file.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/falloc.h>
  27. #include <linux/swap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/compat.h>
  30. #include <linux/slab.h>
  31. #include <linux/btrfs.h>
  32. #include <linux/uio.h>
  33. #include <linux/iversion.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "print-tree.h"
  39. #include "tree-log.h"
  40. #include "locking.h"
  41. #include "volumes.h"
  42. #include "qgroup.h"
  43. #include "compression.h"
  44. static struct kmem_cache *btrfs_inode_defrag_cachep;
  45. /*
  46. * when auto defrag is enabled we
  47. * queue up these defrag structs to remember which
  48. * inodes need defragging passes
  49. */
  50. struct inode_defrag {
  51. struct rb_node rb_node;
  52. /* objectid */
  53. u64 ino;
  54. /*
  55. * transid where the defrag was added, we search for
  56. * extents newer than this
  57. */
  58. u64 transid;
  59. /* root objectid */
  60. u64 root;
  61. /* last offset we were able to defrag */
  62. u64 last_offset;
  63. /* if we've wrapped around back to zero once already */
  64. int cycled;
  65. };
  66. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  67. struct inode_defrag *defrag2)
  68. {
  69. if (defrag1->root > defrag2->root)
  70. return 1;
  71. else if (defrag1->root < defrag2->root)
  72. return -1;
  73. else if (defrag1->ino > defrag2->ino)
  74. return 1;
  75. else if (defrag1->ino < defrag2->ino)
  76. return -1;
  77. else
  78. return 0;
  79. }
  80. /* pop a record for an inode into the defrag tree. The lock
  81. * must be held already
  82. *
  83. * If you're inserting a record for an older transid than an
  84. * existing record, the transid already in the tree is lowered
  85. *
  86. * If an existing record is found the defrag item you
  87. * pass in is freed
  88. */
  89. static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  90. struct inode_defrag *defrag)
  91. {
  92. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  93. struct inode_defrag *entry;
  94. struct rb_node **p;
  95. struct rb_node *parent = NULL;
  96. int ret;
  97. p = &fs_info->defrag_inodes.rb_node;
  98. while (*p) {
  99. parent = *p;
  100. entry = rb_entry(parent, struct inode_defrag, rb_node);
  101. ret = __compare_inode_defrag(defrag, entry);
  102. if (ret < 0)
  103. p = &parent->rb_left;
  104. else if (ret > 0)
  105. p = &parent->rb_right;
  106. else {
  107. /* if we're reinserting an entry for
  108. * an old defrag run, make sure to
  109. * lower the transid of our existing record
  110. */
  111. if (defrag->transid < entry->transid)
  112. entry->transid = defrag->transid;
  113. if (defrag->last_offset > entry->last_offset)
  114. entry->last_offset = defrag->last_offset;
  115. return -EEXIST;
  116. }
  117. }
  118. set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
  119. rb_link_node(&defrag->rb_node, parent, p);
  120. rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
  121. return 0;
  122. }
  123. static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
  124. {
  125. if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
  126. return 0;
  127. if (btrfs_fs_closing(fs_info))
  128. return 0;
  129. return 1;
  130. }
  131. /*
  132. * insert a defrag record for this inode if auto defrag is
  133. * enabled
  134. */
  135. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  136. struct btrfs_inode *inode)
  137. {
  138. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  139. struct btrfs_root *root = inode->root;
  140. struct inode_defrag *defrag;
  141. u64 transid;
  142. int ret;
  143. if (!__need_auto_defrag(fs_info))
  144. return 0;
  145. if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
  146. return 0;
  147. if (trans)
  148. transid = trans->transid;
  149. else
  150. transid = inode->root->last_trans;
  151. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  152. if (!defrag)
  153. return -ENOMEM;
  154. defrag->ino = btrfs_ino(inode);
  155. defrag->transid = transid;
  156. defrag->root = root->root_key.objectid;
  157. spin_lock(&fs_info->defrag_inodes_lock);
  158. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
  159. /*
  160. * If we set IN_DEFRAG flag and evict the inode from memory,
  161. * and then re-read this inode, this new inode doesn't have
  162. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  163. */
  164. ret = __btrfs_add_inode_defrag(inode, defrag);
  165. if (ret)
  166. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  167. } else {
  168. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  169. }
  170. spin_unlock(&fs_info->defrag_inodes_lock);
  171. return 0;
  172. }
  173. /*
  174. * Requeue the defrag object. If there is a defrag object that points to
  175. * the same inode in the tree, we will merge them together (by
  176. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  177. */
  178. static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
  179. struct inode_defrag *defrag)
  180. {
  181. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  182. int ret;
  183. if (!__need_auto_defrag(fs_info))
  184. goto out;
  185. /*
  186. * Here we don't check the IN_DEFRAG flag, because we need merge
  187. * them together.
  188. */
  189. spin_lock(&fs_info->defrag_inodes_lock);
  190. ret = __btrfs_add_inode_defrag(inode, defrag);
  191. spin_unlock(&fs_info->defrag_inodes_lock);
  192. if (ret)
  193. goto out;
  194. return;
  195. out:
  196. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  197. }
  198. /*
  199. * pick the defragable inode that we want, if it doesn't exist, we will get
  200. * the next one.
  201. */
  202. static struct inode_defrag *
  203. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  204. {
  205. struct inode_defrag *entry = NULL;
  206. struct inode_defrag tmp;
  207. struct rb_node *p;
  208. struct rb_node *parent = NULL;
  209. int ret;
  210. tmp.ino = ino;
  211. tmp.root = root;
  212. spin_lock(&fs_info->defrag_inodes_lock);
  213. p = fs_info->defrag_inodes.rb_node;
  214. while (p) {
  215. parent = p;
  216. entry = rb_entry(parent, struct inode_defrag, rb_node);
  217. ret = __compare_inode_defrag(&tmp, entry);
  218. if (ret < 0)
  219. p = parent->rb_left;
  220. else if (ret > 0)
  221. p = parent->rb_right;
  222. else
  223. goto out;
  224. }
  225. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  226. parent = rb_next(parent);
  227. if (parent)
  228. entry = rb_entry(parent, struct inode_defrag, rb_node);
  229. else
  230. entry = NULL;
  231. }
  232. out:
  233. if (entry)
  234. rb_erase(parent, &fs_info->defrag_inodes);
  235. spin_unlock(&fs_info->defrag_inodes_lock);
  236. return entry;
  237. }
  238. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  239. {
  240. struct inode_defrag *defrag;
  241. struct rb_node *node;
  242. spin_lock(&fs_info->defrag_inodes_lock);
  243. node = rb_first(&fs_info->defrag_inodes);
  244. while (node) {
  245. rb_erase(node, &fs_info->defrag_inodes);
  246. defrag = rb_entry(node, struct inode_defrag, rb_node);
  247. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  248. cond_resched_lock(&fs_info->defrag_inodes_lock);
  249. node = rb_first(&fs_info->defrag_inodes);
  250. }
  251. spin_unlock(&fs_info->defrag_inodes_lock);
  252. }
  253. #define BTRFS_DEFRAG_BATCH 1024
  254. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  255. struct inode_defrag *defrag)
  256. {
  257. struct btrfs_root *inode_root;
  258. struct inode *inode;
  259. struct btrfs_key key;
  260. struct btrfs_ioctl_defrag_range_args range;
  261. int num_defrag;
  262. int index;
  263. int ret;
  264. /* get the inode */
  265. key.objectid = defrag->root;
  266. key.type = BTRFS_ROOT_ITEM_KEY;
  267. key.offset = (u64)-1;
  268. index = srcu_read_lock(&fs_info->subvol_srcu);
  269. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  270. if (IS_ERR(inode_root)) {
  271. ret = PTR_ERR(inode_root);
  272. goto cleanup;
  273. }
  274. key.objectid = defrag->ino;
  275. key.type = BTRFS_INODE_ITEM_KEY;
  276. key.offset = 0;
  277. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  278. if (IS_ERR(inode)) {
  279. ret = PTR_ERR(inode);
  280. goto cleanup;
  281. }
  282. srcu_read_unlock(&fs_info->subvol_srcu, index);
  283. /* do a chunk of defrag */
  284. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  285. memset(&range, 0, sizeof(range));
  286. range.len = (u64)-1;
  287. range.start = defrag->last_offset;
  288. sb_start_write(fs_info->sb);
  289. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  290. BTRFS_DEFRAG_BATCH);
  291. sb_end_write(fs_info->sb);
  292. /*
  293. * if we filled the whole defrag batch, there
  294. * must be more work to do. Queue this defrag
  295. * again
  296. */
  297. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  298. defrag->last_offset = range.start;
  299. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  300. } else if (defrag->last_offset && !defrag->cycled) {
  301. /*
  302. * we didn't fill our defrag batch, but
  303. * we didn't start at zero. Make sure we loop
  304. * around to the start of the file.
  305. */
  306. defrag->last_offset = 0;
  307. defrag->cycled = 1;
  308. btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
  309. } else {
  310. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  311. }
  312. iput(inode);
  313. return 0;
  314. cleanup:
  315. srcu_read_unlock(&fs_info->subvol_srcu, index);
  316. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  317. return ret;
  318. }
  319. /*
  320. * run through the list of inodes in the FS that need
  321. * defragging
  322. */
  323. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  324. {
  325. struct inode_defrag *defrag;
  326. u64 first_ino = 0;
  327. u64 root_objectid = 0;
  328. atomic_inc(&fs_info->defrag_running);
  329. while (1) {
  330. /* Pause the auto defragger. */
  331. if (test_bit(BTRFS_FS_STATE_REMOUNTING,
  332. &fs_info->fs_state))
  333. break;
  334. if (!__need_auto_defrag(fs_info))
  335. break;
  336. /* find an inode to defrag */
  337. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  338. first_ino);
  339. if (!defrag) {
  340. if (root_objectid || first_ino) {
  341. root_objectid = 0;
  342. first_ino = 0;
  343. continue;
  344. } else {
  345. break;
  346. }
  347. }
  348. first_ino = defrag->ino + 1;
  349. root_objectid = defrag->root;
  350. __btrfs_run_defrag_inode(fs_info, defrag);
  351. }
  352. atomic_dec(&fs_info->defrag_running);
  353. /*
  354. * during unmount, we use the transaction_wait queue to
  355. * wait for the defragger to stop
  356. */
  357. wake_up(&fs_info->transaction_wait);
  358. return 0;
  359. }
  360. /* simple helper to fault in pages and copy. This should go away
  361. * and be replaced with calls into generic code.
  362. */
  363. static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
  364. struct page **prepared_pages,
  365. struct iov_iter *i)
  366. {
  367. size_t copied = 0;
  368. size_t total_copied = 0;
  369. int pg = 0;
  370. int offset = pos & (PAGE_SIZE - 1);
  371. while (write_bytes > 0) {
  372. size_t count = min_t(size_t,
  373. PAGE_SIZE - offset, write_bytes);
  374. struct page *page = prepared_pages[pg];
  375. /*
  376. * Copy data from userspace to the current page
  377. */
  378. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  379. /* Flush processor's dcache for this page */
  380. flush_dcache_page(page);
  381. /*
  382. * if we get a partial write, we can end up with
  383. * partially up to date pages. These add
  384. * a lot of complexity, so make sure they don't
  385. * happen by forcing this copy to be retried.
  386. *
  387. * The rest of the btrfs_file_write code will fall
  388. * back to page at a time copies after we return 0.
  389. */
  390. if (!PageUptodate(page) && copied < count)
  391. copied = 0;
  392. iov_iter_advance(i, copied);
  393. write_bytes -= copied;
  394. total_copied += copied;
  395. /* Return to btrfs_file_write_iter to fault page */
  396. if (unlikely(copied == 0))
  397. break;
  398. if (copied < PAGE_SIZE - offset) {
  399. offset += copied;
  400. } else {
  401. pg++;
  402. offset = 0;
  403. }
  404. }
  405. return total_copied;
  406. }
  407. /*
  408. * unlocks pages after btrfs_file_write is done with them
  409. */
  410. static void btrfs_drop_pages(struct page **pages, size_t num_pages)
  411. {
  412. size_t i;
  413. for (i = 0; i < num_pages; i++) {
  414. /* page checked is some magic around finding pages that
  415. * have been modified without going through btrfs_set_page_dirty
  416. * clear it here. There should be no need to mark the pages
  417. * accessed as prepare_pages should have marked them accessed
  418. * in prepare_pages via find_or_create_page()
  419. */
  420. ClearPageChecked(pages[i]);
  421. unlock_page(pages[i]);
  422. put_page(pages[i]);
  423. }
  424. }
  425. static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
  426. const u64 start,
  427. const u64 len,
  428. struct extent_state **cached_state)
  429. {
  430. u64 search_start = start;
  431. const u64 end = start + len - 1;
  432. while (search_start < end) {
  433. const u64 search_len = end - search_start + 1;
  434. struct extent_map *em;
  435. u64 em_len;
  436. int ret = 0;
  437. em = btrfs_get_extent(inode, NULL, 0, search_start,
  438. search_len, 0);
  439. if (IS_ERR(em))
  440. return PTR_ERR(em);
  441. if (em->block_start != EXTENT_MAP_HOLE)
  442. goto next;
  443. em_len = em->len;
  444. if (em->start < search_start)
  445. em_len -= search_start - em->start;
  446. if (em_len > search_len)
  447. em_len = search_len;
  448. ret = set_extent_bit(&inode->io_tree, search_start,
  449. search_start + em_len - 1,
  450. EXTENT_DELALLOC_NEW,
  451. NULL, cached_state, GFP_NOFS);
  452. next:
  453. search_start = extent_map_end(em);
  454. free_extent_map(em);
  455. if (ret)
  456. return ret;
  457. }
  458. return 0;
  459. }
  460. /*
  461. * after copy_from_user, pages need to be dirtied and we need to make
  462. * sure holes are created between the current EOF and the start of
  463. * any next extents (if required).
  464. *
  465. * this also makes the decision about creating an inline extent vs
  466. * doing real data extents, marking pages dirty and delalloc as required.
  467. */
  468. int btrfs_dirty_pages(struct inode *inode, struct page **pages,
  469. size_t num_pages, loff_t pos, size_t write_bytes,
  470. struct extent_state **cached)
  471. {
  472. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  473. int err = 0;
  474. int i;
  475. u64 num_bytes;
  476. u64 start_pos;
  477. u64 end_of_last_block;
  478. u64 end_pos = pos + write_bytes;
  479. loff_t isize = i_size_read(inode);
  480. unsigned int extra_bits = 0;
  481. start_pos = pos & ~((u64) fs_info->sectorsize - 1);
  482. num_bytes = round_up(write_bytes + pos - start_pos,
  483. fs_info->sectorsize);
  484. end_of_last_block = start_pos + num_bytes - 1;
  485. if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
  486. if (start_pos >= isize &&
  487. !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
  488. /*
  489. * There can't be any extents following eof in this case
  490. * so just set the delalloc new bit for the range
  491. * directly.
  492. */
  493. extra_bits |= EXTENT_DELALLOC_NEW;
  494. } else {
  495. err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
  496. start_pos,
  497. num_bytes, cached);
  498. if (err)
  499. return err;
  500. }
  501. }
  502. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  503. extra_bits, cached, 0);
  504. if (err)
  505. return err;
  506. for (i = 0; i < num_pages; i++) {
  507. struct page *p = pages[i];
  508. SetPageUptodate(p);
  509. ClearPageChecked(p);
  510. set_page_dirty(p);
  511. }
  512. /*
  513. * we've only changed i_size in ram, and we haven't updated
  514. * the disk i_size. There is no need to log the inode
  515. * at this time.
  516. */
  517. if (end_pos > isize)
  518. i_size_write(inode, end_pos);
  519. return 0;
  520. }
  521. /*
  522. * this drops all the extents in the cache that intersect the range
  523. * [start, end]. Existing extents are split as required.
  524. */
  525. void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
  526. int skip_pinned)
  527. {
  528. struct extent_map *em;
  529. struct extent_map *split = NULL;
  530. struct extent_map *split2 = NULL;
  531. struct extent_map_tree *em_tree = &inode->extent_tree;
  532. u64 len = end - start + 1;
  533. u64 gen;
  534. int ret;
  535. int testend = 1;
  536. unsigned long flags;
  537. int compressed = 0;
  538. bool modified;
  539. WARN_ON(end < start);
  540. if (end == (u64)-1) {
  541. len = (u64)-1;
  542. testend = 0;
  543. }
  544. while (1) {
  545. int no_splits = 0;
  546. modified = false;
  547. if (!split)
  548. split = alloc_extent_map();
  549. if (!split2)
  550. split2 = alloc_extent_map();
  551. if (!split || !split2)
  552. no_splits = 1;
  553. write_lock(&em_tree->lock);
  554. em = lookup_extent_mapping(em_tree, start, len);
  555. if (!em) {
  556. write_unlock(&em_tree->lock);
  557. break;
  558. }
  559. flags = em->flags;
  560. gen = em->generation;
  561. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  562. if (testend && em->start + em->len >= start + len) {
  563. free_extent_map(em);
  564. write_unlock(&em_tree->lock);
  565. break;
  566. }
  567. start = em->start + em->len;
  568. if (testend)
  569. len = start + len - (em->start + em->len);
  570. free_extent_map(em);
  571. write_unlock(&em_tree->lock);
  572. continue;
  573. }
  574. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  575. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  576. clear_bit(EXTENT_FLAG_LOGGING, &flags);
  577. modified = !list_empty(&em->list);
  578. if (no_splits)
  579. goto next;
  580. if (em->start < start) {
  581. split->start = em->start;
  582. split->len = start - em->start;
  583. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  584. split->orig_start = em->orig_start;
  585. split->block_start = em->block_start;
  586. if (compressed)
  587. split->block_len = em->block_len;
  588. else
  589. split->block_len = split->len;
  590. split->orig_block_len = max(split->block_len,
  591. em->orig_block_len);
  592. split->ram_bytes = em->ram_bytes;
  593. } else {
  594. split->orig_start = split->start;
  595. split->block_len = 0;
  596. split->block_start = em->block_start;
  597. split->orig_block_len = 0;
  598. split->ram_bytes = split->len;
  599. }
  600. split->generation = gen;
  601. split->bdev = em->bdev;
  602. split->flags = flags;
  603. split->compress_type = em->compress_type;
  604. replace_extent_mapping(em_tree, em, split, modified);
  605. free_extent_map(split);
  606. split = split2;
  607. split2 = NULL;
  608. }
  609. if (testend && em->start + em->len > start + len) {
  610. u64 diff = start + len - em->start;
  611. split->start = start + len;
  612. split->len = em->start + em->len - (start + len);
  613. split->bdev = em->bdev;
  614. split->flags = flags;
  615. split->compress_type = em->compress_type;
  616. split->generation = gen;
  617. if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  618. split->orig_block_len = max(em->block_len,
  619. em->orig_block_len);
  620. split->ram_bytes = em->ram_bytes;
  621. if (compressed) {
  622. split->block_len = em->block_len;
  623. split->block_start = em->block_start;
  624. split->orig_start = em->orig_start;
  625. } else {
  626. split->block_len = split->len;
  627. split->block_start = em->block_start
  628. + diff;
  629. split->orig_start = em->orig_start;
  630. }
  631. } else {
  632. split->ram_bytes = split->len;
  633. split->orig_start = split->start;
  634. split->block_len = 0;
  635. split->block_start = em->block_start;
  636. split->orig_block_len = 0;
  637. }
  638. if (extent_map_in_tree(em)) {
  639. replace_extent_mapping(em_tree, em, split,
  640. modified);
  641. } else {
  642. ret = add_extent_mapping(em_tree, split,
  643. modified);
  644. ASSERT(ret == 0); /* Logic error */
  645. }
  646. free_extent_map(split);
  647. split = NULL;
  648. }
  649. next:
  650. if (extent_map_in_tree(em))
  651. remove_extent_mapping(em_tree, em);
  652. write_unlock(&em_tree->lock);
  653. /* once for us */
  654. free_extent_map(em);
  655. /* once for the tree*/
  656. free_extent_map(em);
  657. }
  658. if (split)
  659. free_extent_map(split);
  660. if (split2)
  661. free_extent_map(split2);
  662. }
  663. /*
  664. * this is very complex, but the basic idea is to drop all extents
  665. * in the range start - end. hint_block is filled in with a block number
  666. * that would be a good hint to the block allocator for this file.
  667. *
  668. * If an extent intersects the range but is not entirely inside the range
  669. * it is either truncated or split. Anything entirely inside the range
  670. * is deleted from the tree.
  671. */
  672. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  673. struct btrfs_root *root, struct inode *inode,
  674. struct btrfs_path *path, u64 start, u64 end,
  675. u64 *drop_end, int drop_cache,
  676. int replace_extent,
  677. u32 extent_item_size,
  678. int *key_inserted)
  679. {
  680. struct btrfs_fs_info *fs_info = root->fs_info;
  681. struct extent_buffer *leaf;
  682. struct btrfs_file_extent_item *fi;
  683. struct btrfs_key key;
  684. struct btrfs_key new_key;
  685. u64 ino = btrfs_ino(BTRFS_I(inode));
  686. u64 search_start = start;
  687. u64 disk_bytenr = 0;
  688. u64 num_bytes = 0;
  689. u64 extent_offset = 0;
  690. u64 extent_end = 0;
  691. u64 last_end = start;
  692. int del_nr = 0;
  693. int del_slot = 0;
  694. int extent_type;
  695. int recow;
  696. int ret;
  697. int modify_tree = -1;
  698. int update_refs;
  699. int found = 0;
  700. int leafs_visited = 0;
  701. if (drop_cache)
  702. btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
  703. if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
  704. modify_tree = 0;
  705. update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  706. root == fs_info->tree_root);
  707. while (1) {
  708. recow = 0;
  709. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  710. search_start, modify_tree);
  711. if (ret < 0)
  712. break;
  713. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  714. leaf = path->nodes[0];
  715. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  716. if (key.objectid == ino &&
  717. key.type == BTRFS_EXTENT_DATA_KEY)
  718. path->slots[0]--;
  719. }
  720. ret = 0;
  721. leafs_visited++;
  722. next_slot:
  723. leaf = path->nodes[0];
  724. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  725. BUG_ON(del_nr > 0);
  726. ret = btrfs_next_leaf(root, path);
  727. if (ret < 0)
  728. break;
  729. if (ret > 0) {
  730. ret = 0;
  731. break;
  732. }
  733. leafs_visited++;
  734. leaf = path->nodes[0];
  735. recow = 1;
  736. }
  737. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  738. if (key.objectid > ino)
  739. break;
  740. if (WARN_ON_ONCE(key.objectid < ino) ||
  741. key.type < BTRFS_EXTENT_DATA_KEY) {
  742. ASSERT(del_nr == 0);
  743. path->slots[0]++;
  744. goto next_slot;
  745. }
  746. if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  747. break;
  748. fi = btrfs_item_ptr(leaf, path->slots[0],
  749. struct btrfs_file_extent_item);
  750. extent_type = btrfs_file_extent_type(leaf, fi);
  751. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  752. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  753. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  754. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  755. extent_offset = btrfs_file_extent_offset(leaf, fi);
  756. extent_end = key.offset +
  757. btrfs_file_extent_num_bytes(leaf, fi);
  758. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  759. extent_end = key.offset +
  760. btrfs_file_extent_inline_len(leaf,
  761. path->slots[0], fi);
  762. } else {
  763. /* can't happen */
  764. BUG();
  765. }
  766. /*
  767. * Don't skip extent items representing 0 byte lengths. They
  768. * used to be created (bug) if while punching holes we hit
  769. * -ENOSPC condition. So if we find one here, just ensure we
  770. * delete it, otherwise we would insert a new file extent item
  771. * with the same key (offset) as that 0 bytes length file
  772. * extent item in the call to setup_items_for_insert() later
  773. * in this function.
  774. */
  775. if (extent_end == key.offset && extent_end >= search_start) {
  776. last_end = extent_end;
  777. goto delete_extent_item;
  778. }
  779. if (extent_end <= search_start) {
  780. path->slots[0]++;
  781. goto next_slot;
  782. }
  783. found = 1;
  784. search_start = max(key.offset, start);
  785. if (recow || !modify_tree) {
  786. modify_tree = -1;
  787. btrfs_release_path(path);
  788. continue;
  789. }
  790. /*
  791. * | - range to drop - |
  792. * | -------- extent -------- |
  793. */
  794. if (start > key.offset && end < extent_end) {
  795. BUG_ON(del_nr > 0);
  796. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  797. ret = -EOPNOTSUPP;
  798. break;
  799. }
  800. memcpy(&new_key, &key, sizeof(new_key));
  801. new_key.offset = start;
  802. ret = btrfs_duplicate_item(trans, root, path,
  803. &new_key);
  804. if (ret == -EAGAIN) {
  805. btrfs_release_path(path);
  806. continue;
  807. }
  808. if (ret < 0)
  809. break;
  810. leaf = path->nodes[0];
  811. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  812. struct btrfs_file_extent_item);
  813. btrfs_set_file_extent_num_bytes(leaf, fi,
  814. start - key.offset);
  815. fi = btrfs_item_ptr(leaf, path->slots[0],
  816. struct btrfs_file_extent_item);
  817. extent_offset += start - key.offset;
  818. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  819. btrfs_set_file_extent_num_bytes(leaf, fi,
  820. extent_end - start);
  821. btrfs_mark_buffer_dirty(leaf);
  822. if (update_refs && disk_bytenr > 0) {
  823. ret = btrfs_inc_extent_ref(trans, root,
  824. disk_bytenr, num_bytes, 0,
  825. root->root_key.objectid,
  826. new_key.objectid,
  827. start - extent_offset);
  828. BUG_ON(ret); /* -ENOMEM */
  829. }
  830. key.offset = start;
  831. }
  832. /*
  833. * From here on out we will have actually dropped something, so
  834. * last_end can be updated.
  835. */
  836. last_end = extent_end;
  837. /*
  838. * | ---- range to drop ----- |
  839. * | -------- extent -------- |
  840. */
  841. if (start <= key.offset && end < extent_end) {
  842. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  843. ret = -EOPNOTSUPP;
  844. break;
  845. }
  846. memcpy(&new_key, &key, sizeof(new_key));
  847. new_key.offset = end;
  848. btrfs_set_item_key_safe(fs_info, path, &new_key);
  849. extent_offset += end - key.offset;
  850. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  851. btrfs_set_file_extent_num_bytes(leaf, fi,
  852. extent_end - end);
  853. btrfs_mark_buffer_dirty(leaf);
  854. if (update_refs && disk_bytenr > 0)
  855. inode_sub_bytes(inode, end - key.offset);
  856. break;
  857. }
  858. search_start = extent_end;
  859. /*
  860. * | ---- range to drop ----- |
  861. * | -------- extent -------- |
  862. */
  863. if (start > key.offset && end >= extent_end) {
  864. BUG_ON(del_nr > 0);
  865. if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  866. ret = -EOPNOTSUPP;
  867. break;
  868. }
  869. btrfs_set_file_extent_num_bytes(leaf, fi,
  870. start - key.offset);
  871. btrfs_mark_buffer_dirty(leaf);
  872. if (update_refs && disk_bytenr > 0)
  873. inode_sub_bytes(inode, extent_end - start);
  874. if (end == extent_end)
  875. break;
  876. path->slots[0]++;
  877. goto next_slot;
  878. }
  879. /*
  880. * | ---- range to drop ----- |
  881. * | ------ extent ------ |
  882. */
  883. if (start <= key.offset && end >= extent_end) {
  884. delete_extent_item:
  885. if (del_nr == 0) {
  886. del_slot = path->slots[0];
  887. del_nr = 1;
  888. } else {
  889. BUG_ON(del_slot + del_nr != path->slots[0]);
  890. del_nr++;
  891. }
  892. if (update_refs &&
  893. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  894. inode_sub_bytes(inode,
  895. extent_end - key.offset);
  896. extent_end = ALIGN(extent_end,
  897. fs_info->sectorsize);
  898. } else if (update_refs && disk_bytenr > 0) {
  899. ret = btrfs_free_extent(trans, root,
  900. disk_bytenr, num_bytes, 0,
  901. root->root_key.objectid,
  902. key.objectid, key.offset -
  903. extent_offset);
  904. BUG_ON(ret); /* -ENOMEM */
  905. inode_sub_bytes(inode,
  906. extent_end - key.offset);
  907. }
  908. if (end == extent_end)
  909. break;
  910. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  911. path->slots[0]++;
  912. goto next_slot;
  913. }
  914. ret = btrfs_del_items(trans, root, path, del_slot,
  915. del_nr);
  916. if (ret) {
  917. btrfs_abort_transaction(trans, ret);
  918. break;
  919. }
  920. del_nr = 0;
  921. del_slot = 0;
  922. btrfs_release_path(path);
  923. continue;
  924. }
  925. BUG_ON(1);
  926. }
  927. if (!ret && del_nr > 0) {
  928. /*
  929. * Set path->slots[0] to first slot, so that after the delete
  930. * if items are move off from our leaf to its immediate left or
  931. * right neighbor leafs, we end up with a correct and adjusted
  932. * path->slots[0] for our insertion (if replace_extent != 0).
  933. */
  934. path->slots[0] = del_slot;
  935. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  936. if (ret)
  937. btrfs_abort_transaction(trans, ret);
  938. }
  939. leaf = path->nodes[0];
  940. /*
  941. * If btrfs_del_items() was called, it might have deleted a leaf, in
  942. * which case it unlocked our path, so check path->locks[0] matches a
  943. * write lock.
  944. */
  945. if (!ret && replace_extent && leafs_visited == 1 &&
  946. (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
  947. path->locks[0] == BTRFS_WRITE_LOCK) &&
  948. btrfs_leaf_free_space(fs_info, leaf) >=
  949. sizeof(struct btrfs_item) + extent_item_size) {
  950. key.objectid = ino;
  951. key.type = BTRFS_EXTENT_DATA_KEY;
  952. key.offset = start;
  953. if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
  954. struct btrfs_key slot_key;
  955. btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
  956. if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
  957. path->slots[0]++;
  958. }
  959. setup_items_for_insert(root, path, &key,
  960. &extent_item_size,
  961. extent_item_size,
  962. sizeof(struct btrfs_item) +
  963. extent_item_size, 1);
  964. *key_inserted = 1;
  965. }
  966. if (!replace_extent || !(*key_inserted))
  967. btrfs_release_path(path);
  968. if (drop_end)
  969. *drop_end = found ? min(end, last_end) : end;
  970. return ret;
  971. }
  972. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  973. struct btrfs_root *root, struct inode *inode, u64 start,
  974. u64 end, int drop_cache)
  975. {
  976. struct btrfs_path *path;
  977. int ret;
  978. path = btrfs_alloc_path();
  979. if (!path)
  980. return -ENOMEM;
  981. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  982. drop_cache, 0, 0, NULL);
  983. btrfs_free_path(path);
  984. return ret;
  985. }
  986. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  987. u64 objectid, u64 bytenr, u64 orig_offset,
  988. u64 *start, u64 *end)
  989. {
  990. struct btrfs_file_extent_item *fi;
  991. struct btrfs_key key;
  992. u64 extent_end;
  993. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  994. return 0;
  995. btrfs_item_key_to_cpu(leaf, &key, slot);
  996. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  997. return 0;
  998. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  999. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  1000. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  1001. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  1002. btrfs_file_extent_compression(leaf, fi) ||
  1003. btrfs_file_extent_encryption(leaf, fi) ||
  1004. btrfs_file_extent_other_encoding(leaf, fi))
  1005. return 0;
  1006. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  1007. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  1008. return 0;
  1009. *start = key.offset;
  1010. *end = extent_end;
  1011. return 1;
  1012. }
  1013. /*
  1014. * Mark extent in the range start - end as written.
  1015. *
  1016. * This changes extent type from 'pre-allocated' to 'regular'. If only
  1017. * part of extent is marked as written, the extent will be split into
  1018. * two or three.
  1019. */
  1020. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  1021. struct btrfs_inode *inode, u64 start, u64 end)
  1022. {
  1023. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1024. struct btrfs_root *root = inode->root;
  1025. struct extent_buffer *leaf;
  1026. struct btrfs_path *path;
  1027. struct btrfs_file_extent_item *fi;
  1028. struct btrfs_key key;
  1029. struct btrfs_key new_key;
  1030. u64 bytenr;
  1031. u64 num_bytes;
  1032. u64 extent_end;
  1033. u64 orig_offset;
  1034. u64 other_start;
  1035. u64 other_end;
  1036. u64 split;
  1037. int del_nr = 0;
  1038. int del_slot = 0;
  1039. int recow;
  1040. int ret;
  1041. u64 ino = btrfs_ino(inode);
  1042. path = btrfs_alloc_path();
  1043. if (!path)
  1044. return -ENOMEM;
  1045. again:
  1046. recow = 0;
  1047. split = start;
  1048. key.objectid = ino;
  1049. key.type = BTRFS_EXTENT_DATA_KEY;
  1050. key.offset = split;
  1051. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1052. if (ret < 0)
  1053. goto out;
  1054. if (ret > 0 && path->slots[0] > 0)
  1055. path->slots[0]--;
  1056. leaf = path->nodes[0];
  1057. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1058. if (key.objectid != ino ||
  1059. key.type != BTRFS_EXTENT_DATA_KEY) {
  1060. ret = -EINVAL;
  1061. btrfs_abort_transaction(trans, ret);
  1062. goto out;
  1063. }
  1064. fi = btrfs_item_ptr(leaf, path->slots[0],
  1065. struct btrfs_file_extent_item);
  1066. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
  1067. ret = -EINVAL;
  1068. btrfs_abort_transaction(trans, ret);
  1069. goto out;
  1070. }
  1071. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  1072. if (key.offset > start || extent_end < end) {
  1073. ret = -EINVAL;
  1074. btrfs_abort_transaction(trans, ret);
  1075. goto out;
  1076. }
  1077. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1078. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1079. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  1080. memcpy(&new_key, &key, sizeof(new_key));
  1081. if (start == key.offset && end < extent_end) {
  1082. other_start = 0;
  1083. other_end = start;
  1084. if (extent_mergeable(leaf, path->slots[0] - 1,
  1085. ino, bytenr, orig_offset,
  1086. &other_start, &other_end)) {
  1087. new_key.offset = end;
  1088. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1089. fi = btrfs_item_ptr(leaf, path->slots[0],
  1090. struct btrfs_file_extent_item);
  1091. btrfs_set_file_extent_generation(leaf, fi,
  1092. trans->transid);
  1093. btrfs_set_file_extent_num_bytes(leaf, fi,
  1094. extent_end - end);
  1095. btrfs_set_file_extent_offset(leaf, fi,
  1096. end - orig_offset);
  1097. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1098. struct btrfs_file_extent_item);
  1099. btrfs_set_file_extent_generation(leaf, fi,
  1100. trans->transid);
  1101. btrfs_set_file_extent_num_bytes(leaf, fi,
  1102. end - other_start);
  1103. btrfs_mark_buffer_dirty(leaf);
  1104. goto out;
  1105. }
  1106. }
  1107. if (start > key.offset && end == extent_end) {
  1108. other_start = end;
  1109. other_end = 0;
  1110. if (extent_mergeable(leaf, path->slots[0] + 1,
  1111. ino, bytenr, orig_offset,
  1112. &other_start, &other_end)) {
  1113. fi = btrfs_item_ptr(leaf, path->slots[0],
  1114. struct btrfs_file_extent_item);
  1115. btrfs_set_file_extent_num_bytes(leaf, fi,
  1116. start - key.offset);
  1117. btrfs_set_file_extent_generation(leaf, fi,
  1118. trans->transid);
  1119. path->slots[0]++;
  1120. new_key.offset = start;
  1121. btrfs_set_item_key_safe(fs_info, path, &new_key);
  1122. fi = btrfs_item_ptr(leaf, path->slots[0],
  1123. struct btrfs_file_extent_item);
  1124. btrfs_set_file_extent_generation(leaf, fi,
  1125. trans->transid);
  1126. btrfs_set_file_extent_num_bytes(leaf, fi,
  1127. other_end - start);
  1128. btrfs_set_file_extent_offset(leaf, fi,
  1129. start - orig_offset);
  1130. btrfs_mark_buffer_dirty(leaf);
  1131. goto out;
  1132. }
  1133. }
  1134. while (start > key.offset || end < extent_end) {
  1135. if (key.offset == start)
  1136. split = end;
  1137. new_key.offset = split;
  1138. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  1139. if (ret == -EAGAIN) {
  1140. btrfs_release_path(path);
  1141. goto again;
  1142. }
  1143. if (ret < 0) {
  1144. btrfs_abort_transaction(trans, ret);
  1145. goto out;
  1146. }
  1147. leaf = path->nodes[0];
  1148. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  1149. struct btrfs_file_extent_item);
  1150. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1151. btrfs_set_file_extent_num_bytes(leaf, fi,
  1152. split - key.offset);
  1153. fi = btrfs_item_ptr(leaf, path->slots[0],
  1154. struct btrfs_file_extent_item);
  1155. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1156. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  1157. btrfs_set_file_extent_num_bytes(leaf, fi,
  1158. extent_end - split);
  1159. btrfs_mark_buffer_dirty(leaf);
  1160. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
  1161. 0, root->root_key.objectid,
  1162. ino, orig_offset);
  1163. if (ret) {
  1164. btrfs_abort_transaction(trans, ret);
  1165. goto out;
  1166. }
  1167. if (split == start) {
  1168. key.offset = start;
  1169. } else {
  1170. if (start != key.offset) {
  1171. ret = -EINVAL;
  1172. btrfs_abort_transaction(trans, ret);
  1173. goto out;
  1174. }
  1175. path->slots[0]--;
  1176. extent_end = end;
  1177. }
  1178. recow = 1;
  1179. }
  1180. other_start = end;
  1181. other_end = 0;
  1182. if (extent_mergeable(leaf, path->slots[0] + 1,
  1183. ino, bytenr, orig_offset,
  1184. &other_start, &other_end)) {
  1185. if (recow) {
  1186. btrfs_release_path(path);
  1187. goto again;
  1188. }
  1189. extent_end = other_end;
  1190. del_slot = path->slots[0] + 1;
  1191. del_nr++;
  1192. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1193. 0, root->root_key.objectid,
  1194. ino, orig_offset);
  1195. if (ret) {
  1196. btrfs_abort_transaction(trans, ret);
  1197. goto out;
  1198. }
  1199. }
  1200. other_start = 0;
  1201. other_end = start;
  1202. if (extent_mergeable(leaf, path->slots[0] - 1,
  1203. ino, bytenr, orig_offset,
  1204. &other_start, &other_end)) {
  1205. if (recow) {
  1206. btrfs_release_path(path);
  1207. goto again;
  1208. }
  1209. key.offset = other_start;
  1210. del_slot = path->slots[0];
  1211. del_nr++;
  1212. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1213. 0, root->root_key.objectid,
  1214. ino, orig_offset);
  1215. if (ret) {
  1216. btrfs_abort_transaction(trans, ret);
  1217. goto out;
  1218. }
  1219. }
  1220. if (del_nr == 0) {
  1221. fi = btrfs_item_ptr(leaf, path->slots[0],
  1222. struct btrfs_file_extent_item);
  1223. btrfs_set_file_extent_type(leaf, fi,
  1224. BTRFS_FILE_EXTENT_REG);
  1225. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1226. btrfs_mark_buffer_dirty(leaf);
  1227. } else {
  1228. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1229. struct btrfs_file_extent_item);
  1230. btrfs_set_file_extent_type(leaf, fi,
  1231. BTRFS_FILE_EXTENT_REG);
  1232. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1233. btrfs_set_file_extent_num_bytes(leaf, fi,
  1234. extent_end - key.offset);
  1235. btrfs_mark_buffer_dirty(leaf);
  1236. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1237. if (ret < 0) {
  1238. btrfs_abort_transaction(trans, ret);
  1239. goto out;
  1240. }
  1241. }
  1242. out:
  1243. btrfs_free_path(path);
  1244. return 0;
  1245. }
  1246. /*
  1247. * on error we return an unlocked page and the error value
  1248. * on success we return a locked page and 0
  1249. */
  1250. static int prepare_uptodate_page(struct inode *inode,
  1251. struct page *page, u64 pos,
  1252. bool force_uptodate)
  1253. {
  1254. int ret = 0;
  1255. if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
  1256. !PageUptodate(page)) {
  1257. ret = btrfs_readpage(NULL, page);
  1258. if (ret)
  1259. return ret;
  1260. lock_page(page);
  1261. if (!PageUptodate(page)) {
  1262. unlock_page(page);
  1263. return -EIO;
  1264. }
  1265. if (page->mapping != inode->i_mapping) {
  1266. unlock_page(page);
  1267. return -EAGAIN;
  1268. }
  1269. }
  1270. return 0;
  1271. }
  1272. /*
  1273. * this just gets pages into the page cache and locks them down.
  1274. */
  1275. static noinline int prepare_pages(struct inode *inode, struct page **pages,
  1276. size_t num_pages, loff_t pos,
  1277. size_t write_bytes, bool force_uptodate)
  1278. {
  1279. int i;
  1280. unsigned long index = pos >> PAGE_SHIFT;
  1281. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1282. int err = 0;
  1283. int faili;
  1284. for (i = 0; i < num_pages; i++) {
  1285. again:
  1286. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1287. mask | __GFP_WRITE);
  1288. if (!pages[i]) {
  1289. faili = i - 1;
  1290. err = -ENOMEM;
  1291. goto fail;
  1292. }
  1293. if (i == 0)
  1294. err = prepare_uptodate_page(inode, pages[i], pos,
  1295. force_uptodate);
  1296. if (!err && i == num_pages - 1)
  1297. err = prepare_uptodate_page(inode, pages[i],
  1298. pos + write_bytes, false);
  1299. if (err) {
  1300. put_page(pages[i]);
  1301. if (err == -EAGAIN) {
  1302. err = 0;
  1303. goto again;
  1304. }
  1305. faili = i - 1;
  1306. goto fail;
  1307. }
  1308. wait_on_page_writeback(pages[i]);
  1309. }
  1310. return 0;
  1311. fail:
  1312. while (faili >= 0) {
  1313. unlock_page(pages[faili]);
  1314. put_page(pages[faili]);
  1315. faili--;
  1316. }
  1317. return err;
  1318. }
  1319. /*
  1320. * This function locks the extent and properly waits for data=ordered extents
  1321. * to finish before allowing the pages to be modified if need.
  1322. *
  1323. * The return value:
  1324. * 1 - the extent is locked
  1325. * 0 - the extent is not locked, and everything is OK
  1326. * -EAGAIN - need re-prepare the pages
  1327. * the other < 0 number - Something wrong happens
  1328. */
  1329. static noinline int
  1330. lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
  1331. size_t num_pages, loff_t pos,
  1332. size_t write_bytes,
  1333. u64 *lockstart, u64 *lockend,
  1334. struct extent_state **cached_state)
  1335. {
  1336. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1337. u64 start_pos;
  1338. u64 last_pos;
  1339. int i;
  1340. int ret = 0;
  1341. start_pos = round_down(pos, fs_info->sectorsize);
  1342. last_pos = start_pos
  1343. + round_up(pos + write_bytes - start_pos,
  1344. fs_info->sectorsize) - 1;
  1345. if (start_pos < inode->vfs_inode.i_size) {
  1346. struct btrfs_ordered_extent *ordered;
  1347. lock_extent_bits(&inode->io_tree, start_pos, last_pos,
  1348. cached_state);
  1349. ordered = btrfs_lookup_ordered_range(inode, start_pos,
  1350. last_pos - start_pos + 1);
  1351. if (ordered &&
  1352. ordered->file_offset + ordered->len > start_pos &&
  1353. ordered->file_offset <= last_pos) {
  1354. unlock_extent_cached(&inode->io_tree, start_pos,
  1355. last_pos, cached_state);
  1356. for (i = 0; i < num_pages; i++) {
  1357. unlock_page(pages[i]);
  1358. put_page(pages[i]);
  1359. }
  1360. btrfs_start_ordered_extent(&inode->vfs_inode,
  1361. ordered, 1);
  1362. btrfs_put_ordered_extent(ordered);
  1363. return -EAGAIN;
  1364. }
  1365. if (ordered)
  1366. btrfs_put_ordered_extent(ordered);
  1367. clear_extent_bit(&inode->io_tree, start_pos, last_pos,
  1368. EXTENT_DIRTY | EXTENT_DELALLOC |
  1369. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1370. 0, 0, cached_state);
  1371. *lockstart = start_pos;
  1372. *lockend = last_pos;
  1373. ret = 1;
  1374. }
  1375. for (i = 0; i < num_pages; i++) {
  1376. if (clear_page_dirty_for_io(pages[i]))
  1377. account_page_redirty(pages[i]);
  1378. set_page_extent_mapped(pages[i]);
  1379. WARN_ON(!PageLocked(pages[i]));
  1380. }
  1381. return ret;
  1382. }
  1383. static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
  1384. size_t *write_bytes)
  1385. {
  1386. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1387. struct btrfs_root *root = inode->root;
  1388. struct btrfs_ordered_extent *ordered;
  1389. u64 lockstart, lockend;
  1390. u64 num_bytes;
  1391. int ret;
  1392. ret = btrfs_start_write_no_snapshotting(root);
  1393. if (!ret)
  1394. return -ENOSPC;
  1395. lockstart = round_down(pos, fs_info->sectorsize);
  1396. lockend = round_up(pos + *write_bytes,
  1397. fs_info->sectorsize) - 1;
  1398. while (1) {
  1399. lock_extent(&inode->io_tree, lockstart, lockend);
  1400. ordered = btrfs_lookup_ordered_range(inode, lockstart,
  1401. lockend - lockstart + 1);
  1402. if (!ordered) {
  1403. break;
  1404. }
  1405. unlock_extent(&inode->io_tree, lockstart, lockend);
  1406. btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
  1407. btrfs_put_ordered_extent(ordered);
  1408. }
  1409. num_bytes = lockend - lockstart + 1;
  1410. ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
  1411. NULL, NULL, NULL);
  1412. if (ret <= 0) {
  1413. ret = 0;
  1414. btrfs_end_write_no_snapshotting(root);
  1415. } else {
  1416. *write_bytes = min_t(size_t, *write_bytes ,
  1417. num_bytes - pos + lockstart);
  1418. }
  1419. unlock_extent(&inode->io_tree, lockstart, lockend);
  1420. return ret;
  1421. }
  1422. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1423. struct iov_iter *i,
  1424. loff_t pos)
  1425. {
  1426. struct inode *inode = file_inode(file);
  1427. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1428. struct btrfs_root *root = BTRFS_I(inode)->root;
  1429. struct page **pages = NULL;
  1430. struct extent_state *cached_state = NULL;
  1431. struct extent_changeset *data_reserved = NULL;
  1432. u64 release_bytes = 0;
  1433. u64 lockstart;
  1434. u64 lockend;
  1435. size_t num_written = 0;
  1436. int nrptrs;
  1437. int ret = 0;
  1438. bool only_release_metadata = false;
  1439. bool force_page_uptodate = false;
  1440. nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
  1441. PAGE_SIZE / (sizeof(struct page *)));
  1442. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1443. nrptrs = max(nrptrs, 8);
  1444. pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
  1445. if (!pages)
  1446. return -ENOMEM;
  1447. while (iov_iter_count(i) > 0) {
  1448. size_t offset = pos & (PAGE_SIZE - 1);
  1449. size_t sector_offset;
  1450. size_t write_bytes = min(iov_iter_count(i),
  1451. nrptrs * (size_t)PAGE_SIZE -
  1452. offset);
  1453. size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
  1454. PAGE_SIZE);
  1455. size_t reserve_bytes;
  1456. size_t dirty_pages;
  1457. size_t copied;
  1458. size_t dirty_sectors;
  1459. size_t num_sectors;
  1460. int extents_locked;
  1461. WARN_ON(num_pages > nrptrs);
  1462. /*
  1463. * Fault pages before locking them in prepare_pages
  1464. * to avoid recursive lock
  1465. */
  1466. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1467. ret = -EFAULT;
  1468. break;
  1469. }
  1470. sector_offset = pos & (fs_info->sectorsize - 1);
  1471. reserve_bytes = round_up(write_bytes + sector_offset,
  1472. fs_info->sectorsize);
  1473. extent_changeset_release(data_reserved);
  1474. ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
  1475. write_bytes);
  1476. if (ret < 0) {
  1477. if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1478. BTRFS_INODE_PREALLOC)) &&
  1479. check_can_nocow(BTRFS_I(inode), pos,
  1480. &write_bytes) > 0) {
  1481. /*
  1482. * For nodata cow case, no need to reserve
  1483. * data space.
  1484. */
  1485. only_release_metadata = true;
  1486. /*
  1487. * our prealloc extent may be smaller than
  1488. * write_bytes, so scale down.
  1489. */
  1490. num_pages = DIV_ROUND_UP(write_bytes + offset,
  1491. PAGE_SIZE);
  1492. reserve_bytes = round_up(write_bytes +
  1493. sector_offset,
  1494. fs_info->sectorsize);
  1495. } else {
  1496. break;
  1497. }
  1498. }
  1499. WARN_ON(reserve_bytes == 0);
  1500. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  1501. reserve_bytes);
  1502. if (ret) {
  1503. if (!only_release_metadata)
  1504. btrfs_free_reserved_data_space(inode,
  1505. data_reserved, pos,
  1506. write_bytes);
  1507. else
  1508. btrfs_end_write_no_snapshotting(root);
  1509. break;
  1510. }
  1511. release_bytes = reserve_bytes;
  1512. again:
  1513. /*
  1514. * This is going to setup the pages array with the number of
  1515. * pages we want, so we don't really need to worry about the
  1516. * contents of pages from loop to loop
  1517. */
  1518. ret = prepare_pages(inode, pages, num_pages,
  1519. pos, write_bytes,
  1520. force_page_uptodate);
  1521. if (ret) {
  1522. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1523. reserve_bytes);
  1524. break;
  1525. }
  1526. extents_locked = lock_and_cleanup_extent_if_need(
  1527. BTRFS_I(inode), pages,
  1528. num_pages, pos, write_bytes, &lockstart,
  1529. &lockend, &cached_state);
  1530. if (extents_locked < 0) {
  1531. if (extents_locked == -EAGAIN)
  1532. goto again;
  1533. btrfs_delalloc_release_extents(BTRFS_I(inode),
  1534. reserve_bytes);
  1535. ret = extents_locked;
  1536. break;
  1537. }
  1538. copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
  1539. num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
  1540. dirty_sectors = round_up(copied + sector_offset,
  1541. fs_info->sectorsize);
  1542. dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
  1543. /*
  1544. * if we have trouble faulting in the pages, fall
  1545. * back to one page at a time
  1546. */
  1547. if (copied < write_bytes)
  1548. nrptrs = 1;
  1549. if (copied == 0) {
  1550. force_page_uptodate = true;
  1551. dirty_sectors = 0;
  1552. dirty_pages = 0;
  1553. } else {
  1554. force_page_uptodate = false;
  1555. dirty_pages = DIV_ROUND_UP(copied + offset,
  1556. PAGE_SIZE);
  1557. }
  1558. if (num_sectors > dirty_sectors) {
  1559. /* release everything except the sectors we dirtied */
  1560. release_bytes -= dirty_sectors <<
  1561. fs_info->sb->s_blocksize_bits;
  1562. if (only_release_metadata) {
  1563. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1564. release_bytes);
  1565. } else {
  1566. u64 __pos;
  1567. __pos = round_down(pos,
  1568. fs_info->sectorsize) +
  1569. (dirty_pages << PAGE_SHIFT);
  1570. btrfs_delalloc_release_space(inode,
  1571. data_reserved, __pos,
  1572. release_bytes);
  1573. }
  1574. }
  1575. release_bytes = round_up(copied + sector_offset,
  1576. fs_info->sectorsize);
  1577. if (copied > 0)
  1578. ret = btrfs_dirty_pages(inode, pages, dirty_pages,
  1579. pos, copied, &cached_state);
  1580. if (extents_locked)
  1581. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1582. lockstart, lockend, &cached_state);
  1583. btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
  1584. if (ret) {
  1585. btrfs_drop_pages(pages, num_pages);
  1586. break;
  1587. }
  1588. release_bytes = 0;
  1589. if (only_release_metadata)
  1590. btrfs_end_write_no_snapshotting(root);
  1591. if (only_release_metadata && copied > 0) {
  1592. lockstart = round_down(pos,
  1593. fs_info->sectorsize);
  1594. lockend = round_up(pos + copied,
  1595. fs_info->sectorsize) - 1;
  1596. set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1597. lockend, EXTENT_NORESERVE, NULL,
  1598. NULL, GFP_NOFS);
  1599. only_release_metadata = false;
  1600. }
  1601. btrfs_drop_pages(pages, num_pages);
  1602. cond_resched();
  1603. balance_dirty_pages_ratelimited(inode->i_mapping);
  1604. if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
  1605. btrfs_btree_balance_dirty(fs_info);
  1606. pos += copied;
  1607. num_written += copied;
  1608. }
  1609. kfree(pages);
  1610. if (release_bytes) {
  1611. if (only_release_metadata) {
  1612. btrfs_end_write_no_snapshotting(root);
  1613. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  1614. release_bytes);
  1615. } else {
  1616. btrfs_delalloc_release_space(inode, data_reserved,
  1617. round_down(pos, fs_info->sectorsize),
  1618. release_bytes);
  1619. }
  1620. }
  1621. extent_changeset_free(data_reserved);
  1622. return num_written ? num_written : ret;
  1623. }
  1624. static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
  1625. {
  1626. struct file *file = iocb->ki_filp;
  1627. struct inode *inode = file_inode(file);
  1628. loff_t pos = iocb->ki_pos;
  1629. ssize_t written;
  1630. ssize_t written_buffered;
  1631. loff_t endbyte;
  1632. int err;
  1633. written = generic_file_direct_write(iocb, from);
  1634. if (written < 0 || !iov_iter_count(from))
  1635. return written;
  1636. pos += written;
  1637. written_buffered = __btrfs_buffered_write(file, from, pos);
  1638. if (written_buffered < 0) {
  1639. err = written_buffered;
  1640. goto out;
  1641. }
  1642. /*
  1643. * Ensure all data is persisted. We want the next direct IO read to be
  1644. * able to read what was just written.
  1645. */
  1646. endbyte = pos + written_buffered - 1;
  1647. err = btrfs_fdatawrite_range(inode, pos, endbyte);
  1648. if (err)
  1649. goto out;
  1650. err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
  1651. if (err)
  1652. goto out;
  1653. written += written_buffered;
  1654. iocb->ki_pos = pos + written_buffered;
  1655. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
  1656. endbyte >> PAGE_SHIFT);
  1657. out:
  1658. return written ? written : err;
  1659. }
  1660. static void update_time_for_write(struct inode *inode)
  1661. {
  1662. struct timespec now;
  1663. if (IS_NOCMTIME(inode))
  1664. return;
  1665. now = current_time(inode);
  1666. if (!timespec_equal(&inode->i_mtime, &now))
  1667. inode->i_mtime = now;
  1668. if (!timespec_equal(&inode->i_ctime, &now))
  1669. inode->i_ctime = now;
  1670. if (IS_I_VERSION(inode))
  1671. inode_inc_iversion(inode);
  1672. }
  1673. static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
  1674. struct iov_iter *from)
  1675. {
  1676. struct file *file = iocb->ki_filp;
  1677. struct inode *inode = file_inode(file);
  1678. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1679. struct btrfs_root *root = BTRFS_I(inode)->root;
  1680. u64 start_pos;
  1681. u64 end_pos;
  1682. ssize_t num_written = 0;
  1683. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1684. ssize_t err;
  1685. loff_t pos;
  1686. size_t count = iov_iter_count(from);
  1687. loff_t oldsize;
  1688. int clean_page = 0;
  1689. if (!(iocb->ki_flags & IOCB_DIRECT) &&
  1690. (iocb->ki_flags & IOCB_NOWAIT))
  1691. return -EOPNOTSUPP;
  1692. if (!inode_trylock(inode)) {
  1693. if (iocb->ki_flags & IOCB_NOWAIT)
  1694. return -EAGAIN;
  1695. inode_lock(inode);
  1696. }
  1697. err = generic_write_checks(iocb, from);
  1698. if (err <= 0) {
  1699. inode_unlock(inode);
  1700. return err;
  1701. }
  1702. pos = iocb->ki_pos;
  1703. if (iocb->ki_flags & IOCB_NOWAIT) {
  1704. /*
  1705. * We will allocate space in case nodatacow is not set,
  1706. * so bail
  1707. */
  1708. if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
  1709. BTRFS_INODE_PREALLOC)) ||
  1710. check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
  1711. inode_unlock(inode);
  1712. return -EAGAIN;
  1713. }
  1714. }
  1715. current->backing_dev_info = inode_to_bdi(inode);
  1716. err = file_remove_privs(file);
  1717. if (err) {
  1718. inode_unlock(inode);
  1719. goto out;
  1720. }
  1721. /*
  1722. * If BTRFS flips readonly due to some impossible error
  1723. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1724. * although we have opened a file as writable, we have
  1725. * to stop this write operation to ensure FS consistency.
  1726. */
  1727. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1728. inode_unlock(inode);
  1729. err = -EROFS;
  1730. goto out;
  1731. }
  1732. /*
  1733. * We reserve space for updating the inode when we reserve space for the
  1734. * extent we are going to write, so we will enospc out there. We don't
  1735. * need to start yet another transaction to update the inode as we will
  1736. * update the inode when we finish writing whatever data we write.
  1737. */
  1738. update_time_for_write(inode);
  1739. start_pos = round_down(pos, fs_info->sectorsize);
  1740. oldsize = i_size_read(inode);
  1741. if (start_pos > oldsize) {
  1742. /* Expand hole size to cover write data, preventing empty gap */
  1743. end_pos = round_up(pos + count,
  1744. fs_info->sectorsize);
  1745. err = btrfs_cont_expand(inode, oldsize, end_pos);
  1746. if (err) {
  1747. inode_unlock(inode);
  1748. goto out;
  1749. }
  1750. if (start_pos > round_up(oldsize, fs_info->sectorsize))
  1751. clean_page = 1;
  1752. }
  1753. if (sync)
  1754. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1755. if (iocb->ki_flags & IOCB_DIRECT) {
  1756. num_written = __btrfs_direct_write(iocb, from);
  1757. } else {
  1758. num_written = __btrfs_buffered_write(file, from, pos);
  1759. if (num_written > 0)
  1760. iocb->ki_pos = pos + num_written;
  1761. if (clean_page)
  1762. pagecache_isize_extended(inode, oldsize,
  1763. i_size_read(inode));
  1764. }
  1765. inode_unlock(inode);
  1766. /*
  1767. * We also have to set last_sub_trans to the current log transid,
  1768. * otherwise subsequent syncs to a file that's been synced in this
  1769. * transaction will appear to have already occurred.
  1770. */
  1771. spin_lock(&BTRFS_I(inode)->lock);
  1772. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1773. spin_unlock(&BTRFS_I(inode)->lock);
  1774. if (num_written > 0)
  1775. num_written = generic_write_sync(iocb, num_written);
  1776. if (sync)
  1777. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1778. out:
  1779. current->backing_dev_info = NULL;
  1780. return num_written ? num_written : err;
  1781. }
  1782. int btrfs_release_file(struct inode *inode, struct file *filp)
  1783. {
  1784. struct btrfs_file_private *private = filp->private_data;
  1785. if (private && private->trans)
  1786. btrfs_ioctl_trans_end(filp);
  1787. if (private && private->filldir_buf)
  1788. kfree(private->filldir_buf);
  1789. kfree(private);
  1790. filp->private_data = NULL;
  1791. /*
  1792. * ordered_data_close is set by settattr when we are about to truncate
  1793. * a file from a non-zero size to a zero size. This tries to
  1794. * flush down new bytes that may have been written if the
  1795. * application were using truncate to replace a file in place.
  1796. */
  1797. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1798. &BTRFS_I(inode)->runtime_flags))
  1799. filemap_flush(inode->i_mapping);
  1800. return 0;
  1801. }
  1802. static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
  1803. {
  1804. int ret;
  1805. struct blk_plug plug;
  1806. /*
  1807. * This is only called in fsync, which would do synchronous writes, so
  1808. * a plug can merge adjacent IOs as much as possible. Esp. in case of
  1809. * multiple disks using raid profile, a large IO can be split to
  1810. * several segments of stripe length (currently 64K).
  1811. */
  1812. blk_start_plug(&plug);
  1813. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1814. ret = btrfs_fdatawrite_range(inode, start, end);
  1815. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1816. blk_finish_plug(&plug);
  1817. return ret;
  1818. }
  1819. /*
  1820. * fsync call for both files and directories. This logs the inode into
  1821. * the tree log instead of forcing full commits whenever possible.
  1822. *
  1823. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1824. * in the metadata btree are up to date for copying to the log.
  1825. *
  1826. * It drops the inode mutex before doing the tree log commit. This is an
  1827. * important optimization for directories because holding the mutex prevents
  1828. * new operations on the dir while we write to disk.
  1829. */
  1830. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1831. {
  1832. struct dentry *dentry = file_dentry(file);
  1833. struct inode *inode = d_inode(dentry);
  1834. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  1835. struct btrfs_root *root = BTRFS_I(inode)->root;
  1836. struct btrfs_trans_handle *trans;
  1837. struct btrfs_log_ctx ctx;
  1838. int ret = 0, err;
  1839. bool full_sync = false;
  1840. u64 len;
  1841. /*
  1842. * The range length can be represented by u64, we have to do the typecasts
  1843. * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
  1844. */
  1845. len = (u64)end - (u64)start + 1;
  1846. trace_btrfs_sync_file(file, datasync);
  1847. btrfs_init_log_ctx(&ctx, inode);
  1848. /*
  1849. * We write the dirty pages in the range and wait until they complete
  1850. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1851. * multi-task, and make the performance up. See
  1852. * btrfs_wait_ordered_range for an explanation of the ASYNC check.
  1853. */
  1854. ret = start_ordered_ops(inode, start, end);
  1855. if (ret)
  1856. goto out;
  1857. inode_lock(inode);
  1858. atomic_inc(&root->log_batch);
  1859. full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1860. &BTRFS_I(inode)->runtime_flags);
  1861. /*
  1862. * We might have have had more pages made dirty after calling
  1863. * start_ordered_ops and before acquiring the inode's i_mutex.
  1864. */
  1865. if (full_sync) {
  1866. /*
  1867. * For a full sync, we need to make sure any ordered operations
  1868. * start and finish before we start logging the inode, so that
  1869. * all extents are persisted and the respective file extent
  1870. * items are in the fs/subvol btree.
  1871. */
  1872. ret = btrfs_wait_ordered_range(inode, start, len);
  1873. } else {
  1874. /*
  1875. * Start any new ordered operations before starting to log the
  1876. * inode. We will wait for them to finish in btrfs_sync_log().
  1877. *
  1878. * Right before acquiring the inode's mutex, we might have new
  1879. * writes dirtying pages, which won't immediately start the
  1880. * respective ordered operations - that is done through the
  1881. * fill_delalloc callbacks invoked from the writepage and
  1882. * writepages address space operations. So make sure we start
  1883. * all ordered operations before starting to log our inode. Not
  1884. * doing this means that while logging the inode, writeback
  1885. * could start and invoke writepage/writepages, which would call
  1886. * the fill_delalloc callbacks (cow_file_range,
  1887. * submit_compressed_extents). These callbacks add first an
  1888. * extent map to the modified list of extents and then create
  1889. * the respective ordered operation, which means in
  1890. * tree-log.c:btrfs_log_inode() we might capture all existing
  1891. * ordered operations (with btrfs_get_logged_extents()) before
  1892. * the fill_delalloc callback adds its ordered operation, and by
  1893. * the time we visit the modified list of extent maps (with
  1894. * btrfs_log_changed_extents()), we see and process the extent
  1895. * map they created. We then use the extent map to construct a
  1896. * file extent item for logging without waiting for the
  1897. * respective ordered operation to finish - this file extent
  1898. * item points to a disk location that might not have yet been
  1899. * written to, containing random data - so after a crash a log
  1900. * replay will make our inode have file extent items that point
  1901. * to disk locations containing invalid data, as we returned
  1902. * success to userspace without waiting for the respective
  1903. * ordered operation to finish, because it wasn't captured by
  1904. * btrfs_get_logged_extents().
  1905. */
  1906. ret = start_ordered_ops(inode, start, end);
  1907. }
  1908. if (ret) {
  1909. inode_unlock(inode);
  1910. goto out;
  1911. }
  1912. atomic_inc(&root->log_batch);
  1913. /*
  1914. * If the last transaction that changed this file was before the current
  1915. * transaction and we have the full sync flag set in our inode, we can
  1916. * bail out now without any syncing.
  1917. *
  1918. * Note that we can't bail out if the full sync flag isn't set. This is
  1919. * because when the full sync flag is set we start all ordered extents
  1920. * and wait for them to fully complete - when they complete they update
  1921. * the inode's last_trans field through:
  1922. *
  1923. * btrfs_finish_ordered_io() ->
  1924. * btrfs_update_inode_fallback() ->
  1925. * btrfs_update_inode() ->
  1926. * btrfs_set_inode_last_trans()
  1927. *
  1928. * So we are sure that last_trans is up to date and can do this check to
  1929. * bail out safely. For the fast path, when the full sync flag is not
  1930. * set in our inode, we can not do it because we start only our ordered
  1931. * extents and don't wait for them to complete (that is when
  1932. * btrfs_finish_ordered_io runs), so here at this point their last_trans
  1933. * value might be less than or equals to fs_info->last_trans_committed,
  1934. * and setting a speculative last_trans for an inode when a buffered
  1935. * write is made (such as fs_info->generation + 1 for example) would not
  1936. * be reliable since after setting the value and before fsync is called
  1937. * any number of transactions can start and commit (transaction kthread
  1938. * commits the current transaction periodically), and a transaction
  1939. * commit does not start nor waits for ordered extents to complete.
  1940. */
  1941. smp_mb();
  1942. if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
  1943. (full_sync && BTRFS_I(inode)->last_trans <=
  1944. fs_info->last_trans_committed) ||
  1945. (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
  1946. BTRFS_I(inode)->last_trans
  1947. <= fs_info->last_trans_committed)) {
  1948. /*
  1949. * We've had everything committed since the last time we were
  1950. * modified so clear this flag in case it was set for whatever
  1951. * reason, it's no longer relevant.
  1952. */
  1953. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1954. &BTRFS_I(inode)->runtime_flags);
  1955. /*
  1956. * An ordered extent might have started before and completed
  1957. * already with io errors, in which case the inode was not
  1958. * updated and we end up here. So check the inode's mapping
  1959. * for any errors that might have happened since we last
  1960. * checked called fsync.
  1961. */
  1962. ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
  1963. inode_unlock(inode);
  1964. goto out;
  1965. }
  1966. /*
  1967. * ok we haven't committed the transaction yet, lets do a commit
  1968. */
  1969. if (file->private_data)
  1970. btrfs_ioctl_trans_end(file);
  1971. /*
  1972. * We use start here because we will need to wait on the IO to complete
  1973. * in btrfs_sync_log, which could require joining a transaction (for
  1974. * example checking cross references in the nocow path). If we use join
  1975. * here we could get into a situation where we're waiting on IO to
  1976. * happen that is blocked on a transaction trying to commit. With start
  1977. * we inc the extwriter counter, so we wait for all extwriters to exit
  1978. * before we start blocking join'ers. This comment is to keep somebody
  1979. * from thinking they are super smart and changing this to
  1980. * btrfs_join_transaction *cough*Josef*cough*.
  1981. */
  1982. trans = btrfs_start_transaction(root, 0);
  1983. if (IS_ERR(trans)) {
  1984. ret = PTR_ERR(trans);
  1985. inode_unlock(inode);
  1986. goto out;
  1987. }
  1988. trans->sync = true;
  1989. ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
  1990. if (ret < 0) {
  1991. /* Fallthrough and commit/free transaction. */
  1992. ret = 1;
  1993. }
  1994. /* we've logged all the items and now have a consistent
  1995. * version of the file in the log. It is possible that
  1996. * someone will come in and modify the file, but that's
  1997. * fine because the log is consistent on disk, and we
  1998. * have references to all of the file's extents
  1999. *
  2000. * It is possible that someone will come in and log the
  2001. * file again, but that will end up using the synchronization
  2002. * inside btrfs_sync_log to keep things safe.
  2003. */
  2004. inode_unlock(inode);
  2005. /*
  2006. * If any of the ordered extents had an error, just return it to user
  2007. * space, so that the application knows some writes didn't succeed and
  2008. * can take proper action (retry for e.g.). Blindly committing the
  2009. * transaction in this case, would fool userspace that everything was
  2010. * successful. And we also want to make sure our log doesn't contain
  2011. * file extent items pointing to extents that weren't fully written to -
  2012. * just like in the non fast fsync path, where we check for the ordered
  2013. * operation's error flag before writing to the log tree and return -EIO
  2014. * if any of them had this flag set (btrfs_wait_ordered_range) -
  2015. * therefore we need to check for errors in the ordered operations,
  2016. * which are indicated by ctx.io_err.
  2017. */
  2018. if (ctx.io_err) {
  2019. btrfs_end_transaction(trans);
  2020. ret = ctx.io_err;
  2021. goto out;
  2022. }
  2023. if (ret != BTRFS_NO_LOG_SYNC) {
  2024. if (!ret) {
  2025. ret = btrfs_sync_log(trans, root, &ctx);
  2026. if (!ret) {
  2027. ret = btrfs_end_transaction(trans);
  2028. goto out;
  2029. }
  2030. }
  2031. if (!full_sync) {
  2032. ret = btrfs_wait_ordered_range(inode, start, len);
  2033. if (ret) {
  2034. btrfs_end_transaction(trans);
  2035. goto out;
  2036. }
  2037. }
  2038. ret = btrfs_commit_transaction(trans);
  2039. } else {
  2040. ret = btrfs_end_transaction(trans);
  2041. }
  2042. out:
  2043. ASSERT(list_empty(&ctx.list));
  2044. err = file_check_and_advance_wb_err(file);
  2045. if (!ret)
  2046. ret = err;
  2047. return ret > 0 ? -EIO : ret;
  2048. }
  2049. static const struct vm_operations_struct btrfs_file_vm_ops = {
  2050. .fault = filemap_fault,
  2051. .map_pages = filemap_map_pages,
  2052. .page_mkwrite = btrfs_page_mkwrite,
  2053. };
  2054. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  2055. {
  2056. struct address_space *mapping = filp->f_mapping;
  2057. if (!mapping->a_ops->readpage)
  2058. return -ENOEXEC;
  2059. file_accessed(filp);
  2060. vma->vm_ops = &btrfs_file_vm_ops;
  2061. return 0;
  2062. }
  2063. static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
  2064. int slot, u64 start, u64 end)
  2065. {
  2066. struct btrfs_file_extent_item *fi;
  2067. struct btrfs_key key;
  2068. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  2069. return 0;
  2070. btrfs_item_key_to_cpu(leaf, &key, slot);
  2071. if (key.objectid != btrfs_ino(inode) ||
  2072. key.type != BTRFS_EXTENT_DATA_KEY)
  2073. return 0;
  2074. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  2075. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  2076. return 0;
  2077. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  2078. return 0;
  2079. if (key.offset == end)
  2080. return 1;
  2081. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  2082. return 1;
  2083. return 0;
  2084. }
  2085. static int fill_holes(struct btrfs_trans_handle *trans,
  2086. struct btrfs_inode *inode,
  2087. struct btrfs_path *path, u64 offset, u64 end)
  2088. {
  2089. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  2090. struct btrfs_root *root = inode->root;
  2091. struct extent_buffer *leaf;
  2092. struct btrfs_file_extent_item *fi;
  2093. struct extent_map *hole_em;
  2094. struct extent_map_tree *em_tree = &inode->extent_tree;
  2095. struct btrfs_key key;
  2096. int ret;
  2097. if (btrfs_fs_incompat(fs_info, NO_HOLES))
  2098. goto out;
  2099. key.objectid = btrfs_ino(inode);
  2100. key.type = BTRFS_EXTENT_DATA_KEY;
  2101. key.offset = offset;
  2102. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2103. if (ret <= 0) {
  2104. /*
  2105. * We should have dropped this offset, so if we find it then
  2106. * something has gone horribly wrong.
  2107. */
  2108. if (ret == 0)
  2109. ret = -EINVAL;
  2110. return ret;
  2111. }
  2112. leaf = path->nodes[0];
  2113. if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
  2114. u64 num_bytes;
  2115. path->slots[0]--;
  2116. fi = btrfs_item_ptr(leaf, path->slots[0],
  2117. struct btrfs_file_extent_item);
  2118. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  2119. end - offset;
  2120. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2121. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2122. btrfs_set_file_extent_offset(leaf, fi, 0);
  2123. btrfs_mark_buffer_dirty(leaf);
  2124. goto out;
  2125. }
  2126. if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
  2127. u64 num_bytes;
  2128. key.offset = offset;
  2129. btrfs_set_item_key_safe(fs_info, path, &key);
  2130. fi = btrfs_item_ptr(leaf, path->slots[0],
  2131. struct btrfs_file_extent_item);
  2132. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  2133. offset;
  2134. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  2135. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  2136. btrfs_set_file_extent_offset(leaf, fi, 0);
  2137. btrfs_mark_buffer_dirty(leaf);
  2138. goto out;
  2139. }
  2140. btrfs_release_path(path);
  2141. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
  2142. offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
  2143. if (ret)
  2144. return ret;
  2145. out:
  2146. btrfs_release_path(path);
  2147. hole_em = alloc_extent_map();
  2148. if (!hole_em) {
  2149. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2150. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
  2151. } else {
  2152. hole_em->start = offset;
  2153. hole_em->len = end - offset;
  2154. hole_em->ram_bytes = hole_em->len;
  2155. hole_em->orig_start = offset;
  2156. hole_em->block_start = EXTENT_MAP_HOLE;
  2157. hole_em->block_len = 0;
  2158. hole_em->orig_block_len = 0;
  2159. hole_em->bdev = fs_info->fs_devices->latest_bdev;
  2160. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  2161. hole_em->generation = trans->transid;
  2162. do {
  2163. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  2164. write_lock(&em_tree->lock);
  2165. ret = add_extent_mapping(em_tree, hole_em, 1);
  2166. write_unlock(&em_tree->lock);
  2167. } while (ret == -EEXIST);
  2168. free_extent_map(hole_em);
  2169. if (ret)
  2170. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  2171. &inode->runtime_flags);
  2172. }
  2173. return 0;
  2174. }
  2175. /*
  2176. * Find a hole extent on given inode and change start/len to the end of hole
  2177. * extent.(hole/vacuum extent whose em->start <= start &&
  2178. * em->start + em->len > start)
  2179. * When a hole extent is found, return 1 and modify start/len.
  2180. */
  2181. static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
  2182. {
  2183. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2184. struct extent_map *em;
  2185. int ret = 0;
  2186. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2187. round_down(*start, fs_info->sectorsize),
  2188. round_up(*len, fs_info->sectorsize), 0);
  2189. if (IS_ERR(em))
  2190. return PTR_ERR(em);
  2191. /* Hole or vacuum extent(only exists in no-hole mode) */
  2192. if (em->block_start == EXTENT_MAP_HOLE) {
  2193. ret = 1;
  2194. *len = em->start + em->len > *start + *len ?
  2195. 0 : *start + *len - em->start - em->len;
  2196. *start = em->start + em->len;
  2197. }
  2198. free_extent_map(em);
  2199. return ret;
  2200. }
  2201. static int btrfs_punch_hole_lock_range(struct inode *inode,
  2202. const u64 lockstart,
  2203. const u64 lockend,
  2204. struct extent_state **cached_state)
  2205. {
  2206. while (1) {
  2207. struct btrfs_ordered_extent *ordered;
  2208. int ret;
  2209. truncate_pagecache_range(inode, lockstart, lockend);
  2210. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2211. cached_state);
  2212. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  2213. /*
  2214. * We need to make sure we have no ordered extents in this range
  2215. * and nobody raced in and read a page in this range, if we did
  2216. * we need to try again.
  2217. */
  2218. if ((!ordered ||
  2219. (ordered->file_offset + ordered->len <= lockstart ||
  2220. ordered->file_offset > lockend)) &&
  2221. !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
  2222. if (ordered)
  2223. btrfs_put_ordered_extent(ordered);
  2224. break;
  2225. }
  2226. if (ordered)
  2227. btrfs_put_ordered_extent(ordered);
  2228. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2229. lockend, cached_state);
  2230. ret = btrfs_wait_ordered_range(inode, lockstart,
  2231. lockend - lockstart + 1);
  2232. if (ret)
  2233. return ret;
  2234. }
  2235. return 0;
  2236. }
  2237. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  2238. {
  2239. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2240. struct btrfs_root *root = BTRFS_I(inode)->root;
  2241. struct extent_state *cached_state = NULL;
  2242. struct btrfs_path *path;
  2243. struct btrfs_block_rsv *rsv;
  2244. struct btrfs_trans_handle *trans;
  2245. u64 lockstart;
  2246. u64 lockend;
  2247. u64 tail_start;
  2248. u64 tail_len;
  2249. u64 orig_start = offset;
  2250. u64 cur_offset;
  2251. u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2252. u64 drop_end;
  2253. int ret = 0;
  2254. int err = 0;
  2255. unsigned int rsv_count;
  2256. bool same_block;
  2257. bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
  2258. u64 ino_size;
  2259. bool truncated_block = false;
  2260. bool updated_inode = false;
  2261. ret = btrfs_wait_ordered_range(inode, offset, len);
  2262. if (ret)
  2263. return ret;
  2264. inode_lock(inode);
  2265. ino_size = round_up(inode->i_size, fs_info->sectorsize);
  2266. ret = find_first_non_hole(inode, &offset, &len);
  2267. if (ret < 0)
  2268. goto out_only_mutex;
  2269. if (ret && !len) {
  2270. /* Already in a large hole */
  2271. ret = 0;
  2272. goto out_only_mutex;
  2273. }
  2274. lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
  2275. lockend = round_down(offset + len,
  2276. btrfs_inode_sectorsize(inode)) - 1;
  2277. same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
  2278. == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
  2279. /*
  2280. * We needn't truncate any block which is beyond the end of the file
  2281. * because we are sure there is no data there.
  2282. */
  2283. /*
  2284. * Only do this if we are in the same block and we aren't doing the
  2285. * entire block.
  2286. */
  2287. if (same_block && len < fs_info->sectorsize) {
  2288. if (offset < ino_size) {
  2289. truncated_block = true;
  2290. ret = btrfs_truncate_block(inode, offset, len, 0);
  2291. } else {
  2292. ret = 0;
  2293. }
  2294. goto out_only_mutex;
  2295. }
  2296. /* zero back part of the first block */
  2297. if (offset < ino_size) {
  2298. truncated_block = true;
  2299. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2300. if (ret) {
  2301. inode_unlock(inode);
  2302. return ret;
  2303. }
  2304. }
  2305. /* Check the aligned pages after the first unaligned page,
  2306. * if offset != orig_start, which means the first unaligned page
  2307. * including several following pages are already in holes,
  2308. * the extra check can be skipped */
  2309. if (offset == orig_start) {
  2310. /* after truncate page, check hole again */
  2311. len = offset + len - lockstart;
  2312. offset = lockstart;
  2313. ret = find_first_non_hole(inode, &offset, &len);
  2314. if (ret < 0)
  2315. goto out_only_mutex;
  2316. if (ret && !len) {
  2317. ret = 0;
  2318. goto out_only_mutex;
  2319. }
  2320. lockstart = offset;
  2321. }
  2322. /* Check the tail unaligned part is in a hole */
  2323. tail_start = lockend + 1;
  2324. tail_len = offset + len - tail_start;
  2325. if (tail_len) {
  2326. ret = find_first_non_hole(inode, &tail_start, &tail_len);
  2327. if (unlikely(ret < 0))
  2328. goto out_only_mutex;
  2329. if (!ret) {
  2330. /* zero the front end of the last page */
  2331. if (tail_start + tail_len < ino_size) {
  2332. truncated_block = true;
  2333. ret = btrfs_truncate_block(inode,
  2334. tail_start + tail_len,
  2335. 0, 1);
  2336. if (ret)
  2337. goto out_only_mutex;
  2338. }
  2339. }
  2340. }
  2341. if (lockend < lockstart) {
  2342. ret = 0;
  2343. goto out_only_mutex;
  2344. }
  2345. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2346. &cached_state);
  2347. if (ret) {
  2348. inode_unlock(inode);
  2349. goto out_only_mutex;
  2350. }
  2351. path = btrfs_alloc_path();
  2352. if (!path) {
  2353. ret = -ENOMEM;
  2354. goto out;
  2355. }
  2356. rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
  2357. if (!rsv) {
  2358. ret = -ENOMEM;
  2359. goto out_free;
  2360. }
  2361. rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
  2362. rsv->failfast = 1;
  2363. /*
  2364. * 1 - update the inode
  2365. * 1 - removing the extents in the range
  2366. * 1 - adding the hole extent if no_holes isn't set
  2367. */
  2368. rsv_count = no_holes ? 2 : 3;
  2369. trans = btrfs_start_transaction(root, rsv_count);
  2370. if (IS_ERR(trans)) {
  2371. err = PTR_ERR(trans);
  2372. goto out_free;
  2373. }
  2374. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
  2375. min_size, 0);
  2376. BUG_ON(ret);
  2377. trans->block_rsv = rsv;
  2378. cur_offset = lockstart;
  2379. len = lockend - cur_offset;
  2380. while (cur_offset < lockend) {
  2381. ret = __btrfs_drop_extents(trans, root, inode, path,
  2382. cur_offset, lockend + 1,
  2383. &drop_end, 1, 0, 0, NULL);
  2384. if (ret != -ENOSPC)
  2385. break;
  2386. trans->block_rsv = &fs_info->trans_block_rsv;
  2387. if (cur_offset < drop_end && cur_offset < ino_size) {
  2388. ret = fill_holes(trans, BTRFS_I(inode), path,
  2389. cur_offset, drop_end);
  2390. if (ret) {
  2391. /*
  2392. * If we failed then we didn't insert our hole
  2393. * entries for the area we dropped, so now the
  2394. * fs is corrupted, so we must abort the
  2395. * transaction.
  2396. */
  2397. btrfs_abort_transaction(trans, ret);
  2398. err = ret;
  2399. break;
  2400. }
  2401. }
  2402. cur_offset = drop_end;
  2403. ret = btrfs_update_inode(trans, root, inode);
  2404. if (ret) {
  2405. err = ret;
  2406. break;
  2407. }
  2408. btrfs_end_transaction(trans);
  2409. btrfs_btree_balance_dirty(fs_info);
  2410. trans = btrfs_start_transaction(root, rsv_count);
  2411. if (IS_ERR(trans)) {
  2412. ret = PTR_ERR(trans);
  2413. trans = NULL;
  2414. break;
  2415. }
  2416. ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
  2417. rsv, min_size, 0);
  2418. BUG_ON(ret); /* shouldn't happen */
  2419. trans->block_rsv = rsv;
  2420. ret = find_first_non_hole(inode, &cur_offset, &len);
  2421. if (unlikely(ret < 0))
  2422. break;
  2423. if (ret && !len) {
  2424. ret = 0;
  2425. break;
  2426. }
  2427. }
  2428. if (ret) {
  2429. err = ret;
  2430. goto out_trans;
  2431. }
  2432. trans->block_rsv = &fs_info->trans_block_rsv;
  2433. /*
  2434. * If we are using the NO_HOLES feature we might have had already an
  2435. * hole that overlaps a part of the region [lockstart, lockend] and
  2436. * ends at (or beyond) lockend. Since we have no file extent items to
  2437. * represent holes, drop_end can be less than lockend and so we must
  2438. * make sure we have an extent map representing the existing hole (the
  2439. * call to __btrfs_drop_extents() might have dropped the existing extent
  2440. * map representing the existing hole), otherwise the fast fsync path
  2441. * will not record the existence of the hole region
  2442. * [existing_hole_start, lockend].
  2443. */
  2444. if (drop_end <= lockend)
  2445. drop_end = lockend + 1;
  2446. /*
  2447. * Don't insert file hole extent item if it's for a range beyond eof
  2448. * (because it's useless) or if it represents a 0 bytes range (when
  2449. * cur_offset == drop_end).
  2450. */
  2451. if (cur_offset < ino_size && cur_offset < drop_end) {
  2452. ret = fill_holes(trans, BTRFS_I(inode), path,
  2453. cur_offset, drop_end);
  2454. if (ret) {
  2455. /* Same comment as above. */
  2456. btrfs_abort_transaction(trans, ret);
  2457. err = ret;
  2458. goto out_trans;
  2459. }
  2460. }
  2461. out_trans:
  2462. if (!trans)
  2463. goto out_free;
  2464. inode_inc_iversion(inode);
  2465. inode->i_mtime = inode->i_ctime = current_time(inode);
  2466. trans->block_rsv = &fs_info->trans_block_rsv;
  2467. ret = btrfs_update_inode(trans, root, inode);
  2468. updated_inode = true;
  2469. btrfs_end_transaction(trans);
  2470. btrfs_btree_balance_dirty(fs_info);
  2471. out_free:
  2472. btrfs_free_path(path);
  2473. btrfs_free_block_rsv(fs_info, rsv);
  2474. out:
  2475. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2476. &cached_state);
  2477. out_only_mutex:
  2478. if (!updated_inode && truncated_block && !ret && !err) {
  2479. /*
  2480. * If we only end up zeroing part of a page, we still need to
  2481. * update the inode item, so that all the time fields are
  2482. * updated as well as the necessary btrfs inode in memory fields
  2483. * for detecting, at fsync time, if the inode isn't yet in the
  2484. * log tree or it's there but not up to date.
  2485. */
  2486. trans = btrfs_start_transaction(root, 1);
  2487. if (IS_ERR(trans)) {
  2488. err = PTR_ERR(trans);
  2489. } else {
  2490. err = btrfs_update_inode(trans, root, inode);
  2491. ret = btrfs_end_transaction(trans);
  2492. }
  2493. }
  2494. inode_unlock(inode);
  2495. if (ret && !err)
  2496. err = ret;
  2497. return err;
  2498. }
  2499. /* Helper structure to record which range is already reserved */
  2500. struct falloc_range {
  2501. struct list_head list;
  2502. u64 start;
  2503. u64 len;
  2504. };
  2505. /*
  2506. * Helper function to add falloc range
  2507. *
  2508. * Caller should have locked the larger range of extent containing
  2509. * [start, len)
  2510. */
  2511. static int add_falloc_range(struct list_head *head, u64 start, u64 len)
  2512. {
  2513. struct falloc_range *prev = NULL;
  2514. struct falloc_range *range = NULL;
  2515. if (list_empty(head))
  2516. goto insert;
  2517. /*
  2518. * As fallocate iterate by bytenr order, we only need to check
  2519. * the last range.
  2520. */
  2521. prev = list_entry(head->prev, struct falloc_range, list);
  2522. if (prev->start + prev->len == start) {
  2523. prev->len += len;
  2524. return 0;
  2525. }
  2526. insert:
  2527. range = kmalloc(sizeof(*range), GFP_KERNEL);
  2528. if (!range)
  2529. return -ENOMEM;
  2530. range->start = start;
  2531. range->len = len;
  2532. list_add_tail(&range->list, head);
  2533. return 0;
  2534. }
  2535. static int btrfs_fallocate_update_isize(struct inode *inode,
  2536. const u64 end,
  2537. const int mode)
  2538. {
  2539. struct btrfs_trans_handle *trans;
  2540. struct btrfs_root *root = BTRFS_I(inode)->root;
  2541. int ret;
  2542. int ret2;
  2543. if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
  2544. return 0;
  2545. trans = btrfs_start_transaction(root, 1);
  2546. if (IS_ERR(trans))
  2547. return PTR_ERR(trans);
  2548. inode->i_ctime = current_time(inode);
  2549. i_size_write(inode, end);
  2550. btrfs_ordered_update_i_size(inode, end, NULL);
  2551. ret = btrfs_update_inode(trans, root, inode);
  2552. ret2 = btrfs_end_transaction(trans);
  2553. return ret ? ret : ret2;
  2554. }
  2555. enum {
  2556. RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
  2557. RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
  2558. RANGE_BOUNDARY_HOLE = 2,
  2559. };
  2560. static int btrfs_zero_range_check_range_boundary(struct inode *inode,
  2561. u64 offset)
  2562. {
  2563. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2564. struct extent_map *em;
  2565. int ret;
  2566. offset = round_down(offset, sectorsize);
  2567. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
  2568. if (IS_ERR(em))
  2569. return PTR_ERR(em);
  2570. if (em->block_start == EXTENT_MAP_HOLE)
  2571. ret = RANGE_BOUNDARY_HOLE;
  2572. else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  2573. ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
  2574. else
  2575. ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
  2576. free_extent_map(em);
  2577. return ret;
  2578. }
  2579. static int btrfs_zero_range(struct inode *inode,
  2580. loff_t offset,
  2581. loff_t len,
  2582. const int mode)
  2583. {
  2584. struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  2585. struct extent_map *em;
  2586. struct extent_changeset *data_reserved = NULL;
  2587. int ret;
  2588. u64 alloc_hint = 0;
  2589. const u64 sectorsize = btrfs_inode_sectorsize(inode);
  2590. u64 alloc_start = round_down(offset, sectorsize);
  2591. u64 alloc_end = round_up(offset + len, sectorsize);
  2592. u64 bytes_to_reserve = 0;
  2593. bool space_reserved = false;
  2594. inode_dio_wait(inode);
  2595. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2596. alloc_start, alloc_end - alloc_start, 0);
  2597. if (IS_ERR(em)) {
  2598. ret = PTR_ERR(em);
  2599. goto out;
  2600. }
  2601. /*
  2602. * Avoid hole punching and extent allocation for some cases. More cases
  2603. * could be considered, but these are unlikely common and we keep things
  2604. * as simple as possible for now. Also, intentionally, if the target
  2605. * range contains one or more prealloc extents together with regular
  2606. * extents and holes, we drop all the existing extents and allocate a
  2607. * new prealloc extent, so that we get a larger contiguous disk extent.
  2608. */
  2609. if (em->start <= alloc_start &&
  2610. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2611. const u64 em_end = em->start + em->len;
  2612. if (em_end >= offset + len) {
  2613. /*
  2614. * The whole range is already a prealloc extent,
  2615. * do nothing except updating the inode's i_size if
  2616. * needed.
  2617. */
  2618. free_extent_map(em);
  2619. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2620. mode);
  2621. goto out;
  2622. }
  2623. /*
  2624. * Part of the range is already a prealloc extent, so operate
  2625. * only on the remaining part of the range.
  2626. */
  2627. alloc_start = em_end;
  2628. ASSERT(IS_ALIGNED(alloc_start, sectorsize));
  2629. len = offset + len - alloc_start;
  2630. offset = alloc_start;
  2631. alloc_hint = em->block_start + em->len;
  2632. }
  2633. free_extent_map(em);
  2634. if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
  2635. BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
  2636. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
  2637. alloc_start, sectorsize, 0);
  2638. if (IS_ERR(em)) {
  2639. ret = PTR_ERR(em);
  2640. goto out;
  2641. }
  2642. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  2643. free_extent_map(em);
  2644. ret = btrfs_fallocate_update_isize(inode, offset + len,
  2645. mode);
  2646. goto out;
  2647. }
  2648. if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
  2649. free_extent_map(em);
  2650. ret = btrfs_truncate_block(inode, offset, len, 0);
  2651. if (!ret)
  2652. ret = btrfs_fallocate_update_isize(inode,
  2653. offset + len,
  2654. mode);
  2655. return ret;
  2656. }
  2657. free_extent_map(em);
  2658. alloc_start = round_down(offset, sectorsize);
  2659. alloc_end = alloc_start + sectorsize;
  2660. goto reserve_space;
  2661. }
  2662. alloc_start = round_up(offset, sectorsize);
  2663. alloc_end = round_down(offset + len, sectorsize);
  2664. /*
  2665. * For unaligned ranges, check the pages at the boundaries, they might
  2666. * map to an extent, in which case we need to partially zero them, or
  2667. * they might map to a hole, in which case we need our allocation range
  2668. * to cover them.
  2669. */
  2670. if (!IS_ALIGNED(offset, sectorsize)) {
  2671. ret = btrfs_zero_range_check_range_boundary(inode, offset);
  2672. if (ret < 0)
  2673. goto out;
  2674. if (ret == RANGE_BOUNDARY_HOLE) {
  2675. alloc_start = round_down(offset, sectorsize);
  2676. ret = 0;
  2677. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2678. ret = btrfs_truncate_block(inode, offset, 0, 0);
  2679. if (ret)
  2680. goto out;
  2681. } else {
  2682. ret = 0;
  2683. }
  2684. }
  2685. if (!IS_ALIGNED(offset + len, sectorsize)) {
  2686. ret = btrfs_zero_range_check_range_boundary(inode,
  2687. offset + len);
  2688. if (ret < 0)
  2689. goto out;
  2690. if (ret == RANGE_BOUNDARY_HOLE) {
  2691. alloc_end = round_up(offset + len, sectorsize);
  2692. ret = 0;
  2693. } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
  2694. ret = btrfs_truncate_block(inode, offset + len, 0, 1);
  2695. if (ret)
  2696. goto out;
  2697. } else {
  2698. ret = 0;
  2699. }
  2700. }
  2701. reserve_space:
  2702. if (alloc_start < alloc_end) {
  2703. struct extent_state *cached_state = NULL;
  2704. const u64 lockstart = alloc_start;
  2705. const u64 lockend = alloc_end - 1;
  2706. bytes_to_reserve = alloc_end - alloc_start;
  2707. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2708. bytes_to_reserve);
  2709. if (ret < 0)
  2710. goto out;
  2711. space_reserved = true;
  2712. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2713. alloc_start, bytes_to_reserve);
  2714. if (ret)
  2715. goto out;
  2716. ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
  2717. &cached_state);
  2718. if (ret)
  2719. goto out;
  2720. ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
  2721. alloc_end - alloc_start,
  2722. i_blocksize(inode),
  2723. offset + len, &alloc_hint);
  2724. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  2725. lockend, &cached_state);
  2726. /* btrfs_prealloc_file_range releases reserved space on error */
  2727. if (ret) {
  2728. space_reserved = false;
  2729. goto out;
  2730. }
  2731. }
  2732. ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
  2733. out:
  2734. if (ret && space_reserved)
  2735. btrfs_free_reserved_data_space(inode, data_reserved,
  2736. alloc_start, bytes_to_reserve);
  2737. extent_changeset_free(data_reserved);
  2738. return ret;
  2739. }
  2740. static long btrfs_fallocate(struct file *file, int mode,
  2741. loff_t offset, loff_t len)
  2742. {
  2743. struct inode *inode = file_inode(file);
  2744. struct extent_state *cached_state = NULL;
  2745. struct extent_changeset *data_reserved = NULL;
  2746. struct falloc_range *range;
  2747. struct falloc_range *tmp;
  2748. struct list_head reserve_list;
  2749. u64 cur_offset;
  2750. u64 last_byte;
  2751. u64 alloc_start;
  2752. u64 alloc_end;
  2753. u64 alloc_hint = 0;
  2754. u64 locked_end;
  2755. u64 actual_end = 0;
  2756. struct extent_map *em;
  2757. int blocksize = btrfs_inode_sectorsize(inode);
  2758. int ret;
  2759. alloc_start = round_down(offset, blocksize);
  2760. alloc_end = round_up(offset + len, blocksize);
  2761. cur_offset = alloc_start;
  2762. /* Make sure we aren't being give some crap mode */
  2763. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  2764. FALLOC_FL_ZERO_RANGE))
  2765. return -EOPNOTSUPP;
  2766. if (mode & FALLOC_FL_PUNCH_HOLE)
  2767. return btrfs_punch_hole(inode, offset, len);
  2768. /*
  2769. * Only trigger disk allocation, don't trigger qgroup reserve
  2770. *
  2771. * For qgroup space, it will be checked later.
  2772. */
  2773. if (!(mode & FALLOC_FL_ZERO_RANGE)) {
  2774. ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
  2775. alloc_end - alloc_start);
  2776. if (ret < 0)
  2777. return ret;
  2778. }
  2779. inode_lock(inode);
  2780. if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
  2781. ret = inode_newsize_ok(inode, offset + len);
  2782. if (ret)
  2783. goto out;
  2784. }
  2785. /*
  2786. * TODO: Move these two operations after we have checked
  2787. * accurate reserved space, or fallocate can still fail but
  2788. * with page truncated or size expanded.
  2789. *
  2790. * But that's a minor problem and won't do much harm BTW.
  2791. */
  2792. if (alloc_start > inode->i_size) {
  2793. ret = btrfs_cont_expand(inode, i_size_read(inode),
  2794. alloc_start);
  2795. if (ret)
  2796. goto out;
  2797. } else if (offset + len > inode->i_size) {
  2798. /*
  2799. * If we are fallocating from the end of the file onward we
  2800. * need to zero out the end of the block if i_size lands in the
  2801. * middle of a block.
  2802. */
  2803. ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
  2804. if (ret)
  2805. goto out;
  2806. }
  2807. /*
  2808. * wait for ordered IO before we have any locks. We'll loop again
  2809. * below with the locks held.
  2810. */
  2811. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2812. alloc_end - alloc_start);
  2813. if (ret)
  2814. goto out;
  2815. if (mode & FALLOC_FL_ZERO_RANGE) {
  2816. ret = btrfs_zero_range(inode, offset, len, mode);
  2817. inode_unlock(inode);
  2818. return ret;
  2819. }
  2820. locked_end = alloc_end - 1;
  2821. while (1) {
  2822. struct btrfs_ordered_extent *ordered;
  2823. /* the extent lock is ordered inside the running
  2824. * transaction
  2825. */
  2826. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  2827. locked_end, &cached_state);
  2828. ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
  2829. if (ordered &&
  2830. ordered->file_offset + ordered->len > alloc_start &&
  2831. ordered->file_offset < alloc_end) {
  2832. btrfs_put_ordered_extent(ordered);
  2833. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  2834. alloc_start, locked_end,
  2835. &cached_state);
  2836. /*
  2837. * we can't wait on the range with the transaction
  2838. * running or with the extent lock held
  2839. */
  2840. ret = btrfs_wait_ordered_range(inode, alloc_start,
  2841. alloc_end - alloc_start);
  2842. if (ret)
  2843. goto out;
  2844. } else {
  2845. if (ordered)
  2846. btrfs_put_ordered_extent(ordered);
  2847. break;
  2848. }
  2849. }
  2850. /* First, check if we exceed the qgroup limit */
  2851. INIT_LIST_HEAD(&reserve_list);
  2852. while (cur_offset < alloc_end) {
  2853. em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
  2854. alloc_end - cur_offset, 0);
  2855. if (IS_ERR(em)) {
  2856. ret = PTR_ERR(em);
  2857. break;
  2858. }
  2859. last_byte = min(extent_map_end(em), alloc_end);
  2860. actual_end = min_t(u64, extent_map_end(em), offset + len);
  2861. last_byte = ALIGN(last_byte, blocksize);
  2862. if (em->block_start == EXTENT_MAP_HOLE ||
  2863. (cur_offset >= inode->i_size &&
  2864. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  2865. ret = add_falloc_range(&reserve_list, cur_offset,
  2866. last_byte - cur_offset);
  2867. if (ret < 0) {
  2868. free_extent_map(em);
  2869. break;
  2870. }
  2871. ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
  2872. cur_offset, last_byte - cur_offset);
  2873. if (ret < 0) {
  2874. free_extent_map(em);
  2875. break;
  2876. }
  2877. } else {
  2878. /*
  2879. * Do not need to reserve unwritten extent for this
  2880. * range, free reserved data space first, otherwise
  2881. * it'll result in false ENOSPC error.
  2882. */
  2883. btrfs_free_reserved_data_space(inode, data_reserved,
  2884. cur_offset, last_byte - cur_offset);
  2885. }
  2886. free_extent_map(em);
  2887. cur_offset = last_byte;
  2888. }
  2889. /*
  2890. * If ret is still 0, means we're OK to fallocate.
  2891. * Or just cleanup the list and exit.
  2892. */
  2893. list_for_each_entry_safe(range, tmp, &reserve_list, list) {
  2894. if (!ret)
  2895. ret = btrfs_prealloc_file_range(inode, mode,
  2896. range->start,
  2897. range->len, i_blocksize(inode),
  2898. offset + len, &alloc_hint);
  2899. else
  2900. btrfs_free_reserved_data_space(inode,
  2901. data_reserved, range->start,
  2902. range->len);
  2903. list_del(&range->list);
  2904. kfree(range);
  2905. }
  2906. if (ret < 0)
  2907. goto out_unlock;
  2908. /*
  2909. * We didn't need to allocate any more space, but we still extended the
  2910. * size of the file so we need to update i_size and the inode item.
  2911. */
  2912. ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
  2913. out_unlock:
  2914. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  2915. &cached_state);
  2916. out:
  2917. inode_unlock(inode);
  2918. /* Let go of our reservation. */
  2919. if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
  2920. btrfs_free_reserved_data_space(inode, data_reserved,
  2921. alloc_start, alloc_end - cur_offset);
  2922. extent_changeset_free(data_reserved);
  2923. return ret;
  2924. }
  2925. static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
  2926. {
  2927. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2928. struct extent_map *em = NULL;
  2929. struct extent_state *cached_state = NULL;
  2930. u64 lockstart;
  2931. u64 lockend;
  2932. u64 start;
  2933. u64 len;
  2934. int ret = 0;
  2935. if (inode->i_size == 0)
  2936. return -ENXIO;
  2937. /*
  2938. * *offset can be negative, in this case we start finding DATA/HOLE from
  2939. * the very start of the file.
  2940. */
  2941. start = max_t(loff_t, 0, *offset);
  2942. lockstart = round_down(start, fs_info->sectorsize);
  2943. lockend = round_up(i_size_read(inode),
  2944. fs_info->sectorsize);
  2945. if (lockend <= lockstart)
  2946. lockend = lockstart + fs_info->sectorsize;
  2947. lockend--;
  2948. len = lockend - lockstart + 1;
  2949. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2950. &cached_state);
  2951. while (start < inode->i_size) {
  2952. em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
  2953. start, len, 0);
  2954. if (IS_ERR(em)) {
  2955. ret = PTR_ERR(em);
  2956. em = NULL;
  2957. break;
  2958. }
  2959. if (whence == SEEK_HOLE &&
  2960. (em->block_start == EXTENT_MAP_HOLE ||
  2961. test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2962. break;
  2963. else if (whence == SEEK_DATA &&
  2964. (em->block_start != EXTENT_MAP_HOLE &&
  2965. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
  2966. break;
  2967. start = em->start + em->len;
  2968. free_extent_map(em);
  2969. em = NULL;
  2970. cond_resched();
  2971. }
  2972. free_extent_map(em);
  2973. if (!ret) {
  2974. if (whence == SEEK_DATA && start >= inode->i_size)
  2975. ret = -ENXIO;
  2976. else
  2977. *offset = min_t(loff_t, start, inode->i_size);
  2978. }
  2979. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2980. &cached_state);
  2981. return ret;
  2982. }
  2983. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
  2984. {
  2985. struct inode *inode = file->f_mapping->host;
  2986. int ret;
  2987. inode_lock(inode);
  2988. switch (whence) {
  2989. case SEEK_END:
  2990. case SEEK_CUR:
  2991. offset = generic_file_llseek(file, offset, whence);
  2992. goto out;
  2993. case SEEK_DATA:
  2994. case SEEK_HOLE:
  2995. if (offset >= i_size_read(inode)) {
  2996. inode_unlock(inode);
  2997. return -ENXIO;
  2998. }
  2999. ret = find_desired_extent(inode, &offset, whence);
  3000. if (ret) {
  3001. inode_unlock(inode);
  3002. return ret;
  3003. }
  3004. }
  3005. offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
  3006. out:
  3007. inode_unlock(inode);
  3008. return offset;
  3009. }
  3010. static int btrfs_file_open(struct inode *inode, struct file *filp)
  3011. {
  3012. filp->f_mode |= FMODE_NOWAIT;
  3013. return generic_file_open(inode, filp);
  3014. }
  3015. const struct file_operations btrfs_file_operations = {
  3016. .llseek = btrfs_file_llseek,
  3017. .read_iter = generic_file_read_iter,
  3018. .splice_read = generic_file_splice_read,
  3019. .write_iter = btrfs_file_write_iter,
  3020. .mmap = btrfs_file_mmap,
  3021. .open = btrfs_file_open,
  3022. .release = btrfs_release_file,
  3023. .fsync = btrfs_sync_file,
  3024. .fallocate = btrfs_fallocate,
  3025. .unlocked_ioctl = btrfs_ioctl,
  3026. #ifdef CONFIG_COMPAT
  3027. .compat_ioctl = btrfs_compat_ioctl,
  3028. #endif
  3029. .clone_file_range = btrfs_clone_file_range,
  3030. .dedupe_file_range = btrfs_dedupe_file_range,
  3031. };
  3032. void btrfs_auto_defrag_exit(void)
  3033. {
  3034. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  3035. }
  3036. int __init btrfs_auto_defrag_init(void)
  3037. {
  3038. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  3039. sizeof(struct inode_defrag), 0,
  3040. SLAB_MEM_SPREAD,
  3041. NULL);
  3042. if (!btrfs_inode_defrag_cachep)
  3043. return -ENOMEM;
  3044. return 0;
  3045. }
  3046. int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
  3047. {
  3048. int ret;
  3049. /*
  3050. * So with compression we will find and lock a dirty page and clear the
  3051. * first one as dirty, setup an async extent, and immediately return
  3052. * with the entire range locked but with nobody actually marked with
  3053. * writeback. So we can't just filemap_write_and_wait_range() and
  3054. * expect it to work since it will just kick off a thread to do the
  3055. * actual work. So we need to call filemap_fdatawrite_range _again_
  3056. * since it will wait on the page lock, which won't be unlocked until
  3057. * after the pages have been marked as writeback and so we're good to go
  3058. * from there. We have to do this otherwise we'll miss the ordered
  3059. * extents and that results in badness. Please Josef, do not think you
  3060. * know better and pull this out at some point in the future, it is
  3061. * right and you are wrong.
  3062. */
  3063. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3064. if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  3065. &BTRFS_I(inode)->runtime_flags))
  3066. ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
  3067. return ret;
  3068. }