dir.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/sched/signal.h>
  14. #include "f2fs.h"
  15. #include "node.h"
  16. #include "acl.h"
  17. #include "xattr.h"
  18. #include <trace/events/f2fs.h>
  19. static unsigned long dir_blocks(struct inode *inode)
  20. {
  21. return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
  22. >> PAGE_SHIFT;
  23. }
  24. static unsigned int dir_buckets(unsigned int level, int dir_level)
  25. {
  26. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  27. return 1 << (level + dir_level);
  28. else
  29. return MAX_DIR_BUCKETS;
  30. }
  31. static unsigned int bucket_blocks(unsigned int level)
  32. {
  33. if (level < MAX_DIR_HASH_DEPTH / 2)
  34. return 2;
  35. else
  36. return 4;
  37. }
  38. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  39. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  40. [F2FS_FT_REG_FILE] = DT_REG,
  41. [F2FS_FT_DIR] = DT_DIR,
  42. [F2FS_FT_CHRDEV] = DT_CHR,
  43. [F2FS_FT_BLKDEV] = DT_BLK,
  44. [F2FS_FT_FIFO] = DT_FIFO,
  45. [F2FS_FT_SOCK] = DT_SOCK,
  46. [F2FS_FT_SYMLINK] = DT_LNK,
  47. };
  48. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  49. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  50. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  51. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  52. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  53. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  54. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  55. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  56. };
  57. void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
  58. {
  59. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  60. }
  61. unsigned char get_de_type(struct f2fs_dir_entry *de)
  62. {
  63. if (de->file_type < F2FS_FT_MAX)
  64. return f2fs_filetype_table[de->file_type];
  65. return DT_UNKNOWN;
  66. }
  67. static unsigned long dir_block_index(unsigned int level,
  68. int dir_level, unsigned int idx)
  69. {
  70. unsigned long i;
  71. unsigned long bidx = 0;
  72. for (i = 0; i < level; i++)
  73. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  74. bidx += idx * bucket_blocks(level);
  75. return bidx;
  76. }
  77. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  78. struct fscrypt_name *fname,
  79. f2fs_hash_t namehash,
  80. int *max_slots,
  81. struct page **res_page)
  82. {
  83. struct f2fs_dentry_block *dentry_blk;
  84. struct f2fs_dir_entry *de;
  85. struct f2fs_dentry_ptr d;
  86. dentry_blk = (struct f2fs_dentry_block *)kmap(dentry_page);
  87. make_dentry_ptr_block(NULL, &d, dentry_blk);
  88. de = find_target_dentry(fname, namehash, max_slots, &d);
  89. if (de)
  90. *res_page = dentry_page;
  91. else
  92. kunmap(dentry_page);
  93. return de;
  94. }
  95. struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
  96. f2fs_hash_t namehash, int *max_slots,
  97. struct f2fs_dentry_ptr *d)
  98. {
  99. struct f2fs_dir_entry *de;
  100. unsigned long bit_pos = 0;
  101. int max_len = 0;
  102. if (max_slots)
  103. *max_slots = 0;
  104. while (bit_pos < d->max) {
  105. if (!test_bit_le(bit_pos, d->bitmap)) {
  106. bit_pos++;
  107. max_len++;
  108. continue;
  109. }
  110. de = &d->dentry[bit_pos];
  111. if (unlikely(!de->name_len)) {
  112. bit_pos++;
  113. continue;
  114. }
  115. if (de->hash_code == namehash &&
  116. fscrypt_match_name(fname, d->filename[bit_pos],
  117. le16_to_cpu(de->name_len)))
  118. goto found;
  119. if (max_slots && max_len > *max_slots)
  120. *max_slots = max_len;
  121. max_len = 0;
  122. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  123. }
  124. de = NULL;
  125. found:
  126. if (max_slots && max_len > *max_slots)
  127. *max_slots = max_len;
  128. return de;
  129. }
  130. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  131. unsigned int level,
  132. struct fscrypt_name *fname,
  133. struct page **res_page)
  134. {
  135. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  136. int s = GET_DENTRY_SLOTS(name.len);
  137. unsigned int nbucket, nblock;
  138. unsigned int bidx, end_block;
  139. struct page *dentry_page;
  140. struct f2fs_dir_entry *de = NULL;
  141. bool room = false;
  142. int max_slots;
  143. f2fs_hash_t namehash = f2fs_dentry_hash(&name, fname);
  144. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  145. nblock = bucket_blocks(level);
  146. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  147. le32_to_cpu(namehash) % nbucket);
  148. end_block = bidx + nblock;
  149. for (; bidx < end_block; bidx++) {
  150. /* no need to allocate new dentry pages to all the indices */
  151. dentry_page = find_data_page(dir, bidx);
  152. if (IS_ERR(dentry_page)) {
  153. if (PTR_ERR(dentry_page) == -ENOENT) {
  154. room = true;
  155. continue;
  156. } else {
  157. *res_page = dentry_page;
  158. break;
  159. }
  160. }
  161. de = find_in_block(dentry_page, fname, namehash, &max_slots,
  162. res_page);
  163. if (de)
  164. break;
  165. if (max_slots >= s)
  166. room = true;
  167. f2fs_put_page(dentry_page, 0);
  168. }
  169. if (!de && room && F2FS_I(dir)->chash != namehash) {
  170. F2FS_I(dir)->chash = namehash;
  171. F2FS_I(dir)->clevel = level;
  172. }
  173. return de;
  174. }
  175. struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
  176. struct fscrypt_name *fname, struct page **res_page)
  177. {
  178. unsigned long npages = dir_blocks(dir);
  179. struct f2fs_dir_entry *de = NULL;
  180. unsigned int max_depth;
  181. unsigned int level;
  182. if (f2fs_has_inline_dentry(dir)) {
  183. *res_page = NULL;
  184. de = find_in_inline_dir(dir, fname, res_page);
  185. goto out;
  186. }
  187. if (npages == 0) {
  188. *res_page = NULL;
  189. goto out;
  190. }
  191. max_depth = F2FS_I(dir)->i_current_depth;
  192. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  193. f2fs_msg(F2FS_I_SB(dir)->sb, KERN_WARNING,
  194. "Corrupted max_depth of %lu: %u",
  195. dir->i_ino, max_depth);
  196. max_depth = MAX_DIR_HASH_DEPTH;
  197. f2fs_i_depth_write(dir, max_depth);
  198. }
  199. for (level = 0; level < max_depth; level++) {
  200. *res_page = NULL;
  201. de = find_in_level(dir, level, fname, res_page);
  202. if (de || IS_ERR(*res_page))
  203. break;
  204. }
  205. out:
  206. /* This is to increase the speed of f2fs_create */
  207. if (!de)
  208. F2FS_I(dir)->task = current;
  209. return de;
  210. }
  211. /*
  212. * Find an entry in the specified directory with the wanted name.
  213. * It returns the page where the entry was found (as a parameter - res_page),
  214. * and the entry itself. Page is returned mapped and unlocked.
  215. * Entry is guaranteed to be valid.
  216. */
  217. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  218. const struct qstr *child, struct page **res_page)
  219. {
  220. struct f2fs_dir_entry *de = NULL;
  221. struct fscrypt_name fname;
  222. int err;
  223. err = fscrypt_setup_filename(dir, child, 1, &fname);
  224. if (err) {
  225. if (err == -ENOENT)
  226. *res_page = NULL;
  227. else
  228. *res_page = ERR_PTR(err);
  229. return NULL;
  230. }
  231. de = __f2fs_find_entry(dir, &fname, res_page);
  232. fscrypt_free_filename(&fname);
  233. return de;
  234. }
  235. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  236. {
  237. struct qstr dotdot = QSTR_INIT("..", 2);
  238. return f2fs_find_entry(dir, &dotdot, p);
  239. }
  240. ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
  241. struct page **page)
  242. {
  243. ino_t res = 0;
  244. struct f2fs_dir_entry *de;
  245. de = f2fs_find_entry(dir, qstr, page);
  246. if (de) {
  247. res = le32_to_cpu(de->ino);
  248. f2fs_dentry_kunmap(dir, *page);
  249. f2fs_put_page(*page, 0);
  250. }
  251. return res;
  252. }
  253. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  254. struct page *page, struct inode *inode)
  255. {
  256. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  257. lock_page(page);
  258. f2fs_wait_on_page_writeback(page, type, true);
  259. de->ino = cpu_to_le32(inode->i_ino);
  260. set_de_type(de, inode->i_mode);
  261. f2fs_dentry_kunmap(dir, page);
  262. set_page_dirty(page);
  263. dir->i_mtime = dir->i_ctime = current_time(dir);
  264. f2fs_mark_inode_dirty_sync(dir, false);
  265. f2fs_put_page(page, 1);
  266. }
  267. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  268. {
  269. struct f2fs_inode *ri;
  270. f2fs_wait_on_page_writeback(ipage, NODE, true);
  271. /* copy name info. to this inode page */
  272. ri = F2FS_INODE(ipage);
  273. ri->i_namelen = cpu_to_le32(name->len);
  274. memcpy(ri->i_name, name->name, name->len);
  275. set_page_dirty(ipage);
  276. }
  277. void do_make_empty_dir(struct inode *inode, struct inode *parent,
  278. struct f2fs_dentry_ptr *d)
  279. {
  280. struct qstr dot = QSTR_INIT(".", 1);
  281. struct qstr dotdot = QSTR_INIT("..", 2);
  282. /* update dirent of "." */
  283. f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
  284. /* update dirent of ".." */
  285. f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
  286. }
  287. static int make_empty_dir(struct inode *inode,
  288. struct inode *parent, struct page *page)
  289. {
  290. struct page *dentry_page;
  291. struct f2fs_dentry_block *dentry_blk;
  292. struct f2fs_dentry_ptr d;
  293. if (f2fs_has_inline_dentry(inode))
  294. return make_empty_inline_dir(inode, parent, page);
  295. dentry_page = get_new_data_page(inode, page, 0, true);
  296. if (IS_ERR(dentry_page))
  297. return PTR_ERR(dentry_page);
  298. dentry_blk = kmap_atomic(dentry_page);
  299. make_dentry_ptr_block(NULL, &d, dentry_blk);
  300. do_make_empty_dir(inode, parent, &d);
  301. kunmap_atomic(dentry_blk);
  302. set_page_dirty(dentry_page);
  303. f2fs_put_page(dentry_page, 1);
  304. return 0;
  305. }
  306. struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
  307. const struct qstr *new_name, const struct qstr *orig_name,
  308. struct page *dpage)
  309. {
  310. struct page *page;
  311. int err;
  312. if (is_inode_flag_set(inode, FI_NEW_INODE)) {
  313. page = new_inode_page(inode);
  314. if (IS_ERR(page))
  315. return page;
  316. if (S_ISDIR(inode->i_mode)) {
  317. /* in order to handle error case */
  318. get_page(page);
  319. err = make_empty_dir(inode, dir, page);
  320. if (err) {
  321. lock_page(page);
  322. goto put_error;
  323. }
  324. put_page(page);
  325. }
  326. err = f2fs_init_acl(inode, dir, page, dpage);
  327. if (err)
  328. goto put_error;
  329. err = f2fs_init_security(inode, dir, orig_name, page);
  330. if (err)
  331. goto put_error;
  332. if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode)) {
  333. err = fscrypt_inherit_context(dir, inode, page, false);
  334. if (err)
  335. goto put_error;
  336. }
  337. } else {
  338. page = get_node_page(F2FS_I_SB(dir), inode->i_ino);
  339. if (IS_ERR(page))
  340. return page;
  341. set_cold_node(inode, page);
  342. }
  343. if (new_name) {
  344. init_dent_inode(new_name, page);
  345. if (f2fs_encrypted_inode(dir))
  346. file_set_enc_name(inode);
  347. }
  348. /*
  349. * This file should be checkpointed during fsync.
  350. * We lost i_pino from now on.
  351. */
  352. if (is_inode_flag_set(inode, FI_INC_LINK)) {
  353. if (!S_ISDIR(inode->i_mode))
  354. file_lost_pino(inode);
  355. /*
  356. * If link the tmpfile to alias through linkat path,
  357. * we should remove this inode from orphan list.
  358. */
  359. if (inode->i_nlink == 0)
  360. remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  361. f2fs_i_links_write(inode, true);
  362. }
  363. return page;
  364. put_error:
  365. clear_nlink(inode);
  366. update_inode(inode, page);
  367. f2fs_put_page(page, 1);
  368. return ERR_PTR(err);
  369. }
  370. void update_parent_metadata(struct inode *dir, struct inode *inode,
  371. unsigned int current_depth)
  372. {
  373. if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
  374. if (S_ISDIR(inode->i_mode))
  375. f2fs_i_links_write(dir, true);
  376. clear_inode_flag(inode, FI_NEW_INODE);
  377. }
  378. dir->i_mtime = dir->i_ctime = current_time(dir);
  379. f2fs_mark_inode_dirty_sync(dir, false);
  380. if (F2FS_I(dir)->i_current_depth != current_depth)
  381. f2fs_i_depth_write(dir, current_depth);
  382. if (inode && is_inode_flag_set(inode, FI_INC_LINK))
  383. clear_inode_flag(inode, FI_INC_LINK);
  384. }
  385. int room_for_filename(const void *bitmap, int slots, int max_slots)
  386. {
  387. int bit_start = 0;
  388. int zero_start, zero_end;
  389. next:
  390. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  391. if (zero_start >= max_slots)
  392. return max_slots;
  393. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  394. if (zero_end - zero_start >= slots)
  395. return zero_start;
  396. bit_start = zero_end + 1;
  397. if (zero_end + 1 >= max_slots)
  398. return max_slots;
  399. goto next;
  400. }
  401. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  402. const struct qstr *name, f2fs_hash_t name_hash,
  403. unsigned int bit_pos)
  404. {
  405. struct f2fs_dir_entry *de;
  406. int slots = GET_DENTRY_SLOTS(name->len);
  407. int i;
  408. de = &d->dentry[bit_pos];
  409. de->hash_code = name_hash;
  410. de->name_len = cpu_to_le16(name->len);
  411. memcpy(d->filename[bit_pos], name->name, name->len);
  412. de->ino = cpu_to_le32(ino);
  413. set_de_type(de, mode);
  414. for (i = 0; i < slots; i++) {
  415. __set_bit_le(bit_pos + i, (void *)d->bitmap);
  416. /* avoid wrong garbage data for readdir */
  417. if (i)
  418. (de + i)->name_len = 0;
  419. }
  420. }
  421. int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
  422. const struct qstr *orig_name,
  423. struct inode *inode, nid_t ino, umode_t mode)
  424. {
  425. unsigned int bit_pos;
  426. unsigned int level;
  427. unsigned int current_depth;
  428. unsigned long bidx, block;
  429. f2fs_hash_t dentry_hash;
  430. unsigned int nbucket, nblock;
  431. struct page *dentry_page = NULL;
  432. struct f2fs_dentry_block *dentry_blk = NULL;
  433. struct f2fs_dentry_ptr d;
  434. struct page *page = NULL;
  435. int slots, err = 0;
  436. level = 0;
  437. slots = GET_DENTRY_SLOTS(new_name->len);
  438. dentry_hash = f2fs_dentry_hash(new_name, NULL);
  439. current_depth = F2FS_I(dir)->i_current_depth;
  440. if (F2FS_I(dir)->chash == dentry_hash) {
  441. level = F2FS_I(dir)->clevel;
  442. F2FS_I(dir)->chash = 0;
  443. }
  444. start:
  445. #ifdef CONFIG_F2FS_FAULT_INJECTION
  446. if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) {
  447. f2fs_show_injection_info(FAULT_DIR_DEPTH);
  448. return -ENOSPC;
  449. }
  450. #endif
  451. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  452. return -ENOSPC;
  453. /* Increase the depth, if required */
  454. if (level == current_depth)
  455. ++current_depth;
  456. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  457. nblock = bucket_blocks(level);
  458. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  459. (le32_to_cpu(dentry_hash) % nbucket));
  460. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  461. dentry_page = get_new_data_page(dir, NULL, block, true);
  462. if (IS_ERR(dentry_page))
  463. return PTR_ERR(dentry_page);
  464. dentry_blk = kmap(dentry_page);
  465. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  466. slots, NR_DENTRY_IN_BLOCK);
  467. if (bit_pos < NR_DENTRY_IN_BLOCK)
  468. goto add_dentry;
  469. kunmap(dentry_page);
  470. f2fs_put_page(dentry_page, 1);
  471. }
  472. /* Move to next level to find the empty slot for new dentry */
  473. ++level;
  474. goto start;
  475. add_dentry:
  476. f2fs_wait_on_page_writeback(dentry_page, DATA, true);
  477. if (inode) {
  478. down_write(&F2FS_I(inode)->i_sem);
  479. page = init_inode_metadata(inode, dir, new_name,
  480. orig_name, NULL);
  481. if (IS_ERR(page)) {
  482. err = PTR_ERR(page);
  483. goto fail;
  484. }
  485. }
  486. make_dentry_ptr_block(NULL, &d, dentry_blk);
  487. f2fs_update_dentry(ino, mode, &d, new_name, dentry_hash, bit_pos);
  488. set_page_dirty(dentry_page);
  489. if (inode) {
  490. f2fs_i_pino_write(inode, dir->i_ino);
  491. f2fs_put_page(page, 1);
  492. }
  493. update_parent_metadata(dir, inode, current_depth);
  494. fail:
  495. if (inode)
  496. up_write(&F2FS_I(inode)->i_sem);
  497. kunmap(dentry_page);
  498. f2fs_put_page(dentry_page, 1);
  499. return err;
  500. }
  501. int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
  502. struct inode *inode, nid_t ino, umode_t mode)
  503. {
  504. struct qstr new_name;
  505. int err = -EAGAIN;
  506. new_name.name = fname_name(fname);
  507. new_name.len = fname_len(fname);
  508. if (f2fs_has_inline_dentry(dir))
  509. err = f2fs_add_inline_entry(dir, &new_name, fname->usr_fname,
  510. inode, ino, mode);
  511. if (err == -EAGAIN)
  512. err = f2fs_add_regular_entry(dir, &new_name, fname->usr_fname,
  513. inode, ino, mode);
  514. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  515. return err;
  516. }
  517. /*
  518. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  519. * f2fs_unlock_op().
  520. */
  521. int __f2fs_add_link(struct inode *dir, const struct qstr *name,
  522. struct inode *inode, nid_t ino, umode_t mode)
  523. {
  524. struct fscrypt_name fname;
  525. struct page *page = NULL;
  526. struct f2fs_dir_entry *de = NULL;
  527. int err;
  528. err = fscrypt_setup_filename(dir, name, 0, &fname);
  529. if (err)
  530. return err;
  531. /*
  532. * An immature stakable filesystem shows a race condition between lookup
  533. * and create. If we have same task when doing lookup and create, it's
  534. * definitely fine as expected by VFS normally. Otherwise, let's just
  535. * verify on-disk dentry one more time, which guarantees filesystem
  536. * consistency more.
  537. */
  538. if (current != F2FS_I(dir)->task) {
  539. de = __f2fs_find_entry(dir, &fname, &page);
  540. F2FS_I(dir)->task = NULL;
  541. }
  542. if (de) {
  543. f2fs_dentry_kunmap(dir, page);
  544. f2fs_put_page(page, 0);
  545. err = -EEXIST;
  546. } else if (IS_ERR(page)) {
  547. err = PTR_ERR(page);
  548. } else {
  549. err = __f2fs_do_add_link(dir, &fname, inode, ino, mode);
  550. }
  551. fscrypt_free_filename(&fname);
  552. return err;
  553. }
  554. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  555. {
  556. struct page *page;
  557. int err = 0;
  558. down_write(&F2FS_I(inode)->i_sem);
  559. page = init_inode_metadata(inode, dir, NULL, NULL, NULL);
  560. if (IS_ERR(page)) {
  561. err = PTR_ERR(page);
  562. goto fail;
  563. }
  564. f2fs_put_page(page, 1);
  565. clear_inode_flag(inode, FI_NEW_INODE);
  566. fail:
  567. up_write(&F2FS_I(inode)->i_sem);
  568. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  569. return err;
  570. }
  571. void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
  572. {
  573. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  574. down_write(&F2FS_I(inode)->i_sem);
  575. if (S_ISDIR(inode->i_mode))
  576. f2fs_i_links_write(dir, false);
  577. inode->i_ctime = current_time(inode);
  578. f2fs_i_links_write(inode, false);
  579. if (S_ISDIR(inode->i_mode)) {
  580. f2fs_i_links_write(inode, false);
  581. f2fs_i_size_write(inode, 0);
  582. }
  583. up_write(&F2FS_I(inode)->i_sem);
  584. if (inode->i_nlink == 0)
  585. add_orphan_inode(inode);
  586. else
  587. release_orphan_inode(sbi);
  588. }
  589. /*
  590. * It only removes the dentry from the dentry page, corresponding name
  591. * entry in name page does not need to be touched during deletion.
  592. */
  593. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  594. struct inode *dir, struct inode *inode)
  595. {
  596. struct f2fs_dentry_block *dentry_blk;
  597. unsigned int bit_pos;
  598. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  599. struct address_space *mapping = page_mapping(page);
  600. unsigned long flags;
  601. int i;
  602. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  603. add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
  604. if (f2fs_has_inline_dentry(dir))
  605. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  606. lock_page(page);
  607. f2fs_wait_on_page_writeback(page, DATA, true);
  608. dentry_blk = page_address(page);
  609. bit_pos = dentry - dentry_blk->dentry;
  610. for (i = 0; i < slots; i++)
  611. __clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  612. /* Let's check and deallocate this dentry page */
  613. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  614. NR_DENTRY_IN_BLOCK,
  615. 0);
  616. kunmap(page); /* kunmap - pair of f2fs_find_entry */
  617. set_page_dirty(page);
  618. dir->i_ctime = dir->i_mtime = current_time(dir);
  619. f2fs_mark_inode_dirty_sync(dir, false);
  620. if (inode)
  621. f2fs_drop_nlink(dir, inode);
  622. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  623. !truncate_hole(dir, page->index, page->index + 1)) {
  624. spin_lock_irqsave(&mapping->tree_lock, flags);
  625. radix_tree_tag_clear(&mapping->page_tree, page_index(page),
  626. PAGECACHE_TAG_DIRTY);
  627. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  628. clear_page_dirty_for_io(page);
  629. ClearPagePrivate(page);
  630. ClearPageUptodate(page);
  631. inode_dec_dirty_pages(dir);
  632. remove_dirty_inode(dir);
  633. }
  634. f2fs_put_page(page, 1);
  635. }
  636. bool f2fs_empty_dir(struct inode *dir)
  637. {
  638. unsigned long bidx;
  639. struct page *dentry_page;
  640. unsigned int bit_pos;
  641. struct f2fs_dentry_block *dentry_blk;
  642. unsigned long nblock = dir_blocks(dir);
  643. if (f2fs_has_inline_dentry(dir))
  644. return f2fs_empty_inline_dir(dir);
  645. for (bidx = 0; bidx < nblock; bidx++) {
  646. dentry_page = get_lock_data_page(dir, bidx, false);
  647. if (IS_ERR(dentry_page)) {
  648. if (PTR_ERR(dentry_page) == -ENOENT)
  649. continue;
  650. else
  651. return false;
  652. }
  653. dentry_blk = kmap_atomic(dentry_page);
  654. if (bidx == 0)
  655. bit_pos = 2;
  656. else
  657. bit_pos = 0;
  658. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  659. NR_DENTRY_IN_BLOCK,
  660. bit_pos);
  661. kunmap_atomic(dentry_blk);
  662. f2fs_put_page(dentry_page, 1);
  663. if (bit_pos < NR_DENTRY_IN_BLOCK)
  664. return false;
  665. }
  666. return true;
  667. }
  668. int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  669. unsigned int start_pos, struct fscrypt_str *fstr)
  670. {
  671. unsigned char d_type = DT_UNKNOWN;
  672. unsigned int bit_pos;
  673. struct f2fs_dir_entry *de = NULL;
  674. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  675. struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
  676. bit_pos = ((unsigned long)ctx->pos % d->max);
  677. while (bit_pos < d->max) {
  678. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  679. if (bit_pos >= d->max)
  680. break;
  681. de = &d->dentry[bit_pos];
  682. if (de->name_len == 0) {
  683. bit_pos++;
  684. ctx->pos = start_pos + bit_pos;
  685. continue;
  686. }
  687. d_type = get_de_type(de);
  688. de_name.name = d->filename[bit_pos];
  689. de_name.len = le16_to_cpu(de->name_len);
  690. if (f2fs_encrypted_inode(d->inode)) {
  691. int save_len = fstr->len;
  692. int err;
  693. err = fscrypt_fname_disk_to_usr(d->inode,
  694. (u32)de->hash_code, 0,
  695. &de_name, fstr);
  696. if (err)
  697. return err;
  698. de_name = *fstr;
  699. fstr->len = save_len;
  700. }
  701. if (!dir_emit(ctx, de_name.name, de_name.len,
  702. le32_to_cpu(de->ino), d_type))
  703. return 1;
  704. if (sbi->readdir_ra == 1)
  705. ra_node_page(sbi, le32_to_cpu(de->ino));
  706. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  707. ctx->pos = start_pos + bit_pos;
  708. }
  709. return 0;
  710. }
  711. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  712. {
  713. struct inode *inode = file_inode(file);
  714. unsigned long npages = dir_blocks(inode);
  715. struct f2fs_dentry_block *dentry_blk = NULL;
  716. struct page *dentry_page = NULL;
  717. struct file_ra_state *ra = &file->f_ra;
  718. loff_t start_pos = ctx->pos;
  719. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  720. struct f2fs_dentry_ptr d;
  721. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  722. int err = 0;
  723. if (f2fs_encrypted_inode(inode)) {
  724. err = fscrypt_get_encryption_info(inode);
  725. if (err && err != -ENOKEY)
  726. goto out;
  727. err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
  728. if (err < 0)
  729. goto out;
  730. }
  731. if (f2fs_has_inline_dentry(inode)) {
  732. err = f2fs_read_inline_dir(file, ctx, &fstr);
  733. goto out_free;
  734. }
  735. for (; n < npages; n++, ctx->pos = n * NR_DENTRY_IN_BLOCK) {
  736. /* allow readdir() to be interrupted */
  737. if (fatal_signal_pending(current)) {
  738. err = -ERESTARTSYS;
  739. goto out_free;
  740. }
  741. cond_resched();
  742. /* readahead for multi pages of dir */
  743. if (npages - n > 1 && !ra_has_index(ra, n))
  744. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  745. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  746. dentry_page = get_lock_data_page(inode, n, false);
  747. if (IS_ERR(dentry_page)) {
  748. err = PTR_ERR(dentry_page);
  749. if (err == -ENOENT) {
  750. err = 0;
  751. continue;
  752. } else {
  753. goto out_free;
  754. }
  755. }
  756. dentry_blk = kmap(dentry_page);
  757. make_dentry_ptr_block(inode, &d, dentry_blk);
  758. err = f2fs_fill_dentries(ctx, &d,
  759. n * NR_DENTRY_IN_BLOCK, &fstr);
  760. if (err) {
  761. kunmap(dentry_page);
  762. f2fs_put_page(dentry_page, 1);
  763. break;
  764. }
  765. kunmap(dentry_page);
  766. f2fs_put_page(dentry_page, 1);
  767. }
  768. out_free:
  769. fscrypt_fname_free_buffer(&fstr);
  770. out:
  771. trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
  772. return err < 0 ? err : 0;
  773. }
  774. static int f2fs_dir_open(struct inode *inode, struct file *filp)
  775. {
  776. if (f2fs_encrypted_inode(inode))
  777. return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
  778. return 0;
  779. }
  780. const struct file_operations f2fs_dir_operations = {
  781. .llseek = generic_file_llseek,
  782. .read = generic_read_dir,
  783. .iterate_shared = f2fs_readdir,
  784. .fsync = f2fs_sync_file,
  785. .open = f2fs_dir_open,
  786. .unlocked_ioctl = f2fs_ioctl,
  787. #ifdef CONFIG_COMPAT
  788. .compat_ioctl = f2fs_compat_ioctl,
  789. #endif
  790. };