page *node_page, int gc_type)
  1209. {
  1210. if (gc_type == FG_GC) {
  1211. struct writeback_control wbc = {
  1212. .sync_mode = WB_SYNC_ALL,
  1213. .nr_to_write = 1,
  1214. .for_reclaim = 0,
  1215. };
  1216. set_page_dirty(node_page);
  1217. f2fs_wait_on_page_writeback(node_page, NODE, true);
  1218. f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
  1219. if (!clear_page_dirty_for_io(node_page))
  1220. goto out_page;
  1221. if (__write_node_page(node_page, false, NULL,
  1222. &wbc, false, FS_GC_NODE_IO))
  1223. unlock_page(node_page);
  1224. goto release_page;
  1225. } else {
  1226. /* set page dirty and write it */
  1227. if (!PageWriteback(node_page))
  1228. set_page_dirty(node_page);
  1229. }
  1230. out_page:
  1231. unlock_page(node_page);
  1232. release_page:
  1233. f2fs_put_page(node_page, 0);
  1234. }
  1235. static int f2fs_write_node_page(struct page *page,
  1236. struct writeback_control *wbc)
  1237. {
  1238. return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
  1239. }
  1240. int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
  1241. struct writeback_control *wbc, bool atomic)
  1242. {
  1243. pgoff_t index;
  1244. pgoff_t last_idx = ULONG_MAX;
  1245. struct pagevec pvec;
  1246. int ret = 0;
  1247. struct page *last_page = NULL;
  1248. bool marked = false;
  1249. nid_t ino = inode->i_ino;
  1250. int nr_pages;
  1251. if (atomic) {
  1252. last_page = last_fsync_dnode(sbi, ino);
  1253. if (IS_ERR_OR_NULL(last_page))
  1254. return PTR_ERR_OR_ZERO(last_page);
  1255. }
  1256. retry:
  1257. pagevec_init(&pvec);
  1258. index = 0;
  1259. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1260. PAGECACHE_TAG_DIRTY))) {
  1261. int i;
  1262. for (i = 0; i < nr_pages; i++) {
  1263. struct page *page = pvec.pages[i];
  1264. bool submitted = false;
  1265. if (unlikely(f2fs_cp_error(sbi))) {
  1266. f2fs_put_page(last_page, 0);
  1267. pagevec_release(&pvec);
  1268. ret = -EIO;
  1269. goto out;
  1270. }
  1271. if (!IS_DNODE(page) || !is_cold_node(page))
  1272. continue;
  1273. if (ino_of_node(page) != ino)
  1274. continue;
  1275. lock_page(page);
  1276. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1277. continue_unlock:
  1278. unlock_page(page);
  1279. continue;
  1280. }
  1281. if (ino_of_node(page) != ino)
  1282. goto continue_unlock;
  1283. if (!PageDirty(page) && page != last_page) {
  1284. /* someone wrote it for us */
  1285. goto continue_unlock;
  1286. }
  1287. f2fs_wait_on_page_writeback(page, NODE, true);
  1288. BUG_ON(PageWriteback(page));
  1289. set_fsync_mark(page, 0);
  1290. set_dentry_mark(page, 0);
  1291. if (!atomic || page == last_page) {
  1292. set_fsync_mark(page, 1);
  1293. if (IS_INODE(page)) {
  1294. if (is_inode_flag_set(inode,
  1295. FI_DIRTY_INODE))
  1296. update_inode(inode, page);
  1297. set_dentry_mark(page,
  1298. need_dentry_mark(sbi, ino));
  1299. }
  1300. /* may be written by other thread */
  1301. if (!PageDirty(page))
  1302. set_page_dirty(page);
  1303. }
  1304. if (!clear_page_dirty_for_io(page))
  1305. goto continue_unlock;
  1306. ret = __write_node_page(page, atomic &&
  1307. page == last_page,
  1308. &submitted, wbc, true,
  1309. FS_NODE_IO);
  1310. if (ret) {
  1311. unlock_page(page);
  1312. f2fs_put_page(last_page, 0);
  1313. break;
  1314. } else if (submitted) {
  1315. last_idx = page->index;
  1316. }
  1317. if (page == last_page) {
  1318. f2fs_put_page(page, 0);
  1319. marked = true;
  1320. break;
  1321. }
  1322. }
  1323. pagevec_release(&pvec);
  1324. cond_resched();
  1325. if (ret || marked)
  1326. break;
  1327. }
  1328. if (!ret && atomic && !marked) {
  1329. f2fs_msg(sbi->sb, KERN_DEBUG,
  1330. "Retry to write fsync mark: ino=%u, idx=%lx",
  1331. ino, last_page->index);
  1332. lock_page(last_page);
  1333. f2fs_wait_on_page_writeback(last_page, NODE, true);
  1334. set_page_dirty(last_page);
  1335. unlock_page(last_page);
  1336. goto retry;
  1337. }
  1338. out:
  1339. if (last_idx != ULONG_MAX)
  1340. f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
  1341. return ret ? -EIO: 0;
  1342. }
  1343. int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
  1344. bool do_balance, enum iostat_type io_type)
  1345. {
  1346. pgoff_t index;
  1347. struct pagevec pvec;
  1348. int step = 0;
  1349. int nwritten = 0;
  1350. int ret = 0;
  1351. int nr_pages;
  1352. pagevec_init(&pvec);
  1353. next_step:
  1354. index = 0;
  1355. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1356. PAGECACHE_TAG_DIRTY))) {
  1357. int i;
  1358. for (i = 0; i < nr_pages; i++) {
  1359. struct page *page = pvec.pages[i];
  1360. bool submitted = false;
  1361. /*
  1362. * flushing sequence with step:
  1363. * 0. indirect nodes
  1364. * 1. dentry dnodes
  1365. * 2. file dnodes
  1366. */
  1367. if (step == 0 && IS_DNODE(page))
  1368. continue;
  1369. if (step == 1 && (!IS_DNODE(page) ||
  1370. is_cold_node(page)))
  1371. continue;
  1372. if (step == 2 && (!IS_DNODE(page) ||
  1373. !is_cold_node(page)))
  1374. continue;
  1375. lock_node:
  1376. if (!trylock_page(page))
  1377. continue;
  1378. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1379. continue_unlock:
  1380. unlock_page(page);
  1381. continue;
  1382. }
  1383. if (!PageDirty(page)) {
  1384. /* someone wrote it for us */
  1385. goto continue_unlock;
  1386. }
  1387. /* flush inline_data */
  1388. if (is_inline_node(page)) {
  1389. clear_inline_node(page);
  1390. unlock_page(page);
  1391. flush_inline_data(sbi, ino_of_node(page));
  1392. goto lock_node;
  1393. }
  1394. f2fs_wait_on_page_writeback(page, NODE, true);
  1395. BUG_ON(PageWriteback(page));
  1396. if (!clear_page_dirty_for_io(page))
  1397. goto continue_unlock;
  1398. set_fsync_mark(page, 0);
  1399. set_dentry_mark(page, 0);
  1400. ret = __write_node_page(page, false, &submitted,
  1401. wbc, do_balance, io_type);
  1402. if (ret)
  1403. unlock_page(page);
  1404. else if (submitted)
  1405. nwritten++;
  1406. if (--wbc->nr_to_write == 0)
  1407. break;
  1408. }
  1409. pagevec_release(&pvec);
  1410. cond_resched();
  1411. if (wbc->nr_to_write == 0) {
  1412. step = 2;
  1413. break;
  1414. }
  1415. }
  1416. if (step < 2) {
  1417. step++;
  1418. goto next_step;
  1419. }
  1420. if (nwritten)
  1421. f2fs_submit_merged_write(sbi, NODE);
  1422. if (unlikely(f2fs_cp_error(sbi)))
  1423. return -EIO;
  1424. return ret;
  1425. }
  1426. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1427. {
  1428. pgoff_t index = 0;
  1429. struct pagevec pvec;
  1430. int ret2, ret = 0;
  1431. int nr_pages;
  1432. pagevec_init(&pvec);
  1433. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1434. PAGECACHE_TAG_WRITEBACK))) {
  1435. int i;
  1436. for (i = 0; i < nr_pages; i++) {
  1437. struct page *page = pvec.pages[i];
  1438. if (ino && ino_of_node(page) == ino) {
  1439. f2fs_wait_on_page_writeback(page, NODE, true);
  1440. if (TestClearPageError(page))
  1441. ret = -EIO;
  1442. }
  1443. }
  1444. pagevec_release(&pvec);
  1445. cond_resched();
  1446. }
  1447. ret2 = filemap_check_errors(NODE_MAPPING(sbi));
  1448. if (!ret)
  1449. ret = ret2;
  1450. return ret;
  1451. }
  1452. static int f2fs_write_node_pages(struct address_space *mapping,
  1453. struct writeback_control *wbc)
  1454. {
  1455. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1456. struct blk_plug plug;
  1457. long diff;
  1458. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1459. goto skip_write;
  1460. /* balancing f2fs's metadata in background */
  1461. f2fs_balance_fs_bg(sbi);
  1462. /* collect a number of dirty node pages and write together */
  1463. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1464. goto skip_write;
  1465. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1466. diff = nr_pages_to_write(sbi, NODE, wbc);
  1467. wbc->sync_mode = WB_SYNC_NONE;
  1468. blk_start_plug(&plug);
  1469. sync_node_pages(sbi, wbc, true, FS_NODE_IO);
  1470. blk_finish_plug(&plug);
  1471. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1472. return 0;
  1473. skip_write:
  1474. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1475. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1476. return 0;
  1477. }
  1478. static int f2fs_set_node_page_dirty(struct page *page)
  1479. {
  1480. trace_f2fs_set_page_dirty(page, NODE);
  1481. if (!PageUptodate(page))
  1482. SetPageUptodate(page);
  1483. if (!PageDirty(page)) {
  1484. f2fs_set_page_dirty_nobuffers(page);
  1485. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1486. SetPagePrivate(page);
  1487. f2fs_trace_pid(page);
  1488. return 1;
  1489. }
  1490. return 0;
  1491. }
  1492. /*
  1493. * Structure of the f2fs node operations
  1494. */
  1495. const struct address_space_operations f2fs_node_aops = {
  1496. .writepage = f2fs_write_node_page,
  1497. .writepages = f2fs_write_node_pages,
  1498. .set_page_dirty = f2fs_set_node_page_dirty,
  1499. .invalidatepage = f2fs_invalidate_page,
  1500. .releasepage = f2fs_release_page,
  1501. #ifdef CONFIG_MIGRATION
  1502. .migratepage = f2fs_migrate_page,
  1503. #endif
  1504. };
  1505. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1506. nid_t n)
  1507. {
  1508. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1509. }
  1510. static int __insert_free_nid(struct f2fs_sb_info *sbi,
  1511. struct free_nid *i, enum nid_state state)
  1512. {
  1513. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1514. int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
  1515. if (err)
  1516. return err;
  1517. f2fs_bug_on(sbi, state != i->state);
  1518. nm_i->nid_cnt[state]++;
  1519. if (state == FREE_NID)
  1520. list_add_tail(&i->list, &nm_i->free_nid_list);
  1521. return 0;
  1522. }
  1523. static void __remove_free_nid(struct f2fs_sb_info *sbi,
  1524. struct free_nid *i, enum nid_state state)
  1525. {
  1526. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1527. f2fs_bug_on(sbi, state != i->state);
  1528. nm_i->nid_cnt[state]--;
  1529. if (state == FREE_NID)
  1530. list_del(&i->list);
  1531. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1532. }
  1533. static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
  1534. enum nid_state org_state, enum nid_state dst_state)
  1535. {
  1536. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1537. f2fs_bug_on(sbi, org_state != i->state);
  1538. i->state = dst_state;
  1539. nm_i->nid_cnt[org_state]--;
  1540. nm_i->nid_cnt[dst_state]++;
  1541. switch (dst_state) {
  1542. case PREALLOC_NID:
  1543. list_del(&i->list);
  1544. break;
  1545. case FREE_NID:
  1546. list_add_tail(&i->list, &nm_i->free_nid_list);
  1547. break;
  1548. default:
  1549. BUG_ON(1);
  1550. }
  1551. }
  1552. static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
  1553. bool set, bool build)
  1554. {
  1555. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1556. unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
  1557. unsigned int nid_ofs = nid - START_NID(nid);
  1558. if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
  1559. return;
  1560. if (set) {
  1561. if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1562. return;
  1563. __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1564. nm_i->free_nid_count[nat_ofs]++;
  1565. } else {
  1566. if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1567. return;
  1568. __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1569. if (!build)
  1570. nm_i->free_nid_count[nat_ofs]--;
  1571. }
  1572. }
  1573. /* return if the nid is recognized as free */
  1574. static bool add_free_nid(struct f2fs_sb_info *sbi,
  1575. nid_t nid, bool build, bool update)
  1576. {
  1577. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1578. struct free_nid *i, *e;
  1579. struct nat_entry *ne;
  1580. int err = -EINVAL;
  1581. bool ret = false;
  1582. /* 0 nid should not be used */
  1583. if (unlikely(nid == 0))
  1584. return false;
  1585. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1586. i->nid = nid;
  1587. i->state = FREE_NID;
  1588. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  1589. spin_lock(&nm_i->nid_list_lock);
  1590. if (build) {
  1591. /*
  1592. * Thread A Thread B
  1593. * - f2fs_create
  1594. * - f2fs_new_inode
  1595. * - alloc_nid
  1596. * - __insert_nid_to_list(PREALLOC_NID)
  1597. * - f2fs_balance_fs_bg
  1598. * - build_free_nids
  1599. * - __build_free_nids
  1600. * - scan_nat_page
  1601. * - add_free_nid
  1602. * - __lookup_nat_cache
  1603. * - f2fs_add_link
  1604. * - init_inode_metadata
  1605. * - new_inode_page
  1606. * - new_node_page
  1607. * - set_node_addr
  1608. * - alloc_nid_done
  1609. * - __remove_nid_from_list(PREALLOC_NID)
  1610. * - __insert_nid_to_list(FREE_NID)
  1611. */
  1612. ne = __lookup_nat_cache(nm_i, nid);
  1613. if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1614. nat_get_blkaddr(ne) != NULL_ADDR))
  1615. goto err_out;
  1616. e = __lookup_free_nid_list(nm_i, nid);
  1617. if (e) {
  1618. if (e->state == FREE_NID)
  1619. ret = true;
  1620. goto err_out;
  1621. }
  1622. }
  1623. ret = true;
  1624. err = __insert_free_nid(sbi, i, FREE_NID);
  1625. err_out:
  1626. if (update) {
  1627. update_free_nid_bitmap(sbi, nid, ret, build);
  1628. if (!build)
  1629. nm_i->available_nids++;
  1630. }
  1631. spin_unlock(&nm_i->nid_list_lock);
  1632. radix_tree_preload_end();
  1633. if (err)
  1634. kmem_cache_free(free_nid_slab, i);
  1635. return ret;
  1636. }
  1637. static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
  1638. {
  1639. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1640. struct free_nid *i;
  1641. bool need_free = false;
  1642. spin_lock(&nm_i->nid_list_lock);
  1643. i = __lookup_free_nid_list(nm_i, nid);
  1644. if (i && i->state == FREE_NID) {
  1645. __remove_free_nid(sbi, i, FREE_NID);
  1646. need_free = true;
  1647. }
  1648. spin_unlock(&nm_i->nid_list_lock);
  1649. if (need_free)
  1650. kmem_cache_free(free_nid_slab, i);
  1651. }
  1652. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1653. struct page *nat_page, nid_t start_nid)
  1654. {
  1655. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1656. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1657. block_t blk_addr;
  1658. unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
  1659. int i;
  1660. __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
  1661. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1662. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1663. if (unlikely(start_nid >= nm_i->max_nid))
  1664. break;
  1665. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1666. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1667. if (blk_addr == NULL_ADDR) {
  1668. add_free_nid(sbi, start_nid, true, true);
  1669. } else {
  1670. spin_lock(&NM_I(sbi)->nid_list_lock);
  1671. update_free_nid_bitmap(sbi, start_nid, false, true);
  1672. spin_unlock(&NM_I(sbi)->nid_list_lock);
  1673. }
  1674. }
  1675. }
  1676. static void scan_curseg_cache(struct f2fs_sb_info *sbi)
  1677. {
  1678. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1679. struct f2fs_journal *journal = curseg->journal;
  1680. int i;
  1681. down_read(&curseg->journal_rwsem);
  1682. for (i = 0; i < nats_in_cursum(journal); i++) {
  1683. block_t addr;
  1684. nid_t nid;
  1685. addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
  1686. nid = le32_to_cpu(nid_in_journal(journal, i));
  1687. if (addr == NULL_ADDR)
  1688. add_free_nid(sbi, nid, true, false);
  1689. else
  1690. remove_free_nid(sbi, nid);
  1691. }
  1692. up_read(&curseg->journal_rwsem);
  1693. }
  1694. static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
  1695. {
  1696. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1697. unsigned int i, idx;
  1698. nid_t nid;
  1699. down_read(&nm_i->nat_tree_lock);
  1700. for (i = 0; i < nm_i->nat_blocks; i++) {
  1701. if (!test_bit_le(i, nm_i->nat_block_bitmap))
  1702. continue;
  1703. if (!nm_i->free_nid_count[i])
  1704. continue;
  1705. for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
  1706. idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
  1707. NAT_ENTRY_PER_BLOCK, idx);
  1708. if (idx >= NAT_ENTRY_PER_BLOCK)
  1709. break;
  1710. nid = i * NAT_ENTRY_PER_BLOCK + idx;
  1711. add_free_nid(sbi, nid, true, false);
  1712. if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
  1713. goto out;
  1714. }
  1715. }
  1716. out:
  1717. scan_curseg_cache(sbi);
  1718. up_read(&nm_i->nat_tree_lock);
  1719. }
  1720. static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
  1721. {
  1722. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1723. int i = 0;
  1724. nid_t nid = nm_i->next_scan_nid;
  1725. if (unlikely(nid >= nm_i->max_nid))
  1726. nid = 0;
  1727. /* Enough entries */
  1728. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1729. return;
  1730. if (!sync && !available_free_memory(sbi, FREE_NIDS))
  1731. return;
  1732. if (!mount) {
  1733. /* try to find free nids in free_nid_bitmap */
  1734. scan_free_nid_bits(sbi);
  1735. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1736. return;
  1737. }
  1738. /* readahead nat pages to be scanned */
  1739. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
  1740. META_NAT, true);
  1741. down_read(&nm_i->nat_tree_lock);
  1742. while (1) {
  1743. if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
  1744. nm_i->nat_block_bitmap)) {
  1745. struct page *page = get_current_nat_page(sbi, nid);
  1746. scan_nat_page(sbi, page, nid);
  1747. f2fs_put_page(page, 1);
  1748. }
  1749. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1750. if (unlikely(nid >= nm_i->max_nid))
  1751. nid = 0;
  1752. if (++i >= FREE_NID_PAGES)
  1753. break;
  1754. }
  1755. /* go to the next free nat pages to find free nids abundantly */
  1756. nm_i->next_scan_nid = nid;
  1757. /* find free nids from current sum_pages */
  1758. scan_curseg_cache(sbi);
  1759. up_read(&nm_i->nat_tree_lock);
  1760. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
  1761. nm_i->ra_nid_pages, META_NAT, false);
  1762. }
  1763. void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
  1764. {
  1765. mutex_lock(&NM_I(sbi)->build_lock);
  1766. __build_free_nids(sbi, sync, mount);
  1767. mutex_unlock(&NM_I(sbi)->build_lock);
  1768. }
  1769. /*
  1770. * If this function returns success, caller can obtain a new nid
  1771. * from second parameter of this function.
  1772. * The returned nid could be used ino as well as nid when inode is created.
  1773. */
  1774. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1775. {
  1776. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1777. struct free_nid *i = NULL;
  1778. retry:
  1779. #ifdef CONFIG_F2FS_FAULT_INJECTION
  1780. if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
  1781. f2fs_show_injection_info(FAULT_ALLOC_NID);
  1782. return false;
  1783. }
  1784. #endif
  1785. spin_lock(&nm_i->nid_list_lock);
  1786. if (unlikely(nm_i->available_nids == 0)) {
  1787. spin_unlock(&nm_i->nid_list_lock);
  1788. return false;
  1789. }
  1790. /* We should not use stale free nids created by build_free_nids */
  1791. if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
  1792. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1793. i = list_first_entry(&nm_i->free_nid_list,
  1794. struct free_nid, list);
  1795. *nid = i->nid;
  1796. __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
  1797. nm_i->available_nids--;
  1798. update_free_nid_bitmap(sbi, *nid, false, false);
  1799. spin_unlock(&nm_i->nid_list_lock);
  1800. return true;
  1801. }
  1802. spin_unlock(&nm_i->nid_list_lock);
  1803. /* Let's scan nat pages and its caches to get free nids */
  1804. build_free_nids(sbi, true, false);
  1805. goto retry;
  1806. }
  1807. /*
  1808. * alloc_nid() should be called prior to this function.
  1809. */
  1810. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1811. {
  1812. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1813. struct free_nid *i;
  1814. spin_lock(&nm_i->nid_list_lock);
  1815. i = __lookup_free_nid_list(nm_i, nid);
  1816. f2fs_bug_on(sbi, !i);
  1817. __remove_free_nid(sbi, i, PREALLOC_NID);
  1818. spin_unlock(&nm_i->nid_list_lock);
  1819. kmem_cache_free(free_nid_slab, i);
  1820. }
  1821. /*
  1822. * alloc_nid() should be called prior to this function.
  1823. */
  1824. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1825. {
  1826. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1827. struct free_nid *i;
  1828. bool need_free = false;
  1829. if (!nid)
  1830. return;
  1831. spin_lock(&nm_i->nid_list_lock);
  1832. i = __lookup_free_nid_list(nm_i, nid);
  1833. f2fs_bug_on(sbi, !i);
  1834. if (!available_free_memory(sbi, FREE_NIDS)) {
  1835. __remove_free_nid(sbi, i, PREALLOC_NID);
  1836. need_free = true;
  1837. } else {
  1838. __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
  1839. }
  1840. nm_i->available_nids++;
  1841. update_free_nid_bitmap(sbi, nid, true, false);
  1842. spin_unlock(&nm_i->nid_list_lock);
  1843. if (need_free)
  1844. kmem_cache_free(free_nid_slab, i);
  1845. }
  1846. int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
  1847. {
  1848. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1849. struct free_nid *i, *next;
  1850. int nr = nr_shrink;
  1851. if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  1852. return 0;
  1853. if (!mutex_trylock(&nm_i->build_lock))
  1854. return 0;
  1855. spin_lock(&nm_i->nid_list_lock);
  1856. list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
  1857. if (nr_shrink <= 0 ||
  1858. nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  1859. break;
  1860. __remove_free_nid(sbi, i, FREE_NID);
  1861. kmem_cache_free(free_nid_slab, i);
  1862. nr_shrink--;
  1863. }
  1864. spin_unlock(&nm_i->nid_list_lock);
  1865. mutex_unlock(&nm_i->build_lock);
  1866. return nr - nr_shrink;
  1867. }
  1868. void recover_inline_xattr(struct inode *inode, struct page *page)
  1869. {
  1870. void *src_addr, *dst_addr;
  1871. size_t inline_size;
  1872. struct page *ipage;
  1873. struct f2fs_inode *ri;
  1874. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1875. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1876. ri = F2FS_INODE(page);
  1877. if (ri->i_inline & F2FS_INLINE_XATTR) {
  1878. set_inode_flag(inode, FI_INLINE_XATTR);
  1879. } else {
  1880. clear_inode_flag(inode, FI_INLINE_XATTR);
  1881. goto update_inode;
  1882. }
  1883. dst_addr = inline_xattr_addr(inode, ipage);
  1884. src_addr = inline_xattr_addr(inode, page);
  1885. inline_size = inline_xattr_size(inode);
  1886. f2fs_wait_on_page_writeback(ipage, NODE, true);
  1887. memcpy(dst_addr, src_addr, inline_size);
  1888. update_inode:
  1889. update_inode(inode, ipage);
  1890. f2fs_put_page(ipage, 1);
  1891. }
  1892. int recover_xattr_data(struct inode *inode, struct page *page)
  1893. {
  1894. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1895. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1896. nid_t new_xnid;
  1897. struct dnode_of_data dn;
  1898. struct node_info ni;
  1899. struct page *xpage;
  1900. if (!prev_xnid)
  1901. goto recover_xnid;
  1902. /* 1: invalidate the previous xattr nid */
  1903. get_node_info(sbi, prev_xnid, &ni);
  1904. invalidate_blocks(sbi, ni.blk_addr);
  1905. dec_valid_node_count(sbi, inode, false);
  1906. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1907. recover_xnid:
  1908. /* 2: update xattr nid in inode */
  1909. if (!alloc_nid(sbi, &new_xnid))
  1910. return -ENOSPC;
  1911. set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
  1912. xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
  1913. if (IS_ERR(xpage)) {
  1914. alloc_nid_failed(sbi, new_xnid);
  1915. return PTR_ERR(xpage);
  1916. }
  1917. alloc_nid_done(sbi, new_xnid);
  1918. update_inode_page(inode);
  1919. /* 3: update and set xattr node page dirty */
  1920. memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
  1921. set_page_dirty(xpage);
  1922. f2fs_put_page(xpage, 1);
  1923. return 0;
  1924. }
  1925. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1926. {
  1927. struct f2fs_inode *src, *dst;
  1928. nid_t ino = ino_of_node(page);
  1929. struct node_info old_ni, new_ni;
  1930. struct page *ipage;
  1931. get_node_info(sbi, ino, &old_ni);
  1932. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1933. return -EINVAL;
  1934. retry:
  1935. ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
  1936. if (!ipage) {
  1937. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1938. goto retry;
  1939. }
  1940. /* Should not use this inode from free nid list */
  1941. remove_free_nid(sbi, ino);
  1942. if (!PageUptodate(ipage))
  1943. SetPageUptodate(ipage);
  1944. fill_node_footer(ipage, ino, ino, 0, true);
  1945. src = F2FS_INODE(page);
  1946. dst = F2FS_INODE(ipage);
  1947. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1948. dst->i_size = 0;
  1949. dst->i_blocks = cpu_to_le64(1);
  1950. dst->i_links = cpu_to_le32(1);
  1951. dst->i_xattr_nid = 0;
  1952. dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
  1953. if (dst->i_inline & F2FS_EXTRA_ATTR) {
  1954. dst->i_extra_isize = src->i_extra_isize;
  1955. if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
  1956. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  1957. i_inline_xattr_size))
  1958. dst->i_inline_xattr_size = src->i_inline_xattr_size;
  1959. if (f2fs_sb_has_project_quota(sbi->sb) &&
  1960. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  1961. i_projid))
  1962. dst->i_projid = src->i_projid;
  1963. }
  1964. new_ni = old_ni;
  1965. new_ni.ino = ino;
  1966. if (unlikely(inc_valid_node_count(sbi, NULL, true)))
  1967. WARN_ON(1);
  1968. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1969. inc_valid_inode_count(sbi);
  1970. set_page_dirty(ipage);
  1971. f2fs_put_page(ipage, 1);
  1972. return 0;
  1973. }
  1974. void restore_node_summary(struct f2fs_sb_info *sbi,
  1975. unsigned int segno, struct f2fs_summary_block *sum)
  1976. {
  1977. struct f2fs_node *rn;
  1978. struct f2fs_summary *sum_entry;
  1979. block_t addr;
  1980. int i, idx, last_offset, nrpages;
  1981. /* scan the node segment */
  1982. last_offset = sbi->blocks_per_seg;
  1983. addr = START_BLOCK(sbi, segno);
  1984. sum_entry = &sum->entries[0];
  1985. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  1986. nrpages = min(last_offset - i, BIO_MAX_PAGES);
  1987. /* readahead node pages */
  1988. ra_meta_pages(sbi, addr, nrpages, META_POR, true);
  1989. for (idx = addr; idx < addr + nrpages; idx++) {
  1990. struct page *page = get_tmp_page(sbi, idx);
  1991. rn = F2FS_NODE(page);
  1992. sum_entry->nid = rn->footer.nid;
  1993. sum_entry->version = 0;
  1994. sum_entry->ofs_in_node = 0;
  1995. sum_entry++;
  1996. f2fs_put_page(page, 1);
  1997. }
  1998. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  1999. addr + nrpages);
  2000. }
  2001. }
  2002. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  2003. {
  2004. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2005. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2006. struct f2fs_journal *journal = curseg->journal;
  2007. int i;
  2008. down_write(&curseg->journal_rwsem);
  2009. for (i = 0; i < nats_in_cursum(journal); i++) {
  2010. struct nat_entry *ne;
  2011. struct f2fs_nat_entry raw_ne;
  2012. nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
  2013. raw_ne = nat_in_journal(journal, i);
  2014. ne = __lookup_nat_cache(nm_i, nid);
  2015. if (!ne) {
  2016. ne = __alloc_nat_entry(nid, true);
  2017. __init_nat_entry(nm_i, ne, &raw_ne, true);
  2018. }
  2019. /*
  2020. * if a free nat in journal has not been used after last
  2021. * checkpoint, we should remove it from available nids,
  2022. * since later we will add it again.
  2023. */
  2024. if (!get_nat_flag(ne, IS_DIRTY) &&
  2025. le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
  2026. spin_lock(&nm_i->nid_list_lock);
  2027. nm_i->available_nids--;
  2028. spin_unlock(&nm_i->nid_list_lock);
  2029. }
  2030. __set_nat_cache_dirty(nm_i, ne);
  2031. }
  2032. update_nats_in_cursum(journal, -i);
  2033. up_write(&curseg->journal_rwsem);
  2034. }
  2035. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  2036. struct list_head *head, int max)
  2037. {
  2038. struct nat_entry_set *cur;
  2039. if (nes->entry_cnt >= max)
  2040. goto add_out;
  2041. list_for_each_entry(cur, head, set_list) {
  2042. if (cur->entry_cnt >= nes->entry_cnt) {
  2043. list_add(&nes->set_list, cur->set_list.prev);
  2044. return;
  2045. }
  2046. }
  2047. add_out:
  2048. list_add_tail(&nes->set_list, head);
  2049. }
  2050. static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
  2051. struct page *page)
  2052. {
  2053. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2054. unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
  2055. struct f2fs_nat_block *nat_blk = page_address(page);
  2056. int valid = 0;
  2057. int i = 0;
  2058. if (!enabled_nat_bits(sbi, NULL))
  2059. return;
  2060. if (nat_index == 0) {
  2061. valid = 1;
  2062. i = 1;
  2063. }
  2064. for (; i < NAT_ENTRY_PER_BLOCK; i++) {
  2065. if (nat_blk->entries[i].block_addr != NULL_ADDR)
  2066. valid++;
  2067. }
  2068. if (valid == 0) {
  2069. __set_bit_le(nat_index, nm_i->empty_nat_bits);
  2070. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2071. return;
  2072. }
  2073. __clear_bit_le(nat_index, nm_i->empty_nat_bits);
  2074. if (valid == NAT_ENTRY_PER_BLOCK)
  2075. __set_bit_le(nat_index, nm_i->full_nat_bits);
  2076. else
  2077. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2078. }
  2079. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  2080. struct nat_entry_set *set, struct cp_control *cpc)
  2081. {
  2082. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2083. struct f2fs_journal *journal = curseg->journal;
  2084. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  2085. bool to_journal = true;
  2086. struct f2fs_nat_block *nat_blk;
  2087. struct nat_entry *ne, *cur;
  2088. struct page *page = NULL;
  2089. /*
  2090. * there are two steps to flush nat entries:
  2091. * #1, flush nat entries to journal in current hot data summary block.
  2092. * #2, flush nat entries to nat page.
  2093. */
  2094. if (enabled_nat_bits(sbi, cpc) ||
  2095. !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
  2096. to_journal = false;
  2097. if (to_journal) {
  2098. down_write(&curseg->journal_rwsem);
  2099. } else {
  2100. page = get_next_nat_page(sbi, start_nid);
  2101. nat_blk = page_address(page);
  2102. f2fs_bug_on(sbi, !nat_blk);
  2103. }
  2104. /* flush dirty nats in nat entry set */
  2105. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  2106. struct f2fs_nat_entry *raw_ne;
  2107. nid_t nid = nat_get_nid(ne);
  2108. int offset;
  2109. f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
  2110. if (to_journal) {
  2111. offset = lookup_journal_in_cursum(journal,
  2112. NAT_JOURNAL, nid, 1);
  2113. f2fs_bug_on(sbi, offset < 0);
  2114. raw_ne = &nat_in_journal(journal, offset);
  2115. nid_in_journal(journal, offset) = cpu_to_le32(nid);
  2116. } else {
  2117. raw_ne = &nat_blk->entries[nid - start_nid];
  2118. }
  2119. raw_nat_from_node_info(raw_ne, &ne->ni);
  2120. nat_reset_flag(ne);
  2121. __clear_nat_cache_dirty(NM_I(sbi), set, ne);
  2122. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  2123. add_free_nid(sbi, nid, false, true);
  2124. } else {
  2125. spin_lock(&NM_I(sbi)->nid_list_lock);
  2126. update_free_nid_bitmap(sbi, nid, false, false);
  2127. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2128. }
  2129. }
  2130. if (to_journal) {
  2131. up_write(&curseg->journal_rwsem);
  2132. } else {
  2133. __update_nat_bits(sbi, start_nid, page);
  2134. f2fs_put_page(page, 1);
  2135. }
  2136. /* Allow dirty nats by node block allocation in write_begin */
  2137. if (!set->entry_cnt) {
  2138. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  2139. kmem_cache_free(nat_entry_set_slab, set);
  2140. }
  2141. }
  2142. /*
  2143. * This function is called during the checkpointing process.
  2144. */
  2145. void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2146. {
  2147. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2148. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2149. struct f2fs_journal *journal = curseg->journal;
  2150. struct nat_entry_set *setvec[SETVEC_SIZE];
  2151. struct nat_entry_set *set, *tmp;
  2152. unsigned int found;
  2153. nid_t set_idx = 0;
  2154. LIST_HEAD(sets);
  2155. if (!nm_i->dirty_nat_cnt)
  2156. return;
  2157. down_write(&nm_i->nat_tree_lock);
  2158. /*
  2159. * if there are no enough space in journal to store dirty nat
  2160. * entries, remove all entries from journal and merge them
  2161. * into nat entry set.
  2162. */
  2163. if (enabled_nat_bits(sbi, cpc) ||
  2164. !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  2165. remove_nats_in_journal(sbi);
  2166. while ((found = __gang_lookup_nat_set(nm_i,
  2167. set_idx, SETVEC_SIZE, setvec))) {
  2168. unsigned idx;
  2169. set_idx = setvec[found - 1]->set + 1;
  2170. for (idx = 0; idx < found; idx++)
  2171. __adjust_nat_entry_set(setvec[idx], &sets,
  2172. MAX_NAT_JENTRIES(journal));
  2173. }
  2174. /* flush dirty nats in nat entry set */
  2175. list_for_each_entry_safe(set, tmp, &sets, set_list)
  2176. __flush_nat_entry_set(sbi, set, cpc);
  2177. up_write(&nm_i->nat_tree_lock);
  2178. /* Allow dirty nats by node block allocation in write_begin */
  2179. }
  2180. static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
  2181. {
  2182. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2183. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2184. unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
  2185. unsigned int i;
  2186. __u64 cp_ver = cur_cp_version(ckpt);
  2187. block_t nat_bits_addr;
  2188. if (!enabled_nat_bits(sbi, NULL))
  2189. return 0;
  2190. nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
  2191. F2FS_BLKSIZE - 1);
  2192. nm_i->nat_bits = f2fs_kzalloc(sbi,
  2193. nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
  2194. if (!nm_i->nat_bits)
  2195. return -ENOMEM;
  2196. nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
  2197. nm_i->nat_bits_blocks;
  2198. for (i = 0; i < nm_i->nat_bits_blocks; i++) {
  2199. struct page *page = get_meta_page(sbi, nat_bits_addr++);
  2200. memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
  2201. page_address(page), F2FS_BLKSIZE);
  2202. f2fs_put_page(page, 1);
  2203. }
  2204. cp_ver |= (cur_cp_crc(ckpt) << 32);
  2205. if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
  2206. disable_nat_bits(sbi, true);
  2207. return 0;
  2208. }
  2209. nm_i->full_nat_bits = nm_i->nat_bits + 8;
  2210. nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
  2211. f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
  2212. return 0;
  2213. }
  2214. static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
  2215. {
  2216. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2217. unsigned int i = 0;
  2218. nid_t nid, last_nid;
  2219. if (!enabled_nat_bits(sbi, NULL))
  2220. return;
  2221. for (i = 0; i < nm_i->nat_blocks; i++) {
  2222. i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
  2223. if (i >= nm_i->nat_blocks)
  2224. break;
  2225. __set_bit_le(i, nm_i->nat_block_bitmap);
  2226. nid = i * NAT_ENTRY_PER_BLOCK;
  2227. last_nid = nid + NAT_ENTRY_PER_BLOCK;
  2228. spin_lock(&NM_I(sbi)->nid_list_lock);
  2229. for (; nid < last_nid; nid++)
  2230. update_free_nid_bitmap(sbi, nid, true, true);
  2231. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2232. }
  2233. for (i = 0; i < nm_i->nat_blocks; i++) {
  2234. i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
  2235. if (i >= nm_i->nat_blocks)
  2236. break;
  2237. __set_bit_le(i, nm_i->nat_block_bitmap);
  2238. }
  2239. }
  2240. static int init_node_manager(struct f2fs_sb_info *sbi)
  2241. {
  2242. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  2243. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2244. unsigned char *version_bitmap;
  2245. unsigned int nat_segs;
  2246. int err;
  2247. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  2248. /* segment_count_nat includes pair segment so divide to 2. */
  2249. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  2250. nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  2251. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
  2252. /* not used nids: 0, node, meta, (and root counted as valid node) */
  2253. nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
  2254. sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
  2255. nm_i->nid_cnt[FREE_NID] = 0;
  2256. nm_i->nid_cnt[PREALLOC_NID] = 0;
  2257. nm_i->nat_cnt = 0;
  2258. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  2259. nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
  2260. nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
  2261. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  2262. INIT_LIST_HEAD(&nm_i->free_nid_list);
  2263. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  2264. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  2265. INIT_LIST_HEAD(&nm_i->nat_entries);
  2266. mutex_init(&nm_i->build_lock);
  2267. spin_lock_init(&nm_i->nid_list_lock);
  2268. init_rwsem(&nm_i->nat_tree_lock);
  2269. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  2270. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  2271. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  2272. if (!version_bitmap)
  2273. return -EFAULT;
  2274. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  2275. GFP_KERNEL);
  2276. if (!nm_i->nat_bitmap)
  2277. return -ENOMEM;
  2278. err = __get_nat_bitmaps(sbi);
  2279. if (err)
  2280. return err;
  2281. #ifdef CONFIG_F2FS_CHECK_FS
  2282. nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
  2283. GFP_KERNEL);
  2284. if (!nm_i->nat_bitmap_mir)
  2285. return -ENOMEM;
  2286. #endif
  2287. return 0;
  2288. }
  2289. static int init_free_nid_cache(struct f2fs_sb_info *sbi)
  2290. {
  2291. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2292. nm_i->free_nid_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
  2293. NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
  2294. if (!nm_i->free_nid_bitmap)
  2295. return -ENOMEM;
  2296. nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
  2297. GFP_KERNEL);
  2298. if (!nm_i->nat_block_bitmap)
  2299. return -ENOMEM;
  2300. nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
  2301. sizeof(unsigned short), GFP_KERNEL);
  2302. if (!nm_i->free_nid_count)
  2303. return -ENOMEM;
  2304. return 0;
  2305. }
  2306. int build_node_manager(struct f2fs_sb_info *sbi)
  2307. {
  2308. int err;
  2309. sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
  2310. GFP_KERNEL);
  2311. if (!sbi->nm_info)
  2312. return -ENOMEM;
  2313. err = init_node_manager(sbi);
  2314. if (err)
  2315. return err;
  2316. err = init_free_nid_cache(sbi);
  2317. if (err)
  2318. return err;
  2319. /* load free nid status from nat_bits table */
  2320. load_free_nid_bitmap(sbi);
  2321. build_free_nids(sbi, true, true);
  2322. return 0;
  2323. }
  2324. void destroy_node_manager(struct f2fs_sb_info *sbi)
  2325. {
  2326. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2327. struct free_nid *i, *next_i;
  2328. struct nat_entry *natvec[NATVEC_SIZE];
  2329. struct nat_entry_set *setvec[SETVEC_SIZE];
  2330. nid_t nid = 0;
  2331. unsigned int found;
  2332. if (!nm_i)
  2333. return;
  2334. /* destroy free nid list */
  2335. spin_lock(&nm_i->nid_list_lock);
  2336. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  2337. __remove_free_nid(sbi, i, FREE_NID);
  2338. spin_unlock(&nm_i->nid_list_lock);
  2339. kmem_cache_free(free_nid_slab, i);
  2340. spin_lock(&nm_i->nid_list_lock);
  2341. }
  2342. f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
  2343. f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
  2344. f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
  2345. spin_unlock(&nm_i->nid_list_lock);
  2346. /* destroy nat cache */
  2347. down_write(&nm_i->nat_tree_lock);
  2348. while ((found = __gang_lookup_nat_cache(nm_i,
  2349. nid, NATVEC_SIZE, natvec))) {
  2350. unsigned idx;
  2351. nid = nat_get_nid(natvec[found - 1]) + 1;
  2352. for (idx = 0; idx < found; idx++)
  2353. __del_from_nat_cache(nm_i, natvec[idx]);
  2354. }
  2355. f2fs_bug_on(sbi, nm_i->nat_cnt);
  2356. /* destroy nat set cache */
  2357. nid = 0;
  2358. while ((found = __gang_lookup_nat_set(nm_i,
  2359. nid, SETVEC_SIZE, setvec))) {
  2360. unsigned idx;
  2361. nid = setvec[found - 1]->set + 1;
  2362. for (idx = 0; idx < found; idx++) {
  2363. /* entry_cnt is not zero, when cp_error was occurred */
  2364. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  2365. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  2366. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  2367. }
  2368. }
  2369. up_write(&nm_i->nat_tree_lock);
  2370. kvfree(nm_i->nat_block_bitmap);
  2371. kvfree(nm_i->free_nid_bitmap);
  2372. kvfree(nm_i->free_nid_count);
  2373. kfree(nm_i->nat_bitmap);
  2374. kfree(nm_i->nat_bits);
  2375. #ifdef CONFIG_F2FS_CHECK_FS
  2376. kfree(nm_i->nat_bitmap_mir);
  2377. #endif
  2378. sbi->nm_info = NULL;
  2379. kfree(nm_i);
  2380. }
  2381. int __init create_node_manager_caches(void)
  2382. {
  2383. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  2384. sizeof(struct nat_entry));
  2385. if (!nat_entry_slab)
  2386. goto fail;
  2387. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  2388. sizeof(struct free_nid));
  2389. if (!free_nid_slab)
  2390. goto destroy_nat_entry;
  2391. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  2392. sizeof(struct nat_entry_set));
  2393. if (!nat_entry_set_slab)
  2394. goto destroy_free_nid;
  2395. return 0;
  2396. destroy_free_nid:
  2397. kmem_cache_destroy(free_nid_slab);
  2398. destroy_nat_entry:
  2399. kmem_cache_destroy(nat_entry_slab);
  2400. fail:
  2401. return -ENOMEM;
  2402. }
  2403. void destroy_node_manager_caches(void)
  2404. {
  2405. kmem_cache_destroy(nat_entry_set_slab);
  2406. kmem_cache_destroy(free_nid_slab);
  2407. kmem_cache_destroy(nat_entry_slab);
  2408. }