inode.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/writeback.h>
  16. #include "f2fs.h"
  17. #include "node.h"
  18. #include "segment.h"
  19. #include <trace/events/f2fs.h>
  20. void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync)
  21. {
  22. if (is_inode_flag_set(inode, FI_NEW_INODE))
  23. return;
  24. if (f2fs_inode_dirtied(inode, sync))
  25. return;
  26. mark_inode_dirty_sync(inode);
  27. }
  28. void f2fs_set_inode_flags(struct inode *inode)
  29. {
  30. unsigned int flags = F2FS_I(inode)->i_flags;
  31. unsigned int new_fl = 0;
  32. if (flags & FS_SYNC_FL)
  33. new_fl |= S_SYNC;
  34. if (flags & FS_APPEND_FL)
  35. new_fl |= S_APPEND;
  36. if (flags & FS_IMMUTABLE_FL)
  37. new_fl |= S_IMMUTABLE;
  38. if (flags & FS_NOATIME_FL)
  39. new_fl |= S_NOATIME;
  40. if (flags & FS_DIRSYNC_FL)
  41. new_fl |= S_DIRSYNC;
  42. if (f2fs_encrypted_inode(inode))
  43. new_fl |= S_ENCRYPTED;
  44. inode_set_flags(inode, new_fl,
  45. S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|
  46. S_ENCRYPTED);
  47. }
  48. static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  49. {
  50. int extra_size = get_extra_isize(inode);
  51. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  52. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  53. if (ri->i_addr[extra_size])
  54. inode->i_rdev = old_decode_dev(
  55. le32_to_cpu(ri->i_addr[extra_size]));
  56. else
  57. inode->i_rdev = new_decode_dev(
  58. le32_to_cpu(ri->i_addr[extra_size + 1]));
  59. }
  60. }
  61. static bool __written_first_block(struct f2fs_inode *ri)
  62. {
  63. block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]);
  64. if (addr != NEW_ADDR && addr != NULL_ADDR)
  65. return true;
  66. return false;
  67. }
  68. static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
  69. {
  70. int extra_size = get_extra_isize(inode);
  71. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  72. if (old_valid_dev(inode->i_rdev)) {
  73. ri->i_addr[extra_size] =
  74. cpu_to_le32(old_encode_dev(inode->i_rdev));
  75. ri->i_addr[extra_size + 1] = 0;
  76. } else {
  77. ri->i_addr[extra_size] = 0;
  78. ri->i_addr[extra_size + 1] =
  79. cpu_to_le32(new_encode_dev(inode->i_rdev));
  80. ri->i_addr[extra_size + 2] = 0;
  81. }
  82. }
  83. }
  84. static void __recover_inline_status(struct inode *inode, struct page *ipage)
  85. {
  86. void *inline_data = inline_data_addr(inode, ipage);
  87. __le32 *start = inline_data;
  88. __le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32);
  89. while (start < end) {
  90. if (*start++) {
  91. f2fs_wait_on_page_writeback(ipage, NODE, true);
  92. set_inode_flag(inode, FI_DATA_EXIST);
  93. set_raw_inline(inode, F2FS_INODE(ipage));
  94. set_page_dirty(ipage);
  95. return;
  96. }
  97. }
  98. return;
  99. }
  100. static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
  101. {
  102. struct f2fs_inode *ri = &F2FS_NODE(page)->i;
  103. int extra_isize = le32_to_cpu(ri->i_extra_isize);
  104. if (!f2fs_sb_has_inode_chksum(sbi->sb))
  105. return false;
  106. if (!RAW_IS_INODE(F2FS_NODE(page)) || !(ri->i_inline & F2FS_EXTRA_ATTR))
  107. return false;
  108. if (!F2FS_FITS_IN_INODE(ri, extra_isize, i_inode_checksum))
  109. return false;
  110. return true;
  111. }
  112. static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
  113. {
  114. struct f2fs_node *node = F2FS_NODE(page);
  115. struct f2fs_inode *ri = &node->i;
  116. __le32 ino = node->footer.ino;
  117. __le32 gen = ri->i_generation;
  118. __u32 chksum, chksum_seed;
  119. __u32 dummy_cs = 0;
  120. unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum);
  121. unsigned int cs_size = sizeof(dummy_cs);
  122. chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino,
  123. sizeof(ino));
  124. chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen));
  125. chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset);
  126. chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size);
  127. offset += cs_size;
  128. chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset,
  129. F2FS_BLKSIZE - offset);
  130. return chksum;
  131. }
  132. bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page)
  133. {
  134. struct f2fs_inode *ri;
  135. __u32 provided, calculated;
  136. if (!f2fs_enable_inode_chksum(sbi, page) ||
  137. PageDirty(page) || PageWriteback(page))
  138. return true;
  139. ri = &F2FS_NODE(page)->i;
  140. provided = le32_to_cpu(ri->i_inode_checksum);
  141. calculated = f2fs_inode_chksum(sbi, page);
  142. if (provided != calculated)
  143. f2fs_msg(sbi->sb, KERN_WARNING,
  144. "checksum invalid, ino = %x, %x vs. %x",
  145. ino_of_node(page), provided, calculated);
  146. return provided == calculated;
  147. }
  148. void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page)
  149. {
  150. struct f2fs_inode *ri = &F2FS_NODE(page)->i;
  151. if (!f2fs_enable_inode_chksum(sbi, page))
  152. return;
  153. ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page));
  154. }
  155. static int do_read_inode(struct inode *inode)
  156. {
  157. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  158. struct f2fs_inode_info *fi = F2FS_I(inode);
  159. struct page *node_page;
  160. struct f2fs_inode *ri;
  161. projid_t i_projid;
  162. /* Check if ino is within scope */
  163. if (check_nid_range(sbi, inode->i_ino)) {
  164. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  165. (unsigned long) inode->i_ino);
  166. WARN_ON(1);
  167. return -EINVAL;
  168. }
  169. node_page = get_node_page(sbi, inode->i_ino);
  170. if (IS_ERR(node_page))
  171. return PTR_ERR(node_page);
  172. ri = F2FS_INODE(node_page);
  173. inode->i_mode = le16_to_cpu(ri->i_mode);
  174. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  175. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  176. set_nlink(inode, le32_to_cpu(ri->i_links));
  177. inode->i_size = le64_to_cpu(ri->i_size);
  178. inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1);
  179. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  180. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  181. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  182. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  183. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  184. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  185. inode->i_generation = le32_to_cpu(ri->i_generation);
  186. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  187. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  188. fi->i_flags = le32_to_cpu(ri->i_flags);
  189. fi->flags = 0;
  190. fi->i_advise = ri->i_advise;
  191. fi->i_pino = le32_to_cpu(ri->i_pino);
  192. fi->i_dir_level = ri->i_dir_level;
  193. if (f2fs_init_extent_tree(inode, &ri->i_ext))
  194. set_page_dirty(node_page);
  195. get_inline_info(inode, ri);
  196. fi->i_extra_isize = f2fs_has_extra_attr(inode) ?
  197. le16_to_cpu(ri->i_extra_isize) : 0;
  198. if (f2fs_sb_has_flexible_inline_xattr(sbi->sb)) {
  199. f2fs_bug_on(sbi, !f2fs_has_extra_attr(inode));
  200. fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size);
  201. } else if (f2fs_has_inline_xattr(inode) ||
  202. f2fs_has_inline_dentry(inode)) {
  203. fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
  204. } else {
  205. /*
  206. * Previous inline data or directory always reserved 200 bytes
  207. * in inode layout, even if inline_xattr is disabled. In order
  208. * to keep inline_dentry's structure for backward compatibility,
  209. * we get the space back only from inline_data.
  210. */
  211. fi->i_inline_xattr_size = 0;
  212. }
  213. /* check data exist */
  214. if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
  215. __recover_inline_status(inode, node_page);
  216. /* get rdev by using inline_info */
  217. __get_inode_rdev(inode, ri);
  218. if (__written_first_block(ri))
  219. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  220. if (!need_inode_block_update(sbi, inode->i_ino))
  221. fi->last_disk_size = inode->i_size;
  222. if (fi->i_flags & FS_PROJINHERIT_FL)
  223. set_inode_flag(inode, FI_PROJ_INHERIT);
  224. if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi->sb) &&
  225. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
  226. i_projid = (projid_t)le32_to_cpu(ri->i_projid);
  227. else
  228. i_projid = F2FS_DEF_PROJID;
  229. fi->i_projid = make_kprojid(&init_user_ns, i_projid);
  230. if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(sbi->sb) &&
  231. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
  232. fi->i_crtime.tv_sec = le64_to_cpu(ri->i_crtime);
  233. fi->i_crtime.tv_nsec = le32_to_cpu(ri->i_crtime_nsec);
  234. }
  235. f2fs_put_page(node_page, 1);
  236. stat_inc_inline_xattr(inode);
  237. stat_inc_inline_inode(inode);
  238. stat_inc_inline_dir(inode);
  239. return 0;
  240. }
  241. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  242. {
  243. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  244. struct inode *inode;
  245. int ret = 0;
  246. inode = iget_locked(sb, ino);
  247. if (!inode)
  248. return ERR_PTR(-ENOMEM);
  249. if (!(inode->i_state & I_NEW)) {
  250. trace_f2fs_iget(inode);
  251. return inode;
  252. }
  253. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  254. goto make_now;
  255. ret = do_read_inode(inode);
  256. if (ret)
  257. goto bad_inode;
  258. make_now:
  259. if (ino == F2FS_NODE_INO(sbi)) {
  260. inode->i_mapping->a_ops = &f2fs_node_aops;
  261. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  262. } else if (ino == F2FS_META_INO(sbi)) {
  263. inode->i_mapping->a_ops = &f2fs_meta_aops;
  264. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  265. } else if (S_ISREG(inode->i_mode)) {
  266. inode->i_op = &f2fs_file_inode_operations;
  267. inode->i_fop = &f2fs_file_operations;
  268. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  269. } else if (S_ISDIR(inode->i_mode)) {
  270. inode->i_op = &f2fs_dir_inode_operations;
  271. inode->i_fop = &f2fs_dir_operations;
  272. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  273. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  274. } else if (S_ISLNK(inode->i_mode)) {
  275. if (f2fs_encrypted_inode(inode))
  276. inode->i_op = &f2fs_encrypted_symlink_inode_operations;
  277. else
  278. inode->i_op = &f2fs_symlink_inode_operations;
  279. inode_nohighmem(inode);
  280. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  281. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  282. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  283. inode->i_op = &f2fs_special_inode_operations;
  284. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  285. } else {
  286. ret = -EIO;
  287. goto bad_inode;
  288. }
  289. f2fs_set_inode_flags(inode);
  290. unlock_new_inode(inode);
  291. trace_f2fs_iget(inode);
  292. return inode;
  293. bad_inode:
  294. iget_failed(inode);
  295. trace_f2fs_iget_exit(inode, ret);
  296. return ERR_PTR(ret);
  297. }
  298. struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino)
  299. {
  300. struct inode *inode;
  301. retry:
  302. inode = f2fs_iget(sb, ino);
  303. if (IS_ERR(inode)) {
  304. if (PTR_ERR(inode) == -ENOMEM) {
  305. congestion_wait(BLK_RW_ASYNC, HZ/50);
  306. goto retry;
  307. }
  308. }
  309. return inode;
  310. }
  311. void update_inode(struct inode *inode, struct page *node_page)
  312. {
  313. struct f2fs_inode *ri;
  314. struct extent_tree *et = F2FS_I(inode)->extent_tree;
  315. f2fs_wait_on_page_writeback(node_page, NODE, true);
  316. set_page_dirty(node_page);
  317. f2fs_inode_synced(inode);
  318. ri = F2FS_INODE(node_page);
  319. ri->i_mode = cpu_to_le16(inode->i_mode);
  320. ri->i_advise = F2FS_I(inode)->i_advise;
  321. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  322. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  323. ri->i_links = cpu_to_le32(inode->i_nlink);
  324. ri->i_size = cpu_to_le64(i_size_read(inode));
  325. ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1);
  326. if (et) {
  327. read_lock(&et->lock);
  328. set_raw_extent(&et->largest, &ri->i_ext);
  329. read_unlock(&et->lock);
  330. } else {
  331. memset(&ri->i_ext, 0, sizeof(ri->i_ext));
  332. }
  333. set_raw_inline(inode, ri);
  334. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  335. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  336. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  337. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  338. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  339. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  340. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  341. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  342. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  343. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  344. ri->i_generation = cpu_to_le32(inode->i_generation);
  345. ri->i_dir_level = F2FS_I(inode)->i_dir_level;
  346. if (f2fs_has_extra_attr(inode)) {
  347. ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize);
  348. if (f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(inode)->sb))
  349. ri->i_inline_xattr_size =
  350. cpu_to_le16(F2FS_I(inode)->i_inline_xattr_size);
  351. if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)->sb) &&
  352. F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
  353. i_projid)) {
  354. projid_t i_projid;
  355. i_projid = from_kprojid(&init_user_ns,
  356. F2FS_I(inode)->i_projid);
  357. ri->i_projid = cpu_to_le32(i_projid);
  358. }
  359. if (f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)->sb) &&
  360. F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
  361. i_crtime)) {
  362. ri->i_crtime =
  363. cpu_to_le64(F2FS_I(inode)->i_crtime.tv_sec);
  364. ri->i_crtime_nsec =
  365. cpu_to_le32(F2FS_I(inode)->i_crtime.tv_nsec);
  366. }
  367. }
  368. __set_inode_rdev(inode, ri);
  369. set_cold_node(inode, node_page);
  370. /* deleted inode */
  371. if (inode->i_nlink == 0)
  372. clear_inline_node(node_page);
  373. }
  374. void update_inode_page(struct inode *inode)
  375. {
  376. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  377. struct page *node_page;
  378. retry:
  379. node_page = get_node_page(sbi, inode->i_ino);
  380. if (IS_ERR(node_page)) {
  381. int err = PTR_ERR(node_page);
  382. if (err == -ENOMEM) {
  383. cond_resched();
  384. goto retry;
  385. } else if (err != -ENOENT) {
  386. f2fs_stop_checkpoint(sbi, false);
  387. }
  388. return;
  389. }
  390. update_inode(inode, node_page);
  391. f2fs_put_page(node_page, 1);
  392. }
  393. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  394. {
  395. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  396. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  397. inode->i_ino == F2FS_META_INO(sbi))
  398. return 0;
  399. if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
  400. return 0;
  401. /*
  402. * We need to balance fs here to prevent from producing dirty node pages
  403. * during the urgent cleaning time when runing out of free sections.
  404. */
  405. update_inode_page(inode);
  406. if (wbc && wbc->nr_to_write)
  407. f2fs_balance_fs(sbi, true);
  408. return 0;
  409. }
  410. /*
  411. * Called at the last iput() if i_nlink is zero
  412. */
  413. void f2fs_evict_inode(struct inode *inode)
  414. {
  415. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  416. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  417. int err = 0;
  418. /* some remained atomic pages should discarded */
  419. if (f2fs_is_atomic_file(inode))
  420. drop_inmem_pages(inode);
  421. trace_f2fs_evict_inode(inode);
  422. truncate_inode_pages_final(&inode->i_data);
  423. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  424. inode->i_ino == F2FS_META_INO(sbi))
  425. goto out_clear;
  426. f2fs_bug_on(sbi, get_dirty_pages(inode));
  427. remove_dirty_inode(inode);
  428. f2fs_destroy_extent_tree(inode);
  429. if (inode->i_nlink || is_bad_inode(inode))
  430. goto no_delete;
  431. dquot_initialize(inode);
  432. remove_ino_entry(sbi, inode->i_ino, APPEND_INO);
  433. remove_ino_entry(sbi, inode->i_ino, UPDATE_INO);
  434. remove_ino_entry(sbi, inode->i_ino, FLUSH_INO);
  435. sb_start_intwrite(inode->i_sb);
  436. set_inode_flag(inode, FI_NO_ALLOC);
  437. i_size_write(inode, 0);
  438. retry:
  439. if (F2FS_HAS_BLOCKS(inode))
  440. err = f2fs_truncate(inode);
  441. #ifdef CONFIG_F2FS_FAULT_INJECTION
  442. if (time_to_inject(sbi, FAULT_EVICT_INODE)) {
  443. f2fs_show_injection_info(FAULT_EVICT_INODE);
  444. err = -EIO;
  445. }
  446. #endif
  447. if (!err) {
  448. f2fs_lock_op(sbi);
  449. err = remove_inode_page(inode);
  450. f2fs_unlock_op(sbi);
  451. if (err == -ENOENT)
  452. err = 0;
  453. }
  454. /* give more chances, if ENOMEM case */
  455. if (err == -ENOMEM) {
  456. err = 0;
  457. goto retry;
  458. }
  459. if (err)
  460. update_inode_page(inode);
  461. dquot_free_inode(inode);
  462. sb_end_intwrite(inode->i_sb);
  463. no_delete:
  464. dquot_drop(inode);
  465. stat_dec_inline_xattr(inode);
  466. stat_dec_inline_dir(inode);
  467. stat_dec_inline_inode(inode);
  468. if (likely(!is_set_ckpt_flags(sbi, CP_ERROR_FLAG)))
  469. f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
  470. else
  471. f2fs_inode_synced(inode);
  472. /* ino == 0, if f2fs_new_inode() was failed t*/
  473. if (inode->i_ino)
  474. invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino,
  475. inode->i_ino);
  476. if (xnid)
  477. invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
  478. if (inode->i_nlink) {
  479. if (is_inode_flag_set(inode, FI_APPEND_WRITE))
  480. add_ino_entry(sbi, inode->i_ino, APPEND_INO);
  481. if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
  482. add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
  483. }
  484. if (is_inode_flag_set(inode, FI_FREE_NID)) {
  485. alloc_nid_failed(sbi, inode->i_ino);
  486. clear_inode_flag(inode, FI_FREE_NID);
  487. } else {
  488. f2fs_bug_on(sbi, err &&
  489. !exist_written_data(sbi, inode->i_ino, ORPHAN_INO));
  490. }
  491. out_clear:
  492. fscrypt_put_encryption_info(inode);
  493. clear_inode(inode);
  494. }
  495. /* caller should call f2fs_lock_op() */
  496. void handle_failed_inode(struct inode *inode)
  497. {
  498. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  499. struct node_info ni;
  500. /*
  501. * clear nlink of inode in order to release resource of inode
  502. * immediately.
  503. */
  504. clear_nlink(inode);
  505. /*
  506. * we must call this to avoid inode being remained as dirty, resulting
  507. * in a panic when flushing dirty inodes in gdirty_list.
  508. */
  509. update_inode_page(inode);
  510. f2fs_inode_synced(inode);
  511. /* don't make bad inode, since it becomes a regular file. */
  512. unlock_new_inode(inode);
  513. /*
  514. * Note: we should add inode to orphan list before f2fs_unlock_op()
  515. * so we can prevent losing this orphan when encoutering checkpoint
  516. * and following suddenly power-off.
  517. */
  518. get_node_info(sbi, inode->i_ino, &ni);
  519. if (ni.blk_addr != NULL_ADDR) {
  520. int err = acquire_orphan_inode(sbi);
  521. if (err) {
  522. set_sbi_flag(sbi, SBI_NEED_FSCK);
  523. f2fs_msg(sbi->sb, KERN_WARNING,
  524. "Too many orphan inodes, run fsck to fix.");
  525. } else {
  526. add_orphan_inode(inode);
  527. }
  528. alloc_nid_done(sbi, inode->i_ino);
  529. } else {
  530. set_inode_flag(inode, FI_FREE_NID);
  531. }
  532. f2fs_unlock_op(sbi);
  533. /* iput will drop the inode object */
  534. iput(inode);
  535. }