checkpoint.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27. {
  28. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  29. if (!end_io)
  30. f2fs_flush_merged_writes(sbi);
  31. }
  32. /*
  33. * We guarantee no failure on the returned page.
  34. */
  35. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  36. {
  37. struct address_space *mapping = META_MAPPING(sbi);
  38. struct page *page = NULL;
  39. repeat:
  40. page = f2fs_grab_cache_page(mapping, index, false);
  41. if (!page) {
  42. cond_resched();
  43. goto repeat;
  44. }
  45. f2fs_wait_on_page_writeback(page, META, true);
  46. if (!PageUptodate(page))
  47. SetPageUptodate(page);
  48. return page;
  49. }
  50. /*
  51. * We guarantee no failure on the returned page.
  52. */
  53. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  54. bool is_meta)
  55. {
  56. struct address_space *mapping = META_MAPPING(sbi);
  57. struct page *page;
  58. struct f2fs_io_info fio = {
  59. .sbi = sbi,
  60. .type = META,
  61. .op = REQ_OP_READ,
  62. .op_flags = REQ_META | REQ_PRIO,
  63. .old_blkaddr = index,
  64. .new_blkaddr = index,
  65. .encrypted_page = NULL,
  66. };
  67. if (unlikely(!is_meta))
  68. fio.op_flags &= ~REQ_META;
  69. repeat:
  70. page = f2fs_grab_cache_page(mapping, index, false);
  71. if (!page) {
  72. cond_resched();
  73. goto repeat;
  74. }
  75. if (PageUptodate(page))
  76. goto out;
  77. fio.page = page;
  78. if (f2fs_submit_page_bio(&fio)) {
  79. f2fs_put_page(page, 1);
  80. goto repeat;
  81. }
  82. lock_page(page);
  83. if (unlikely(page->mapping != mapping)) {
  84. f2fs_put_page(page, 1);
  85. goto repeat;
  86. }
  87. /*
  88. * if there is any IO error when accessing device, make our filesystem
  89. * readonly and make sure do not write checkpoint with non-uptodate
  90. * meta page.
  91. */
  92. if (unlikely(!PageUptodate(page)))
  93. f2fs_stop_checkpoint(sbi, false);
  94. out:
  95. return page;
  96. }
  97. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  98. {
  99. return __get_meta_page(sbi, index, true);
  100. }
  101. /* for POR only */
  102. struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  103. {
  104. return __get_meta_page(sbi, index, false);
  105. }
  106. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  107. {
  108. switch (type) {
  109. case META_NAT:
  110. break;
  111. case META_SIT:
  112. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  113. return false;
  114. break;
  115. case META_SSA:
  116. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  117. blkaddr < SM_I(sbi)->ssa_blkaddr))
  118. return false;
  119. break;
  120. case META_CP:
  121. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  122. blkaddr < __start_cp_addr(sbi)))
  123. return false;
  124. break;
  125. case META_POR:
  126. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  127. blkaddr < MAIN_BLKADDR(sbi)))
  128. return false;
  129. break;
  130. default:
  131. BUG();
  132. }
  133. return true;
  134. }
  135. /*
  136. * Readahead CP/NAT/SIT/SSA pages
  137. */
  138. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  139. int type, bool sync)
  140. {
  141. struct page *page;
  142. block_t blkno = start;
  143. struct f2fs_io_info fio = {
  144. .sbi = sbi,
  145. .type = META,
  146. .op = REQ_OP_READ,
  147. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  148. .encrypted_page = NULL,
  149. .in_list = false,
  150. };
  151. struct blk_plug plug;
  152. if (unlikely(type == META_POR))
  153. fio.op_flags &= ~REQ_META;
  154. blk_start_plug(&plug);
  155. for (; nrpages-- > 0; blkno++) {
  156. if (!is_valid_blkaddr(sbi, blkno, type))
  157. goto out;
  158. switch (type) {
  159. case META_NAT:
  160. if (unlikely(blkno >=
  161. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  162. blkno = 0;
  163. /* get nat block addr */
  164. fio.new_blkaddr = current_nat_addr(sbi,
  165. blkno * NAT_ENTRY_PER_BLOCK);
  166. break;
  167. case META_SIT:
  168. /* get sit block addr */
  169. fio.new_blkaddr = current_sit_addr(sbi,
  170. blkno * SIT_ENTRY_PER_BLOCK);
  171. break;
  172. case META_SSA:
  173. case META_CP:
  174. case META_POR:
  175. fio.new_blkaddr = blkno;
  176. break;
  177. default:
  178. BUG();
  179. }
  180. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  181. fio.new_blkaddr, false);
  182. if (!page)
  183. continue;
  184. if (PageUptodate(page)) {
  185. f2fs_put_page(page, 1);
  186. continue;
  187. }
  188. fio.page = page;
  189. f2fs_submit_page_bio(&fio);
  190. f2fs_put_page(page, 0);
  191. }
  192. out:
  193. blk_finish_plug(&plug);
  194. return blkno - start;
  195. }
  196. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  197. {
  198. struct page *page;
  199. bool readahead = false;
  200. page = find_get_page(META_MAPPING(sbi), index);
  201. if (!page || !PageUptodate(page))
  202. readahead = true;
  203. f2fs_put_page(page, 0);
  204. if (readahead)
  205. ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
  206. }
  207. static int __f2fs_write_meta_page(struct page *page,
  208. struct writeback_control *wbc,
  209. enum iostat_type io_type)
  210. {
  211. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  212. trace_f2fs_writepage(page, META);
  213. if (unlikely(f2fs_cp_error(sbi))) {
  214. dec_page_count(sbi, F2FS_DIRTY_META);
  215. unlock_page(page);
  216. return 0;
  217. }
  218. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  219. goto redirty_out;
  220. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  221. goto redirty_out;
  222. write_meta_page(sbi, page, io_type);
  223. dec_page_count(sbi, F2FS_DIRTY_META);
  224. if (wbc->for_reclaim)
  225. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  226. 0, page->index, META);
  227. unlock_page(page);
  228. if (unlikely(f2fs_cp_error(sbi)))
  229. f2fs_submit_merged_write(sbi, META);
  230. return 0;
  231. redirty_out:
  232. redirty_page_for_writepage(wbc, page);
  233. return AOP_WRITEPAGE_ACTIVATE;
  234. }
  235. static int f2fs_write_meta_page(struct page *page,
  236. struct writeback_control *wbc)
  237. {
  238. return __f2fs_write_meta_page(page, wbc, FS_META_IO);
  239. }
  240. static int f2fs_write_meta_pages(struct address_space *mapping,
  241. struct writeback_control *wbc)
  242. {
  243. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  244. long diff, written;
  245. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  246. goto skip_write;
  247. /* collect a number of dirty meta pages and write together */
  248. if (wbc->for_kupdate ||
  249. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  250. goto skip_write;
  251. /* if locked failed, cp will flush dirty pages instead */
  252. if (!mutex_trylock(&sbi->cp_mutex))
  253. goto skip_write;
  254. trace_f2fs_writepages(mapping->host, wbc, META);
  255. diff = nr_pages_to_write(sbi, META, wbc);
  256. written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
  257. mutex_unlock(&sbi->cp_mutex);
  258. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  259. return 0;
  260. skip_write:
  261. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  262. trace_f2fs_writepages(mapping->host, wbc, META);
  263. return 0;
  264. }
  265. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  266. long nr_to_write, enum iostat_type io_type)
  267. {
  268. struct address_space *mapping = META_MAPPING(sbi);
  269. pgoff_t index = 0, prev = ULONG_MAX;
  270. struct pagevec pvec;
  271. long nwritten = 0;
  272. int nr_pages;
  273. struct writeback_control wbc = {
  274. .for_reclaim = 0,
  275. };
  276. struct blk_plug plug;
  277. pagevec_init(&pvec);
  278. blk_start_plug(&plug);
  279. while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  280. PAGECACHE_TAG_DIRTY))) {
  281. int i;
  282. for (i = 0; i < nr_pages; i++) {
  283. struct page *page = pvec.pages[i];
  284. if (prev == ULONG_MAX)
  285. prev = page->index - 1;
  286. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  287. pagevec_release(&pvec);
  288. goto stop;
  289. }
  290. lock_page(page);
  291. if (unlikely(page->mapping != mapping)) {
  292. continue_unlock:
  293. unlock_page(page);
  294. continue;
  295. }
  296. if (!PageDirty(page)) {
  297. /* someone wrote it for us */
  298. goto continue_unlock;
  299. }
  300. f2fs_wait_on_page_writeback(page, META, true);
  301. BUG_ON(PageWriteback(page));
  302. if (!clear_page_dirty_for_io(page))
  303. goto continue_unlock;
  304. if (__f2fs_write_meta_page(page, &wbc, io_type)) {
  305. unlock_page(page);
  306. break;
  307. }
  308. nwritten++;
  309. prev = page->index;
  310. if (unlikely(nwritten >= nr_to_write))
  311. break;
  312. }
  313. pagevec_release(&pvec);
  314. cond_resched();
  315. }
  316. stop:
  317. if (nwritten)
  318. f2fs_submit_merged_write(sbi, type);
  319. blk_finish_plug(&plug);
  320. return nwritten;
  321. }
  322. static int f2fs_set_meta_page_dirty(struct page *page)
  323. {
  324. trace_f2fs_set_page_dirty(page, META);
  325. if (!PageUptodate(page))
  326. SetPageUptodate(page);
  327. if (!PageDirty(page)) {
  328. f2fs_set_page_dirty_nobuffers(page);
  329. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  330. SetPagePrivate(page);
  331. f2fs_trace_pid(page);
  332. return 1;
  333. }
  334. return 0;
  335. }
  336. const struct address_space_operations f2fs_meta_aops = {
  337. .writepage = f2fs_write_meta_page,
  338. .writepages = f2fs_write_meta_pages,
  339. .set_page_dirty = f2fs_set_meta_page_dirty,
  340. .invalidatepage = f2fs_invalidate_page,
  341. .releasepage = f2fs_release_page,
  342. #ifdef CONFIG_MIGRATION
  343. .migratepage = f2fs_migrate_page,
  344. #endif
  345. };
  346. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
  347. unsigned int devidx, int type)
  348. {
  349. struct inode_management *im = &sbi->im[type];
  350. struct ino_entry *e, *tmp;
  351. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  352. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  353. spin_lock(&im->ino_lock);
  354. e = radix_tree_lookup(&im->ino_root, ino);
  355. if (!e) {
  356. e = tmp;
  357. if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
  358. f2fs_bug_on(sbi, 1);
  359. memset(e, 0, sizeof(struct ino_entry));
  360. e->ino = ino;
  361. list_add_tail(&e->list, &im->ino_list);
  362. if (type != ORPHAN_INO)
  363. im->ino_num++;
  364. }
  365. if (type == FLUSH_INO)
  366. f2fs_set_bit(devidx, (char *)&e->dirty_device);
  367. spin_unlock(&im->ino_lock);
  368. radix_tree_preload_end();
  369. if (e != tmp)
  370. kmem_cache_free(ino_entry_slab, tmp);
  371. }
  372. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  373. {
  374. struct inode_management *im = &sbi->im[type];
  375. struct ino_entry *e;
  376. spin_lock(&im->ino_lock);
  377. e = radix_tree_lookup(&im->ino_root, ino);
  378. if (e) {
  379. list_del(&e->list);
  380. radix_tree_delete(&im->ino_root, ino);
  381. im->ino_num--;
  382. spin_unlock(&im->ino_lock);
  383. kmem_cache_free(ino_entry_slab, e);
  384. return;
  385. }
  386. spin_unlock(&im->ino_lock);
  387. }
  388. void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  389. {
  390. /* add new dirty ino entry into list */
  391. __add_ino_entry(sbi, ino, 0, type);
  392. }
  393. void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  394. {
  395. /* remove dirty ino entry from list */
  396. __remove_ino_entry(sbi, ino, type);
  397. }
  398. /* mode should be APPEND_INO or UPDATE_INO */
  399. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  400. {
  401. struct inode_management *im = &sbi->im[mode];
  402. struct ino_entry *e;
  403. spin_lock(&im->ino_lock);
  404. e = radix_tree_lookup(&im->ino_root, ino);
  405. spin_unlock(&im->ino_lock);
  406. return e ? true : false;
  407. }
  408. void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  409. {
  410. struct ino_entry *e, *tmp;
  411. int i;
  412. for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
  413. struct inode_management *im = &sbi->im[i];
  414. spin_lock(&im->ino_lock);
  415. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  416. list_del(&e->list);
  417. radix_tree_delete(&im->ino_root, e->ino);
  418. kmem_cache_free(ino_entry_slab, e);
  419. im->ino_num--;
  420. }
  421. spin_unlock(&im->ino_lock);
  422. }
  423. }
  424. void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  425. unsigned int devidx, int type)
  426. {
  427. __add_ino_entry(sbi, ino, devidx, type);
  428. }
  429. bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  430. unsigned int devidx, int type)
  431. {
  432. struct inode_management *im = &sbi->im[type];
  433. struct ino_entry *e;
  434. bool is_dirty = false;
  435. spin_lock(&im->ino_lock);
  436. e = radix_tree_lookup(&im->ino_root, ino);
  437. if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
  438. is_dirty = true;
  439. spin_unlock(&im->ino_lock);
  440. return is_dirty;
  441. }
  442. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  443. {
  444. struct inode_management *im = &sbi->im[ORPHAN_INO];
  445. int err = 0;
  446. spin_lock(&im->ino_lock);
  447. #ifdef CONFIG_F2FS_FAULT_INJECTION
  448. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  449. spin_unlock(&im->ino_lock);
  450. f2fs_show_injection_info(FAULT_ORPHAN);
  451. return -ENOSPC;
  452. }
  453. #endif
  454. if (unlikely(im->ino_num >= sbi->max_orphans))
  455. err = -ENOSPC;
  456. else
  457. im->ino_num++;
  458. spin_unlock(&im->ino_lock);
  459. return err;
  460. }
  461. void release_orphan_inode(struct f2fs_sb_info *sbi)
  462. {
  463. struct inode_management *im = &sbi->im[ORPHAN_INO];
  464. spin_lock(&im->ino_lock);
  465. f2fs_bug_on(sbi, im->ino_num == 0);
  466. im->ino_num--;
  467. spin_unlock(&im->ino_lock);
  468. }
  469. void add_orphan_inode(struct inode *inode)
  470. {
  471. /* add new orphan ino entry into list */
  472. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
  473. update_inode_page(inode);
  474. }
  475. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  476. {
  477. /* remove orphan entry from orphan list */
  478. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  479. }
  480. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  481. {
  482. struct inode *inode;
  483. struct node_info ni;
  484. int err = acquire_orphan_inode(sbi);
  485. if (err) {
  486. set_sbi_flag(sbi, SBI_NEED_FSCK);
  487. f2fs_msg(sbi->sb, KERN_WARNING,
  488. "%s: orphan failed (ino=%x), run fsck to fix.",
  489. __func__, ino);
  490. return err;
  491. }
  492. __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
  493. inode = f2fs_iget_retry(sbi->sb, ino);
  494. if (IS_ERR(inode)) {
  495. /*
  496. * there should be a bug that we can't find the entry
  497. * to orphan inode.
  498. */
  499. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  500. return PTR_ERR(inode);
  501. }
  502. clear_nlink(inode);
  503. /* truncate all the data during iput */
  504. iput(inode);
  505. get_node_info(sbi, ino, &ni);
  506. /* ENOMEM was fully retried in f2fs_evict_inode. */
  507. if (ni.blk_addr != NULL_ADDR) {
  508. set_sbi_flag(sbi, SBI_NEED_FSCK);
  509. f2fs_msg(sbi->sb, KERN_WARNING,
  510. "%s: orphan failed (ino=%x) by kernel, retry mount.",
  511. __func__, ino);
  512. return -EIO;
  513. }
  514. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  515. return 0;
  516. }
  517. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  518. {
  519. block_t start_blk, orphan_blocks, i, j;
  520. unsigned int s_flags = sbi->sb->s_flags;
  521. int err = 0;
  522. #ifdef CONFIG_QUOTA
  523. int quota_enabled;
  524. #endif
  525. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  526. return 0;
  527. if (s_flags & SB_RDONLY) {
  528. f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
  529. sbi->sb->s_flags &= ~SB_RDONLY;
  530. }
  531. #ifdef CONFIG_QUOTA
  532. /* Needed for iput() to work correctly and not trash data */
  533. sbi->sb->s_flags |= SB_ACTIVE;
  534. /* Turn on quotas so that they are updated correctly */
  535. quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
  536. #endif
  537. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  538. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  539. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  540. for (i = 0; i < orphan_blocks; i++) {
  541. struct page *page = get_meta_page(sbi, start_blk + i);
  542. struct f2fs_orphan_block *orphan_blk;
  543. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  544. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  545. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  546. err = recover_orphan_inode(sbi, ino);
  547. if (err) {
  548. f2fs_put_page(page, 1);
  549. goto out;
  550. }
  551. }
  552. f2fs_put_page(page, 1);
  553. }
  554. /* clear Orphan Flag */
  555. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  556. out:
  557. #ifdef CONFIG_QUOTA
  558. /* Turn quotas off */
  559. if (quota_enabled)
  560. f2fs_quota_off_umount(sbi->sb);
  561. #endif
  562. sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
  563. return err;
  564. }
  565. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  566. {
  567. struct list_head *head;
  568. struct f2fs_orphan_block *orphan_blk = NULL;
  569. unsigned int nentries = 0;
  570. unsigned short index = 1;
  571. unsigned short orphan_blocks;
  572. struct page *page = NULL;
  573. struct ino_entry *orphan = NULL;
  574. struct inode_management *im = &sbi->im[ORPHAN_INO];
  575. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  576. /*
  577. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  578. * orphan inode operations are covered under f2fs_lock_op().
  579. * And, spin_lock should be avoided due to page operations below.
  580. */
  581. head = &im->ino_list;
  582. /* loop for each orphan inode entry and write them in Jornal block */
  583. list_for_each_entry(orphan, head, list) {
  584. if (!page) {
  585. page = grab_meta_page(sbi, start_blk++);
  586. orphan_blk =
  587. (struct f2fs_orphan_block *)page_address(page);
  588. memset(orphan_blk, 0, sizeof(*orphan_blk));
  589. }
  590. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  591. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  592. /*
  593. * an orphan block is full of 1020 entries,
  594. * then we need to flush current orphan blocks
  595. * and bring another one in memory
  596. */
  597. orphan_blk->blk_addr = cpu_to_le16(index);
  598. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  599. orphan_blk->entry_count = cpu_to_le32(nentries);
  600. set_page_dirty(page);
  601. f2fs_put_page(page, 1);
  602. index++;
  603. nentries = 0;
  604. page = NULL;
  605. }
  606. }
  607. if (page) {
  608. orphan_blk->blk_addr = cpu_to_le16(index);
  609. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  610. orphan_blk->entry_count = cpu_to_le32(nentries);
  611. set_page_dirty(page);
  612. f2fs_put_page(page, 1);
  613. }
  614. }
  615. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  616. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  617. unsigned long long *version)
  618. {
  619. unsigned long blk_size = sbi->blocksize;
  620. size_t crc_offset = 0;
  621. __u32 crc = 0;
  622. *cp_page = get_meta_page(sbi, cp_addr);
  623. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  624. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  625. if (crc_offset > (blk_size - sizeof(__le32))) {
  626. f2fs_msg(sbi->sb, KERN_WARNING,
  627. "invalid crc_offset: %zu", crc_offset);
  628. return -EINVAL;
  629. }
  630. crc = cur_cp_crc(*cp_block);
  631. if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
  632. f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
  633. return -EINVAL;
  634. }
  635. *version = cur_cp_version(*cp_block);
  636. return 0;
  637. }
  638. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  639. block_t cp_addr, unsigned long long *version)
  640. {
  641. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  642. struct f2fs_checkpoint *cp_block = NULL;
  643. unsigned long long cur_version = 0, pre_version = 0;
  644. int err;
  645. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  646. &cp_page_1, version);
  647. if (err)
  648. goto invalid_cp1;
  649. pre_version = *version;
  650. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  651. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  652. &cp_page_2, version);
  653. if (err)
  654. goto invalid_cp2;
  655. cur_version = *version;
  656. if (cur_version == pre_version) {
  657. *version = cur_version;
  658. f2fs_put_page(cp_page_2, 1);
  659. return cp_page_1;
  660. }
  661. invalid_cp2:
  662. f2fs_put_page(cp_page_2, 1);
  663. invalid_cp1:
  664. f2fs_put_page(cp_page_1, 1);
  665. return NULL;
  666. }
  667. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  668. {
  669. struct f2fs_checkpoint *cp_block;
  670. struct f2fs_super_block *fsb = sbi->raw_super;
  671. struct page *cp1, *cp2, *cur_page;
  672. unsigned long blk_size = sbi->blocksize;
  673. unsigned long long cp1_version = 0, cp2_version = 0;
  674. unsigned long long cp_start_blk_no;
  675. unsigned int cp_blks = 1 + __cp_payload(sbi);
  676. block_t cp_blk_no;
  677. int i;
  678. sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
  679. if (!sbi->ckpt)
  680. return -ENOMEM;
  681. /*
  682. * Finding out valid cp block involves read both
  683. * sets( cp pack1 and cp pack 2)
  684. */
  685. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  686. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  687. /* The second checkpoint pack should start at the next segment */
  688. cp_start_blk_no += ((unsigned long long)1) <<
  689. le32_to_cpu(fsb->log_blocks_per_seg);
  690. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  691. if (cp1 && cp2) {
  692. if (ver_after(cp2_version, cp1_version))
  693. cur_page = cp2;
  694. else
  695. cur_page = cp1;
  696. } else if (cp1) {
  697. cur_page = cp1;
  698. } else if (cp2) {
  699. cur_page = cp2;
  700. } else {
  701. goto fail_no_cp;
  702. }
  703. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  704. memcpy(sbi->ckpt, cp_block, blk_size);
  705. /* Sanity checking of checkpoint */
  706. if (sanity_check_ckpt(sbi))
  707. goto free_fail_no_cp;
  708. if (cur_page == cp1)
  709. sbi->cur_cp_pack = 1;
  710. else
  711. sbi->cur_cp_pack = 2;
  712. if (cp_blks <= 1)
  713. goto done;
  714. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  715. if (cur_page == cp2)
  716. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  717. for (i = 1; i < cp_blks; i++) {
  718. void *sit_bitmap_ptr;
  719. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  720. cur_page = get_meta_page(sbi, cp_blk_no + i);
  721. sit_bitmap_ptr = page_address(cur_page);
  722. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  723. f2fs_put_page(cur_page, 1);
  724. }
  725. done:
  726. f2fs_put_page(cp1, 1);
  727. f2fs_put_page(cp2, 1);
  728. return 0;
  729. free_fail_no_cp:
  730. f2fs_put_page(cp1, 1);
  731. f2fs_put_page(cp2, 1);
  732. fail_no_cp:
  733. kfree(sbi->ckpt);
  734. return -EINVAL;
  735. }
  736. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  737. {
  738. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  739. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  740. if (is_inode_flag_set(inode, flag))
  741. return;
  742. set_inode_flag(inode, flag);
  743. if (!f2fs_is_volatile_file(inode))
  744. list_add_tail(&F2FS_I(inode)->dirty_list,
  745. &sbi->inode_list[type]);
  746. stat_inc_dirty_inode(sbi, type);
  747. }
  748. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  749. {
  750. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  751. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  752. return;
  753. list_del_init(&F2FS_I(inode)->dirty_list);
  754. clear_inode_flag(inode, flag);
  755. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  756. }
  757. void update_dirty_page(struct inode *inode, struct page *page)
  758. {
  759. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  760. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  761. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  762. !S_ISLNK(inode->i_mode))
  763. return;
  764. spin_lock(&sbi->inode_lock[type]);
  765. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  766. __add_dirty_inode(inode, type);
  767. inode_inc_dirty_pages(inode);
  768. spin_unlock(&sbi->inode_lock[type]);
  769. SetPagePrivate(page);
  770. f2fs_trace_pid(page);
  771. }
  772. void remove_dirty_inode(struct inode *inode)
  773. {
  774. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  775. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  776. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  777. !S_ISLNK(inode->i_mode))
  778. return;
  779. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  780. return;
  781. spin_lock(&sbi->inode_lock[type]);
  782. __remove_dirty_inode(inode, type);
  783. spin_unlock(&sbi->inode_lock[type]);
  784. }
  785. int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  786. {
  787. struct list_head *head;
  788. struct inode *inode;
  789. struct f2fs_inode_info *fi;
  790. bool is_dir = (type == DIR_INODE);
  791. unsigned long ino = 0;
  792. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  793. get_pages(sbi, is_dir ?
  794. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  795. retry:
  796. if (unlikely(f2fs_cp_error(sbi)))
  797. return -EIO;
  798. spin_lock(&sbi->inode_lock[type]);
  799. head = &sbi->inode_list[type];
  800. if (list_empty(head)) {
  801. spin_unlock(&sbi->inode_lock[type]);
  802. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  803. get_pages(sbi, is_dir ?
  804. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  805. return 0;
  806. }
  807. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  808. inode = igrab(&fi->vfs_inode);
  809. spin_unlock(&sbi->inode_lock[type]);
  810. if (inode) {
  811. unsigned long cur_ino = inode->i_ino;
  812. if (is_dir)
  813. F2FS_I(inode)->cp_task = current;
  814. filemap_fdatawrite(inode->i_mapping);
  815. if (is_dir)
  816. F2FS_I(inode)->cp_task = NULL;
  817. iput(inode);
  818. /* We need to give cpu to another writers. */
  819. if (ino == cur_ino) {
  820. congestion_wait(BLK_RW_ASYNC, HZ/50);
  821. cond_resched();
  822. } else {
  823. ino = cur_ino;
  824. }
  825. } else {
  826. /*
  827. * We should submit bio, since it exists several
  828. * wribacking dentry pages in the freeing inode.
  829. */
  830. f2fs_submit_merged_write(sbi, DATA);
  831. cond_resched();
  832. }
  833. goto retry;
  834. }
  835. int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  836. {
  837. struct list_head *head = &sbi->inode_list[DIRTY_META];
  838. struct inode *inode;
  839. struct f2fs_inode_info *fi;
  840. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  841. while (total--) {
  842. if (unlikely(f2fs_cp_error(sbi)))
  843. return -EIO;
  844. spin_lock(&sbi->inode_lock[DIRTY_META]);
  845. if (list_empty(head)) {
  846. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  847. return 0;
  848. }
  849. fi = list_first_entry(head, struct f2fs_inode_info,
  850. gdirty_list);
  851. inode = igrab(&fi->vfs_inode);
  852. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  853. if (inode) {
  854. sync_inode_metadata(inode, 0);
  855. /* it's on eviction */
  856. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  857. update_inode_page(inode);
  858. iput(inode);
  859. }
  860. }
  861. return 0;
  862. }
  863. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  864. {
  865. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  866. struct f2fs_nm_info *nm_i = NM_I(sbi);
  867. nid_t last_nid = nm_i->next_scan_nid;
  868. next_free_nid(sbi, &last_nid);
  869. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  870. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  871. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  872. ckpt->next_free_nid = cpu_to_le32(last_nid);
  873. }
  874. /*
  875. * Freeze all the FS-operations for checkpoint.
  876. */
  877. static int block_operations(struct f2fs_sb_info *sbi)
  878. {
  879. struct writeback_control wbc = {
  880. .sync_mode = WB_SYNC_ALL,
  881. .nr_to_write = LONG_MAX,
  882. .for_reclaim = 0,
  883. };
  884. struct blk_plug plug;
  885. int err = 0;
  886. blk_start_plug(&plug);
  887. retry_flush_dents:
  888. f2fs_lock_all(sbi);
  889. /* write all the dirty dentry pages */
  890. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  891. f2fs_unlock_all(sbi);
  892. err = sync_dirty_inodes(sbi, DIR_INODE);
  893. if (err)
  894. goto out;
  895. cond_resched();
  896. goto retry_flush_dents;
  897. }
  898. /*
  899. * POR: we should ensure that there are no dirty node pages
  900. * until finishing nat/sit flush. inode->i_blocks can be updated.
  901. */
  902. down_write(&sbi->node_change);
  903. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  904. up_write(&sbi->node_change);
  905. f2fs_unlock_all(sbi);
  906. err = f2fs_sync_inode_meta(sbi);
  907. if (err)
  908. goto out;
  909. cond_resched();
  910. goto retry_flush_dents;
  911. }
  912. retry_flush_nodes:
  913. down_write(&sbi->node_write);
  914. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  915. up_write(&sbi->node_write);
  916. err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
  917. if (err) {
  918. up_write(&sbi->node_change);
  919. f2fs_unlock_all(sbi);
  920. goto out;
  921. }
  922. cond_resched();
  923. goto retry_flush_nodes;
  924. }
  925. /*
  926. * sbi->node_change is used only for AIO write_begin path which produces
  927. * dirty node blocks and some checkpoint values by block allocation.
  928. */
  929. __prepare_cp_block(sbi);
  930. up_write(&sbi->node_change);
  931. out:
  932. blk_finish_plug(&plug);
  933. return err;
  934. }
  935. static void unblock_operations(struct f2fs_sb_info *sbi)
  936. {
  937. up_write(&sbi->node_write);
  938. f2fs_unlock_all(sbi);
  939. }
  940. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  941. {
  942. DEFINE_WAIT(wait);
  943. for (;;) {
  944. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  945. if (!get_pages(sbi, F2FS_WB_CP_DATA))
  946. break;
  947. io_schedule_timeout(5*HZ);
  948. }
  949. finish_wait(&sbi->cp_wait, &wait);
  950. }
  951. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  952. {
  953. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  954. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  955. unsigned long flags;
  956. spin_lock_irqsave(&sbi->cp_lock, flags);
  957. if ((cpc->reason & CP_UMOUNT) &&
  958. le32_to_cpu(ckpt->cp_pack_total_block_count) >
  959. sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
  960. disable_nat_bits(sbi, false);
  961. if (cpc->reason & CP_TRIMMED)
  962. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  963. if (cpc->reason & CP_UMOUNT)
  964. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  965. else
  966. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  967. if (cpc->reason & CP_FASTBOOT)
  968. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  969. else
  970. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  971. if (orphan_num)
  972. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  973. else
  974. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  975. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  976. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  977. /* set this flag to activate crc|cp_ver for recovery */
  978. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  979. __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
  980. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  981. }
  982. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  983. {
  984. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  985. struct f2fs_nm_info *nm_i = NM_I(sbi);
  986. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
  987. block_t start_blk;
  988. unsigned int data_sum_blocks, orphan_blocks;
  989. __u32 crc32 = 0;
  990. int i;
  991. int cp_payload_blks = __cp_payload(sbi);
  992. struct super_block *sb = sbi->sb;
  993. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  994. u64 kbytes_written;
  995. int err;
  996. /* Flush all the NAT/SIT pages */
  997. while (get_pages(sbi, F2FS_DIRTY_META)) {
  998. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  999. if (unlikely(f2fs_cp_error(sbi)))
  1000. return -EIO;
  1001. }
  1002. /*
  1003. * modify checkpoint
  1004. * version number is already updated
  1005. */
  1006. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  1007. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  1008. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  1009. ckpt->cur_node_segno[i] =
  1010. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  1011. ckpt->cur_node_blkoff[i] =
  1012. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  1013. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  1014. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  1015. }
  1016. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  1017. ckpt->cur_data_segno[i] =
  1018. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  1019. ckpt->cur_data_blkoff[i] =
  1020. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  1021. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  1022. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  1023. }
  1024. /* 2 cp + n data seg summary + orphan inode blocks */
  1025. data_sum_blocks = npages_for_summary_flush(sbi, false);
  1026. spin_lock_irqsave(&sbi->cp_lock, flags);
  1027. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  1028. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1029. else
  1030. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1031. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1032. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  1033. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  1034. orphan_blocks);
  1035. if (__remain_node_summaries(cpc->reason))
  1036. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  1037. cp_payload_blks + data_sum_blocks +
  1038. orphan_blocks + NR_CURSEG_NODE_TYPE);
  1039. else
  1040. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1041. cp_payload_blks + data_sum_blocks +
  1042. orphan_blocks);
  1043. /* update ckpt flag for checkpoint */
  1044. update_ckpt_flags(sbi, cpc);
  1045. /* update SIT/NAT bitmap */
  1046. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  1047. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  1048. crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
  1049. *((__le32 *)((unsigned char *)ckpt +
  1050. le32_to_cpu(ckpt->checksum_offset)))
  1051. = cpu_to_le32(crc32);
  1052. start_blk = __start_cp_next_addr(sbi);
  1053. /* write nat bits */
  1054. if (enabled_nat_bits(sbi, cpc)) {
  1055. __u64 cp_ver = cur_cp_version(ckpt);
  1056. block_t blk;
  1057. cp_ver |= ((__u64)crc32 << 32);
  1058. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  1059. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  1060. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  1061. update_meta_page(sbi, nm_i->nat_bits +
  1062. (i << F2FS_BLKSIZE_BITS), blk + i);
  1063. /* Flush all the NAT BITS pages */
  1064. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1065. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1066. if (unlikely(f2fs_cp_error(sbi)))
  1067. return -EIO;
  1068. }
  1069. }
  1070. /* need to wait for end_io results */
  1071. wait_on_all_pages_writeback(sbi);
  1072. if (unlikely(f2fs_cp_error(sbi)))
  1073. return -EIO;
  1074. /* flush all device cache */
  1075. err = f2fs_flush_device_cache(sbi);
  1076. if (err)
  1077. return err;
  1078. /* write out checkpoint buffer at block 0 */
  1079. update_meta_page(sbi, ckpt, start_blk++);
  1080. for (i = 1; i < 1 + cp_payload_blks; i++)
  1081. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1082. start_blk++);
  1083. if (orphan_num) {
  1084. write_orphan_inodes(sbi, start_blk);
  1085. start_blk += orphan_blocks;
  1086. }
  1087. write_data_summaries(sbi, start_blk);
  1088. start_blk += data_sum_blocks;
  1089. /* Record write statistics in the hot node summary */
  1090. kbytes_written = sbi->kbytes_written;
  1091. if (sb->s_bdev->bd_part)
  1092. kbytes_written += BD_PART_WRITTEN(sbi);
  1093. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1094. if (__remain_node_summaries(cpc->reason)) {
  1095. write_node_summaries(sbi, start_blk);
  1096. start_blk += NR_CURSEG_NODE_TYPE;
  1097. }
  1098. /* writeout checkpoint block */
  1099. update_meta_page(sbi, ckpt, start_blk);
  1100. /* wait for previous submitted node/meta pages writeback */
  1101. wait_on_all_pages_writeback(sbi);
  1102. if (unlikely(f2fs_cp_error(sbi)))
  1103. return -EIO;
  1104. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
  1105. filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
  1106. /* update user_block_counts */
  1107. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1108. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1109. /* Here, we only have one bio having CP pack */
  1110. sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
  1111. /* wait for previous submitted meta pages writeback */
  1112. wait_on_all_pages_writeback(sbi);
  1113. release_ino_entry(sbi, false);
  1114. if (unlikely(f2fs_cp_error(sbi)))
  1115. return -EIO;
  1116. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1117. clear_sbi_flag(sbi, SBI_NEED_CP);
  1118. __set_cp_next_pack(sbi);
  1119. /*
  1120. * redirty superblock if metadata like node page or inode cache is
  1121. * updated during writing checkpoint.
  1122. */
  1123. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1124. get_pages(sbi, F2FS_DIRTY_IMETA))
  1125. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1126. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1127. return 0;
  1128. }
  1129. /*
  1130. * We guarantee that this checkpoint procedure will not fail.
  1131. */
  1132. int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1133. {
  1134. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1135. unsigned long long ckpt_ver;
  1136. int err = 0;
  1137. mutex_lock(&sbi->cp_mutex);
  1138. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1139. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1140. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1141. goto out;
  1142. if (unlikely(f2fs_cp_error(sbi))) {
  1143. err = -EIO;
  1144. goto out;
  1145. }
  1146. if (f2fs_readonly(sbi->sb)) {
  1147. err = -EROFS;
  1148. goto out;
  1149. }
  1150. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1151. err = block_operations(sbi);
  1152. if (err)
  1153. goto out;
  1154. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1155. f2fs_flush_merged_writes(sbi);
  1156. /* this is the case of multiple fstrims without any changes */
  1157. if (cpc->reason & CP_DISCARD) {
  1158. if (!exist_trim_candidates(sbi, cpc)) {
  1159. unblock_operations(sbi);
  1160. goto out;
  1161. }
  1162. if (NM_I(sbi)->dirty_nat_cnt == 0 &&
  1163. SIT_I(sbi)->dirty_sentries == 0 &&
  1164. prefree_segments(sbi) == 0) {
  1165. flush_sit_entries(sbi, cpc);
  1166. clear_prefree_segments(sbi, cpc);
  1167. unblock_operations(sbi);
  1168. goto out;
  1169. }
  1170. }
  1171. /*
  1172. * update checkpoint pack index
  1173. * Increase the version number so that
  1174. * SIT entries and seg summaries are written at correct place
  1175. */
  1176. ckpt_ver = cur_cp_version(ckpt);
  1177. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1178. /* write cached NAT/SIT entries to NAT/SIT area */
  1179. flush_nat_entries(sbi, cpc);
  1180. flush_sit_entries(sbi, cpc);
  1181. /* unlock all the fs_lock[] in do_checkpoint() */
  1182. err = do_checkpoint(sbi, cpc);
  1183. if (err)
  1184. release_discard_addrs(sbi);
  1185. else
  1186. clear_prefree_segments(sbi, cpc);
  1187. unblock_operations(sbi);
  1188. stat_inc_cp_count(sbi->stat_info);
  1189. if (cpc->reason & CP_RECOVERY)
  1190. f2fs_msg(sbi->sb, KERN_NOTICE,
  1191. "checkpoint: version = %llx", ckpt_ver);
  1192. /* do checkpoint periodically */
  1193. f2fs_update_time(sbi, CP_TIME);
  1194. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1195. out:
  1196. mutex_unlock(&sbi->cp_mutex);
  1197. return err;
  1198. }
  1199. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  1200. {
  1201. int i;
  1202. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1203. struct inode_management *im = &sbi->im[i];
  1204. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1205. spin_lock_init(&im->ino_lock);
  1206. INIT_LIST_HEAD(&im->ino_list);
  1207. im->ino_num = 0;
  1208. }
  1209. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1210. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  1211. F2FS_ORPHANS_PER_BLOCK;
  1212. }
  1213. int __init create_checkpoint_caches(void)
  1214. {
  1215. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1216. sizeof(struct ino_entry));
  1217. if (!ino_entry_slab)
  1218. return -ENOMEM;
  1219. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1220. sizeof(struct inode_entry));
  1221. if (!inode_entry_slab) {
  1222. kmem_cache_destroy(ino_entry_slab);
  1223. return -ENOMEM;
  1224. }
  1225. return 0;
  1226. }
  1227. void destroy_checkpoint_caches(void)
  1228. {
  1229. kmem_cache_destroy(ino_entry_slab);
  1230. kmem_cache_destroy(inode_entry_slab);
  1231. }