data.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include <linux/uio.h>
  22. #include <linux/mm.h>
  23. #include <linux/memcontrol.h>
  24. #include <linux/cleancache.h>
  25. #include <linux/sched/signal.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "trace.h"
  30. #include <trace/events/f2fs.h>
  31. static bool __is_cp_guaranteed(struct page *page)
  32. {
  33. struct address_space *mapping = page->mapping;
  34. struct inode *inode;
  35. struct f2fs_sb_info *sbi;
  36. if (!mapping)
  37. return false;
  38. inode = mapping->host;
  39. sbi = F2FS_I_SB(inode);
  40. if (inode->i_ino == F2FS_META_INO(sbi) ||
  41. inode->i_ino == F2FS_NODE_INO(sbi) ||
  42. S_ISDIR(inode->i_mode) ||
  43. is_cold_data(page))
  44. return true;
  45. return false;
  46. }
  47. static void f2fs_read_end_io(struct bio *bio)
  48. {
  49. struct bio_vec *bvec;
  50. int i;
  51. #ifdef CONFIG_F2FS_FAULT_INJECTION
  52. if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
  53. f2fs_show_injection_info(FAULT_IO);
  54. bio->bi_status = BLK_STS_IOERR;
  55. }
  56. #endif
  57. if (f2fs_bio_encrypted(bio)) {
  58. if (bio->bi_status) {
  59. fscrypt_release_ctx(bio->bi_private);
  60. } else {
  61. fscrypt_decrypt_bio_pages(bio->bi_private, bio);
  62. return;
  63. }
  64. }
  65. bio_for_each_segment_all(bvec, bio, i) {
  66. struct page *page = bvec->bv_page;
  67. if (!bio->bi_status) {
  68. if (!PageUptodate(page))
  69. SetPageUptodate(page);
  70. } else {
  71. ClearPageUptodate(page);
  72. SetPageError(page);
  73. }
  74. unlock_page(page);
  75. }
  76. bio_put(bio);
  77. }
  78. static void f2fs_write_end_io(struct bio *bio)
  79. {
  80. struct f2fs_sb_info *sbi = bio->bi_private;
  81. struct bio_vec *bvec;
  82. int i;
  83. bio_for_each_segment_all(bvec, bio, i) {
  84. struct page *page = bvec->bv_page;
  85. enum count_type type = WB_DATA_TYPE(page);
  86. if (IS_DUMMY_WRITTEN_PAGE(page)) {
  87. set_page_private(page, (unsigned long)NULL);
  88. ClearPagePrivate(page);
  89. unlock_page(page);
  90. mempool_free(page, sbi->write_io_dummy);
  91. if (unlikely(bio->bi_status))
  92. f2fs_stop_checkpoint(sbi, true);
  93. continue;
  94. }
  95. fscrypt_pullback_bio_page(&page, true);
  96. if (unlikely(bio->bi_status)) {
  97. mapping_set_error(page->mapping, -EIO);
  98. if (type == F2FS_WB_CP_DATA)
  99. f2fs_stop_checkpoint(sbi, true);
  100. }
  101. f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
  102. page->index != nid_of_node(page));
  103. dec_page_count(sbi, type);
  104. clear_cold_data(page);
  105. end_page_writeback(page);
  106. }
  107. if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
  108. wq_has_sleeper(&sbi->cp_wait))
  109. wake_up(&sbi->cp_wait);
  110. bio_put(bio);
  111. }
  112. /*
  113. * Return true, if pre_bio's bdev is same as its target device.
  114. */
  115. struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
  116. block_t blk_addr, struct bio *bio)
  117. {
  118. struct block_device *bdev = sbi->sb->s_bdev;
  119. int i;
  120. for (i = 0; i < sbi->s_ndevs; i++) {
  121. if (FDEV(i).start_blk <= blk_addr &&
  122. FDEV(i).end_blk >= blk_addr) {
  123. blk_addr -= FDEV(i).start_blk;
  124. bdev = FDEV(i).bdev;
  125. break;
  126. }
  127. }
  128. if (bio) {
  129. bio_set_dev(bio, bdev);
  130. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  131. }
  132. return bdev;
  133. }
  134. int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
  135. {
  136. int i;
  137. for (i = 0; i < sbi->s_ndevs; i++)
  138. if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
  139. return i;
  140. return 0;
  141. }
  142. static bool __same_bdev(struct f2fs_sb_info *sbi,
  143. block_t blk_addr, struct bio *bio)
  144. {
  145. struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
  146. return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
  147. }
  148. /*
  149. * Low-level block read/write IO operations.
  150. */
  151. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  152. struct writeback_control *wbc,
  153. int npages, bool is_read)
  154. {
  155. struct bio *bio;
  156. bio = f2fs_bio_alloc(sbi, npages, true);
  157. f2fs_target_device(sbi, blk_addr, bio);
  158. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  159. bio->bi_private = is_read ? NULL : sbi;
  160. if (wbc)
  161. wbc_init_bio(wbc, bio);
  162. return bio;
  163. }
  164. static inline void __submit_bio(struct f2fs_sb_info *sbi,
  165. struct bio *bio, enum page_type type)
  166. {
  167. if (!is_read_io(bio_op(bio))) {
  168. unsigned int start;
  169. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  170. current->plug && (type == DATA || type == NODE))
  171. blk_finish_plug(current->plug);
  172. if (type != DATA && type != NODE)
  173. goto submit_io;
  174. start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
  175. start %= F2FS_IO_SIZE(sbi);
  176. if (start == 0)
  177. goto submit_io;
  178. /* fill dummy pages */
  179. for (; start < F2FS_IO_SIZE(sbi); start++) {
  180. struct page *page =
  181. mempool_alloc(sbi->write_io_dummy,
  182. GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
  183. f2fs_bug_on(sbi, !page);
  184. SetPagePrivate(page);
  185. set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
  186. lock_page(page);
  187. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
  188. f2fs_bug_on(sbi, 1);
  189. }
  190. /*
  191. * In the NODE case, we lose next block address chain. So, we
  192. * need to do checkpoint in f2fs_sync_file.
  193. */
  194. if (type == NODE)
  195. set_sbi_flag(sbi, SBI_NEED_CP);
  196. }
  197. submit_io:
  198. if (is_read_io(bio_op(bio)))
  199. trace_f2fs_submit_read_bio(sbi->sb, type, bio);
  200. else
  201. trace_f2fs_submit_write_bio(sbi->sb, type, bio);
  202. submit_bio(bio);
  203. }
  204. static void __submit_merged_bio(struct f2fs_bio_info *io)
  205. {
  206. struct f2fs_io_info *fio = &io->fio;
  207. if (!io->bio)
  208. return;
  209. bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
  210. if (is_read_io(fio->op))
  211. trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
  212. else
  213. trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
  214. __submit_bio(io->sbi, io->bio, fio->type);
  215. io->bio = NULL;
  216. }
  217. static bool __has_merged_page(struct f2fs_bio_info *io,
  218. struct inode *inode, nid_t ino, pgoff_t idx)
  219. {
  220. struct bio_vec *bvec;
  221. struct page *target;
  222. int i;
  223. if (!io->bio)
  224. return false;
  225. if (!inode && !ino)
  226. return true;
  227. bio_for_each_segment_all(bvec, io->bio, i) {
  228. if (bvec->bv_page->mapping)
  229. target = bvec->bv_page;
  230. else
  231. target = fscrypt_control_page(bvec->bv_page);
  232. if (idx != target->index)
  233. continue;
  234. if (inode && inode == target->mapping->host)
  235. return true;
  236. if (ino && ino == ino_of_node(target))
  237. return true;
  238. }
  239. return false;
  240. }
  241. static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
  242. nid_t ino, pgoff_t idx, enum page_type type)
  243. {
  244. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  245. enum temp_type temp;
  246. struct f2fs_bio_info *io;
  247. bool ret = false;
  248. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  249. io = sbi->write_io[btype] + temp;
  250. down_read(&io->io_rwsem);
  251. ret = __has_merged_page(io, inode, ino, idx);
  252. up_read(&io->io_rwsem);
  253. /* TODO: use HOT temp only for meta pages now. */
  254. if (ret || btype == META)
  255. break;
  256. }
  257. return ret;
  258. }
  259. static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
  260. enum page_type type, enum temp_type temp)
  261. {
  262. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  263. struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
  264. down_write(&io->io_rwsem);
  265. /* change META to META_FLUSH in the checkpoint procedure */
  266. if (type >= META_FLUSH) {
  267. io->fio.type = META_FLUSH;
  268. io->fio.op = REQ_OP_WRITE;
  269. io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
  270. if (!test_opt(sbi, NOBARRIER))
  271. io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  272. }
  273. __submit_merged_bio(io);
  274. up_write(&io->io_rwsem);
  275. }
  276. static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
  277. struct inode *inode, nid_t ino, pgoff_t idx,
  278. enum page_type type, bool force)
  279. {
  280. enum temp_type temp;
  281. if (!force && !has_merged_page(sbi, inode, ino, idx, type))
  282. return;
  283. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  284. __f2fs_submit_merged_write(sbi, type, temp);
  285. /* TODO: use HOT temp only for meta pages now. */
  286. if (type >= META)
  287. break;
  288. }
  289. }
  290. void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
  291. {
  292. __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
  293. }
  294. void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
  295. struct inode *inode, nid_t ino, pgoff_t idx,
  296. enum page_type type)
  297. {
  298. __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
  299. }
  300. void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
  301. {
  302. f2fs_submit_merged_write(sbi, DATA);
  303. f2fs_submit_merged_write(sbi, NODE);
  304. f2fs_submit_merged_write(sbi, META);
  305. }
  306. /*
  307. * Fill the locked page with data located in the block address.
  308. * A caller needs to unlock the page on failure.
  309. */
  310. int f2fs_submit_page_bio(struct f2fs_io_info *fio)
  311. {
  312. struct bio *bio;
  313. struct page *page = fio->encrypted_page ?
  314. fio->encrypted_page : fio->page;
  315. trace_f2fs_submit_page_bio(page, fio);
  316. f2fs_trace_ios(fio, 0);
  317. /* Allocate a new bio */
  318. bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
  319. 1, is_read_io(fio->op));
  320. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  321. bio_put(bio);
  322. return -EFAULT;
  323. }
  324. bio_set_op_attrs(bio, fio->op, fio->op_flags);
  325. __submit_bio(fio->sbi, bio, fio->type);
  326. if (!is_read_io(fio->op))
  327. inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
  328. return 0;
  329. }
  330. int f2fs_submit_page_write(struct f2fs_io_info *fio)
  331. {
  332. struct f2fs_sb_info *sbi = fio->sbi;
  333. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  334. struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
  335. struct page *bio_page;
  336. int err = 0;
  337. f2fs_bug_on(sbi, is_read_io(fio->op));
  338. down_write(&io->io_rwsem);
  339. next:
  340. if (fio->in_list) {
  341. spin_lock(&io->io_lock);
  342. if (list_empty(&io->io_list)) {
  343. spin_unlock(&io->io_lock);
  344. goto out_fail;
  345. }
  346. fio = list_first_entry(&io->io_list,
  347. struct f2fs_io_info, list);
  348. list_del(&fio->list);
  349. spin_unlock(&io->io_lock);
  350. }
  351. if (fio->old_blkaddr != NEW_ADDR)
  352. verify_block_addr(sbi, fio->old_blkaddr);
  353. verify_block_addr(sbi, fio->new_blkaddr);
  354. bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  355. /* set submitted = true as a return value */
  356. fio->submitted = true;
  357. inc_page_count(sbi, WB_DATA_TYPE(bio_page));
  358. if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
  359. (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
  360. !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
  361. __submit_merged_bio(io);
  362. alloc_new:
  363. if (io->bio == NULL) {
  364. if ((fio->type == DATA || fio->type == NODE) &&
  365. fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
  366. err = -EAGAIN;
  367. dec_page_count(sbi, WB_DATA_TYPE(bio_page));
  368. goto out_fail;
  369. }
  370. io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
  371. BIO_MAX_PAGES, false);
  372. io->fio = *fio;
  373. }
  374. if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
  375. __submit_merged_bio(io);
  376. goto alloc_new;
  377. }
  378. if (fio->io_wbc)
  379. wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
  380. io->last_block_in_bio = fio->new_blkaddr;
  381. f2fs_trace_ios(fio, 0);
  382. trace_f2fs_submit_page_write(fio->page, fio);
  383. if (fio->in_list)
  384. goto next;
  385. out_fail:
  386. up_write(&io->io_rwsem);
  387. return err;
  388. }
  389. static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
  390. unsigned nr_pages)
  391. {
  392. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  393. struct fscrypt_ctx *ctx = NULL;
  394. struct bio *bio;
  395. if (f2fs_encrypted_file(inode)) {
  396. ctx = fscrypt_get_ctx(inode, GFP_NOFS);
  397. if (IS_ERR(ctx))
  398. return ERR_CAST(ctx);
  399. /* wait the page to be moved by cleaning */
  400. f2fs_wait_on_block_writeback(sbi, blkaddr);
  401. }
  402. bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
  403. if (!bio) {
  404. if (ctx)
  405. fscrypt_release_ctx(ctx);
  406. return ERR_PTR(-ENOMEM);
  407. }
  408. f2fs_target_device(sbi, blkaddr, bio);
  409. bio->bi_end_io = f2fs_read_end_io;
  410. bio->bi_private = ctx;
  411. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  412. return bio;
  413. }
  414. /* This can handle encryption stuffs */
  415. static int f2fs_submit_page_read(struct inode *inode, struct page *page,
  416. block_t blkaddr)
  417. {
  418. struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
  419. if (IS_ERR(bio))
  420. return PTR_ERR(bio);
  421. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  422. bio_put(bio);
  423. return -EFAULT;
  424. }
  425. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  426. return 0;
  427. }
  428. static void __set_data_blkaddr(struct dnode_of_data *dn)
  429. {
  430. struct f2fs_node *rn = F2FS_NODE(dn->node_page);
  431. __le32 *addr_array;
  432. int base = 0;
  433. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  434. base = get_extra_isize(dn->inode);
  435. /* Get physical address of data block */
  436. addr_array = blkaddr_in_node(rn);
  437. addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  438. }
  439. /*
  440. * Lock ordering for the change of data block address:
  441. * ->data_page
  442. * ->node_page
  443. * update block addresses in the node page
  444. */
  445. void set_data_blkaddr(struct dnode_of_data *dn)
  446. {
  447. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  448. __set_data_blkaddr(dn);
  449. if (set_page_dirty(dn->node_page))
  450. dn->node_changed = true;
  451. }
  452. void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
  453. {
  454. dn->data_blkaddr = blkaddr;
  455. set_data_blkaddr(dn);
  456. f2fs_update_extent_cache(dn);
  457. }
  458. /* dn->ofs_in_node will be returned with up-to-date last block pointer */
  459. int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
  460. {
  461. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  462. int err;
  463. if (!count)
  464. return 0;
  465. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  466. return -EPERM;
  467. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  468. return err;
  469. trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
  470. dn->ofs_in_node, count);
  471. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  472. for (; count > 0; dn->ofs_in_node++) {
  473. block_t blkaddr = datablock_addr(dn->inode,
  474. dn->node_page, dn->ofs_in_node);
  475. if (blkaddr == NULL_ADDR) {
  476. dn->data_blkaddr = NEW_ADDR;
  477. __set_data_blkaddr(dn);
  478. count--;
  479. }
  480. }
  481. if (set_page_dirty(dn->node_page))
  482. dn->node_changed = true;
  483. return 0;
  484. }
  485. /* Should keep dn->ofs_in_node unchanged */
  486. int reserve_new_block(struct dnode_of_data *dn)
  487. {
  488. unsigned int ofs_in_node = dn->ofs_in_node;
  489. int ret;
  490. ret = reserve_new_blocks(dn, 1);
  491. dn->ofs_in_node = ofs_in_node;
  492. return ret;
  493. }
  494. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  495. {
  496. bool need_put = dn->inode_page ? false : true;
  497. int err;
  498. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  499. if (err)
  500. return err;
  501. if (dn->data_blkaddr == NULL_ADDR)
  502. err = reserve_new_block(dn);
  503. if (err || need_put)
  504. f2fs_put_dnode(dn);
  505. return err;
  506. }
  507. int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
  508. {
  509. struct extent_info ei = {0,0,0};
  510. struct inode *inode = dn->inode;
  511. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  512. dn->data_blkaddr = ei.blk + index - ei.fofs;
  513. return 0;
  514. }
  515. return f2fs_reserve_block(dn, index);
  516. }
  517. struct page *get_read_data_page(struct inode *inode, pgoff_t index,
  518. int op_flags, bool for_write)
  519. {
  520. struct address_space *mapping = inode->i_mapping;
  521. struct dnode_of_data dn;
  522. struct page *page;
  523. struct extent_info ei = {0,0,0};
  524. int err;
  525. page = f2fs_grab_cache_page(mapping, index, for_write);
  526. if (!page)
  527. return ERR_PTR(-ENOMEM);
  528. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  529. dn.data_blkaddr = ei.blk + index - ei.fofs;
  530. goto got_it;
  531. }
  532. set_new_dnode(&dn, inode, NULL, NULL, 0);
  533. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  534. if (err)
  535. goto put_err;
  536. f2fs_put_dnode(&dn);
  537. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  538. err = -ENOENT;
  539. goto put_err;
  540. }
  541. got_it:
  542. if (PageUptodate(page)) {
  543. unlock_page(page);
  544. return page;
  545. }
  546. /*
  547. * A new dentry page is allocated but not able to be written, since its
  548. * new inode page couldn't be allocated due to -ENOSPC.
  549. * In such the case, its blkaddr can be remained as NEW_ADDR.
  550. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  551. */
  552. if (dn.data_blkaddr == NEW_ADDR) {
  553. zero_user_segment(page, 0, PAGE_SIZE);
  554. if (!PageUptodate(page))
  555. SetPageUptodate(page);
  556. unlock_page(page);
  557. return page;
  558. }
  559. err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
  560. if (err)
  561. goto put_err;
  562. return page;
  563. put_err:
  564. f2fs_put_page(page, 1);
  565. return ERR_PTR(err);
  566. }
  567. struct page *find_data_page(struct inode *inode, pgoff_t index)
  568. {
  569. struct address_space *mapping = inode->i_mapping;
  570. struct page *page;
  571. page = find_get_page(mapping, index);
  572. if (page && PageUptodate(page))
  573. return page;
  574. f2fs_put_page(page, 0);
  575. page = get_read_data_page(inode, index, 0, false);
  576. if (IS_ERR(page))
  577. return page;
  578. if (PageUptodate(page))
  579. return page;
  580. wait_on_page_locked(page);
  581. if (unlikely(!PageUptodate(page))) {
  582. f2fs_put_page(page, 0);
  583. return ERR_PTR(-EIO);
  584. }
  585. return page;
  586. }
  587. /*
  588. * If it tries to access a hole, return an error.
  589. * Because, the callers, functions in dir.c and GC, should be able to know
  590. * whether this page exists or not.
  591. */
  592. struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
  593. bool for_write)
  594. {
  595. struct address_space *mapping = inode->i_mapping;
  596. struct page *page;
  597. repeat:
  598. page = get_read_data_page(inode, index, 0, for_write);
  599. if (IS_ERR(page))
  600. return page;
  601. /* wait for read completion */
  602. lock_page(page);
  603. if (unlikely(page->mapping != mapping)) {
  604. f2fs_put_page(page, 1);
  605. goto repeat;
  606. }
  607. if (unlikely(!PageUptodate(page))) {
  608. f2fs_put_page(page, 1);
  609. return ERR_PTR(-EIO);
  610. }
  611. return page;
  612. }
  613. /*
  614. * Caller ensures that this data page is never allocated.
  615. * A new zero-filled data page is allocated in the page cache.
  616. *
  617. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  618. * f2fs_unlock_op().
  619. * Note that, ipage is set only by make_empty_dir, and if any error occur,
  620. * ipage should be released by this function.
  621. */
  622. struct page *get_new_data_page(struct inode *inode,
  623. struct page *ipage, pgoff_t index, bool new_i_size)
  624. {
  625. struct address_space *mapping = inode->i_mapping;
  626. struct page *page;
  627. struct dnode_of_data dn;
  628. int err;
  629. page = f2fs_grab_cache_page(mapping, index, true);
  630. if (!page) {
  631. /*
  632. * before exiting, we should make sure ipage will be released
  633. * if any error occur.
  634. */
  635. f2fs_put_page(ipage, 1);
  636. return ERR_PTR(-ENOMEM);
  637. }
  638. set_new_dnode(&dn, inode, ipage, NULL, 0);
  639. err = f2fs_reserve_block(&dn, index);
  640. if (err) {
  641. f2fs_put_page(page, 1);
  642. return ERR_PTR(err);
  643. }
  644. if (!ipage)
  645. f2fs_put_dnode(&dn);
  646. if (PageUptodate(page))
  647. goto got_it;
  648. if (dn.data_blkaddr == NEW_ADDR) {
  649. zero_user_segment(page, 0, PAGE_SIZE);
  650. if (!PageUptodate(page))
  651. SetPageUptodate(page);
  652. } else {
  653. f2fs_put_page(page, 1);
  654. /* if ipage exists, blkaddr should be NEW_ADDR */
  655. f2fs_bug_on(F2FS_I_SB(inode), ipage);
  656. page = get_lock_data_page(inode, index, true);
  657. if (IS_ERR(page))
  658. return page;
  659. }
  660. got_it:
  661. if (new_i_size && i_size_read(inode) <
  662. ((loff_t)(index + 1) << PAGE_SHIFT))
  663. f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
  664. return page;
  665. }
  666. static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
  667. {
  668. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  669. struct f2fs_summary sum;
  670. struct node_info ni;
  671. pgoff_t fofs;
  672. blkcnt_t count = 1;
  673. int err;
  674. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  675. return -EPERM;
  676. dn->data_blkaddr = datablock_addr(dn->inode,
  677. dn->node_page, dn->ofs_in_node);
  678. if (dn->data_blkaddr == NEW_ADDR)
  679. goto alloc;
  680. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  681. return err;
  682. alloc:
  683. get_node_info(sbi, dn->nid, &ni);
  684. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  685. allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
  686. &sum, seg_type, NULL, false);
  687. set_data_blkaddr(dn);
  688. /* update i_size */
  689. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
  690. dn->ofs_in_node;
  691. if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
  692. f2fs_i_size_write(dn->inode,
  693. ((loff_t)(fofs + 1) << PAGE_SHIFT));
  694. return 0;
  695. }
  696. static inline bool __force_buffered_io(struct inode *inode, int rw)
  697. {
  698. return (f2fs_encrypted_file(inode) ||
  699. (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
  700. F2FS_I_SB(inode)->s_ndevs);
  701. }
  702. int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
  703. {
  704. struct inode *inode = file_inode(iocb->ki_filp);
  705. struct f2fs_map_blocks map;
  706. int flag;
  707. int err = 0;
  708. bool direct_io = iocb->ki_flags & IOCB_DIRECT;
  709. /* convert inline data for Direct I/O*/
  710. if (direct_io) {
  711. err = f2fs_convert_inline_inode(inode);
  712. if (err)
  713. return err;
  714. }
  715. if (is_inode_flag_set(inode, FI_NO_PREALLOC))
  716. return 0;
  717. map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
  718. map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
  719. if (map.m_len > map.m_lblk)
  720. map.m_len -= map.m_lblk;
  721. else
  722. map.m_len = 0;
  723. map.m_next_pgofs = NULL;
  724. map.m_next_extent = NULL;
  725. map.m_seg_type = NO_CHECK_TYPE;
  726. if (direct_io) {
  727. map.m_seg_type = rw_hint_to_seg_type(iocb->ki_hint);
  728. flag = __force_buffered_io(inode, WRITE) ?
  729. F2FS_GET_BLOCK_PRE_AIO :
  730. F2FS_GET_BLOCK_PRE_DIO;
  731. goto map_blocks;
  732. }
  733. if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
  734. err = f2fs_convert_inline_inode(inode);
  735. if (err)
  736. return err;
  737. }
  738. if (f2fs_has_inline_data(inode))
  739. return err;
  740. flag = F2FS_GET_BLOCK_PRE_AIO;
  741. map_blocks:
  742. err = f2fs_map_blocks(inode, &map, 1, flag);
  743. if (map.m_len > 0 && err == -ENOSPC) {
  744. if (!direct_io)
  745. set_inode_flag(inode, FI_NO_PREALLOC);
  746. err = 0;
  747. }
  748. return err;
  749. }
  750. static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
  751. {
  752. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  753. if (lock)
  754. down_read(&sbi->node_change);
  755. else
  756. up_read(&sbi->node_change);
  757. } else {
  758. if (lock)
  759. f2fs_lock_op(sbi);
  760. else
  761. f2fs_unlock_op(sbi);
  762. }
  763. }
  764. /*
  765. * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
  766. * f2fs_map_blocks structure.
  767. * If original data blocks are allocated, then give them to blockdev.
  768. * Otherwise,
  769. * a. preallocate requested block addresses
  770. * b. do not use extent cache for better performance
  771. * c. give the block addresses to blockdev
  772. */
  773. int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
  774. int create, int flag)
  775. {
  776. unsigned int maxblocks = map->m_len;
  777. struct dnode_of_data dn;
  778. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  779. int mode = create ? ALLOC_NODE : LOOKUP_NODE;
  780. pgoff_t pgofs, end_offset, end;
  781. int err = 0, ofs = 1;
  782. unsigned int ofs_in_node, last_ofs_in_node;
  783. blkcnt_t prealloc;
  784. struct extent_info ei = {0,0,0};
  785. block_t blkaddr;
  786. unsigned int start_pgofs;
  787. if (!maxblocks)
  788. return 0;
  789. map->m_len = 0;
  790. map->m_flags = 0;
  791. /* it only supports block size == page size */
  792. pgofs = (pgoff_t)map->m_lblk;
  793. end = pgofs + maxblocks;
  794. if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  795. map->m_pblk = ei.blk + pgofs - ei.fofs;
  796. map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
  797. map->m_flags = F2FS_MAP_MAPPED;
  798. if (map->m_next_extent)
  799. *map->m_next_extent = pgofs + map->m_len;
  800. goto out;
  801. }
  802. next_dnode:
  803. if (create)
  804. __do_map_lock(sbi, flag, true);
  805. /* When reading holes, we need its node page */
  806. set_new_dnode(&dn, inode, NULL, NULL, 0);
  807. err = get_dnode_of_data(&dn, pgofs, mode);
  808. if (err) {
  809. if (flag == F2FS_GET_BLOCK_BMAP)
  810. map->m_pblk = 0;
  811. if (err == -ENOENT) {
  812. err = 0;
  813. if (map->m_next_pgofs)
  814. *map->m_next_pgofs =
  815. get_next_page_offset(&dn, pgofs);
  816. if (map->m_next_extent)
  817. *map->m_next_extent =
  818. get_next_page_offset(&dn, pgofs);
  819. }
  820. goto unlock_out;
  821. }
  822. start_pgofs = pgofs;
  823. prealloc = 0;
  824. last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
  825. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  826. next_block:
  827. blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
  828. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
  829. if (create) {
  830. if (unlikely(f2fs_cp_error(sbi))) {
  831. err = -EIO;
  832. goto sync_out;
  833. }
  834. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  835. if (blkaddr == NULL_ADDR) {
  836. prealloc++;
  837. last_ofs_in_node = dn.ofs_in_node;
  838. }
  839. } else {
  840. err = __allocate_data_block(&dn,
  841. map->m_seg_type);
  842. if (!err)
  843. set_inode_flag(inode, FI_APPEND_WRITE);
  844. }
  845. if (err)
  846. goto sync_out;
  847. map->m_flags |= F2FS_MAP_NEW;
  848. blkaddr = dn.data_blkaddr;
  849. } else {
  850. if (flag == F2FS_GET_BLOCK_BMAP) {
  851. map->m_pblk = 0;
  852. goto sync_out;
  853. }
  854. if (flag == F2FS_GET_BLOCK_PRECACHE)
  855. goto sync_out;
  856. if (flag == F2FS_GET_BLOCK_FIEMAP &&
  857. blkaddr == NULL_ADDR) {
  858. if (map->m_next_pgofs)
  859. *map->m_next_pgofs = pgofs + 1;
  860. goto sync_out;
  861. }
  862. if (flag != F2FS_GET_BLOCK_FIEMAP) {
  863. /* for defragment case */
  864. if (map->m_next_pgofs)
  865. *map->m_next_pgofs = pgofs + 1;
  866. goto sync_out;
  867. }
  868. }
  869. }
  870. if (flag == F2FS_GET_BLOCK_PRE_AIO)
  871. goto skip;
  872. if (map->m_len == 0) {
  873. /* preallocated unwritten block should be mapped for fiemap. */
  874. if (blkaddr == NEW_ADDR)
  875. map->m_flags |= F2FS_MAP_UNWRITTEN;
  876. map->m_flags |= F2FS_MAP_MAPPED;
  877. map->m_pblk = blkaddr;
  878. map->m_len = 1;
  879. } else if ((map->m_pblk != NEW_ADDR &&
  880. blkaddr == (map->m_pblk + ofs)) ||
  881. (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
  882. flag == F2FS_GET_BLOCK_PRE_DIO) {
  883. ofs++;
  884. map->m_len++;
  885. } else {
  886. goto sync_out;
  887. }
  888. skip:
  889. dn.ofs_in_node++;
  890. pgofs++;
  891. /* preallocate blocks in batch for one dnode page */
  892. if (flag == F2FS_GET_BLOCK_PRE_AIO &&
  893. (pgofs == end || dn.ofs_in_node == end_offset)) {
  894. dn.ofs_in_node = ofs_in_node;
  895. err = reserve_new_blocks(&dn, prealloc);
  896. if (err)
  897. goto sync_out;
  898. map->m_len += dn.ofs_in_node - ofs_in_node;
  899. if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
  900. err = -ENOSPC;
  901. goto sync_out;
  902. }
  903. dn.ofs_in_node = end_offset;
  904. }
  905. if (pgofs >= end)
  906. goto sync_out;
  907. else if (dn.ofs_in_node < end_offset)
  908. goto next_block;
  909. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  910. if (map->m_flags & F2FS_MAP_MAPPED) {
  911. unsigned int ofs = start_pgofs - map->m_lblk;
  912. f2fs_update_extent_cache_range(&dn,
  913. start_pgofs, map->m_pblk + ofs,
  914. map->m_len - ofs);
  915. }
  916. }
  917. f2fs_put_dnode(&dn);
  918. if (create) {
  919. __do_map_lock(sbi, flag, false);
  920. f2fs_balance_fs(sbi, dn.node_changed);
  921. }
  922. goto next_dnode;
  923. sync_out:
  924. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  925. if (map->m_flags & F2FS_MAP_MAPPED) {
  926. unsigned int ofs = start_pgofs - map->m_lblk;
  927. f2fs_update_extent_cache_range(&dn,
  928. start_pgofs, map->m_pblk + ofs,
  929. map->m_len - ofs);
  930. }
  931. if (map->m_next_extent)
  932. *map->m_next_extent = pgofs + 1;
  933. }
  934. f2fs_put_dnode(&dn);
  935. unlock_out:
  936. if (create) {
  937. __do_map_lock(sbi, flag, false);
  938. f2fs_balance_fs(sbi, dn.node_changed);
  939. }
  940. out:
  941. trace_f2fs_map_blocks(inode, map, err);
  942. return err;
  943. }
  944. static int __get_data_block(struct inode *inode, sector_t iblock,
  945. struct buffer_head *bh, int create, int flag,
  946. pgoff_t *next_pgofs, int seg_type)
  947. {
  948. struct f2fs_map_blocks map;
  949. int err;
  950. map.m_lblk = iblock;
  951. map.m_len = bh->b_size >> inode->i_blkbits;
  952. map.m_next_pgofs = next_pgofs;
  953. map.m_next_extent = NULL;
  954. map.m_seg_type = seg_type;
  955. err = f2fs_map_blocks(inode, &map, create, flag);
  956. if (!err) {
  957. map_bh(bh, inode->i_sb, map.m_pblk);
  958. bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
  959. bh->b_size = (u64)map.m_len << inode->i_blkbits;
  960. }
  961. return err;
  962. }
  963. static int get_data_block(struct inode *inode, sector_t iblock,
  964. struct buffer_head *bh_result, int create, int flag,
  965. pgoff_t *next_pgofs)
  966. {
  967. return __get_data_block(inode, iblock, bh_result, create,
  968. flag, next_pgofs,
  969. NO_CHECK_TYPE);
  970. }
  971. static int get_data_block_dio(struct inode *inode, sector_t iblock,
  972. struct buffer_head *bh_result, int create)
  973. {
  974. return __get_data_block(inode, iblock, bh_result, create,
  975. F2FS_GET_BLOCK_DEFAULT, NULL,
  976. rw_hint_to_seg_type(
  977. inode->i_write_hint));
  978. }
  979. static int get_data_block_bmap(struct inode *inode, sector_t iblock,
  980. struct buffer_head *bh_result, int create)
  981. {
  982. /* Block number less than F2FS MAX BLOCKS */
  983. if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
  984. return -EFBIG;
  985. return __get_data_block(inode, iblock, bh_result, create,
  986. F2FS_GET_BLOCK_BMAP, NULL,
  987. NO_CHECK_TYPE);
  988. }
  989. static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
  990. {
  991. return (offset >> inode->i_blkbits);
  992. }
  993. static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
  994. {
  995. return (blk << inode->i_blkbits);
  996. }
  997. static int f2fs_xattr_fiemap(struct inode *inode,
  998. struct fiemap_extent_info *fieinfo)
  999. {
  1000. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1001. struct page *page;
  1002. struct node_info ni;
  1003. __u64 phys = 0, len;
  1004. __u32 flags;
  1005. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  1006. int err = 0;
  1007. if (f2fs_has_inline_xattr(inode)) {
  1008. int offset;
  1009. page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
  1010. inode->i_ino, false);
  1011. if (!page)
  1012. return -ENOMEM;
  1013. get_node_info(sbi, inode->i_ino, &ni);
  1014. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1015. offset = offsetof(struct f2fs_inode, i_addr) +
  1016. sizeof(__le32) * (DEF_ADDRS_PER_INODE -
  1017. get_inline_xattr_addrs(inode));
  1018. phys += offset;
  1019. len = inline_xattr_size(inode);
  1020. f2fs_put_page(page, 1);
  1021. flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
  1022. if (!xnid)
  1023. flags |= FIEMAP_EXTENT_LAST;
  1024. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1025. if (err || err == 1)
  1026. return err;
  1027. }
  1028. if (xnid) {
  1029. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
  1030. if (!page)
  1031. return -ENOMEM;
  1032. get_node_info(sbi, xnid, &ni);
  1033. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1034. len = inode->i_sb->s_blocksize;
  1035. f2fs_put_page(page, 1);
  1036. flags = FIEMAP_EXTENT_LAST;
  1037. }
  1038. if (phys)
  1039. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1040. return (err < 0 ? err : 0);
  1041. }
  1042. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  1043. u64 start, u64 len)
  1044. {
  1045. struct buffer_head map_bh;
  1046. sector_t start_blk, last_blk;
  1047. pgoff_t next_pgofs;
  1048. u64 logical = 0, phys = 0, size = 0;
  1049. u32 flags = 0;
  1050. int ret = 0;
  1051. if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
  1052. ret = f2fs_precache_extents(inode);
  1053. if (ret)
  1054. return ret;
  1055. }
  1056. ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
  1057. if (ret)
  1058. return ret;
  1059. inode_lock(inode);
  1060. if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
  1061. ret = f2fs_xattr_fiemap(inode, fieinfo);
  1062. goto out;
  1063. }
  1064. if (f2fs_has_inline_data(inode)) {
  1065. ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
  1066. if (ret != -EAGAIN)
  1067. goto out;
  1068. }
  1069. if (logical_to_blk(inode, len) == 0)
  1070. len = blk_to_logical(inode, 1);
  1071. start_blk = logical_to_blk(inode, start);
  1072. last_blk = logical_to_blk(inode, start + len - 1);
  1073. next:
  1074. memset(&map_bh, 0, sizeof(struct buffer_head));
  1075. map_bh.b_size = len;
  1076. ret = get_data_block(inode, start_blk, &map_bh, 0,
  1077. F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
  1078. if (ret)
  1079. goto out;
  1080. /* HOLE */
  1081. if (!buffer_mapped(&map_bh)) {
  1082. start_blk = next_pgofs;
  1083. if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
  1084. F2FS_I_SB(inode)->max_file_blocks))
  1085. goto prep_next;
  1086. flags |= FIEMAP_EXTENT_LAST;
  1087. }
  1088. if (size) {
  1089. if (f2fs_encrypted_inode(inode))
  1090. flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
  1091. ret = fiemap_fill_next_extent(fieinfo, logical,
  1092. phys, size, flags);
  1093. }
  1094. if (start_blk > last_blk || ret)
  1095. goto out;
  1096. logical = blk_to_logical(inode, start_blk);
  1097. phys = blk_to_logical(inode, map_bh.b_blocknr);
  1098. size = map_bh.b_size;
  1099. flags = 0;
  1100. if (buffer_unwritten(&map_bh))
  1101. flags = FIEMAP_EXTENT_UNWRITTEN;
  1102. start_blk += logical_to_blk(inode, size);
  1103. prep_next:
  1104. cond_resched();
  1105. if (fatal_signal_pending(current))
  1106. ret = -EINTR;
  1107. else
  1108. goto next;
  1109. out:
  1110. if (ret == 1)
  1111. ret = 0;
  1112. inode_unlock(inode);
  1113. return ret;
  1114. }
  1115. /*
  1116. * This function was originally taken from fs/mpage.c, and customized for f2fs.
  1117. * Major change was from block_size == page_size in f2fs by default.
  1118. */
  1119. static int f2fs_mpage_readpages(struct address_space *mapping,
  1120. struct list_head *pages, struct page *page,
  1121. unsigned nr_pages)
  1122. {
  1123. struct bio *bio = NULL;
  1124. sector_t last_block_in_bio = 0;
  1125. struct inode *inode = mapping->host;
  1126. const unsigned blkbits = inode->i_blkbits;
  1127. const unsigned blocksize = 1 << blkbits;
  1128. sector_t block_in_file;
  1129. sector_t last_block;
  1130. sector_t last_block_in_file;
  1131. sector_t block_nr;
  1132. struct f2fs_map_blocks map;
  1133. map.m_pblk = 0;
  1134. map.m_lblk = 0;
  1135. map.m_len = 0;
  1136. map.m_flags = 0;
  1137. map.m_next_pgofs = NULL;
  1138. map.m_next_extent = NULL;
  1139. map.m_seg_type = NO_CHECK_TYPE;
  1140. for (; nr_pages; nr_pages--) {
  1141. if (pages) {
  1142. page = list_last_entry(pages, struct page, lru);
  1143. prefetchw(&page->flags);
  1144. list_del(&page->lru);
  1145. if (add_to_page_cache_lru(page, mapping,
  1146. page->index,
  1147. readahead_gfp_mask(mapping)))
  1148. goto next_page;
  1149. }
  1150. block_in_file = (sector_t)page->index;
  1151. last_block = block_in_file + nr_pages;
  1152. last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
  1153. blkbits;
  1154. if (last_block > last_block_in_file)
  1155. last_block = last_block_in_file;
  1156. /*
  1157. * Map blocks using the previous result first.
  1158. */
  1159. if ((map.m_flags & F2FS_MAP_MAPPED) &&
  1160. block_in_file > map.m_lblk &&
  1161. block_in_file < (map.m_lblk + map.m_len))
  1162. goto got_it;
  1163. /*
  1164. * Then do more f2fs_map_blocks() calls until we are
  1165. * done with this page.
  1166. */
  1167. map.m_flags = 0;
  1168. if (block_in_file < last_block) {
  1169. map.m_lblk = block_in_file;
  1170. map.m_len = last_block - block_in_file;
  1171. if (f2fs_map_blocks(inode, &map, 0,
  1172. F2FS_GET_BLOCK_DEFAULT))
  1173. goto set_error_page;
  1174. }
  1175. got_it:
  1176. if ((map.m_flags & F2FS_MAP_MAPPED)) {
  1177. block_nr = map.m_pblk + block_in_file - map.m_lblk;
  1178. SetPageMappedToDisk(page);
  1179. if (!PageUptodate(page) && !cleancache_get_page(page)) {
  1180. SetPageUptodate(page);
  1181. goto confused;
  1182. }
  1183. } else {
  1184. zero_user_segment(page, 0, PAGE_SIZE);
  1185. if (!PageUptodate(page))
  1186. SetPageUptodate(page);
  1187. unlock_page(page);
  1188. goto next_page;
  1189. }
  1190. /*
  1191. * This page will go to BIO. Do we need to send this
  1192. * BIO off first?
  1193. */
  1194. if (bio && (last_block_in_bio != block_nr - 1 ||
  1195. !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
  1196. submit_and_realloc:
  1197. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1198. bio = NULL;
  1199. }
  1200. if (bio == NULL) {
  1201. bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
  1202. if (IS_ERR(bio)) {
  1203. bio = NULL;
  1204. goto set_error_page;
  1205. }
  1206. }
  1207. if (bio_add_page(bio, page, blocksize, 0) < blocksize)
  1208. goto submit_and_realloc;
  1209. last_block_in_bio = block_nr;
  1210. goto next_page;
  1211. set_error_page:
  1212. SetPageError(page);
  1213. zero_user_segment(page, 0, PAGE_SIZE);
  1214. unlock_page(page);
  1215. goto next_page;
  1216. confused:
  1217. if (bio) {
  1218. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1219. bio = NULL;
  1220. }
  1221. unlock_page(page);
  1222. next_page:
  1223. if (pages)
  1224. put_page(page);
  1225. }
  1226. BUG_ON(pages && !list_empty(pages));
  1227. if (bio)
  1228. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1229. return 0;
  1230. }
  1231. static int f2fs_read_data_page(struct file *file, struct page *page)
  1232. {
  1233. struct inode *inode = page->mapping->host;
  1234. int ret = -EAGAIN;
  1235. trace_f2fs_readpage(page, DATA);
  1236. /* If the file has inline data, try to read it directly */
  1237. if (f2fs_has_inline_data(inode))
  1238. ret = f2fs_read_inline_data(inode, page);
  1239. if (ret == -EAGAIN)
  1240. ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
  1241. return ret;
  1242. }
  1243. static int f2fs_read_data_pages(struct file *file,
  1244. struct address_space *mapping,
  1245. struct list_head *pages, unsigned nr_pages)
  1246. {
  1247. struct inode *inode = mapping->host;
  1248. struct page *page = list_last_entry(pages, struct page, lru);
  1249. trace_f2fs_readpages(inode, page, nr_pages);
  1250. /* If the file has inline data, skip readpages */
  1251. if (f2fs_has_inline_data(inode))
  1252. return 0;
  1253. return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
  1254. }
  1255. static int encrypt_one_page(struct f2fs_io_info *fio)
  1256. {
  1257. struct inode *inode = fio->page->mapping->host;
  1258. gfp_t gfp_flags = GFP_NOFS;
  1259. if (!f2fs_encrypted_file(inode))
  1260. return 0;
  1261. /* wait for GCed encrypted page writeback */
  1262. f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
  1263. retry_encrypt:
  1264. fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
  1265. PAGE_SIZE, 0, fio->page->index, gfp_flags);
  1266. if (!IS_ERR(fio->encrypted_page))
  1267. return 0;
  1268. /* flush pending IOs and wait for a while in the ENOMEM case */
  1269. if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
  1270. f2fs_flush_merged_writes(fio->sbi);
  1271. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1272. gfp_flags |= __GFP_NOFAIL;
  1273. goto retry_encrypt;
  1274. }
  1275. return PTR_ERR(fio->encrypted_page);
  1276. }
  1277. static inline bool check_inplace_update_policy(struct inode *inode,
  1278. struct f2fs_io_info *fio)
  1279. {
  1280. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1281. unsigned int policy = SM_I(sbi)->ipu_policy;
  1282. if (policy & (0x1 << F2FS_IPU_FORCE))
  1283. return true;
  1284. if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
  1285. return true;
  1286. if (policy & (0x1 << F2FS_IPU_UTIL) &&
  1287. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  1288. return true;
  1289. if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
  1290. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  1291. return true;
  1292. /*
  1293. * IPU for rewrite async pages
  1294. */
  1295. if (policy & (0x1 << F2FS_IPU_ASYNC) &&
  1296. fio && fio->op == REQ_OP_WRITE &&
  1297. !(fio->op_flags & REQ_SYNC) &&
  1298. !f2fs_encrypted_inode(inode))
  1299. return true;
  1300. /* this is only set during fdatasync */
  1301. if (policy & (0x1 << F2FS_IPU_FSYNC) &&
  1302. is_inode_flag_set(inode, FI_NEED_IPU))
  1303. return true;
  1304. return false;
  1305. }
  1306. bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
  1307. {
  1308. if (f2fs_is_pinned_file(inode))
  1309. return true;
  1310. /* if this is cold file, we should overwrite to avoid fragmentation */
  1311. if (file_is_cold(inode))
  1312. return true;
  1313. return check_inplace_update_policy(inode, fio);
  1314. }
  1315. bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
  1316. {
  1317. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1318. if (test_opt(sbi, LFS))
  1319. return true;
  1320. if (S_ISDIR(inode->i_mode))
  1321. return true;
  1322. if (f2fs_is_atomic_file(inode))
  1323. return true;
  1324. if (fio) {
  1325. if (is_cold_data(fio->page))
  1326. return true;
  1327. if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
  1328. return true;
  1329. }
  1330. return false;
  1331. }
  1332. static inline bool need_inplace_update(struct f2fs_io_info *fio)
  1333. {
  1334. struct inode *inode = fio->page->mapping->host;
  1335. if (should_update_outplace(inode, fio))
  1336. return false;
  1337. return should_update_inplace(inode, fio);
  1338. }
  1339. static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
  1340. {
  1341. if (fio->old_blkaddr == NEW_ADDR)
  1342. return false;
  1343. if (fio->old_blkaddr == NULL_ADDR)
  1344. return false;
  1345. return true;
  1346. }
  1347. int do_write_data_page(struct f2fs_io_info *fio)
  1348. {
  1349. struct page *page = fio->page;
  1350. struct inode *inode = page->mapping->host;
  1351. struct dnode_of_data dn;
  1352. struct extent_info ei = {0,0,0};
  1353. bool ipu_force = false;
  1354. int err = 0;
  1355. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1356. if (need_inplace_update(fio) &&
  1357. f2fs_lookup_extent_cache(inode, page->index, &ei)) {
  1358. fio->old_blkaddr = ei.blk + page->index - ei.fofs;
  1359. if (valid_ipu_blkaddr(fio)) {
  1360. ipu_force = true;
  1361. fio->need_lock = LOCK_DONE;
  1362. goto got_it;
  1363. }
  1364. }
  1365. /* Deadlock due to between page->lock and f2fs_lock_op */
  1366. if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
  1367. return -EAGAIN;
  1368. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  1369. if (err)
  1370. goto out;
  1371. fio->old_blkaddr = dn.data_blkaddr;
  1372. /* This page is already truncated */
  1373. if (fio->old_blkaddr == NULL_ADDR) {
  1374. ClearPageUptodate(page);
  1375. goto out_writepage;
  1376. }
  1377. got_it:
  1378. /*
  1379. * If current allocation needs SSR,
  1380. * it had better in-place writes for updated data.
  1381. */
  1382. if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
  1383. err = encrypt_one_page(fio);
  1384. if (err)
  1385. goto out_writepage;
  1386. set_page_writeback(page);
  1387. f2fs_put_dnode(&dn);
  1388. if (fio->need_lock == LOCK_REQ)
  1389. f2fs_unlock_op(fio->sbi);
  1390. err = rewrite_data_page(fio);
  1391. trace_f2fs_do_write_data_page(fio->page, IPU);
  1392. set_inode_flag(inode, FI_UPDATE_WRITE);
  1393. return err;
  1394. }
  1395. if (fio->need_lock == LOCK_RETRY) {
  1396. if (!f2fs_trylock_op(fio->sbi)) {
  1397. err = -EAGAIN;
  1398. goto out_writepage;
  1399. }
  1400. fio->need_lock = LOCK_REQ;
  1401. }
  1402. err = encrypt_one_page(fio);
  1403. if (err)
  1404. goto out_writepage;
  1405. set_page_writeback(page);
  1406. /* LFS mode write path */
  1407. write_data_page(&dn, fio);
  1408. trace_f2fs_do_write_data_page(page, OPU);
  1409. set_inode_flag(inode, FI_APPEND_WRITE);
  1410. if (page->index == 0)
  1411. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  1412. out_writepage:
  1413. f2fs_put_dnode(&dn);
  1414. out:
  1415. if (fio->need_lock == LOCK_REQ)
  1416. f2fs_unlock_op(fio->sbi);
  1417. return err;
  1418. }
  1419. static int __write_data_page(struct page *page, bool *submitted,
  1420. struct writeback_control *wbc,
  1421. enum iostat_type io_type)
  1422. {
  1423. struct inode *inode = page->mapping->host;
  1424. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1425. loff_t i_size = i_size_read(inode);
  1426. const pgoff_t end_index = ((unsigned long long) i_size)
  1427. >> PAGE_SHIFT;
  1428. loff_t psize = (page->index + 1) << PAGE_SHIFT;
  1429. unsigned offset = 0;
  1430. bool need_balance_fs = false;
  1431. int err = 0;
  1432. struct f2fs_io_info fio = {
  1433. .sbi = sbi,
  1434. .ino = inode->i_ino,
  1435. .type = DATA,
  1436. .op = REQ_OP_WRITE,
  1437. .op_flags = wbc_to_write_flags(wbc),
  1438. .old_blkaddr = NULL_ADDR,
  1439. .page = page,
  1440. .encrypted_page = NULL,
  1441. .submitted = false,
  1442. .need_lock = LOCK_RETRY,
  1443. .io_type = io_type,
  1444. .io_wbc = wbc,
  1445. };
  1446. trace_f2fs_writepage(page, DATA);
  1447. /* we should bypass data pages to proceed the kworkder jobs */
  1448. if (unlikely(f2fs_cp_error(sbi))) {
  1449. mapping_set_error(page->mapping, -EIO);
  1450. goto out;
  1451. }
  1452. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1453. goto redirty_out;
  1454. if (page->index < end_index)
  1455. goto write;
  1456. /*
  1457. * If the offset is out-of-range of file size,
  1458. * this page does not have to be written to disk.
  1459. */
  1460. offset = i_size & (PAGE_SIZE - 1);
  1461. if ((page->index >= end_index + 1) || !offset)
  1462. goto out;
  1463. zero_user_segment(page, offset, PAGE_SIZE);
  1464. write:
  1465. if (f2fs_is_drop_cache(inode))
  1466. goto out;
  1467. /* we should not write 0'th page having journal header */
  1468. if (f2fs_is_volatile_file(inode) && (!page->index ||
  1469. (!wbc->for_reclaim &&
  1470. available_free_memory(sbi, BASE_CHECK))))
  1471. goto redirty_out;
  1472. /* Dentry blocks are controlled by checkpoint */
  1473. if (S_ISDIR(inode->i_mode)) {
  1474. fio.need_lock = LOCK_DONE;
  1475. err = do_write_data_page(&fio);
  1476. goto done;
  1477. }
  1478. if (!wbc->for_reclaim)
  1479. need_balance_fs = true;
  1480. else if (has_not_enough_free_secs(sbi, 0, 0))
  1481. goto redirty_out;
  1482. else
  1483. set_inode_flag(inode, FI_HOT_DATA);
  1484. err = -EAGAIN;
  1485. if (f2fs_has_inline_data(inode)) {
  1486. err = f2fs_write_inline_data(inode, page);
  1487. if (!err)
  1488. goto out;
  1489. }
  1490. if (err == -EAGAIN) {
  1491. err = do_write_data_page(&fio);
  1492. if (err == -EAGAIN) {
  1493. fio.need_lock = LOCK_REQ;
  1494. err = do_write_data_page(&fio);
  1495. }
  1496. }
  1497. if (err) {
  1498. file_set_keep_isize(inode);
  1499. } else {
  1500. down_write(&F2FS_I(inode)->i_sem);
  1501. if (F2FS_I(inode)->last_disk_size < psize)
  1502. F2FS_I(inode)->last_disk_size = psize;
  1503. up_write(&F2FS_I(inode)->i_sem);
  1504. }
  1505. done:
  1506. if (err && err != -ENOENT)
  1507. goto redirty_out;
  1508. out:
  1509. inode_dec_dirty_pages(inode);
  1510. if (err)
  1511. ClearPageUptodate(page);
  1512. if (wbc->for_reclaim) {
  1513. f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
  1514. clear_inode_flag(inode, FI_HOT_DATA);
  1515. remove_dirty_inode(inode);
  1516. submitted = NULL;
  1517. }
  1518. unlock_page(page);
  1519. if (!S_ISDIR(inode->i_mode))
  1520. f2fs_balance_fs(sbi, need_balance_fs);
  1521. if (unlikely(f2fs_cp_error(sbi))) {
  1522. f2fs_submit_merged_write(sbi, DATA);
  1523. submitted = NULL;
  1524. }
  1525. if (submitted)
  1526. *submitted = fio.submitted;
  1527. return 0;
  1528. redirty_out:
  1529. redirty_page_for_writepage(wbc, page);
  1530. if (!err)
  1531. return AOP_WRITEPAGE_ACTIVATE;
  1532. unlock_page(page);
  1533. return err;
  1534. }
  1535. static int f2fs_write_data_page(struct page *page,
  1536. struct writeback_control *wbc)
  1537. {
  1538. return __write_data_page(page, NULL, wbc, FS_DATA_IO);
  1539. }
  1540. /*
  1541. * This function was copied from write_cche_pages from mm/page-writeback.c.
  1542. * The major change is making write step of cold data page separately from
  1543. * warm/hot data page.
  1544. */
  1545. static int f2fs_write_cache_pages(struct address_space *mapping,
  1546. struct writeback_control *wbc,
  1547. enum iostat_type io_type)
  1548. {
  1549. int ret = 0;
  1550. int done = 0;
  1551. struct pagevec pvec;
  1552. int nr_pages;
  1553. pgoff_t uninitialized_var(writeback_index);
  1554. pgoff_t index;
  1555. pgoff_t end; /* Inclusive */
  1556. pgoff_t done_index;
  1557. pgoff_t last_idx = ULONG_MAX;
  1558. int cycled;
  1559. int range_whole = 0;
  1560. int tag;
  1561. pagevec_init(&pvec);
  1562. if (get_dirty_pages(mapping->host) <=
  1563. SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
  1564. set_inode_flag(mapping->host, FI_HOT_DATA);
  1565. else
  1566. clear_inode_flag(mapping->host, FI_HOT_DATA);
  1567. if (wbc->range_cyclic) {
  1568. writeback_index = mapping->writeback_index; /* prev offset */
  1569. index = writeback_index;
  1570. if (index == 0)
  1571. cycled = 1;
  1572. else
  1573. cycled = 0;
  1574. end = -1;
  1575. } else {
  1576. index = wbc->range_start >> PAGE_SHIFT;
  1577. end = wbc->range_end >> PAGE_SHIFT;
  1578. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1579. range_whole = 1;
  1580. cycled = 1; /* ignore range_cyclic tests */
  1581. }
  1582. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1583. tag = PAGECACHE_TAG_TOWRITE;
  1584. else
  1585. tag = PAGECACHE_TAG_DIRTY;
  1586. retry:
  1587. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1588. tag_pages_for_writeback(mapping, index, end);
  1589. done_index = index;
  1590. while (!done && (index <= end)) {
  1591. int i;
  1592. nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
  1593. tag);
  1594. if (nr_pages == 0)
  1595. break;
  1596. for (i = 0; i < nr_pages; i++) {
  1597. struct page *page = pvec.pages[i];
  1598. bool submitted = false;
  1599. done_index = page->index;
  1600. retry_write:
  1601. lock_page(page);
  1602. if (unlikely(page->mapping != mapping)) {
  1603. continue_unlock:
  1604. unlock_page(page);
  1605. continue;
  1606. }
  1607. if (!PageDirty(page)) {
  1608. /* someone wrote it for us */
  1609. goto continue_unlock;
  1610. }
  1611. if (PageWriteback(page)) {
  1612. if (wbc->sync_mode != WB_SYNC_NONE)
  1613. f2fs_wait_on_page_writeback(page,
  1614. DATA, true);
  1615. else
  1616. goto continue_unlock;
  1617. }
  1618. BUG_ON(PageWriteback(page));
  1619. if (!clear_page_dirty_for_io(page))
  1620. goto continue_unlock;
  1621. ret = __write_data_page(page, &submitted, wbc, io_type);
  1622. if (unlikely(ret)) {
  1623. /*
  1624. * keep nr_to_write, since vfs uses this to
  1625. * get # of written pages.
  1626. */
  1627. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1628. unlock_page(page);
  1629. ret = 0;
  1630. continue;
  1631. } else if (ret == -EAGAIN) {
  1632. ret = 0;
  1633. if (wbc->sync_mode == WB_SYNC_ALL) {
  1634. cond_resched();
  1635. congestion_wait(BLK_RW_ASYNC,
  1636. HZ/50);
  1637. goto retry_write;
  1638. }
  1639. continue;
  1640. }
  1641. done_index = page->index + 1;
  1642. done = 1;
  1643. break;
  1644. } else if (submitted) {
  1645. last_idx = page->index;
  1646. }
  1647. /* give a priority to WB_SYNC threads */
  1648. if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
  1649. --wbc->nr_to_write <= 0) &&
  1650. wbc->sync_mode == WB_SYNC_NONE) {
  1651. done = 1;
  1652. break;
  1653. }
  1654. }
  1655. pagevec_release(&pvec);
  1656. cond_resched();
  1657. }
  1658. if (!cycled && !done) {
  1659. cycled = 1;
  1660. index = 0;
  1661. end = writeback_index - 1;
  1662. goto retry;
  1663. }
  1664. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1665. mapping->writeback_index = done_index;
  1666. if (last_idx != ULONG_MAX)
  1667. f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
  1668. 0, last_idx, DATA);
  1669. return ret;
  1670. }
  1671. int __f2fs_write_data_pages(struct address_space *mapping,
  1672. struct writeback_control *wbc,
  1673. enum iostat_type io_type)
  1674. {
  1675. struct inode *inode = mapping->host;
  1676. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1677. struct blk_plug plug;
  1678. int ret;
  1679. /* deal with chardevs and other special file */
  1680. if (!mapping->a_ops->writepage)
  1681. return 0;
  1682. /* skip writing if there is no dirty page in this inode */
  1683. if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
  1684. return 0;
  1685. /* during POR, we don't need to trigger writepage at all. */
  1686. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1687. goto skip_write;
  1688. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1689. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1690. available_free_memory(sbi, DIRTY_DENTS))
  1691. goto skip_write;
  1692. /* skip writing during file defragment */
  1693. if (is_inode_flag_set(inode, FI_DO_DEFRAG))
  1694. goto skip_write;
  1695. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1696. /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
  1697. if (wbc->sync_mode == WB_SYNC_ALL)
  1698. atomic_inc(&sbi->wb_sync_req);
  1699. else if (atomic_read(&sbi->wb_sync_req))
  1700. goto skip_write;
  1701. blk_start_plug(&plug);
  1702. ret = f2fs_write_cache_pages(mapping, wbc, io_type);
  1703. blk_finish_plug(&plug);
  1704. if (wbc->sync_mode == WB_SYNC_ALL)
  1705. atomic_dec(&sbi->wb_sync_req);
  1706. /*
  1707. * if some pages were truncated, we cannot guarantee its mapping->host
  1708. * to detect pending bios.
  1709. */
  1710. remove_dirty_inode(inode);
  1711. return ret;
  1712. skip_write:
  1713. wbc->pages_skipped += get_dirty_pages(inode);
  1714. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1715. return 0;
  1716. }
  1717. static int f2fs_write_data_pages(struct address_space *mapping,
  1718. struct writeback_control *wbc)
  1719. {
  1720. struct inode *inode = mapping->host;
  1721. return __f2fs_write_data_pages(mapping, wbc,
  1722. F2FS_I(inode)->cp_task == current ?
  1723. FS_CP_DATA_IO : FS_DATA_IO);
  1724. }
  1725. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1726. {
  1727. struct inode *inode = mapping->host;
  1728. loff_t i_size = i_size_read(inode);
  1729. if (to > i_size) {
  1730. down_write(&F2FS_I(inode)->i_mmap_sem);
  1731. truncate_pagecache(inode, i_size);
  1732. truncate_blocks(inode, i_size, true);
  1733. up_write(&F2FS_I(inode)->i_mmap_sem);
  1734. }
  1735. }
  1736. static int prepare_write_begin(struct f2fs_sb_info *sbi,
  1737. struct page *page, loff_t pos, unsigned len,
  1738. block_t *blk_addr, bool *node_changed)
  1739. {
  1740. struct inode *inode = page->mapping->host;
  1741. pgoff_t index = page->index;
  1742. struct dnode_of_data dn;
  1743. struct page *ipage;
  1744. bool locked = false;
  1745. struct extent_info ei = {0,0,0};
  1746. int err = 0;
  1747. /*
  1748. * we already allocated all the blocks, so we don't need to get
  1749. * the block addresses when there is no need to fill the page.
  1750. */
  1751. if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
  1752. !is_inode_flag_set(inode, FI_NO_PREALLOC))
  1753. return 0;
  1754. if (f2fs_has_inline_data(inode) ||
  1755. (pos & PAGE_MASK) >= i_size_read(inode)) {
  1756. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
  1757. locked = true;
  1758. }
  1759. restart:
  1760. /* check inline_data */
  1761. ipage = get_node_page(sbi, inode->i_ino);
  1762. if (IS_ERR(ipage)) {
  1763. err = PTR_ERR(ipage);
  1764. goto unlock_out;
  1765. }
  1766. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1767. if (f2fs_has_inline_data(inode)) {
  1768. if (pos + len <= MAX_INLINE_DATA(inode)) {
  1769. read_inline_data(page, ipage);
  1770. set_inode_flag(inode, FI_DATA_EXIST);
  1771. if (inode->i_nlink)
  1772. set_inline_node(ipage);
  1773. } else {
  1774. err = f2fs_convert_inline_page(&dn, page);
  1775. if (err)
  1776. goto out;
  1777. if (dn.data_blkaddr == NULL_ADDR)
  1778. err = f2fs_get_block(&dn, index);
  1779. }
  1780. } else if (locked) {
  1781. err = f2fs_get_block(&dn, index);
  1782. } else {
  1783. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  1784. dn.data_blkaddr = ei.blk + index - ei.fofs;
  1785. } else {
  1786. /* hole case */
  1787. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  1788. if (err || dn.data_blkaddr == NULL_ADDR) {
  1789. f2fs_put_dnode(&dn);
  1790. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
  1791. true);
  1792. locked = true;
  1793. goto restart;
  1794. }
  1795. }
  1796. }
  1797. /* convert_inline_page can make node_changed */
  1798. *blk_addr = dn.data_blkaddr;
  1799. *node_changed = dn.node_changed;
  1800. out:
  1801. f2fs_put_dnode(&dn);
  1802. unlock_out:
  1803. if (locked)
  1804. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
  1805. return err;
  1806. }
  1807. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1808. loff_t pos, unsigned len, unsigned flags,
  1809. struct page **pagep, void **fsdata)
  1810. {
  1811. struct inode *inode = mapping->host;
  1812. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1813. struct page *page = NULL;
  1814. pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
  1815. bool need_balance = false, drop_atomic = false;
  1816. block_t blkaddr = NULL_ADDR;
  1817. int err = 0;
  1818. trace_f2fs_write_begin(inode, pos, len, flags);
  1819. if (f2fs_is_atomic_file(inode) &&
  1820. !available_free_memory(sbi, INMEM_PAGES)) {
  1821. err = -ENOMEM;
  1822. drop_atomic = true;
  1823. goto fail;
  1824. }
  1825. /*
  1826. * We should check this at this moment to avoid deadlock on inode page
  1827. * and #0 page. The locking rule for inline_data conversion should be:
  1828. * lock_page(page #0) -> lock_page(inode_page)
  1829. */
  1830. if (index != 0) {
  1831. err = f2fs_convert_inline_inode(inode);
  1832. if (err)
  1833. goto fail;
  1834. }
  1835. repeat:
  1836. /*
  1837. * Do not use grab_cache_page_write_begin() to avoid deadlock due to
  1838. * wait_for_stable_page. Will wait that below with our IO control.
  1839. */
  1840. page = f2fs_pagecache_get_page(mapping, index,
  1841. FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
  1842. if (!page) {
  1843. err = -ENOMEM;
  1844. goto fail;
  1845. }
  1846. *pagep = page;
  1847. err = prepare_write_begin(sbi, page, pos, len,
  1848. &blkaddr, &need_balance);
  1849. if (err)
  1850. goto fail;
  1851. if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
  1852. unlock_page(page);
  1853. f2fs_balance_fs(sbi, true);
  1854. lock_page(page);
  1855. if (page->mapping != mapping) {
  1856. /* The page got truncated from under us */
  1857. f2fs_put_page(page, 1);
  1858. goto repeat;
  1859. }
  1860. }
  1861. f2fs_wait_on_page_writeback(page, DATA, false);
  1862. /* wait for GCed encrypted page writeback */
  1863. if (f2fs_encrypted_file(inode))
  1864. f2fs_wait_on_block_writeback(sbi, blkaddr);
  1865. if (len == PAGE_SIZE || PageUptodate(page))
  1866. return 0;
  1867. if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
  1868. zero_user_segment(page, len, PAGE_SIZE);
  1869. return 0;
  1870. }
  1871. if (blkaddr == NEW_ADDR) {
  1872. zero_user_segment(page, 0, PAGE_SIZE);
  1873. SetPageUptodate(page);
  1874. } else {
  1875. err = f2fs_submit_page_read(inode, page, blkaddr);
  1876. if (err)
  1877. goto fail;
  1878. lock_page(page);
  1879. if (unlikely(page->mapping != mapping)) {
  1880. f2fs_put_page(page, 1);
  1881. goto repeat;
  1882. }
  1883. if (unlikely(!PageUptodate(page))) {
  1884. err = -EIO;
  1885. goto fail;
  1886. }
  1887. }
  1888. return 0;
  1889. fail:
  1890. f2fs_put_page(page, 1);
  1891. f2fs_write_failed(mapping, pos + len);
  1892. if (drop_atomic)
  1893. drop_inmem_pages_all(sbi);
  1894. return err;
  1895. }
  1896. static int f2fs_write_end(struct file *file,
  1897. struct address_space *mapping,
  1898. loff_t pos, unsigned len, unsigned copied,
  1899. struct page *page, void *fsdata)
  1900. {
  1901. struct inode *inode = page->mapping->host;
  1902. trace_f2fs_write_end(inode, pos, len, copied);
  1903. /*
  1904. * This should be come from len == PAGE_SIZE, and we expect copied
  1905. * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
  1906. * let generic_perform_write() try to copy data again through copied=0.
  1907. */
  1908. if (!PageUptodate(page)) {
  1909. if (unlikely(copied != len))
  1910. copied = 0;
  1911. else
  1912. SetPageUptodate(page);
  1913. }
  1914. if (!copied)
  1915. goto unlock_out;
  1916. set_page_dirty(page);
  1917. if (pos + copied > i_size_read(inode))
  1918. f2fs_i_size_write(inode, pos + copied);
  1919. unlock_out:
  1920. f2fs_put_page(page, 1);
  1921. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1922. return copied;
  1923. }
  1924. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  1925. loff_t offset)
  1926. {
  1927. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  1928. if (offset & blocksize_mask)
  1929. return -EINVAL;
  1930. if (iov_iter_alignment(iter) & blocksize_mask)
  1931. return -EINVAL;
  1932. return 0;
  1933. }
  1934. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  1935. {
  1936. struct address_space *mapping = iocb->ki_filp->f_mapping;
  1937. struct inode *inode = mapping->host;
  1938. size_t count = iov_iter_count(iter);
  1939. loff_t offset = iocb->ki_pos;
  1940. int rw = iov_iter_rw(iter);
  1941. int err;
  1942. err = check_direct_IO(inode, iter, offset);
  1943. if (err)
  1944. return err;
  1945. if (__force_buffered_io(inode, rw))
  1946. return 0;
  1947. trace_f2fs_direct_IO_enter(inode, offset, count, rw);
  1948. down_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1949. err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
  1950. up_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1951. if (rw == WRITE) {
  1952. if (err > 0) {
  1953. f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
  1954. err);
  1955. set_inode_flag(inode, FI_UPDATE_WRITE);
  1956. } else if (err < 0) {
  1957. f2fs_write_failed(mapping, offset + count);
  1958. }
  1959. }
  1960. trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
  1961. return err;
  1962. }
  1963. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  1964. unsigned int length)
  1965. {
  1966. struct inode *inode = page->mapping->host;
  1967. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1968. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  1969. (offset % PAGE_SIZE || length != PAGE_SIZE))
  1970. return;
  1971. if (PageDirty(page)) {
  1972. if (inode->i_ino == F2FS_META_INO(sbi)) {
  1973. dec_page_count(sbi, F2FS_DIRTY_META);
  1974. } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
  1975. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1976. } else {
  1977. inode_dec_dirty_pages(inode);
  1978. remove_dirty_inode(inode);
  1979. }
  1980. }
  1981. /* This is atomic written page, keep Private */
  1982. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1983. return drop_inmem_page(inode, page);
  1984. set_page_private(page, 0);
  1985. ClearPagePrivate(page);
  1986. }
  1987. int f2fs_release_page(struct page *page, gfp_t wait)
  1988. {
  1989. /* If this is dirty page, keep PagePrivate */
  1990. if (PageDirty(page))
  1991. return 0;
  1992. /* This is atomic written page, keep Private */
  1993. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1994. return 0;
  1995. set_page_private(page, 0);
  1996. ClearPagePrivate(page);
  1997. return 1;
  1998. }
  1999. /*
  2000. * This was copied from __set_page_dirty_buffers which gives higher performance
  2001. * in very high speed storages. (e.g., pmem)
  2002. */
  2003. void f2fs_set_page_dirty_nobuffers(struct page *page)
  2004. {
  2005. struct address_space *mapping = page->mapping;
  2006. unsigned long flags;
  2007. if (unlikely(!mapping))
  2008. return;
  2009. spin_lock(&mapping->private_lock);
  2010. lock_page_memcg(page);
  2011. SetPageDirty(page);
  2012. spin_unlock(&mapping->private_lock);
  2013. spin_lock_irqsave(&mapping->tree_lock, flags);
  2014. WARN_ON_ONCE(!PageUptodate(page));
  2015. account_page_dirtied(page, mapping);
  2016. radix_tree_tag_set(&mapping->page_tree,
  2017. page_index(page), PAGECACHE_TAG_DIRTY);
  2018. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2019. unlock_page_memcg(page);
  2020. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  2021. return;
  2022. }
  2023. static int f2fs_set_data_page_dirty(struct page *page)
  2024. {
  2025. struct address_space *mapping = page->mapping;
  2026. struct inode *inode = mapping->host;
  2027. trace_f2fs_set_page_dirty(page, DATA);
  2028. if (!PageUptodate(page))
  2029. SetPageUptodate(page);
  2030. if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
  2031. if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
  2032. register_inmem_page(inode, page);
  2033. return 1;
  2034. }
  2035. /*
  2036. * Previously, this page has been registered, we just
  2037. * return here.
  2038. */
  2039. return 0;
  2040. }
  2041. if (!PageDirty(page)) {
  2042. f2fs_set_page_dirty_nobuffers(page);
  2043. update_dirty_page(inode, page);
  2044. return 1;
  2045. }
  2046. return 0;
  2047. }
  2048. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  2049. {
  2050. struct inode *inode = mapping->host;
  2051. if (f2fs_has_inline_data(inode))
  2052. return 0;
  2053. /* make sure allocating whole blocks */
  2054. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2055. filemap_write_and_wait(mapping);
  2056. return generic_block_bmap(mapping, block, get_data_block_bmap);
  2057. }
  2058. #ifdef CONFIG_MIGRATION
  2059. #include <linux/migrate.h>
  2060. int f2fs_migrate_page(struct address_space *mapping,
  2061. struct page *newpage, struct page *page, enum migrate_mode mode)
  2062. {
  2063. int rc, extra_count;
  2064. struct f2fs_inode_info *fi = F2FS_I(mapping->host);
  2065. bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
  2066. BUG_ON(PageWriteback(page));
  2067. /* migrating an atomic written page is safe with the inmem_lock hold */
  2068. if (atomic_written) {
  2069. if (mode != MIGRATE_SYNC)
  2070. return -EBUSY;
  2071. if (!mutex_trylock(&fi->inmem_lock))
  2072. return -EAGAIN;
  2073. }
  2074. /*
  2075. * A reference is expected if PagePrivate set when move mapping,
  2076. * however F2FS breaks this for maintaining dirty page counts when
  2077. * truncating pages. So here adjusting the 'extra_count' make it work.
  2078. */
  2079. extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
  2080. rc = migrate_page_move_mapping(mapping, newpage,
  2081. page, NULL, mode, extra_count);
  2082. if (rc != MIGRATEPAGE_SUCCESS) {
  2083. if (atomic_written)
  2084. mutex_unlock(&fi->inmem_lock);
  2085. return rc;
  2086. }
  2087. if (atomic_written) {
  2088. struct inmem_pages *cur;
  2089. list_for_each_entry(cur, &fi->inmem_pages, list)
  2090. if (cur->page == page) {
  2091. cur->page = newpage;
  2092. break;
  2093. }
  2094. mutex_unlock(&fi->inmem_lock);
  2095. put_page(page);
  2096. get_page(newpage);
  2097. }
  2098. if (PagePrivate(page))
  2099. SetPagePrivate(newpage);
  2100. set_page_private(newpage, page_private(page));
  2101. if (mode != MIGRATE_SYNC_NO_COPY)
  2102. migrate_page_copy(newpage, page);
  2103. else
  2104. migrate_page_states(newpage, page);
  2105. return MIGRATEPAGE_SUCCESS;
  2106. }
  2107. #endif
  2108. const struct address_space_operations f2fs_dblock_aops = {
  2109. .readpage = f2fs_read_data_page,
  2110. .readpages = f2fs_read_data_pages,
  2111. .writepage = f2fs_write_data_page,
  2112. .writepages = f2fs_write_data_pages,
  2113. .write_begin = f2fs_write_begin,
  2114. .write_end = f2fs_write_end,
  2115. .set_page_dirty = f2fs_set_data_page_dirty,
  2116. .invalidatepage = f2fs_invalidate_page,
  2117. .releasepage = f2fs_release_page,
  2118. .direct_IO = f2fs_direct_IO,
  2119. .bmap = f2fs_bmap,
  2120. #ifdef CONFIG_MIGRATION
  2121. .migratepage = f2fs_migrate_page,
  2122. #endif
  2123. };